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BOUND-CONSTRAINED POLYNOMIAL OPTIMIZATION USING ONLY

ELEMENTARY CALCULATIONS

ETIENNE DE KLERK, JEAN B. LASSERRE, MONIQUE LAURENT, AND ZHAO SUN

Abstract. We provide a monotone non increasing sequence of upper bounds fH
k

(k ≥ 1) con-
verging to the global minimum of a polynomial f on simple sets like the unit hypercube. The
novelty with respect to the converging sequence of upper bounds in [J.B. Lasserre, A new look
at nonnegativity on closed sets and polynomial optimization, SIAM J. Optim. 21, pp. 864–885,
2010] is that only elementary computations are required. For optimization over the hypercube,

we show that the new bounds fH
k

have a rate of convergence in O(1/
√
k). Moreover we show

a stronger convergence rate in O(1/k) for quadratic polynomials and more generally for poly-
nomials having a rational minimizer in the hypercube. In comparison, evaluation of all rational
grid points with denominator k produces bounds with a rate of convergence in O(1/k2), but at
the cost of O(kn) function evaluations, while the new bound fH

k
needs only O(nk) elementary

calculations.

1. Introduction

Consider the problem of computing the global minimum

(1.1) fmin,K = min {f(x) : x ∈ K },
of a polynomial f on a compact set K ⊂ Rn. (We will mainly deal with the case where K is a basic
semi-algebraic set.)

A fruitful perspective, introduced by Lasserre [16], is to reformulate problem (1.1) as

fmin,K = inf
µ

∫

K

fdµ,

where the infimum is taken over all probability measures µ with support in K. Using this re-
formulation one may obtain a sequence of lower bounds on fmin,K that converges to fmin,K, by
introducing tractable convex relaxations of the set of probability measures with support in K (if K
is semi-algebraic). For more details on this approach the interested reader is referred to Lasserre
[15, 16, 18], and [20, 17] for a comparison between linear programming (LP) and semidefinite
programming (SDP) relaxations.

As an alternative, one may obtain a sequence of upper bounds by optimizing over specific classes
of probability distributions. In particular, Lasserre [19] defined the sequence (also called hierarchy)
of upper bounds

f sos
k := min

σ∈Σk[x]

{∫

K

f(x)σ(x)dx :

∫

K

σ(x)dx = 1

}

, (k = 1, 2, . . .),

where Σk[x] denotes the cone of sums of squares (SOS) of polynomials of degree at most 2k. Thus
the optimization is restricted to probability distributions where the probability density function is
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an SOS polynomial of degree at most 2k. Lasserre [19] showed that f sos
k → fmin,K as k → ∞ (see

Theorem 2.1 below for a precise statement). In principle this approach works for any compact set
K and any polynomial but for practical implementation it requires knowledge of moments of the
measure σ(x)dx. So in practice the approach is limited to simple sets K like the Euclidean ball,
the hypersphere, the simplex, the hypercube and/or their image by a linear transformation.

In fact computing such upper bounds reduces to computing the smallest generalized eigenvalue
associated with two real symmetric matrices whose size increases in the hierarchy. For more details
the interested reader is referred to Lasserre [19]. In a recent paper, De Klerk et al. [6] have provided

the first convergence analysis for this hierarchy and shown a bound f sos
k −fmin,K = O(1/

√
k) on the

rate of convergence. In a related analysis of convergence Romero and Velasco [23] provide a bound
on the rate at which one may approximate from outside the cone of nonnegative homogeneous
polynomials (of fixed degree) by the hierarchy of spectrahedra defined in [19].

It should be emphasized that it is a difficult challenge in optimization to obtain a sequence
of upper bounds converging to the global minimum and having a known estimate on the rate of
convergence. So even if the convergence to the global minimum of the hierarchy of upper bounds
obtained in [19] is rather slow, and even though it applies to the restricted context of “simple sets”,
to the best of our knowledge it provides one of the first results of this kind. A notable earlier result
was obtained for polynomial optimization over the simplex, where it has been shown that brute
force grid search leads to a polynomial time approximation scheme for minimizing polynomials of
fixed degree [1, 4]. When minimizing over the set of grid points in the standard simplex with given
denominator k, the rate of convergence is in O(1/k) [1, 4] and, for quadratic polynomials (and for
general polynomials having a rational minimizer), in O(1/k2) [5]. Grid search over the hypercube
was also shown to have a rate of convergence in O(1/k) [3] and, as we will indicate in this paper, a
stronger rate of convergence in O(1/k2) can be shown. Note however that computing the best grid
point in the hypercube [0, 1]n with denominator k requires O(kn) computations, thus exponential
in the dimension.

Contribution. As our main contribution we provide a monotone non increasing converging se-
quence (fH

k ), k ∈ N, of upper bounds fH
k ≥ fmin,K such that fH

k → fmin,K as k → ∞. The
parameters fH

k can be effectively computed when the set K ⊂ [0, 1]n is a “simple set” like, for
example, a Euclidean ball, sphere, simplex, hypercube or any linear transformation of them.

This “hierarchy” of upper bounds is inspired from the one defined by Lasserre in [19], but with
the novelty that:

Computing the upper bounds (fH
k ) does not require solving an SDP or computing the smallest

generalized eigenvalue of some pair of matrices (as is the case in [19]). It only requires elementary
calculations (but possibly many of them for good quality bounds).

Indeed, computing the upper bound fH
k only requires finding the minimum in a list of O(nk) scalars

(γ(η,β)), formed from the moments γ of the Lebesgue measure on the set K ⊆ [0, 1]n and from the
coefficients (fα) of the polynomial f to minimize. Namely:

(1.2) fH
k := min

(η,β)∈N2n
k

∑

α∈Nn

fα
γ(η+α,β)

γ(η,β)
,

where N denotes the nonnegative integers, f(x) =
∑

α∈Nn fα xα, N2n
k = {(η, β) ∈ N2n : |η+β| = k},

and the scalars

γ(η,β) :=

∫

K

xη1

1 · · ·xηn
n (1− x1)

β1 · · · (1− xn)
βn dx, (η, β) ∈ N2n,
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are available in closed-form. (Our informal notion of “simple set” therefore means that the moments
γ(η,β) are known a priori.)

The upper bound (1.2) has also a simple interpretation as it reads:

(1.3) fH
k = min

(η,β)∈N2n
k

∫

K

f(x)xη(1− x)β dx
∫

K

xη(1− x)β dx

= min
µ

{∫

K

f dµ : µ ∈ M(K)k

}

,

where M(K)k is the set of probability measures on K, absolutely continuous with respect to the
Lebesgue measure on K, and whose density is a monomial xη(1 − x)β with (η, β) ∈ N2n

k . (Such
measures are in fact products of (univariate) beta distributions, see Section 4.1.) This also proves
that at any point a ∈ [0, 1]n one may approximate the Dirac measure δa with measures of the form
dµ = xη(1− x)β dx (normalized to make then probability measures).

For the case of the hypercube K = [0, 1]n, we analyze the rate of convergence of the bounds fH
k

and show a rate of convergence in O(1/
√
k) for general polynomials, and in O(1/k) for quadratic

polynomials (and general polynomials having a rational minimizer). As a second minor contribution,
we revisit grid search over the rational points with given denominator k in the hypercube and
observe that its convergence rate is in O(1/k2) (which follows as an easy application of Taylor’s
theorem). However as observed earlier the computation of the best grid point with denominator
k requires O(kn) function evaluations while the computation of the parameter fH

k requires only
O(nk) elementary calculations.

Organization of the paper. We start with some basic facts about the bounds fH
k in Section 2

and in Section 3 we show their convergence to the minimum of f over the set K (see Theorem 3.1).
In Section 4, for the case of the hypercube K = [0, 1]n, we analyze the quality of the bounds fH

k .

We show a convergence rate in O(1/
√
k) for the range fH

k − fmin,K and a stronger convergence rate
in O(1/k) when the polynomial f admits a rational minimizer in [0, 1]n (see Theorem 4.8). This
stronger convergence rate applies in particular to quadratic polynomials (since they have a rational
minimizer) and Example 4.9 shows that this bound is tight. When no rational minimizer exists the
weaker rate follows using Diophantine approximations. So again the main message of this paper is
that one may obtain non trivial upper bounds with error guarantees (and converging to the global
minimum) via elementary calculations and without invoking a sophisticated algorithm.

In Section 5 we revisit the simple technique which consists of evaluating the polynomial f at all
rational points in [0, 1]n with given denominator k. By a simple application of Taylor’s theorem
we can show a convergence rate in O(1/k2). However, in terms of computational complexity,
the parameters fH

k are easier to compute. Indeed, for fixed k, computing fH
k requires O(nk)

computations (similar to function evaluations), while computing the minimum of f over all grid
points with given denominator k requires an exponential number kn of function evaluations.

In Section 6 we present some additional (simple) techniques to provide a feasible point x̂ ∈ K
with value f(x̂) ≤ fH

k , once the upper bound fH
k has been computed, hence also with an error

bound guarantee in the case of the box K = [0, 1]n. This includes, in the case when f is convex,
getting a feasible point using Jensen inequality (Section 6.1) and, in the general case, taking the
mode x̂ of the optimal density function (i.e., its global maximizer) (see Section 6.2).

