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Abstract

Background: Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex,
non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult
to understand the relation between the uncertainty in the input and the output of such ‘black-box’ models, giving rise
to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach
to study the impact of single parameters and the interactions between them on the output of morphogenesis models.

Results: To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The
parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of
angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model,
consistent with previous studies. Additionally, the analysis provided information on the relative impact of single
parameters and of interactions between them. This is very relevant because interactions of parameters impede the
experimental verification of the predicted effect of single parameters. The parameter interactions, although of low
impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the
model could be reduced by one parameter.

Conclusions: We propose global sensitivity analysis as an alternative approach to study the mechanisms of
morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from
experimental data and from manipulation experiments can help to falsify models and to find the operand
mechanisms in morphogenesis. The workflow is applicable to all ‘black-box’ models, including high-throughput in
vitromodels in which output measures are affected by a set of experimental perturbations.

Keywords: Morphogenesis, Vascular network development, Computational modeling, Cellular Potts model, Global
sensitivity analysis, Sobol’ indices, Polynomial chaos expansion

Background
Morphogenesis, the organization of multiple cells into
shapes and patterns, is a key process in biological devel-
opment. Computational modeling is commonly used to
study mechanistic hypotheses on morphogenesis [1–7] as
they allow for simplification and isolation of the process.
These computational studies typically involve multi-scale,
non-linear and multi-factorial models. So far, the behav-
ior of these computational models is studied for one or
occasionally two parameters at a time, which can lead to
a wrong interpretation for non-linear models. Studying
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all parameters collectively with global sensitivity analysis
resolves this problem.
In this paper, we introduce a workflow that uses global

sensitivity analysis to find the relevant single parame-
ters and parameter interactions in ‘black-box’ models of
morphogenesis, which are strongly non-linear and mul-
tifactorial. Sensitivity analyses of computational mod-
els enable us to identify the effects of uncertainties in
parameter values on the model output. Local sensitiv-
ity analysis investigates the behavior of the model in a
small region around the nominal parameter values and
is most often used to study model robustness. Global
sensitivity analysis (GSA) covers the entire input param-
eter space, or a specifically selected region hereof. In its
most powerful form, it gives information on the impact
of individual parameters and combinations thereof on
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a nonlinear model for arbitrary parameter distributions.
This is what e.g. variance-based methods like FAST [8]
and the Sobol’ method [9, 10] do. This, of course, is
computationally expensive, therefore many methods have
been proposed with simplifying assumptions like linear-
ity of the model (MLR [11]); methods that produce less
sophisticated results, e.g. partial or no information on
interactions (Morris method [12]); [13, 14] are less robust
like DGSM ([15, 16]); or that use prior knowledge of the
model, like Bayesian DGSM [17]). In this paper we use
the Sobol’ method [10], where we have modified the orig-
inal method for efficiency reasons (for more details see
Section Global sensitivity analysis). Moreover, we intro-
duce an approach to determine the sampling size a priori
with an a posteriori error check. Thus, it is not likely that
the proposed GSA will excel in computational efficiency,
but it will excel in predictability of the costs and reliability
of the results. In the biological field GSA is mostly applied
to models consisting of ordinary differential equations,
e.g., in pharmacology [18, 19], neurodynamics [20], or
gene expression [21] and biochemical pathways [17] in
cells.
GSA can give interesting new insights into models of

morphogenesis. Firstly, GSA predicts which parameters
can best be tuned to affect the model output. When
the model parameters can be associated with biolog-
ical cell properties, extracellular matrix properties, or
gene expression, knowledge of their influence on mor-
phogenesis can give predictions for in vitro perturba-
tion experiments, e.g. genetic knock-outs. Secondly, apart
from identifying the impact of single parameters, GSA
notably identifies parameter interactions. These can give
new mechanistic insights in the functioning of the model.
Thirdly, GSA is a tool to reduce the number of parameters
in the model. When the analysis indicates that parameter
variation does not impact the model output, the param-
eter value can be fixed. Fourthly, GSA can be used to
make a selection of models that support biologically plau-
sible hypotheses in a set of contradicting mechanistic
hypotheses.
As a case study, we performed GSA on a previously

published [22], well-studied computational model of vas-
cular morphogenesis. In the model, a spheroid of cells
develops into a vascular network. Cells secrete a com-
pound to which cells chemotact by migrating towards
higher concentrations of the compound. Vascular net-
works form when chemotaxis is inhibited at cell-cell
interfaces. Vascular endothelial growth factor (VEGF) is
a candidate for the secreted compound and extensions
of pseudopods in the direction of cell-cell contacts might
be locally inhibited by interference of vascular endothe-
lial cadherins with VEGF receptor 2 signaling. Because
of the key role of such ‘contact-inhibited chemotaxis’ in
this model, we will henceforth refer to it as the ‘contact

inhibition model’. Numerous alternative hypotheses for
vascular morphogenesis have been proposed [2, 22–29],
and it is unsure which of these - if any - is correct.
Thus the contact inhibition model is here used as an
example model for morphogenesis, while the proposed
GSA approach can assist in falsifying mechanisms in the
future.
Figure 1 shows the workflow of the GSA analysis pro-

posed in this paper. The input (Fig. 1a), a list of parameter
sets, is fed into the cellular Potts-based contact inhibi-
tionmodel (Fig. 1b). This model generates images (Fig. 1c)
of the resulting cell configuration as raw output, ranging
from spheroids, to networks, to dispersed cells. Subse-
quently, two quantitative output measures (compactness
and lacuna count) are derived from these images (Fig. 1d).
Two types of GSA are performed on the output measures
(Fig. 1e). Firstly, intensity plots show the impact of param-
eter combinations on the variation in the output measures
(Fig. 1f). This analysis only allows for a two-dimensional
GSA, in which the value of two parameters are varied
simultaneously while keeping all other parameter values
fixed. Secondly, a truly multivariate GSA ranks the impact
of individual parameters and of parameter combinations
on the variance of the output measures (Fig. 1g). Impor-
tant aspects we address in this paper are the reliability and
the pitfalls of GSA.

Methods
Vascular morphogenesis model
The contact inhibition model [22] is based on the Cellu-
lar Potts Model (CPM) [30, 31]. Cells are projected on a
regular square lattice (� ⊂ Z

2) as patches of connected
lattice sites, �x. Each lattice site, �x ∈ �, that is part of a
cell is marked with that cell’s identifier (σ(�x)) and cell-
free lattice sites represent extracellular matrix (ECM) with
σ = 0. Each cell identifier is associated with a type: τ(σ ) ∈
{ECM, cell, border}. Cells have cell properties and behav-
iors, such as adhesion, cell size, or chemotaxis. The forces
resulting from the biophysical properties of the cells and
their active behavior are represented in the Hamiltonian
(H) of the system

H =
∑
(�x,�x′)

J
(
τ(σ (�x)), τ(σ (�x′))) (

1 − δ(σ (�x), σ(�x′)))

+ λA(σ )
∑
σ

(A(σ ) − a(σ ))2 ,

(1)

in which adhesion (J) is restricted to the cell membrane
by the Kronecker delta (δ(x, y) = {1, x = y; 0, x �= y}) and
(�x, �x′) represents the set of adjacent lattice site pairs. There
are three non-zero types of adhesion: Jcell,cell, Jcell,border and
Jcell,ECM. Jcell,cell represents the adhesion strength between
cells, and Jcell,ECM the adhesion strength of cells to the
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Fig. 1 Overview of the global sensitivity analysis. (a) The input of the model is a list of parameter sets. Each parameter set contains uniformly
randomly selected values of parameters p1 to p4. This input is then fed into (b) the Cellular Potts Model (CPM)-based contact inhibition model.
(c) The raw output of these models are images of the cell configuration at the end of the simulations. (d) Two output measures, compactness and
lacuna count, are derived from these images. Two types of global sensitivity analysis are performed on these output measures (e). Firstly, intensity
plots are used to study the impact of two-parameter combinations on the variation in the output measures (f). Secondly, Sobol’ indices are used to
rank the impact of individual parameters and of parameter combinations on the variance of the output measures (g)

ECM. The lattice is surrounded with a border by which
cells are repulsed, by setting Jcell,border = 100. The second
term constrains the volume of cells, with A representing
the preferred size of a cell and λA the rigidity of the cell.
Deviation of the actual size (a) of cells from their preferred
value increases the Hamiltonian.
A cell moves by copying the state (σ ) of a randomly

selected lattice site �x into a randomly selected adjacent
lattice site �x′. In this manuscript, we use the eight, sec-
ond order neighbors. These copies represent extensions
and retractions of pseudopods at the cell membrane. A
copy attempt that diminishes the Hamiltonian represents
a move along a force and is always accepted. If a copy
increases the Hamiltonian, it will only occur due to active
movements of the cell membrane. We assume that such
active motions are distributed according to a Boltzmann
probability function: PBoltzmann(H) = e

−�H
μ , withμ amea-

sure of the amplitude of random membrane fluctuations;

μ is a scaling factor of the weights (λ) of the constraints
and we fixed it at μ = 50 conform the settings in our
previous work [22]. The parameter values can only be
qualitatively coupled to biological data.
We assume that cells secrete a chemoattractant at rate α

(s−1), producing a concentration field c(�x). The chemoat-
tractant diffuses with a diffusion coefficient D (m2/s) and
decays with rate ε (s−1) in the ECM, resulting in the
following partial differential equation (PDE):

∂c
∂t

= α(1 − δ(σ (�x), 0)) − εδ(σ (�x), 0)c + D∇2c, (2)

such that secretion is located at the cells, where
δ(σ (�x), 0) = 0, and decay in the ECM. The field of
the chemoattractant is initialized as c(�x) = 0 and fixed
boundary conditions are imposed. Cells can respond to
this chemoattractant by migrating towards higher con-
centrations (chemotaxis). To this end, the change in
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the Hamiltonian by that copy, �H , is augmented with
�Hchemotaxis = λc(c(�x) − c(�x′)) [32], and contact-
inhibition is implemented by setting λc = 0 at cell-cell
interfaces such that chemotaxis only occurs at the cell-
ECM interface.
During one time step, referred to as a Monte Carlo Step

(MCS), as many copy attempts are performed as there are
sites in the lattice. The PDE for chemoattractant diffusion
and degradation Eq. (2) is discretized on the CPM lat-
tice and we solve it numerically using a finite-difference
scheme. We use 15 diffusion steps per MCS. The model is
initialized with a centralized spheroid of 256 cells within
a lattice of 400 ∗ 400 sites (lattice spacing 2μm). We run
the model for 5000MCS, each representing 30 seconds, as
networks are well formed in this time in the model as well
as in vitro [25].

Global sensitivity analysis
The variation in a solution or a measure thereof, like com-
pactness, over the complete parameter space can only be
visually inspected by looking at one or at most two param-
eters at a time while keeping the others fixed (cf. Figs. 2,
4, and 5). Since different measures will produce different
multivariate output distributions and therefore also might
result in a different outcome of the GSA, it is important
to choose a measure or, more likely a number of measures

that are significant for the study at hand. If one wants to
take the influence of all parameters simultaneously into
account some form of a global measure of the multivari-
ate output distribution is required. One such a measure is
the variance of the distribution, which will be used in this
paper.
We are specifically interested whether parameter inter-

actions have a large impact on the output of this specific
CPM-based model. Interactions of the parameters are
unpredictable in non-linear models such as the CPM, but
their impact is significant, since a large combined effect
of parameters on the output impedes the experimental
testing of a predicted effect of a single parameter.
Sobol’ [9, 10] introduced so-called global sensitivity

indices that describe the impact of specific parameters
or combinations thereof on the uncertainty in the model
output and more in particular on the variance of the out-
put distribution, hence the term ‘variance-based’ GSA.
In the original method the necessary integrals are com-
puted with Monte Carlo. However, the Sobol’ indices
can be computed very efficiently when the distribution
of the output measure or response surface is expanded
into a series of orthogonal polynomials, the Polynomial
Chaos Expansion (PCE) [33, 34]. An overview of this
method, using the same notation as in the following,
can be found in [35]; here we summarize only the most