In Section 7, we present some numerical experiments, carried out on several test functions on
the box [0, 1]n. In particular, we compare the values of the new bound fH

k with the bound f sos
k/2

(whose definition uses a sum of squares density), and we apply the proposed techniques to find a
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feasible point in the box. As expected the sos based bound is tighter in most cases but the bound
fH
k can be computed for much larger values of k. Moreover, the feasible points x̂ returned by the
proposed mode heuristic are often of very good quality for sufficiently large k. Finally, in Section
8 we conclude with some remarks on variants of the bound fH

k that may offer better results in
practice.

2. Notation, definitions and preliminary results

Let R[x] denote the ring of polynomials in the variables x = (x1, . . . , xn), R[x]d is subspace of
polynomials of degree at most d, and Σ[x]d ⊂ R[x]2d its subset of sums of squares (SOS) of degree
at most 2d.

We use the convention that N denotes the nonnegative integers, and let Nn
d := {α ∈ Nn :

∑n
i=1 αi (=: |α|) = d}, and similarly Nn

≤d := {α ∈ Nn :
∑n

i=1 αi ≤ d}. The notation xα stands for

the monomial xα1
1 · · ·xαn

n , while (1− x)α stands for (1− x1)
α1 · · · (1− xn)

αn , α ∈ Nn. We will also
denote [n] = {1, 2, . . . , n}.

One may write every polynomial f ∈ R[x]d in the monomial basis

x 7→ f(x) =
∑

α∈Nn
≤d

fα xα,

with vector of (finitely many) coefficients (fα).
In [19], Lasserre proved the following.

Theorem 2.1 (Lasserre [19]). Let K ⊂ Rn be compact, fmin,K be as in (1.1), and let

(2.1) f sos
k := inf

σ

{∫

K

f(x)σ(x) dx :

∫

K

σ(x) dx = 1, σ ∈ Σ[x]k

}

, k ∈ N.

Then fmin,K ≤ f sos
k ≤ f sos

k+1 for all k and

(2.2) fmin,K = lim
k→∞

f sos
k .

We will also use the following important result due to Krivine [13, 14] and Handelman [10].

Theorem 2.2. Let K = {x : gj(x) ≥ 0, j = 1, . . . ,m} ⊂ Rn be a polytope with a nonempty interior
and where each gj is an affine polynomial, j = 1, . . . ,m. If f ∈ R[x] is strictly positive on K then

(2.3) f(x) =
∑

α∈Nm

λα g1(x)
α1 · · · gm(x)αm , ∀x ∈ Rn,

for finitely many positive scalars λα.

We will call the expression in (2.3) the Handelman representation of f , and call any f that
allows a Handelman representation to be of the Handelman type. Throughout we consider the set
Hk consisting of the polynomials of the form:

(2.4)
∑

(η,β)∈N2n
k

λη,βx
η(1− x)β where ληβ ≥ 0,

i.e., all polynomials admitting a Handelman representation of degree at most k in terms of the
polynomials xi, 1− xi defining the hypercube [0, 1]n.

Observe that any term xη(1 − x)β with degree |η + β| < k also belongs to the set Hk. This
follows by iteratively applying the identity: 1 = xi + (1− xi), which permits to rewrite xη(1− x)β
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as a conic combination of terms xη′

(1−x)β
′

with degree |η′ + β′| = k. The next claim follows then
as a direct application.

Lemma 2.3. We have the inclusion: Hk ⊆ Hk+1 for all k.

We may now interpret the new upper bounds fH
k in an analogous way as f sos

k (see (2.1)), but
where the SOS density function σ ∈ Σk[x] is replaced by a density σ ∈ Hk.

Lemma 2.4. Consider the sequence (fH
k ), k ∈ N, with fH

k as in (1.2). Then one has:

fH
k = inf

σ∈Hk

{∫

K

f(x)σ(x) dx :

∫

K

σ(x) dx = 1

}

, k ∈ N.

Proof. Note that, for given k ∈ N,

inf
σ

{∫

K

f(x)σ(x) dx :

∫

K

σ(x) dx = 1, σ ∈ Hk

}

= inf
λ≥0







∑

α∈Nn
d

fα








∑

(η,β)∈N2n
k

ληβ

∫

K

xη+α(1− x)β dx

︸ ︷︷ ︸

γ(η+α,β)








:
∑

(η,β)∈N2n
k

ληβ

∫

K

xη(1 − x)β dx = 1







= inf
λ≥0







∑

(η,β)∈N2n
k

ληβ




∑

α∈Nn
d

fα γ(η+α,β)



 :
∑

(η,β)∈N2n
k

ληβ γ(η,β) = 1







= min
(η,β)∈N2n

k

∑

α∈Nn
d

fα
γ(η+α,β)

γ(η,β)
= fH

k ,

where we have used the fact that the penultimate optimization problem is an LP over a simplex
that obtains its infimum at one of the vertices. �

Example 2.5. We consider the bivariate Styblinski-Tang function

f(x1, x2) =

2∑

i=1

1

2
(10xi − 5)4 − 8(10xi − 5)2 +

5

2
(10xi − 5)

over the square K = [0, 1]2, with minimum fmin,K ≈ −78.33198 and minimizer

x∗ ≈ (0.20906466, 0.20906466).

Here one has f sos
1 = −12.9249, and the corresponding SOS density of degree 2 is (roughly)

σ(x1, x2) = (1.9169− 1.005x1 − 1.005x2)
2.

Using a Handelman-type density function, the upper bound of degree 2 is fH
2 = −17.3810, with

corresponding density

σ(x1, x2) = 6x2(1 − x2).

On the other hand, if we consider densities of degree 6 then we get f sos
3 = −34.403 and fH

6 =
−31.429.

Thus there is no general ordering between the bounds f sos
k and fH

2k. Having said that, we will
show in Section 7 that, for most of the examples we have considered, one has fsos

k ≤ fH
2k for all k,

as one may expect from the relative computational efforts.
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Figure 1. Optimal Handelman-type density σ(x) of degree 50 on [0, 1]2 for the
bivariate Styblinski-Tang function.

As a final illustration, Figure 1 shows the plot and contour plot of the Handelman-type density
corresponding to the bound fH

50 = −60.536 (i.e. degree 50).
The figure illustrates the earlier assertion that the optimal density approximates the Dirac delta

measure at the minimizer x∗ ≈ (0.20906466, 0.20906466). Indeed, it is clear from the contour plot
that the mode of the optimal density is close to x∗.

3. Convergence proof

Let K ⊆ [0, 1]n be a compact set and for every (η, β) ∈ N2n, let

(3.1) γ(η,β) :=

∫

K

xη(1− x)β dx.

Of course when K is arbitrary one does not know how to compute such generalized moments. But
if K is the unit hypercube [0, 1]n, the simplex ∆ := {x : x ≥ 0;

∑n
i=1 xi ≤ 1}, a Euclidean ball

(or sphere), the hypercube {0, 1}n and/or their image by a linear mapping, then such moments are
available in closed-form. For instance if K = [0, 1]n then

∫

K

xη (1− x)β dx =

n∏

i=1

(∫ 1

0

xηi

i (1 − xi)
βi dxi

)

, (η, β) ∈ N2n,

and the univariate integrals may be calculated from

(3.2)

∫ 1

0

ti(1 − t)j dt =
i!j!

(i+ j + 1)!
i, j ∈ N.

Theorem 3.1. Let f ∈ R[x]d and let γ(η,β) be as in (3.1). Define as before the parameters

(3.3) fH
k = min

(η,β)∈N2n
k

∑

α∈Nn
≤d

fα
γ(η+α,β)

γ(η,β)
, ∀ k ∈ N.

Then the sequence (fH
k ), k ∈ N, is monotone non increasing and fmin,K = lim

k→∞
fH
k .
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Proof. As before, let f sos
k denote the bound obtained by searching over an SOS density σ of degree

at most 2k:

f sos
k = min

∫

K

f(x)σ(x)dx such that

∫

K

σ(x)dx = 1, σ ∈ Σk.

Also recall from Lemma 2.4 that

fH
k = min

∫

K

f(x)σ(x)dx such that

∫

K

σ(x)dx = 1, σ ∈ Hk.

In view of Lemma 2.3, the sequence (fH
k ) is monotone non-increasing. Moreover, fmin,K ≤ fH

k for
all k. Next we show that the sequence (fH

k ) converges to fmin,K.
To this end, let ǫ > 0. As the sequence (f sos

k ) converges to fmin,K (Theorem 2.1), there exists
an integer k such that

fmin,K ≤ f sos
k ≤ fmin,K + ǫ.

Next, there exists a polynomial σ ∈ Σk such that
∫

K
σ(x)dx = 1 and

f sos
k ≤

∫

K

f(x)σ(x)dx ≤ f sos
k + ǫ.

Define now the polynomial σ̂(x) = σ(x) + ǫ. Then σ̂ is positive on [0, 1]n, and thus, by Theorem
2.2, σ̂ ∈ Hjk for some integer jk. Observe that

∫

K

σ̂(x)dx =

∫

K

(σ(x) + ǫ)dx ≥
∫

K

σ(x)dx = 1.

Hence we obtain:

fH
jk − fmin,K ≤

∫

K
f(x)σ̂(x)dx
∫

K
σ̂(x)dx

− fmin,K =

∫

K
(f(x)− fmin,K)σ̂(x)dx

∫

K
σ̂(x)dx

≤
∫

K

(f(x)− fmin,K)σ̂(x)dx.

The right most term is equal to
∫

K

(f(x)−fmin,K)σ(x)dx+ǫ

∫

K

(f(x)−fmin,K)dx =

∫

K

f(x)σ(x)dx−fmin,K+ǫ

∫

K

(f(x)−fmin,K)dx,

where we used the fact that
∫

K
σ(x)dx = 1. Finally, combining with the fact that

∫

K
f(x)σ(x)dx ≤

f sos
k + ǫ ≤ fmin,K + 2ǫ, we can derive that

fH
jk

− fmin,K ≤ ǫ

(

2 +

∫

K

(f(x)− fmin,K)dx

)

= ǫC,

where C := 2 +
∫

K
(f(x)− fmin,K)dx is a constant. This concludes the proof. �

4. Bounding the rate of convergence for the bounds fH
k on K = [0, 1]n

In this section we analyze the convergence rate of the bounds fH
k for the hypercube K = [0, 1]n.

We prove a convergence rate in O(1/
√
k) for the range fH

k − fmin,K in general, and a stronger
convergence rate in O(1/k) when f has a rational global minimizer in [0, 1]n, which is the case, for
instance, when f is quadratic.

Our main tool will be exploiting some properties of the moments γ(η,β) which, as we recall below,
arise from the moments of the beta distribution.
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4.1. The beta distribution. By definition, a random variable Y ∈ [0, 1] has the beta distribution
with shape parameters a > 0 and b > 0 (denoted by Y ∼ beta(a, b)) if its probability density
function is given by

y 7→ ya−1(1− y)b−1

∫ 1

0 ta−1(1− t)b−1dt
.

If a > 1 and b > 1, then the (unique) mode of the distribution (i.e. the maximizer of the density
function) is

(4.1) y = (a− 1)/(a+ b− 2).

Moreover, the k-th moment of Y is

(4.2) E(Y k) =
a(a+ 1) · · · (a+ k − 1)

(a+ b)(a+ b + 1) · · · (a+ b+ k − 1)
, (k = 1, 2, 3, . . .)

(see, e.g, [12, Chapter 24]; this also follows using (3.2)).

4.2. Proof of convergence rate. Given a polynomial f , consider a global minimizer x∗ of f
in [0, 1]n. In what follows we indicate how to construct a vector of independent random variables
X = (X1, . . . , Xn) so that the Xi’s have the beta distribution with suitable shape parameters η∗i , β

∗
i ,

designed to ensure that (roughly) E[X ] = x∗.
We will use the following result about Diophantine approximations.

Theorem 4.1 (Dirichlet’s theorem). (see e.g. [24, Chapter 6.1]) Consider a real number x ∈ R

and 0 < ǫ ≤ 1. Then there exist integers p and q satisfying

(4.3)

∣
∣
∣
∣
x− p

q

∣
∣
∣
∣
<

ǫ

q
and 1 ≤ q ≤ 1

ǫ
.

If x ∈ (0, 1), then one may moreover assume 0 ≤ p ≤ q.

If x∗
i ∈ (0, 1) is a rational coordinate of x∗, then we select integers pi and qi such that x∗

i = pi/qi,
so that 1 ≤ pi < qi. When x∗

i is an irrational coordinate of x∗ we use Theorem 4.1 to construct a
pair of suitable integers pi, qi. Namely, we consider an integer r ≥ 1 and apply Theorem 4.1 with
ǫ = 1/r. Then, there exist integers pi and qi satisfying

(4.4)

∣
∣
∣
∣
x∗
i −

pi
qi

∣
∣
∣
∣
<

1

rqi
, 0 ≤ pi ≤ qi ≤ r and 1 ≤ qi.

For convenience, let I0 (resp., I1, I) denote the set of indices i ∈ [n] for which x∗
i is irrational

and the integers pi and qi in (4.4) satisfy: pi = 0 (resp., pi = qi, 1 ≤ pi < qi). Moreover, define
the set J consisting of all indices i for which x∗

i ∈ (0, 1) is rational. Then, x∗
i ∈ {0, 1} for all

i ∈ [n] \ (I0 ∪ I1 ∪ I ∪ J).
We now indicate how to construct the parameters η∗i and β∗

i .

Definition 4.2. Let r be a positive integer. For each coordinate x∗
i ∈ [0, 1], consider the integers

pi and qi defined as above. We define the parameters η∗i and β∗
i ∈ N as follows.

(i) Assume i ∈ J ∪ I; that is, either x∗
i ∈ (0, 1) is rational of the form x∗

i = pi/qi, or x∗
i is

irrational with 1 ≤ pi < qi. Then, we set η∗i = rpi and β∗
i = r(qi − pi).

(ii) Assume either x∗
i = 0, or i ∈ I0, i.e., x

∗
i is irrational with pi = 0. Then we set η∗i = 1 and

β∗
i = r.

(iii) Assume either x∗
i = 1, or i ∈ I1, i.e., x

∗
i is irrational with pi = qi. Then we set η∗i = r and

β∗
i = 1.
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Now we define the vector of independent random variables X := (X1, . . . , Xn), where Xi ∼ beta(η∗i , β
∗
i )

(i ∈ [n]).

For given α ∈ Nn, we denote Xα =
∏n

i=1 X
αi

i . Since the random variables Xi’s are independent
we have E(Xα) =

∏n
i=1 E(X

αi

i ) and the expected value of f(X) =
∑

α∈Nn fαX
α is given by

(4.5) E(f(X)) =
∑

α∈Nn

fαE(X
α) =

∑

α∈Nn

fα

n∏

i=1

E(Xαi

i ),

where E(Xαi

i ) can be computed using (4.2). Observe moreover that, by construction,

(4.6) E(f(X)) =

∫

[0,1]n f(x)xη∗−1(1− x)β
∗−1dx

∫

[0,1]n
xη∗−1(1− x)β∗−1dx

≥ fH
kr

≥ f(x∗) ,

where we set

kr :=

n∑

i=1

(η∗i − 1 + β∗
i − 1)

and let 1 denote the all-ones vector. We will also use the following estimate on the parameter kr.

Lemma 4.3. Consider the parameter kr =
∑n

i=1(η
∗
i − 1 + β∗

i − 1). Then the following holds:

(i) If x∗ ∈ Q then kr ≤ ar for all r ≥ 1, where a > 0 is a constant (not depending on r).
(ii) If x∗ ∈ R \Q then kr ≤ a′r2 for all r ≥ 1, where a′ > 0 is a constant (not depending on r).
(iii) For r = 1, we have that k1 =

∑

i∈J qi − 2|J |.
Proof. By construction, η∗i + β∗

i − 2 = rqi − 2 for each i ∈ I ∪ J , and η∗i + β∗
i − 2 = r− 1 otherwise.

From this one gets kr = r(
∑

i∈I∪J qi+n−|I∪J |)−n−|I ∪J | =: ar−b, after setting b := n+ |I∪J |
and a :=

∑

i∈I∪J qi + n− |I ∪ J |, so that a, b ≥ 0. Thus, kr ≤ ar holds.
Next, note that qi ≤ r for each i ∈ I, while qi does not depend on r for i ∈ J (since then

x∗
i = pi/qi). Hence, in case (i), I = ∅ and the constant a does not depend on r. In case (ii), we

obtain: a ≤ r|I|+∑i∈J qi + n− |I ∪ J | ≤ a′r, after setting a′ := |I|+∑i∈J qi + n− |I ∪ J |, which
is thus a constant not depending on r. Then, kr ≤ ar ≤ a′r2.

In the case r = 1 the set I is empty and thus k1 =
∑

i∈J qi − 2|J |, showing (iii). �

We can prove the following upper bound for the range E(f(X)) − f(x∗), which will be crucial for
establishing the rate of convergence of the parameters fH

k .

Theorem 4.4. Given a polynomial f , consider a global minimizer x∗ of f in [0, 1]n. Let r be a
positive integer. For any x∗

i ∈ [0, 1] (i ∈ [n]), consider the parameters η∗i , β
∗
i and random variables

Xi in Definition 4.2. Then there exists a constant Cf > 0 (depending only on f) such that

E(f(X))− f(x∗) ≤ Cf

r
.

For the proof of Theorem 4.4, we need the following three technical lemmas.

Lemma 4.5. Let k be a positive integer. There exists a constant Ck > 0 (depending only on k) for
which the following relation holds:

(4.7)
rp(rp + 1) · · · (rp+ k − 1)

rq(rq + 1) · · · (rq + k − 1)
− pk

qk
≤ Ck

r

for all integers 1 ≤ p < q and r ≥ 1.
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Proof. Consider the univariate polynomial φ(t) = (t + 1) · · · (t + k − 1) =
∑k−1

i=0 ait
i, where the

scalars ai > 0 depend only on k and ak−1 = 1. Denote by ∆ the left hand side in (4.7), which can
be written as ∆ = N/D, where we set

N := rpqkφ(rp) − rqpkφ(rq), D := rqk+1φ(rq).