Fig. 2 One-dimensional parameter sweeps for compactness and lacuna count. Plots of one-dimensional parameter sweeps for each of the four
selected parameters: cell rigidity (λA), cell-cell adhesion (Jcell,cell), diffusion coefficient of the chemoattractant (D), and sensitivity of cells to the
chemoattractant at cell-matrix interfaces (λc). The red lines indicate compactness and the blue lines lacuna count (mean and standard deviation of
20 simulations)
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important definitions for the case that the stochastic input
consists of independently uniformly distributed random
variables. Note, however, that the method can also be
applied for arbitrary, even non-parametric, distributions,
allowing for data-driven GSA (see also [36]). The strength
of the method described below is that it (i) can efficiently
study multiple output measures derived from the output
images, (ii) can robustly identify parameter interactions,
and (iii) checks the reliability of the result.
Let ξ be the n-dimensional vector of the independently

uniformly distributed input parameters and �(ξ) its joint
probability density function (pdf). The output measure
u(ξ), e.g., of the (black-box) Cellular Potts Model, is
expanded into a truncated series of polynomials that are
orthogonal with respect to the pdf �, separating the output
into a deterministic and a stochastic part

u(ξ) ≈
N∑
i=0

ui�i(ξ), (3)

where the n-variate polynomials �i(ξ) are products of n
univariate Legendre polynomials. The number of expan-
sion termsN is given byN+1 = (n+p̂)!

n!p̂! , with n the number
of parameters and the approximation order p̂ the highest
order of �i.
To compute the expansion coefficients ui of Eq. (3) we

apply Spectral Projection which has the advantage that it
can be used for lack-box models since it projects the solu-
tion - and not the model - onto the polynomial space

ui = 〈u(ξ),�i(ξ)〉
〈�i(ξ),�i(ξ)〉

= 1
||�i||2

∫


u(ξ) �i(ξ) �(ξ) dξ , i = 0, 1, . . . ,N ,

(4)

where is the support of the joint pdf �(ξ). As the param-
eter inputs are independent, both �i and � can be written
in product form; for the multivariate polynomial �i this
results in a product of univariate polynomials

�i(ξ) =
n∏

k=1
�index (i,k)(ξk), with index (i, k)

= {0, . . . , p̂} and�0(ξk) = 1.

(5)

The integrals in Eq. (4) can then be computed by
a repeated one-dimensional Gauss-Legendre quadrature
rule

ui ≈ 1
||�i||2

Nq∑
l1=1

· · ·
Nq∑
ln=1

u(ξl1 , · · · , ξln)

n∏
k=1

wlk�index(i,k)(ξlk ),

(6)

with Nq the number of quadrature points and w the asso-
ciated weights. Note, that for integrals with a known
weight function, like e.g. a pdf, Gauss quadrature has
the optimal convergence order of 2Nq − 1 for Nq
quadrature points, where the points and the weights
of the quadrature rule are dependent on the weight
function.
How to chooseNq and p̂ to obtain reliable Sobol’ indices

will be the subject of Section Reliable GSA in practice.

Statistics and polynomial chaos expansion
Using a PC expansion, the only input needed to compute
themoments and the Sobol’ indices of the output distribu-
tion are the expansion coefficients. E.g., the mean μ = u0
and the variance is given by

∫


(u(ξ) − μ)2 �(ξ)dξ ≈
N∑
i=1

u2i ||�i||2 =: VarPCE. (7)

Note, that the approximation, VarPCE, is a monoto-
nously increasing function of N and thus of p̂. The sum
in the variance formula can be directly split into con-
tributions from the various parameters or combinations
thereof, the Sobol’ indices (cf. [37]). E.g., for the first-
order Sobol’ index for parameter j only terms contribute if
�i(xi) equals a univariate polynomial in ξj

Sj ≈
∑N

i=1 bool(i, j)u2i ||�i||2
VarPCE

, (8)

where bool(i, j)= (
index(i, j)>0∧index(i, k) = 0,∀k �= j

)
.

For a combined influence of more than one parameter like
S13 the Sobol’ index can be computed analogously. The
sum of all Sobol’ indices equals one.

Reliable GSA in practice
At first sight the accuracy of the PCE approximation of
the response surface - and thus of the statistics - seems
to be determined by the number of expansion terms, N,
in Eq. (3). But the accuracy of the expansion coefficients
ui also plays an important role. This accuracy is deter-
mined by the approximation Eq. (6) of the integral in
Eq. (4), which is determined by the number of quadra-
ture points, Nq. Moreover, the higher PCE order p̂ needed
to obtain sufficient accuracy, the higher the polynomial
order of�i(ξ) becomes, which increases the complexity of
the integrand. If one computes the integral of a high order
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polynomial with a small amount of points, the resulting
expansion coefficients are merely noise instead of being
informative.
The question we want to answer in this section is how to

determine the number of quadrature points, Nq, and the
expansion order, p̂, to obtain a sufficiently high accuracy
for the coefficients to allow us to trust the Sobol’ indices
and more specifically the ranking of the parameters that
follows from it. Here, we sketch amethod to determine the
number of quadrature points. It relies on the fact that the
Sobol’ indices are variance-based, i.e., one can not expect
to compute Sobol’ indices accurately from a PCE expan-
sion for which the variance Eq. (7) is not a sufficiently
accurate approximation of the true value or at least com-
parable to the Gauss-Legendre quadrature approximation
of the integral. So, let us define

errVar := Vardata − VarPCE, (9)

with

Vardata =
Nq∑
l1=1

· · ·
Nq∑
ln=1

wl1 · · ·wlnu
(
ξl1 , · · · ξln

)2 − μ2
data,

μdata =
Nq∑
l1=1

· · ·
Nq∑
ln=1

wl1 · · ·wlnu
(
ξl1 , · · · , ξln

)
.

For a given choice of Nq one can easily compute PC
expansions for various orders p̂. If errVar is small and the
required Sobol’ indices have converged, the result can be
trusted.

We illustrate this approach with a function for which
the values of the statistics are analytically known, viz., the
Ishigami function [38, 39]

f (ξ) = sin(ξ1) + a sin2(ξ2) + b ξ43 sin(ξ1), (10)

with ξi ∼ U [−π ,π ], i = {1, 2, 3}, and a = 7 and b = 0.1.
We compute the PCE approximation of Eq. (10) for an
increasing number of PCE terms and an increasing num-
ber of quadrature points. Table 1 illustrates the result of
using not enough quadrature points (Nq = 2 andNq = 5):
there is no convergence in the statistics of the PCE approx-
imation and for p̂ = 3 and 6, respectively, the noise takes
over and the results are meaningless. Table 2 shows that,
using sufficient quadrature points, for an increasing num-
ber of expansion terms the PCE variance converges to the
data variance. If both variances are alike also the Sobol’
indices have converged to the true values (bold lines). Still
the number of expansion terms should not be taken too
large as can be seen for p̂ > 9 and p̂ > 13 where again the
noise gradually takes over.
Finally, we also used the Saltelli method [40] - an

improvement of the original Sobol’ method - to compute
the Sobol’ indices for this problem. To reach a similar
accuracy approximately 70–80 times as many sampling
points are required, thus showing the gain in efficiency
using the PCE-Gauss method to compute the Sobol’
indices.

Table 1 Statistics computed with insufficient quadrature points

Nq p̂ Vardata VarPCE S1 S2 S13 S3 S12 S23

2 1 4.09 4.09 1.00 0.00 0.00 0.00 0.00 0.00

2 4.09 4.09 1.00 0.00 0.00 0.00 0.00 0.00

3 4.09 8.32 1.00 0.00 0.00 0.00 0.00 0.00

4 4.09 185.91 0.36 0.32 0.00 0.32 0.00 0.00

5 4.09 197.44 0.34 0.30 0.03 0.30 0.03 0.00

5 1 18.60 2.64 1.00 0.00 0.00 0.00 0.00 0.00

2 18.60 2.70 0.98 0.02 0.00 0.00 0.00 0.00

3 18.60 6.22 0.69 0.01 0.30 0.00 0.00 0.00

4 18.60 17.17 0.25 0.64 0.11 0.00 0.00 0.00

5 18.60 18.50 0.23 0.60 0.17 0.00 0.00 0.00

6 18.60 29.49 0.14 0.75 0.11 0.00 0.00 0.00

7 18.60 31.41 0.19 0.70 0.11 0.00 0.00 0.00

8 18.60 31.50 0.19 0.70 0.11 0.00 0.00 0.00

9 18.60 37.51 0.23 0.59 0.18 0.00 0.00 0.00

10 18.60 88.82 0.29 0.43 0.08 0.20 0.00 0.00

Exact 13.84 0.31 0.44 0.24 0 0 0

The resulting PCE approximation and thus the statistics can not be trusted
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Table 2 Statistics computed with sufficient quadrature points

Nq p̂ Vardata VarPCE S1 S2 S13 S3 S12 S23

8 1 13.59 2.64 1.00 0.00 0.00 0.00 0.00 0.00

2 13.59 3.00 0.88 0.12 0.00 0.00 0.00 0.00

3 13.59 6.55 0.66 0.05 0.29 0.00 0.00 0.00

4 13.59 10.34 0.42 0.40 0.18 0.00 0.00 0.00

5 13.59 11.73 0.37 0.35 0.28 0.00 0.00 0.00

6 13.59 13.45 0.32 0.44 0.24 0.00 0.00 0.00

7 13.59 13.59 0.32 0.43 0.25 0.00 0.00 0.00

8 13.59 13.59 0.32 0.43 0.25 0.00 0.00 0.00

9 13.59 13.59 0.32 0.43 0.25 0.00 0.00 0.00

10 13.59 15.32 0.28 0.50 0.22 0.00 0.00 0.00

11 13.59 15.35 0.29 0.49 0.22 0.00 0.00 0.00

12 13.59 19.17 0.23 0.60 0.18 0.00 0.00 0.00

13 13.59 21.08 0.29 0.54 0.17 0.00 0.00 0.00

14 13.59 21.51 0.28 0.55 0.17 0.00 0.00 0.00

15 13.59 27.62 0.32 0.43 0.25 0.00 0.00 0.00

10 1 13.84 2.64 1.00 0.00 0.00 0.00 0.00 0.00

2 13.84 3.00 0.88 0.12 0.00 0.00 0.00 0.00

3 13.84 6.54 0.66 0.05 0.29 0.00 0.00 0.00

4 13.84 10.36 0.42 0.40 0.18 0.00 0.00 0.00

5 13.84 11.75 0.37 0.35 0.28 0.00 0.00 0.00

6 13.84 13.59 0.32 0.44 0.24 0.00 0.00 0.00

7 13.84 13.72 0.32 0.44 0.25 0.00 0.00 0.00

8 13.84 13.84 0.31 0.44 0.24 0.00 0.00 0.00

9 13.84 13.84 0.31 0.44 0.24 0.00 0.00 0.00

10 13.84 13.84 0.31 0.44 0.24 0.00 0.00 0.00

11 13.84 13.84 0.31 0.44 0.24 0.00 0.00 0.00

12 13.84 13.95 0.31 0.45 0.24 0.00 0.00 0.00

13 13.84 13.95 0.31 0.45 0.24 0.00 0.00 0.00

14 13.84 15.81 0.27 0.51 0.21 0.00 0.00 0.00

15 13.84 15.84 0.28 0.51 0.21 0.00 0.00 0.00

Exact 13.84 0.31 0.44 0.24 0 0 0

The PCE approximation and the statistics show convergence (bold lines)

Software and computational dataset
All software used in this paper is publicly available. The
contact inhibitionmodel resides at http://sourceforge.net/
projects/tst/. For GSA we provide a repository containing
the computational dataset and the analysis software
at http://persistent-identifier.org/?identifier=urn:nbn:nl:
ui:18-23590.