We first work out the term N :

N = rpq(

k−2∑

i=0

air
ipiqk−1 −

k−2∑

i=0

air
iqipk−1) = rpq

k−2∑

i=0

air
ipiqi(qk−1−i − pk−1−i).

Write: qk−1−i − pk−1−i = (q − p)
∑k−2−i

j=0 qjpk−2−i−j ≤ (q − p)qk−2−i(k − 1− i), where we use the
fact that p < q. This implies:

N ≤ rpq(q − p)
k−2∑

i=0

air
ipiqk−2(k − 1− i) = rpqk−1(q − p)

k−2∑

i=0

ai(k − 1− i)ripi =: N ′.

Thus we get:

∆ ≤ N ′

D
=

p(q − p)

q2
·
∑k−2

i=0 ai(k − 1− i)ripi

φ(rq)
.

The first factor is at most 1, since one has: p(q− p) ≤ q2, as q2 − p(q− p) = (q− p)2 + pq. Second,

we bound the sum
∑k−2

i=0 ai(k − 1 − i)ripi in terms of φ(rq) =
∑k−1

j=0 ajr
jqj . Namely, define the

constant

Ck := max
0≤i≤k−2

ai(k − 1− i)

ai+1
,

which depends only on k. We show that

ai(k − 1− i)ripi ≤ Ck

r
.

Indeed, for each 0 ≤ i ≤ k − 2, using pi ≤ qi+1 and the definition of Ck, we get:

r · ai(k − 1− i)ripi ≤ ai(k − 1− i)ri+1qi+1 ≤ Ckai+1r
i+1qi+1.

Summing over i = 0, 1, . . . , k − 2 gives:

r

k−2∑

i=0

ai(k − 1− i)ripi ≤ Ck

k−2∑

i=0

ai+1r
i+1qi+1 ≤ Ckφ(rq),

and thus

∆ ≤ N ′

D
≤ Ck

r
as desired. �

Lemma 4.6. Let r be a positive integer. For any x∗
i ∈ [0, 1], we consider the parameters η∗i , β

∗
i

and random variables Xi in Definition 4.2. For any integer k ≥ 1, there exists a constant C′
k > 0

(depending only on k) for which the following holds:

∣
∣E(Xk

i )− (x∗
i )

k
∣
∣ ≤ C′

k

r
.
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Proof. (i) We consider first the case when x∗
i ∈ (0, 1) with i ∈ J ∪I. Then, by Definition 4.2 (i), one

has η∗i = rpi and β∗
i = r(qi − pi), where the integers pi, qi satisfy 1 ≤ pi < qi, and either x∗

i = pi/qi
if x∗

i is rational, or |x∗
i − pi/qi| ≤ 1/(qir) ≤ 1/r if x∗

i is irrational. Then, by (4.2), the k-th moment
of Xi is

E(Xk
i ) =

η∗i (η
∗
i + 1) · · · (η∗i + k − 1)

(η∗i + β∗
i )(η

∗
i + β∗

i + 1) · · · (η∗i + β∗
i + k − 1)

=
rpi(rpi + 1) · · · (rpi + k − 1)

rqi(rqi + 1) · · · (rqi + k − 1)

and we obtain:

|E(Xk
i )− (x∗

i )
k| ≤

∣
∣
∣
∣

rpi(rpi + 1) · · · (rpi + k − 1)

rqi(rqi + 1) · · · (rqi + k − 1)
− pki

qki

∣
∣
∣
∣

︸ ︷︷ ︸

=:T1

+

∣
∣
∣
∣

pki
qki

− (x∗
i )

k

∣
∣
∣
∣

︸ ︷︷ ︸

=:T2

.

For the term T1, Lemma 4.5 implies:

T1 ≤ Ck

r
.

For the term T2, we have:

T2 =

∣
∣
∣
∣

pki
qki

− (x∗
i )

k

∣
∣
∣
∣
=

∣
∣
∣
∣

pi
qi

− x∗
i

∣
∣
∣
∣
·
(

k−1∑

h=0

(
pi
qi

)h

(x∗
i )

k−h−1

)

≤ k

r
,

since the first factor is at most 1/r and, in the second factor, each term in the summation is bounded
by 1. Summarizing, we obtain: |E(Xk

i )− (x∗
i )

k| ≤ T1 + T2 ≤ (Ck + k)/r.

(ii) When x∗
i = 0, by Definition 4.2 (ii), one has η∗i = 1 and β∗

i = r. Thus we have:

E(Xk
i )− (x∗

i )
k = E(Xk

i ) =
k!

(r + 1)(r + 2) · · · (r + k)
≤ k!

r
.

(iii) When i ∈ I0, then x∗
i ≤ 1/(qir) ≤ 1/r and, using the above inequality in (ii), we get:

|E(Xk
i )− (x∗

i )
k| ≤ E(Xk

i ) + (x∗
i )

k ≤ k!

r
+

1

rk
≤ k! + 1

r
.

(iv) When x∗
i = 1, by Definition 4.2 (iii), one has η∗i = r and β∗

i = 1. Thus we have:

|E(Xk
i )− (x∗

i )
k| = |E(Xk

i )− 1| = k

r + k
≤ k

r
.

(v) Finally, if i ∈ I1, then 1− x∗
i ≤ 1/(qir) ≤ 1/r and, using the above inequality in (iv), we get:

|E(Xk
i )− (x∗

i )
k| ≤ |E(Xk

i )− 1|+ (1 − (x∗
i )

k) ≤ k

r
+

k

r
≤ 2k

r
,

where we have used 1− (x∗
i )

k = (1− x∗
i )
∑k−1

h=0(x
∗
i )

k−h−1 ≤ k(1− x∗) ≤ k/r.

In all cases (i)-(v), we found
∣
∣E(Xk

i )− (x∗
i )

k
∣
∣ ≤ C′

k/r, after setting C
′
k = max{Ck+k, k!+1, 2k}. �

Lemma 4.7. For any x, y ∈ Rn, one has the following equality:

n∏

i=1

xi −
n∏

i=1

yi =
n∑

i=1



(xi − yi)
i−1∏

j=1

yj

n∏

j=i+1

xj



 .

Proof. Proof by direct verification. �
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Now we can prove Theorem 4.4.

Proof. (of Theorem 4.4) We write f(x) =
∑

α∈Nn fαx
α. From the definition (4.5), we have

E(f(X))− f(x∗) =
∑

α∈Nn

fα

(
n∏

i=1

E(Xαi

i )−
n∏

i=1

(x∗
i )

αi

)

︸ ︷︷ ︸

=:A

.

By Lemma 4.7, one has

A =

n∑

i=1









(E(Xαi

i )− (x∗
i )

αi)

i−1∏

j=1

(x∗
j )

αj

︸ ︷︷ ︸

=:B

n∏

j=i+1

E(X
αj

j )

︸ ︷︷ ︸

=:C









.

Since x∗
i ∈ [0, 1] for any i ∈ [n], then 0 ≤ B ≤ 1. Moreover, by Definition 4.2 and (4.2), one has

that E(Xαi

i ) ∈ [0, 1] for any i ∈ [n], and thus 0 ≤ C ≤ 1. Combining with Lemma 4.6, we can
conclude: |A| ≤ (

∑n
i=1 C

′
αi
)/r. Therefore, we obtain that

E(f(X))− f(x∗) ≤
∑

α∈Nn

|fα|
n∑

i=1

|E(Xαi

i )− (x∗
i )

αi | ,

where the right hand side is at most Cf/r, after setting Cf :=
∑

α∈Nn |fα|
∑n

i=1 C
′
αi
. This concludes

the proof. �

We can now show the following results for the rate of convergence of the sequence fH
k .

Theorem 4.8. Given a polynomial f , let x∗ be a global minimizer of f in [0, 1]n and consider as
before the parameters

fH
k = min

(η,β)∈N2n
k

∫

[0,1]n
f(x)xη(1− x)β dx

∫

[0,1]n
xη(1 − x)β dx

(k = 1, 2, . . .).

There exists a constant Mf (depending only on f) such that

(4.8) fH
k − f(x∗) ≤ Mf√

k
for all k ≥ k1,

where k1 =
∑

i∈J qi − 2|J | (as in Lemma 4.3 (iii)). Moreover, if f has a rational global minimizer
x∗, then there exists a constant M ′

f (depending only on f) such that

(4.9) fH
k − f(x∗) ≤

M ′
f

k
for all k ≥ k1.

In particular, the convergence rate is in O(1/k) when f is a quadratic polynomial.

Proof. Consider an integer r ≥ 1 and, as in Definition 4.2, the parameters η∗i , β
∗
i and the random

variables Xi ∼ beta(η∗i , β
∗
i ) for i ∈ [n]. Recall also the parameter kr from Lemma 4.3. Then,

as observed earlier in (4.6), by the definition of the parameter fH
kr
, we have that E(f(X)) ≥ fH

kr
.