Results
As a case study for the global sensitivity analysis (GSA)
approach, we used a well-studied computational model
of vascular morphogenesis: the contact inhibition model
[22]. We studied what single parameters and parameter

interactions are important in the development of a
spheroid of cells into vascular networks. For this purpose,
we used the procedure outlined in Fig. 1: 1) select output
measures, 2) select input parameters, 3) select a relevant
subset of the global parameter space, 4) analyze the raw
output, 5) perform GSA.

Selection of output measures
The contact inhibition model [22] produces images of
cell configurations as raw output. We chose two mea-
sures to quantify the raw output: compactness and lacuna
count. Compactness of the network is a suitable measure
of network development [22] and is defined as the ratio

http://sourceforge.net/projects/tst/
http://sourceforge.net/projects/tst/
http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-23590
http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-23590
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Acells/Ahull, with Acells the number of lattice sites occu-
pied by cells within a convex hull around all cells and Ahull
the total number of lattice sites within the convex hull.
A solid spheroid and a confluent monolayer of cells have
a compactness close to one, while networks that contain
lacunae have low values for compactness. Lacuna count is
the number of lacunae in a network. Lacunae are defined
as patches of medium (connected components of σ = 0)
enclosed by cells and are only counted when they have at
least the size of a cell (50 lattice sites ≈ 200 μm2).

Selection of input parameters
The contact inhibition model [22] is a stochastic, multi-
factorial model. We refer to Section Methods for a
detailed description of the model. The contact inhibi-
tion model has nine parameters: the number of cells (N),
the target size of a cell (A), the rigidity of the cell (λA),
cell-cell adhesion (Jcell,cell), adhesion between cells and
the extracellular matrix (Jcell,ECM), the secretion rate of a
chemoattractant by cells (α), a diffusion coefficient of the
chemoattractant (D), the decay rate of the chemoattrac-
tant (ε), and a sensitivity of cells to the chemoattractant at
cell-matrix interfaces (λc).
In total, there are four model components or mecha-

nisms in the contact inhibition model, namely cell size,
adhesion, contact-inhibited chemotaxis and the gradient
of the chemoattractant. In order to study the impact of
each mechanism in the model extensively, we selected
one parameter for each, ensuring that it is computation-
ally feasible to generate enough data points for reliable
GSA results. We thus selected four parameters: the cell
rigidity (λA), cell-cell adhesion (Jcell,cell), the diffusion coef-
ficient of the chemoattractant (D), and a sensitivity of
cells to the chemoattractant at cell-matrix interfaces (λc).
The other parameters that regulate cell size (A), adhesion
(Jcell,ECM), or the gradient of the chemoattractant (ε and
α) will be fixed at the reference values corresponding to
the values in [22]. We kept the number of cells (N) in
the spheroid constant, because we know from experience
that it does not influence sprouting of spheroids in our
model.
A GSA with four parameters can give new insights

as four parameters are too many to obtain the relative
impact of the parameters and their interactions with visual
plots or to know their effect solely by logic or intuition,
while the number of simulations required for a GSA with
four input parameters is computationally very feasible. A
GSA with all parameters of the model is not expected
to give additional information on the relative balance of
the mechanisms and would be very time-consuming for
a computationally intense model like the contact inhibi-
tion model. It would require roughly 109 simulations (c.f.,
Section Reliable GSA in practice) to obtain reliable GSA
results with all model parameters.

Selection of a relevant subset of the global parameter
space
To select the parameter ranges for which spheroids of
cells develop into networks, we studied one-dimensional
parameter sweeps of the four selected input parameters
for the compactness and lacuna count (Fig. 2). The red
lines in Fig. 2 represent the compactness and the blue lines
the lacuna count. We selected the region in which the
morphology of the network, and thus the value of the out-
put measures, is changing and where no model artefacts
arise. It is well studied for which parameter ranges arte-
facts arise in the CPM [6], such as lattice anisotropy and
‘frozen’ motility of cells. The regions shaded in gray indi-
cate the deleted regions from the parameter space. For λA
the region 0 to 5 is deleted: cells cannot retain their vol-
ume here and disappear. This is a model artefact and does
not represent a biological plausible situation. The region
λA > 300 is deleted, because cells are so rigid here that
they hardly move. In the region λc < 10 only spheroids
form and for λc > 3000 similar networks are always
formed, thus these regions are deleted because the net-
work morphology does not change. The parameters and
their selected value ranges are listed in Table 3.
Based on the reliability study for the Ishigami test model

(see Section Reliable GSA in practice), we expected that
we required 10000 data points to perform a reliable GSA
on our model. The points were chosen according to the
Gauss-Legendre quadrature rule (see Section Global sen-
sitivity analysis), resulting in ten values for each parame-
ter. To correct for the stochasticity of the contact inhibi-
tion model, each parameter set is replicated twenty times
with a different random seed and the output is averaged
over them. The size of the standard deviations in Fig. 2
indicate that the variation over different random seeds is
very small for compactness, whereas the stochasticity in
the model has a larger affect on the lacuna count. Never-
theless, this lacuna count is a reasonable measure for the
network morphology.

Analysis of the raw output
The raw output of a model simulation is an image of the
cell configuration at the end of a simulation. Figure 3 gives
an overview of the raw output for the selected parameter

Table 3 Overview of the parameter selection for the GSA

Name Description Range

λc Chemotaxis 10 to 3000

D Diffusion coefficient 1e-14 to 5e-13

λA λ Area 5 to 300

Jcell,cell Cell-cell adhesion 0 to 120

The names of the parameters are listed in the first column, a parameter description
in the second column, and the selected parameter value ranges in the last column
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Fig. 3 Overview of the raw output. An overview of the raw output of the contact inhibition model, the cell configurations at the end of a simulation,
is shown in a collage of images. The cell rigidity (λA) is varied over the horizontal axis and cell-cell adhesion (Jcell,cell) over the vertical axis. For each
selected combination hereof, a subcollage is shown in which the diffusion coefficient of the chemoattractant (D) is plotted against the sensitivity of
cells to the chemoattractant at cell-matrix interfaces (λc)

space. Examples of possible morphologies are shown in
Fig. 3, ranging from spheroids to small networks with one
lacuna, to fine-mazed networks with many lacunae. This
is a visual reassurance that the input parameter space is
well chosen. However, it is very difficult to predict from
the raw output which parameters have a strong impact
on the development of networks from spheroids. A GSA
can give us insights into this, as we will show in the
next section.

GSA of network development from spheroids
We performed two types of GSA on the distribution of
the output measures, compactness and lacuna count, to
study the impact of the parameters on vascular network
development. The first type of GSA studies the variation
of the output measures and the second type studies the
decomposition of the variance of the distribution of the
output measures.

GSA of the variation of the outputmeasures
The variation in the output measures can be visualized
by plotting the intensity of the output measures over two-
dimensional slices of the parameter space. Figures 4 and 5
show the intensity plots of the lacuna count and compact-
ness, respectively, for each possible pairing of parameters.
The parameter values are selected according to the Gauss-
Legendre quadrature rule.
Figure 4 shows that the diffusion coefficient is the main

source of variation for the lacuna count: the lacuna count
is high for low values of D and low for high values of
D, independent of the other parameters. That the lacuna
count does not vary significantly over the entire perpen-
dicular axis indicates that the parameter of the perpen-
dicular axis does not have much impact. The dominance
of the diffusion coefficient masks the impact of the other
parameters. To reveal the impact of the other parameters,
Additional file 1: Figure S1 caps the intensity values at a
lacuna count of five.
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Fig. 4 Two-dimensional intensity plots of lacuna count. The intensity of the output measure lacuna count, mapped to an interval of 0 to 15 as
indicated by the color bars, is plotted for each two-parameter combination of the parameters cell rigidity (λA), cell-cell adhesion (Jcell,cell), diffusion
coefficient of the chemoattractant (D), and sensitivity of cells to the chemoattractant at cell-matrix interfaces (λc)

Figure 5 shows a high variation of the compactness
in each plot. As a consequence, it is difficult to deter-
mine which parameters have a dominant impact on com-
pactness. Interactions between parameters are difficult
to deduce from these two-dimensional intensity plots.
A variance-based GSA is well suited to derive parame-
ter interactions and the ranking of individual parameter
effects, as will be outlined in the following subsection.

Variance-based GSA of the outputmeasures
To study the impact of single parameters and of param-
eter combinations on the development of networks from
spheroids, we performed a GSA of the output distribu-
tion of compactness and lacunae count using the Sobol’
indices. We refer to Section Global sensitivity analysis
for a detailed description of how to obtain the Sobol’
indices that represent the impact of the parameters. The
GSA results of both measures are reliable, since the Sobol’
indices have converged for values of p̂ for which errVar
Eq. (9) is small (see Additional file 2: Table S1 and
Additional file 3: Table S2).
The second column of Table 4 lists the impact of the

individual parameters and their combinations on com-
pactness. The sensitivity for the chemoattractant at cell-
matrix interfaces (λc) has the highest impact on network

development (S(λc)= 0.3188), followed by the diffusion
coefficient with S(D)= 0.2969, and cell-cell adhesion with
S(Jcell,cell)= 0.2048. Elasticity of cells has a low impact
of (S(λA)= 0.0266). Seventeen percent of the variance is
caused by interactions of parameters. λc and Jcell,cell have a
combined impact of 0.0559. The impact of all other inter-
actions was lower than S(λA), which we will consider as a
threshold for relevant impact.
The third column of Table 4 lists the impact of the

individual parameters and their combinations on lacuna
count. The individual impact of the diffusion coefficient
is dominant, with S(D)= 0.7130. Cell adhesion also has
a small individual impact (S(Jcell,cell)= 0.0407). In total,
twenty four percent of the variance is induced by combi-
nations of parameters. There are five parameter combi-
nations, which all include the diffusion coefficient, with
a higher impact than the threshold: S(λc,D)= 0.0570,
S(D, λA)= 0.0347, S(D, Jcell,cell)= 0.0521, S(λc,D, Jcell,cell)=
0.0476, and S(λc,D, λA)= 0.0315. The total impact of the
diffusion coefficient is 90 percent. When we focus on low
values of the lacuna count, by capping the lacuna count at
a maximum of five lacunae, the dominance of the diffu-
sion coefficient is slightly reduced and an extra interaction
of λc and Jcell,cell is found (λc, Jcell,cell)= 0.0409) (Additional
file 4: Table S3).
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Fig. 5 Two-dimensional intensity plots of compactness. The intensity of the output measure compactness, mapped to an interval of 0 to 1 as
indicated by the color bars, is plotted for each two-parameter combination of the parameters cell rigidity (λA), cell-cell adhesion (Jcell,cell), diffusion
coefficient of the chemoattractant (D), and sensitivity of cells to the chemoattractant at cell-matrix interfaces (λc)