Moreover, by Theorem 4.4, E(f(X))− f(x∗) ≤ Cf/r for some constant Cf (depending only on f).
Therefore, we have the following inequality:

(4.10) fH
kr

− f(x∗) ≤ Cf

r
.
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We now consider an arbitrary integer k ≥ k1. Let r ≥ 1 be the largest integer for which k ≥ kr.
Then we have kr ≤ k < kr+1. As kr ≤ k, we have the inequality fH

k − f(x∗) ≤ fH
kr

− f(x∗) and

thus, using (4.10), fH
k − f(x∗) ≤ Cf

r . We now bound 1/r in terms of k.
If x∗ ∈ Q then, by Lemma 4.3 (i), kr+1 ≤ a(r + 1) ≤ 2ar, which implies k ≤ kr+1 ≤ 2ar, where

the constant a does not depend on r. Thus, fH
k − f(x∗) ≤ Cf

r ≤ 2aCf

k =
Mf

k , where the constant
Mf = 2aCf depends only on f . This shows (4.9).

If x∗ 6∈ Q then, by Lemma 4.3 (ii), kr+1 ≤ a′(r+1)2 ≤ 4a′r2, which implies k ≤ kr+1 ≤ 4a′r2 and

thus 1
r ≤ 2

√
a′√
k
, where the constant a′ does not depend on r. Therefore, fH

k −f(x∗) ≤ Cf

r ≤ 2
√
a′Cf√
k

,

which shows that fH
k − f(x∗) ≤ M ′

f√
k
and thus (4.8), after setting M ′

f = 2
√
a′Cf .

Finally, if f is quadratic then, by a result of Vavasis [25], f has a rational minimizer over the
hypercube and thus the rate of convergence is O(1/k). �

Note that the inequalities (4.8) and (4.9) hold for all k ≥ k1, where k1 depends only on the
rational components in (0, 1) of the minimizer x∗. The constant k1 can be in O(1), e.g., when all
but O(1) of these rational components have a small denominator (say, equal to 2). Thus we can,
for some problem classes, get a bound with an error estimate in polynomial time.

Example 4.9. Consider the polynomial f =
∑n

i=1 xi and the set K = [0, 1]n. Then fmin,K = 0
is attained at the zero vector. Using the relations (3.1), (3.2) and (3.3) it follows that fH

k =

min(η,β)∈N2n
k

∑n
i=1

ηi+1
ηi+βi+2 . Since ηi + βi ≤ k and ηi ≥ 0 (for any i ∈ [n]), we have fH

k ≥ n
k+2 .

By this example, there does not exist any δ > 0 such that, for any f , fH
k − fmin,K = O(1/k1+δ).

Therefore, when a rational minimizer exists, the convergence rate from Theorem 4.8 in O(1/k) for
fH
k is tight.

5. Bounding the rate of convergence for grid search over K = [0, 1]n

As an alternative to computing fH
k on K = Q := [0, 1]n, one may minimize f over the regular

grid:

Q(k) := {x ∈ Q = [0, 1]n | kx ∈ Nn},
i.e., the set of rational points in [0, 1]n with denominator k. Thus we get the upper bound

fmin,Q(k) := min
x∈Q(k)

f(x) ≥ fmin,Q k = 1, 2, . . .

De Klerk and Laurent [3] showed a rate of convergence in O(1/k) for this sequence of upper bounds:

(5.1) fmin,Q(k) − fmin,Q ≤ L(f)

k

(
d+ 1

3

)

nd for any k ≥ d,

where d is the degree of f and L(f) is the constant

L(f) = max
α

|fα|
∏n

i=1 αi!

|α|! .

We can in fact show a stronger convergence rate in O(1/k2).

Theorem 5.1. Let f be a polynomial and let x∗ be a global minimizer of f in [0, 1]n. Then there
exists a constant Cf (depending on f) such that

fmin,Q(k) − f(x∗) ≤ Cf

k2
for all k ≥ 1.
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Proof. Fix k ≥ 1. By looking at the grid point in Q(k) closest to x∗, there exists h ∈ [0, 1]n such

that x∗ + h ∈ Q(k) and ‖h‖ ≤
√
n
k . Then, by Taylor’s theorem, we have that

(5.2) f(x∗ + h) = f(x∗) + hT∇f(x∗) +
1

2
hT∇2f(ζ)h,

for some point ζ lying in the segment [x∗,x∗ + h] ⊆ [0, 1]n.
Assume first that the global minimizer x∗ lies in the interior of [0, 1]n. Then ∇f(x∗) = 0 and

thus

fmin,Q(k) − f(x∗) ≤ f(x∗ + h)− f(x∗) ≤ C‖h‖2 ≤ nC

k2
,

after setting C := maxζ∈[0,1]n ‖∇2f(ζ)‖/2.
Assume now that x∗ lies on the boundary of [0, 1]n and let I0 (resp., I1, I) denote the set

of indices i ∈ [n] for which x∗
i = 0 (resp., x∗

i = 1, x∗
i ∈ (0, 1)). Define the polynomial g(y) =

f(y, 0, . . . , 0, 1, . . . , 1) (with 0 at the positions i ∈ I0 and 1 at the positions i ∈ I1) in the variable
y ∈ R|I|. Then x∗

I = (x∗
i )i∈I is a global minimizer of g over [0, 1]|I| which lies in the interior. So we

may apply the preceding reasoning to the polynomial g and conclude that gmin,Q(k) − g(x∗
I) ≤ C′

k2

for some constant C′ (depending on g and thus on f). As fmin,Q(k) ≤ gmin,Q(k) and f(x∗) = g(x∗
I)

the result follows. �

Therefore the bounds fmin,Q(k) obtained through grid search have a faster convergence rate than

the bounds fH
k . However, for any fixed value of k, for the bound fH

k one needs a polynomial number
O(nk) of computations (similar to function evaluations), while computing the bound fmin,Q(k)

requires an exponential number kn of function evaluations. Hence the ‘measure-based’ guided
search producing the bounds fH

k is superior to the brute force grid search technique in terms of
complexity.

6. Obtaining feasible points x with f(x) ≤ fH
k

In this section we describe how to generate a point x ∈ K ⊆ [0, 1]n such that f(x) ≤ fH
k (or

that f(x) ≤ fH
k + ǫ for some small ǫ > 0).

We will discuss in turn:

• the convex case (and related cases), and
• the general case.

6.1. The convex case (and related cases): using the Jensen inequality. Our main tool for
treating the convex case (and related cases) will be the Jensen inequality.

Lemma 6.1 (Jensen inequality). If C ⊆ Rn is convex, φ : C → R is a convex function, and X ∈ C
a random variable, then

φ(E(X)) ≤ E(φ(X)).

Theorem 6.2. Assume that K ⊆ [0, 1]n is closed and convex, and (η, β) ∈ N2n
k is such that

fH
k =

∫

K
f(x)xη(1 − x)β dx
∫

K
xη(1− x)β dx

.

Let X = (X1, . . . , Xn) be a vector of random variables with Xi ∼ beta(ηi + 1, βi + 1) (i ∈ [n]).
Then one has f(E(X)) ≤ fH

k in the following cases:

(1) f is convex;
(2) f has only nonnegative coefficients;
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(3) f is square-free, i.e., f(x) =
∑

α∈{0,1}n fαx
α.

Proof. The proof uses the fact that, by construction,

fH
k = E(f(X)).

Thus the first item follows immediately from Jensen’s inequality. For the proof of the second item,
recall that

fH
k = E(f(X)) =

∑

α∈Nn

fα

n∏

i=1

E(Xαi

i )

where we now assume fα ≥ 0 for all α. Since φ(Xi) = Xαi

i is convex on [0, 1] (i ∈ [n]), Jensen’s
inequality yields E(Xαi

i ) ≥ [E(Xi)]
αi . Thus

fH
k ≥

∑

α∈Nn

fαE(X)α,

as required. For the third item, where f is assumed square-free, one has

fH
k = E(f(X)) =

∑

α∈Nn

fα

n∏

i=1

E(Xαi

i )

where all α ∈ {0, 1}n so that E(Xαi

i ) = [E(Xi)]
αi , and consequently

fH
k =

∑

α∈Nn

fαE(X)α.

This completes the proof. �

6.2. The general case.

Sampling. One may generate random samples x ∈ K from the density σ on K using the well-known
method of conditional distributions (see e.g., [21, Section 8.5.1]). For K = [0, 1]n, the procedure
is described in detail in [6, Section 3]. In this way one may obtain, with high probability, a point
x ∈ K with f(x) ≤ fH

k + ǫ, for any given ǫ > 0. (The size of the sample depends on ǫ.) Here
we only mention that this procedure may be done in time polynomial in n and 1/ǫ; for details the
reader is referred to [6, Section 3].

A heuristic based on the mode. As an alternative, one may consider the heuristic that returns the
mode (i.e. maximizer) of the density σ as a candidate solution; cf. Example 2.5. The mode may be
calculated one variable at a time using (4.1).

In Section 7 below, we will illustrate the performance of all the strategies described in this section
on numerical examples.

7. Numerical examples

In this section we will present numerical examples to illustrate the behaviour of the sequences
of upper bounds, and of the techniques to obtain feasible points.
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7.1. The complexity of computing fH
k and f sos

k . We let Nf denote the set of indices α ∈ Nn

for which fα 6= 0; note that |Nf | ≤
(
n+d
d

)
if d is the total degree of f . The computation of fH

k is
done by computing

∑

α∈Nf

fα
γ(η+α,β)

γ(η,β)

for all (η, β) ∈ N2n
k , and taking the minimum. (We assume that the values γ(η,β) are pre-computed

for all (η, β) ∈ N2n
k+d.)