Interpretation of the GSA results
The GSA results show that three parameters account for
over 80 percent of the variance of the compactness dis-
tribution. Consistent with previous studies of the contact
inhibition model [22], these three parameters are the
diffusion coefficient, sensitivity to the chemoattractant
at cell-matrix interfaces and cell-cell adhesion. For the
lacuna count, the GSA identified solely the diffusion coef-
ficient as the dominant parameter. This dominant effect
is apparent in a collage of output images (Fig. 6): the
number of lacunae varies over the horizontal axis that rep-
resents the diffusion coefficient D, whereas there is little
variation along the vertical axis that represents the sen-
sitivity to the chemoattractant at cell-matrix interfaces
λc. The number of lacunae is the largest for small val-
ues of the diffusion coefficient (around D = 4.3 ∗ 10−14

m2/s), whereas no lacunae are formed for large values
of the diffusion coefficient. A similar trend is seen when
the diffusion coefficient is plotted against cell-cell adhe-
sion or cell rigidity (not shown). The distance over which
adjacent branches can attract one another is given by the
length of the chemoattractant gradient Eq. (2), which is
characterized by the diffusion length, LD = √

ε/D, the
distance over which the secreted chemoattractant drops
to 1/e of the concentration at the cells (see, e.g., the dis-
cussion in Ref. [22]). If LD becomes shorter, branches that

would fuse for larger values of LD will not fuse. Hence
the pattern will be more fine-grained. Also a shorter value
of LD will create sharper gradients and hence increase
the inward chemotactic force (as �H = λc ∗ gradient)
hence “squeezing” the branches more and making them
thinner.
In conclusion, the GSA is able to identify the dominant

single parameters for compactness and lacuna count. In
addition, it gives new information on the relative ranking
of the impact of these single parameters.
In contrast to the one-dimensional parameter studies

performed in [22], GSA provides information on interac-
tions of parameters. Combinations of parameters account
for 17 % of the variance in the compactness distribu-
tion, and for 24 % of the lacuna count distribution. This
indicates that most parameters impact the model output
independently. Interestingly, the parameter combination
of λc and Jcell,cell impacted the lacuna count (as seen in
Additional file 1: Figure S1, which is capped at a maxi-
mum of five lacunae) as well as compactness. How can
we explain this interaction? Sprout formation requires a
balance between λc-dependent chemotaxis, creating an
inward force perpendicular to the sprout surface, and
Jcell,cell-dependent cell-cell adhesion, which is responsi-
ble for the surface tension of individual cells. In the
limit of zero-surface tension, the cells would behave as a
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Table 4 Global sensitivity analysis results

Compactness Lacuna count

S(λc) 0.3188 0.0074

S(D) 0.2969 0.7130

S(λA) 0.0266 0.0125

S(Jcell,cell) 0.2048 0.0407

S(λc ,D) 0.0125 0.0570

S(λc , λA) 0.0107 0.0043

S(λc , Jcell,cell) 0.0559 0.0145

S(D, λA) 0.0017 0.0347

S(D, Jcell,cell) 0.0127 0.0521

S( λA , Jcell,cell) 0.0102 0.0048

S(λc ,D, λA) 0.0102 0.0315

S(λc ,D, Jcell,cell) 0.0257 0.0232

S(λc , λA , Jcell,cell) 0.0217 0.0131

S(D, λA , Jcell,cell) 0.0075 0.0094

The Sobol’ indices for the individual parameters (indices above mid-line) and for
their combinations (indices below mid-line) are listed for the GSA of compactness
and lacuna count

zero-viscosity fluid and the chemotaxis would compress
sprouts until they become infinitely thin [41]. The cellular
surface tensions resist such compression, thus determin-
ing the thickness of sprouts. Altogether, this parameter
interdependence highlights a new insight in the mecha-
nisms driving sprouting in our model.

Discussion
Biological morphogenesis is a highly complicated pro-
cess, involving genetic regulation, pattern formation, the

biophysics of collective cell migration, mechanical cell-cell
interactions, and so forth. As such multiscale mecha-
nisms are practically impossible to understand intuitively,
in recent years modeling and simulation has become a
key tool in developmental biology (see, e.g., refs. [42–45]).
These efforts have led to highly complicated models,
where traditional analysis tools in dynamical systems the-
ory, such as bifurcation analysis and phase plane analysis,
fall short. The models must then be treated as ‘black-
box’ systems: one- or two-dimensional parameter sweeps
are performed, creating images and movies as output,
which can be used to obtain various quantitative out-
put measures. These parameter sweeps must be started
from one or a few nominal parameter sets around which
n-dimensional cross-shaped sweeps through the parame-
ter space are performed. However insightful such studies
are, a danger is that the impact of some parameters is
overlooked: the conclusions may depend on what sets of
nominal parameter values were selected. Using a simple,
published simulation model of vascular morphogenesis,
we have shown in this work how a multivariate GSA helps
to get more insight in the relative impact of single param-
eters and of their interactions. We introduced a workflow
for GSA of ‘black-box’ models of morphogenesis.
We applied the workflow to a vascular morphogenesis

model which we refer to as the ‘contact inhibition model’.
The output of the contact inhibition model consists of
images of the cell configuration in a simulation. To quan-
tify network development, we measured the compactness
and the lacuna count of the cell configuration at the end
of the simulation. A GSA with four input parameter dis-
tributions, that each described one of the four general

Fig. 6 Dominant effect of the diffusion coefficient on lacuna count. A collage of the cell configurations at the end of simulations in the contact
inhibition model, in which the diffusion coefficient of the chemoattractant (D) is varied over the horizontal axis and the sensitivity of cells to the
chemoattractant at cell-matrix interfaces (λc) over the vertical axis
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model components, was performed for both measures.
The GSA results of compactness and lacuna count both
indicated that variation of the rigidity of the cells (λA)
has very little impact on the model output. As a result,
the model can be reduced by fixing this parameter. For
compactness, the sensitivity for the chemoattractant at
cell-matrix interfaces (λc) has the highest impact on net-
work development, followed by the diffusion coefficient
(D) and cell-cell adhesion (Jcell,cell). In contrast, the GSA
showed that the diffusion coefficient alone is dominant
for lacuna count. The results for both measures are in line
with what has been previously reported [22]. New infor-
mation from the GSA results is the relative impact of the
single parameters. In addition, GSA identified interactions
between parameters, which have led to new insights in the
mechanism of sprouting in the model. Most notably, the
parameter interactions in this specific CPM-based model
have very low impact. Since GSA has not been performed
for CPM-based models before, it is an important new
insight for the CPM community that themost basic mech-
anisms of the CPM, such as cell size and adhesion here
function independently.
Besides the contact inhibition model, there are mul-

tiple other computational models of vascular network
development [23–28]. These models often share common
mechanisms that drive sprouting, but differ by one or a
few mechanisms. It is still not known which mechanisms
drive sprouting in vivo, or whether a different set of mech-
anisms is used under different conditions. We propose
GSA as an approach to help falsify these models. Firstly,
the ranking of the relevance of the mechanisms in the
models can be compared with knowledge of the impact of
these mechanisms from experimental data to falsify mod-
els. A second model falsification method is the validation
of the experimental predictions of each model based on
the GSA results.
The workflow is designed to take into account some

pitfalls of GSA. These arise from the dependency of
the outcome on the choices one makes for the output
measure, input parameters and their distributions. Dif-
ferent output measures can give different results, as was
the case for compactness and lacuna count. This indi-
cates that it is essential to consider carefully whether the
selected measure truly describes your goal and if there
are other measures for it. A selection of input parame-
ters might be necessary when it is not computationally
feasible or methodologically desirable to use all parame-
ters of the model. The importance of the selection of the
correct parameter distributions has also been discussed
elsewhere [17]. Intuitively, a large range for the parame-
ter values will allow for the largest variation in the output
and thus the most interesting result. However, since the
analysis is global over the entire parameter space, local
though important features might become unnoticed if the

distribution is too widespread. For instance, for the con-
tact inhibition model we were interested in the region
where the networks developed and where the measures
were changing accordingly, and variation in these regions
could become unnoticed if we included large regions
where for instance spheroids do not sprout. Ideally, the
parameter distribution comes from experimental mea-
surements, but in absence hereof we propose to study
the variation of the output measures for each parameter
individually.
It is crucial to have an estimate of the accuracy of the

sensitivity results. One option is to compare the results
with the outcome of an analysis with a higher accuracy
computed with more quadrature points and a higher PCE
order, like advocated in [17]. In this paper we proposed
a simpler and cheaper rule: given the number of quadra-
ture points the Sobol’ indices should show convergence
for those values of p̂ for which the variance computed
with the Gauss-Legendre quadrature rule is more or less
equal to the variance computed from the PCE approxi-
mation. If a higher PCE order is required, more model
simulations are needed. Since the computation of the PCE
statistics is ‘for free’ compared to model simulations this
is an efficient way of judging whether the accuracy of
the statistics is sufficient for one’s aim. Although Gauss
quadrature is optimal, it has the disadvantage that it is not
a nested quadrature rule, i.e., if more quadrature points
are required, the old model results cannot be re-used.
An alternative for Gauss quadrature is Monte Carlo (MC)
integration. Sampling the PCE integrals by MC is less
optimal, so more simulations are needed to obtain reli-
able GSA results. For the Ishigami test model, MC needs
a 100 times more simulations to get comparable results.
The benefit of MC is that you can check ‘on the fly’ if
there are enough data points generated to get reliable
results. Adding simulations on the fly is particular useful
when the estimated number of simulations based on the
Gauss quadrature rule is computationally unfeasible, but
one expects or hopes that the output distribution is rel-
atively smooth and thus can be described by a low order
PCE approximation.
Some studies require GSA of a subspace of the out-

put distribution. For instance in our case study, to study
not the conditions for network formation per se, but the
details of the network morphology (e.g. branch length,
branch thickness, and so forth), wemust preselect a region
of the parameter space where networks actually form.
Unfortunately, such a subspace would no longer guaran-
tee that the input distribution is independently random
uniform. For such cases, a more complicated method to
compute the Sobol’ indices [35] is required.
Besides in computational models, the impact of

biological factors on morphogenesis is also studied
in vitro. High-throughput image-based screenings
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systematically analyze the impact of genes or potential
drugs on cell behavior, such as cell migration [46]. This
‘systems microscopy’ approach is well suited for parallel
screening of cellular responses to numerous experimental
perturbations [47]. Such high-throughput screens can be
performed for the genes, growth factors or ECM concen-
trations affecting morphogenesis. This is conceptually
very similar to parameter studies of in silico ‘black-box’
models. The perturbed biological factors represent the
input parameters and the output is an image from which
quantitative data can be derived. Therefore, the GSA
workflow proposed in this paper is directly applicable to
high-throughput in vitro studies.

Conclusions
Morphogenesis is a complex biological process in which
cells organize into shapes and patterns. Computational
modeling is used to get insights in the mechanisms of
morphogenesis. These models are often multi-scale, non-
linear andmulti-factorial, making it difficult to relate their
input to their output. The behavior of such ‘black-box’
models is mostly studied by visual inspection and analy-
ses of the individual output (e.g. images and movies) and
with one- or two-dimensional parameter sweeps of out-
put measures. However, this does not provide insight in
the relative impact of single parameters and of their inter-
actions on the outcome of the model. GSA fulfills this
task. GSA results can give insights in the dynamics of the
model and help to generate experimental predictions to
manipulate morphogenesis. In this paper, we introduced
a workflow for GSA of such models and addressed pit-
falls and reliability of the analysis. The workflow is applied
to the contact inhibition model, a cell-based model of
vascular morphogenesis. GSA was able to correctly iden-
tify dominant parameters and gave new insights on the
magnitude and ranking of their individual impact and
importantly, on their interactions. In summary, we pro-
pose GSA of ‘black-box’ models, such as complex compu-
tational models or high-throughput in vitromodels, as an
alternative approach to get insights in the mechanisms of
morphogenesis.
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