Thus, for fixed (η, β) ∈ N2n
k , one may first compute the inner product of the vectors with

components fα and γ(η+α,β) (indexed by α). Note that these vectors are of size |Nf |. Since there

are
(
2n+k−1

k

)
pairs (η, β) ∈ N2n

k , the entire computation requires (2|Nf |+ 1)
(
2n+k−1

k

)
flops 1.

As mentioned before, the computation of the upper bounds f sos
k may be done by finding the

smallest generalized eigenvalue λ of the system:

Ax = λBx (x 6= 0),

for suitable symmetric matrices A and B of order
(
n+k
k

)
. In particular, the rows and columns of

the two matrices are indexed by Nn
≤k, and

Aα,β =
∑

δ∈Nf

fδ

∫

K

xα+β+δdx, Bα,β =

∫

K

xα+βdx α, β ∈ Nn
≤k.

Note that the matrices A and B depend on the moments of the Lebesgue measure on K = [0, 1]n,
and that these moments may be computed beforehand, by assumption. One may compute Aα,β

by taking the inner product of (fδ)δ∈Nf
with the vector of moments

(∫

K
xα+β+δdx

)

δ∈Nf
. Thus

computation of the elements of A require a total of |Nf |
((

n+k
k

)
+ 1
)2

flops.

Also note that the matrix B is a positive definite (Gram) matrix. Thus one has to solve a so-

called symmetric-definite generalized eigenvalue problem, and this may be done in 14
(
n+k
k

)3
flops;

see e.g. [9, Section 8.7.2]. Thus one may compute f sos
k in at most 14

(
n+k
k

)3
+ |Nf |

((
n+k
k

)
+ 1
)2

flops.

7.2. Test functions and results. We consider several well-known polynomial test functions from
global optimization (also used in [6]), that are listed in Table 1. Note that the Booth and Matyas
functions are convex. Note also that the functions have a rational minimizer in the hypercube
(except the Styblinski-Tang function).

We start by listing the upper bounds fH
k for these test functions in Table 2 for densities with

degree up to k = 50.

One notices that the observed convergence rate is more-or-less in line with the O(1/k) bound.
In a next experiment, we compare the Handelman-type densities (fH

k bounds) to SOS densities
(f sos

k/2 bounds); see Tables 3 and 4.

1We define floating point operations (flops) as in [9, p. 18]; in particular, by this definition the inner product of
two n-vectors requires 2n flops.
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Table 1. Test functions

Name Formula Minimum (fmin,K)
Search do-
main (K)

Booth Function f = (20x1+40x2−37)2+(40x1+20x2−35)2 f(0.55, 0.65) = 0 [0, 1]2

Matyas Function
f = 0.26[(20x1 − 10)2 + (20x2 − 10)2 ] −

0.48(20x1 − 10)(20x2 − 10)
f(0.5, 0.5) = 0 [0, 1]2

Motzkin Polynomial
f = (4x1 −2)4(4x2 −2)2 +(4x1 −2)2(4x2 −

2)4 − 3(4x1 − 2)2(4x2 − 2)2 + 1
f( 1

4
, 1
4
) = f( 1

4
, 3
4
) = f( 3

4
, 1
4
) = f( 3

4
, 3
4
) = 0 [0, 1]2

Three-Hump Camel
Function

f = 2(10x1−5)2−1.05(10x1−5)4+ 1
6
(10x1−

5)6 + (10x1 − 5)(10x2 − 5) + (10x2 − 5)2
f(0.5, 0.5) = 0 [0, 1]2

Styblinski-Tang Func-
tion

f =
∑n

i=1
1
2
(10xi − 5)4 − 8(10xi − 5)2 +

5
2
(10xi − 5)

f(0.20906466, . . . , 0.20906466) = −39.16599n [0, 1]n

Rosenbrock Function
f =

∑n−1
i=1 100(4.096xi+1 − 2.048 −

(4.096xi − 2.048)2)2 + (4.096xi − 3.048)2
f( 3048

4096
, . . . , 3048

4096
) = 0 [0, 1]n

Table 2. fH
k for Booth, Matyas, Motzkin, Three–Hump Camel, Styblinski–Tang

and Rosenbrock Functions.

k Booth Matyas Motzkin
T-H.
Camel

St.-Tang
(n = 2)

Rosen. (n =
2)

Rosen. (n =
3)

Rosen. (n =
4)

1 280.667 17.3333 4.2000 265.77 −12.5 303.16 794.818 1289.9

2 250.667 12.0000 2.1886 86.091 −17.381 235.68 603.931 1097.7

3 214.0 11.0667 2.1886 86.091 −21.548 177.91 536.449 906.76

4 184.0 8.8000 1.2743 40.593 −26.429 148.6 478.673 839.28

5 172.0 8.1333 1.2743 40.593 −28.929 142.2 411.191 781.51

6 151.333 6.9867 1.0218 24.354 −31.429 130.43 343.863 714.02

7 143.905 6.5524 1.0218 24.354 −32.778 120.17 314.559 646.68

8 130.762 5.9048 0.8912 17.322 −34.127 103.43 296.24 579.2

9 125.429 5.6190 0.8912 17.322 −34.921 100.03 266.936 511.86

10 117.571 5.2245 0.8538 13.867 −35.714 91.011 252.003 482.56

11 109.556 5.0317 0.8538 13.867 −36.956 87.425 239.06 460.14

12 106.222 4.7778 0.8384 10.534 −38.305 76.959 225.146 430.83

13 99.4545 4.6444 0.8384 10.534 −39.516 75.033 212.057 406.9

14 94.7407 4.4741 0.8366 8.6752 −40.31 69.148 203.723 377.6

15 90.6667 4.3798 0.8339 8.6752 −41.003 66.266 189.252 362.66

16 85.6364 4.2618 0.8336 7.2466 −42.483 60.434 179.188 349.718

17 83.0909 4.1939 0.8242 7.2466 −43.694 59.243 169.714 334.462

18 78.6434 4.1102 0.8139 6.1763 −44.905 55.276 163.392 321.52

19 75.8648 4.0606 0.8062 6.1763 −45.598 52.947 155.662 309.927

20 73.5152 4.0000 0.8025 5.3826 −46.291 49.381 150.066 294.517

25 61.6535 3.4324 0.7762 4.2267 −49.633 40.704 121.272 242.747

30 53.1228 2.8927 0.7474 3.1892 −52.976 33.338 101.914 205.889

35 46.5982 2.5989 0.7067 2.7367 −55.193 28.72 86.9293 177.821

40 41.6416 2.2609 0.6625 2.2626 −57.411 24.883 75.5008 155.681

45 37.4988 2.0800 0.6254 2.0337 −58.998 21.984 67.1078 138.990

50 34.0573 1.8595 0.5914 1.7768 −60.536 19.739 59.6395 124.115

As described in Example 2.5, there is no ordering possible in general between fsos
k/2 and fH

k , but

one observes that, in most cases, f sos
k/2 ≤ fH

k , i.e. the SOS densities usually give better bounds for

a given degree, but at a higher computational cost.
Next we consider the strategies for generating feasible points corresponding to the bounds fH

k ,
as described in Section 6; see Table 5.

In Table 5, the columns marked f(E(X)) refer to the convex case in Theorem 6.2. The columns
marked f(x̂) correspond to the mode x̂ of the optimal density; an entry ‘—’ in these columns means
that the mode of the optimal density was not unique.

For the convex Booth and Matyas functions f(E(X)) gives the best upper bound. For sufficiently
large k the mode x̂ gives a better bounds than fH

k , indicating that this heuristic is useful in the
non-convex case.
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Table 3. Comparison of two upper bounds for Booth, Matyas, Three–Hump
Camel and Motzkin Functions

degree k
Booth Matyas Three–Hump Camel Motzkin

fsos
k/2 fH

k fsos
k/2 fH

k fsos
k/2 fH

k fsos
k/2 fH

k

1 280.667 17.3333 265.77 4.2
2 244.680 250.667 8.26667 12.0 265.774 86.091 4.2 2.1886
3 214.0 11.0667 86.091 2.1886
4 162.486 184.0 5.32223 8.8000 29.0005 40.593 1.06147 1.2743
5 172.0 8.1333 40.593 1.2743
6 118.383 151.333 4.28172 6.9867 29.0005 24.354 1.06147 1.0218
7 143.905 6.5524 24.354 1.0218
8 97.6473 130.762 3.89427 5.9048 9.58064 17.322 0.829415 0.8912
9 125.429 5.6190 17.322 0.8912
10 69.8174 117.571 3.68942 5.2245 9.58064 13.867 0.801069 0.8538
11 109.556 5.0317 13.867 0.8538
12 63.5454 106.222 2.99563 4.7778 4.43983 10.534 0.801069 0.8384
13 99.4545 4.6444 10.534 0.8384
14 47.0467 94.7407 2.54698 4.4741 4.43983 8.6752 0.708889 0.8366
15 90.6667 4.3798 8.6752 0.8339
16 41.6727 85.6364 2.04307 4.2618 2.55032 7.2466 0.565553 0.8336
17 83.0909 4.1939 7.2466 0.8242
18 34.2140 78.6434 1.83356 4.1102 2.55032 6.1763 0.565553 0.8139
19 75.8648 4.0606 6.1763 0.8062
20 28.7248 73.5152 1.47840 4.0000 1.71275 5.3826 0.507829 0.8025

Table 4. Comparison of two upper bounds for Styblinski–Tang and Rosenbrock
Functions

degree k
Sty.–Tang (n = 2) Rosenb. (n = 2) Rosenb. (n = 3) Rosenb. (n = 4)

fsos
k/2 fH

k fsos
k/2 fH

k fsos
k/2 fH

k fsos
k/2 fH

k

1 −12.5 303.16 794.818 1289.9
2 −12.9249 −17.381 214.648 235.68 629.086 603.931 1048.19 1097.7
3 −21.548 177.91 536.449 906.76
4 −25.7727 −26.429 152.310 148.6 394.187 478.673 690.332 839.28
5 −28.929 142.2 411.191 781.51
6 −34.4030 −31.429 104.889 130.43 295.811 343.863 536.367 714.02
7 −32.778 120.17 314.559 646.68
8 −41.4436 −34.127 75.6010 103.43 206.903 296.24 382.729 579.2
9 −34.921 100.03 266.936 511.86
10 −45.1032 −35.714 51.5037 91.011 168.135 252.003 314.758 482.56
11 −36.956 87.425 239.06 460.14
12 −51.0509 −38.305 41.7878 76.959 121.558 225.146 236.709 430.83
13 −39.516 75.033 212.057 406.9
14 −56.4050 −40.31 30.1392 69.148 101.953 203.723 202.674 377.6
15 −41.003 66.266 189.252 362.66
16 −58.6004 −42.483 25.8329 60.434 77.4797 179.188 156.295 349.718
17 −43.694 59.243 169.714 334.462
18 −60.7908 −44.905 19.4972 55.276 66.6954 163.392 137.015 321.52

As a final comparison, we also look at the general sampling technique via the method of con-
ditional distributions; see Tables 6 and 7. We present results for the Motzkin polynomial and the
Three hump camel function.

For each degree k, we use the sample sizes 10 and 100. In Tables 6 and 7 we record the mean,
variance and the minimum value of these samples. (Recall that the expected value of the sample
mean equals fH

k .) We also generate samples uniformly from [0, 1]n, for comparison.
The mean of the sample function values approximates fH

k reasonably well for sample size 100,
but less so for sample size 10. Moreover, the mean sample function value for uniform sampling
from [0, 1]n is much higher than fH

k . Also, the minimum function value for sampling is significantly
lower than the minimum function value obtained by uniform sampling for most values of k.
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Table 5. Comparing strategies for generating feasible points for Booth, Matyas,
Motzkin, and Three–Hump Camel Functions. Here, x̂ denotes the mode of the
optimal density.

k
Booth Matyas Motzkin Three-H. Camel

fH
k f(x̂) f(E(X)) fH

k f(x̂) f(E(X)) fH
k ∗ f(x̂) fH

k f(x̂)
1 280.667 — 2.8889 17.3333 — 0 4.2000 — 265.77 —
2 250.667 — 9.0 12.0000 4.0 0.4444 2.1886 — 86.091 —
3 214.0 194.0 2.8889 11.0667 4.0 1.3889 2.1886 — 86.091 —
4 184.0 194.0 9.0 8.8000 4.0 1.0 1.2743 1.0 40.593 —
5 172.0 96.222 17.0 8.1333 4.0 1.460 1.2743 1.0 40.593 —
6 151.333 96.222 18.0 6.9867 4.0 1.440 1.0218 1.0 24.354 —
7 143.905 96.222 24.222 6.5524 4.0 1.7156 1.0218 1.0 24.354 —
8 130.762 122.0 16.204 5.9048 4.0 1.7778 0.8912 1.0 17.322 —
9 125.429 26.0 2.9796 5.6190 4.0 1.9637 0.8912 1.0 17.322 25.0
10 117.571 96.222 25.806 5.2245 4.0 2.0408 0.8538 1.0 13.867 —
11 109.556 26.0 2.9796 5.0317 4.0 2.1760 0.8538 1.0 13.867 25.0
12 106.222 42.889 9.0 4.7778 4.0 2.2500 0.8384 1.0 10.534 0
13 99.4545 26.0 2.9796 4.6444 4.0 2.3534 0.8384 1.0 10.534 0
14 94.7407 13.592 0.91358 4.4741 4.0 2.4198 0.8366 1.0 8.6752 0
15 90.6667 27.580 7.6777 4.3798 4.0 2.5017 0.8339 1.0 8.6752 0.273
16 85.6364 9.0 2.0 4.2618 4.0 2.5600 0.8336 1.0 7.2466 0
17 83.0909 17.210 4.5785 4.1939 4.0 2.6268 0.8242 1.0 7.2466 0
18 78.6434 9.0 2.0 4.1102 4.0 2.6777 0.8139 1.0 6.1763 0
19 75.8648 5.951 0.35445 4.0606 4.0 2.7332 0.8062 1.0 6.1763 0.209
20 73.5152 9.0 2.0 4.0000 0.16 0.1111 0.8025 1.0 5.3826 0
25 61.6535 4.5785 1.8107 3.4324 0.3161 0.2404 0.7762 1.0 4.2267 0.1653
30 53.1228 1.6403 0.41428 2.8927 0.0178 0.0138 0.7474 1.0 3.1892 0
35 46.5982 1.0923 0.53061 2.5989 0.1071 0.0897 0.7067 0.4214 2.7367 0.110
40 41.6416 0.8454 0.64566 2.2609 0 0 0.6625 0.2955 2.2626 0
45 37.4988 2.0 0.80157 2.0800 0 0 0.6254 0.1985 2.0337 0.0783
50 34.0573 0.9784 0.22222 1.8595 0 0 0.5914 0.1297 1.7768 0

Table 6. Sampling results for Motzkin Polynomial

Sample size 10 Sample size 100

k fH
k Mean Variance Minimum Mean Variance Minimum

1 4.2000 6.2601 66.2605 0.6183 6.5027 188.1445 0.0060
2 2.1886 1.4972 1.6084 0.9158 1.8377 12.5387 0.0657
3 2.1886 1.9658 5.0427 0.0644 2.8413 68.2093 0.0036
4 1.2743 1.1776 1.8501 0.0421 0.8571 0.6764 0.0042
5 1.2743 0.8330 0.0466 0.2790 1.1590 4.2023 0.0525
6 1.0218 1.7002 6.2647 0.3196 0.9336 0.8998 0.0002
7 1.0218 0.8350 0.1672 0.2416 0.9863 1.3777 0.0070
8 0.8912 0.6108 0.1451 0.0218 0.8431 1.4834 0.0070
9 0.8912 0.7545 0.0679 0.1656 0.8879 0.2752 0.0175
10 0.8538 0.7005 0.0800 0.1862 0.8435 0.1448 0.1149
11 0.8538 0.8244 0.0779 0.1123 0.8673 0.2565 0.1100
12 0.8384 0.8912 0.0213 0.5919 0.7835 0.2554 0.0188
13 0.8384 0.8286 0.0412 0.3205 0.7664 0.0714 0.0112
14 0.8366 0.7698 0.0781 0.2083 0.9574 1.2157 0.0778
15 0.8339 0.9063 0.0153 0.6069 0.8465 0.0932 0.0593
16 0.8336 0.7482 0.0750 0.1759 0.7209 0.0875 0.0648
17 0.8242 0.7430 0.0706 0.1500 0.8051 0.0718 0.0984
18 0.8139 0.8546 0.0493 0.4460 0.7749 0.0785 0.0038
19 0.8062 0.6621 0.0892 0.1836 0.7850 0.1273 0.0408
20 0.8025 0.7704 0.0336 0.3826 0.9326 1.6454 0.0040
25 0.7762 0.7995 0.1014 0.2433 0.7493 0.0717 0.0722
30 0.7474 1.0104 1.2852 0.1091 0.8290 0.8620 0.0522
35 0.7067 0.5930 0.0981 0.1940 0.7647 1.3012 0.0016
40 0.6625 0.6967 0.0497 0.2867 0.6028 0.1371 0.0021
45 0.6254 0.6258 0.0500 0.3548 0.7007 0.2242 0.0090
50 0.5914 0.6244 0.0718 0.3000 0.5782 0.1406 0.0154
Uniform Sample 4.2888 37.4427 0.5290 3.7397 53.8833 0.0492

8. Concluding remarks

One may consider several strategies to improve the upper bounds fH
k , and we list some in turn.
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Table 7. Sampling results for Three-Hump Camel function

Sample size 10 Sample size 100

k fH
k Mean Variance Minimum Mean Variance Minimum

1 265.77 359.98 274477.0 2.4493 300.34 245144.0 0.011095
2 86.091 88.717 24117.0 1.1729 122.12 76646.0 0.082513
3 86.091 14.712 186.23 2.219 58.186 15987.0 0.492
4 40.593 55.091 19297.0 0.10296 44.844 21297.0 0.19439
5 40.593 91.872 27065.0 0.90053 53.656 14575.0 0.58086
6 24.354 12.961 77.377 0.8186 34.115 7862.5 0.019021
7 24.354 33.96 1745.4 0.65266 27.072 10632.0 0.33813
8 17.322 10.029 60.746 1.0931 12.307 314.46 0.074663
9 17.322 9.4932 100.22 0.0027565 20.185 7279.8 0.11239
10 13.867 11.312 45.784 0.8916 14.273 382.98 0.018985
11 13.867 8.3991 87.108 0.0031527 11.928 357.45 0.01384
12 10.534 5.013 52.681 0.30303 12.377 547.42 0.25952
13 10.534 14.281 401.82 0.52373 7.8673 253.02 0.11989
14 8.6752 5.2897 43.81 0.3909 9.4462 362.49 0.051331
15 8.6752 5.6281 31.311 0.21853 10.373 778.32 0.022282
16 7.2466 9.5801 95.901 1.7112 6.465 122.72 0.013084
17 7.2466 5.2511 23.863 2.0409 6.0633 56.495 0.18354
18 6.1763 6.0327 34.298 0.85182 5.2985 35.953 0.071544
19 6.1763 5.3006 52.994 0.6699 5.0383 41.619 0.040785
20 5.3826 3.5174 16.053 0.43269 9.4178 653.27 0.041752
25 4.2267 10.741 776.55 0.59616 5.0642 112.61 0.039463
30 3.1892 2.2515 8.6915 0.063265 2.2096 6.2611 0.040845
35 2.7367 1.5032 1.4626 0.0085016 3.0679 16.47 0.24175
40 2.2626 1.3941 1.1995 0.21653 2.3431 17.735 0.069473
45 2.0337 2.3904 10.934 0.57818 1.8928 3.6581 0.050042
50 1.7768 1.664 3.3983 0.061995 1.6301 1.6966 0.048476
Uniform Sample 306.96 275366.0 0.15602 368.28 296055.0 0.59281

• A natural idea is to use density functions that are convex combinations of SOS and
Handelman-type densities, i.e., that belong to Hk + Σ[x]r for some nonnegative integers
k, r. Unfortunately one may show that this does not yield a better upper bound than
min{f sos

r , fH
k }, namely

min{f sos
r , fH

k } = inf
σ∈Hk+Σ[x]r

{∫

K

f(x)σ(x) dx :

∫

K

σ(x) dx = 1

}

, k, r ∈ N.

(We omit the proof since it is straightforward, and of limited interest.)
• For optimization over the hypercube, a second idea is to replace the integer exponents in
Handelman representations of the density by more general positive real exponents. (This
is amenable to analysis since the beta distribution is defined for arbitrary positive shape
parameters and with its moments available via relation (4.2).) If we drop the integrality
requirement for (η, β) in the definition of fH

k (see (1.2)), we obtain the bound:

fH
k ≥ f beta

k := min
(η,β)∈∆2n

k

∑

α∈Nn
≤d

fα
γ(η+α,β)

γ(η,β)
, k ∈ N,

where ∆2n
k is the simplex ∆2n

k := {(η, β) ∈ R2n
+ :

∑n
i=1(ηi + βi) = k}.

As with fH
k , when (η, β) is such that f beta

k =
∑

α∈Nn
≤d

fα
γ(η+α,β)

γ(η,β)
, one has that f beta

k =

E(f(X)) whereX = (X1, . . . , Xn) andXi ∼ beta(ηi+1, βi+1) (i ∈ [n]). Using the moments
of the beta distribution in (4.2), we obtain

(8.1) f beta
k = min

(η,β)∈∆2n
k

∑

α∈Nn
d

fα

n∏

i=1

(ηi + 1) · · · (ηi + αi)

(ηi + βi + 2) · · · (ηi + βi + αi + 1)
, k ∈ N.
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Thus one may obtain the bounds f beta
k by minimizing a rational function over a simplex. A

question for future research is whether one may approximate f beta
k to any fixed accuracy in

time polynomial in k and n. (This may be possible, since the minimization of fixed-degree
polynomials over a simplex allows a PTAS [4], and the relevant algorithmic techniques have
been extended to rational objective functions [11].)

One may also use the value of (η, β) ∈ ∆2n
k that gives fH

k as a starting point in the
minimization problem (8.1), and employ any iterative method to obtain a better upper
bound heuristically. Subsequently, one may use the resulting density function to obtain
‘good’ feasible points as described in Section 6. Of course, one may also use the feasible
points (generated by sampling) as starting points for iterative methods. Suitable iterative
methods for bound-constrained optimization are described in the books [2, 7, 8], and the
latest algorithmic developments for bound constrained global optimization are surveyed in
the recent thesis [22].

• Perhaps the most promising practical variant of the fH
k bound is the following parameter:

fH
r,k = min

(η,β)∈N2n
k

∫

K

f(x)
(
xη(1− x)β

)r
dx

∫

K

(xη(1− x)β)r dx

= min
(η,β)∈N2n

k

∑

α∈Nn

fα
γ(rη+α,rβ)

γ(rη,rβ)
for r, k ∈ N.

Thus, the idea is to replace the density σ(x) = xη(1−x)β/
∫

K
xη(1−x)β dx by the density

σ(x)r/
∫

K
σ(r)r dx for some power r ∈ N. Hence, for r = 1, fH

1,k = fH
k . Note that

the calculation of fH
r,k requires exactly the same number of elementary operations as the

calculation of fH
k , provided all the required moments are available. (Also note that, for

K = [0, 1]n, one could allow an arbitrary r > 0 since the moments are still available as
pointed out above.)

In Tables 8, 9, and 10, we show some numerical values for the parameter fH
r,k.

Table 8. fH
r,k for the Styblinski-Tang function (n = 2)

k r = 1 r = 2 r = 3 r = 4 r = 5
1 −12.5 −10.06 −8.3333 −8.3333 −8.3333
2 −17.381 −17.857 −16.919 −15.793 −14.744
3 −21.548 −21.686 −22.582 −23.179 −23.62
4 −26.429 −27.381 −28.256 −30.263 −31.736
5 −28.929 −31.209 −31.167 −32.872 −34.435
6 −31.429 −35.038 −36.842 −38.025 −38.906
7 −32.778 −38.76 −42.505 −45.109 −47.022
8 −34.127 −42.483 −48.179 −52.193 −55.138
9 −34.921 −44.387 −50.577 −54.802 −57.837
10 −35.714 −46.291 −52.976 −57.411 −60.536

A first important observation is that, for fixed k, the values of fH
r,k are not monotonically

decreasing in r; see e.g. the row k = 2 in Table 8. Likewise, the sequence fH
r,k is not

monotonically decreasing in k for fixed r; see, e.g., the column r = 5 in Table 9.
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Table 9. fH
r,k for the Rosenbrock function (n = 3)

k r = 1 r = 2 r = 3 r = 4 r = 5
1 794.818 727.337 698.032 683.822 676.526
2 603.931 512.228 473.974 454.193 443.769
3 536.449 449.625 398.566 367.869 350.671
4 478.673 368.873 294.499 253.135 227.526
5 411.191 274.121 235.89 228.906 232.996
6 343.863 225.146 191.935 151.455 119.98
7 314.559 225.768 166.179 128.62 106.417
8 296.24 198.861 144.94 111.721 88.0661
9 266.936 185.145 133.379 103.162 84.3506
10 252.003 158.448 111.33 87.8805 70.0394

Table 10. fH
r,k for the Rosenbrock function (n = 4)

k r = 1 r = 2 r = 3 r = 4 r = 5
1 1289.9 1223.8 1194.5 1180.3 1173.0
2 1097.7 1006.9 968.53 948.71 938.29
3 906.76 790.03 742.57 717.15 703.61
4 839.28 727.43 669.06 632.76 612.44
5 781.51 606.15 502.34 446.68 413.72
6 714.02 515.76 397.34 330.93 289.5
7 646.68 421.01 338.74 306.71 294.97
8 579.2 371.11 293.83 229.25 181.95
9 511.86 331.44 269.02 206.42 168.39
10 482.56 323.69 246.84 189.36 149.9

On the other hand, it is clear from Tables 8, 9, and 10 that fH
r,k can provide a much

better bound than fH
k for r > 1.

Since fH
r,k is not monotonically decreasing in r (for fixed k), or in k (for fixed r), one

has to consider the convergence question. An easy case is when K = [0, 1]n and the global
minimizer x∗ is rational. Say x∗

i = pi

qi
(i ∈ [n]), setting qi = 1 and pi = x∗

i when x∗
i ∈ {0, 1}.

Consider the following variation of the parameters η∗i , β
∗
i from Definition 4.2: η∗i = rpi + 1

and β∗
i = r(qi − pi) + 1 for i ∈ [n], so that

∑n
i=1 η

∗
i + β∗

i − 2 = r(
∑n

i=1 qi). Combining
relation (4.6) and Theorem 4.4, we can conclude that the following inequality holds:

fH
r,k − f(x∗) ≤ Cf

r
for all k ≥∑n

i=1 qi and r ≥ 1,

where Cf is a constant that depends on f only.
For more general setsK, one may ensure convergence by considering instead the following

parameter (for fixed R ∈ N):

min
r∈[R]

fH
k,r ≤ fH

k (k ∈ N).

Then convergence follows from the convergence results for fH
k,r. Moreover, this last param-

eter may be computed in polynomial time if k is fixed, and R is bounded by a polynomial
in n.
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