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The low-frequency limit of Maxwell equations is considered in the Maxwell-Vlasov system. This

limit produces a neutral Vlasov system that captures essential features of plasma dynamics, while

neglecting radiation effects. Euler-Poincar�e reduction theory is used to show that the neutral

Vlasov kinetic theory possesses a variational formulation in both Lagrangian and Eulerian coordi-

nates. By construction, the new model recovers all collisionless neutral models employed in plasma

simulations. Then, comparisons between the neutral Vlasov system and hybrid kinetic-fluid models

are presented in the linear regime.VC 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4907665]

The dynamics of magnetized plasmas is one of the most

celebrated examples of multiscale systems, in which micro-

scopic kinetic effects couple to the macroscopic scales

affecting the evolution of the electromagnetic fields. This

essential multiscale nature of magnetized plasmas poses well

known challenges for computer simulations, which are usu-

ally required to resolve both microscopic and macroscopic

scales, respectively, associated to phase-space kinetics and

its fluid moments.

In the attempt to capture essential features of plasma dy-

namics, several computational approaches have been pro-

posed over the decades, based on different mathematical

models. These approaches may be divided in three main cat-

egories: fully kinetic, fluid, and hybrid kinetic-fluid. Each of

these categories may itself involve different degrees of

approximation leading to different dynamic equations. For

example, the full Maxwell-Vlasov system may be replaced

by its gyrokinetic or drift-kinetic counterparts, thereby aver-

aging out the microscopic scales involved in the particle

gyromotion. On the other end, fluid treatments also possess

several variants (Hall-MHD, electron MHD, extended MHD,

etc.), mainly extending ideal MHD equations to incorporate

different plasma features. All these collisionless fluid models

are based on the essential hypothesis of charge neutrality,

which cuts out high-frequency light wave propagation. The

same hypothesis underlies the formulation of most hybrid

kinetic-fluid models appearing in the literature.20 Many dif-

ferent hybrid variants are available, mainly depending on the

system under consideration and on the adopted approxima-

tions. For example, in plasma fusion, hybrid MHD4,24,25 cou-

ples the MHD bulk to a kinetic theory for energetic alpha

particles. In space plasma applications, ions are typically

described by the Vlasov equation, while electrons obey a

fluid closure that may or may not carry inertial effects.

As mentioned above, the neutrality assumption underly-

ing both fluid and hybrid kinetic-fluid models prevents light

wave propagation. The absence of light waves in neutral

models has the advantage of eliminating the need of resolv-

ing for high-frequency radiation effects, thus resulting in

more efficient computational schemes. In order to eliminate

radiation effects in a collisionless kinetic plasma description,

one may use Darwin’s model.7 This is a modification of the

Maxwell-Vlasov system that neglects the transverse part of

the displacement current, while still retaining the longitudinal

electric field. This approximation includes electrostatic and

magnetostatic effects as well as electromagnetic induction,

while eliminating light wave propagation. At present, the

Darwin-Vlasov system is the only kinetic plasma theory that

is capable of retaining essential plasma phenomena, while

neglecting radiation effects without invoking charge neutral-

ity. However, the numerical implementation of the Darwin-

Vlasov model is not straightforward, and hence not widely

used in the community (see, e.g., the discussion in Ref. 3).

It is the purpose of this paper to present a new simplified

kinetic theory that neglects radiation effects by assuming

charge neutrality directly in the Maxwell-Vlasov system.

This is done by taking the low-frequency limit e0 ! 0 in the

Maxwell equations (e0 being the dielectric constant), which

corresponds to restricting to frequencies much smaller than

the plasma frequency and to lengths much larger than Debye

length. Then, strictly speaking, neutrality holds only within

this parameter regime and one should rather talk about

quasi-neutrality; however, since we shall not be going out-

side of this regime, we shall simply use the word "neutral",

understanding that we mean neutral to the order of approxi-

mation in which the model is valid. The low frequency limit

is precisely the approximation leading to the MHD model8

and its variants, although this is now implemented directly in

the Maxwell-Vlasov system, rather than in its two fluid clo-

sure. Unlike Darwin-Vlasov, electrostatic Langmuir waves

are eliminated in the new model, which yet recovers all colli-

sionless neutral plasma models. On the other hand, similarly

to the Darwin-Vlasov system, the present neutral approxima-

tion of the Maxwell-Vlasov system follows from a varia-

tional principle, which ensures mathematical and physical

consistency. The proposed neutral Vlasov model reads (in

standard notation)
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where the label s denotes the particle species (typically, s¼ i
and s¼ e for ions and electrons, respectively) and where we

have introduced the moment notation ns ¼
Ð
fs d

3v and

Vs ¼ nÀ1
s

Ð
v fs d

3v. The above set of equations is a closed

system. This is easily shown by writing Ohm’s law, as it

arises from the first order moment of the sth kinetic equation.

Notice that Ohm’s law can be obtained by the momentum

(i.e., first order moment) equation of any species s and the

particular choice of species is irrelevant for the consistency

of the model and is only a matter of convenience. For exam-

ple, one can take the first order moment of the electron ki-

netic equation (s¼ e) to obtain Ohm’s law in the form

E ¼ ÀVe Â Bþ 1

qene
r ÁPe þ

me

qe

@Ve

@t
þ Ve Á rVe

� �
; (4)

where we have introduced the pressure tensor notation Ps

¼ ms

Ð
ðvÀ VsÞðvÀ VsÞ fs d3v and Ve is expressed in terms

of the total current J ¼ lÀ1
0 rÂ B by making use of

Amp�ere’s current balance in Eq. (3). Equivalently, one can

take the first order moment of all kinetic equations and sum

over the species.

The variational formulation of the neutral Vlasov model

is now presented in two stages. First, one considers

Lagrangian trajectories on phase space. Second, one applies

Euler-Poincar�e reduction theory10,11 to find the correspond-

ing Eulerian formulation. This first part is done upon consid-

ering the Maxwell-Vlasov Lagrangian1,2,15,16,19,21 in the

neutral limit e0 ! 0, that is

Lf0s zs; _zs;u; _u;A; _A
À Á

¼
X

s

ð
f0s z0sð Þ msvs z0sð Þ Á _xs z0sð ÞþqsA xs z0sð Þð Þ Á _xs z0sð Þ

À

Àms

2
jvs z0sð Þj2 À qsu xs z0sð Þð ÞÞd6z0s À

1

2l0

ð
jrÂAj2 d3x :

(5)

Here, the density f0s(z0s) is the reference (time-independent)

phase space density. We have denoted the phase space labels

by z0s¼ (x0s, v0s), while

zsðz0s; tÞ ¼ ðxsðz0s; tÞ; vsðz0s; tÞÞ (6)

is the Lagrangian trajectory on phase space and the index s
keeps track of the particle species. Also, the time dependence

was not made explicit in the Lagrangian functional for com-

pactness of notation. The last integral is the magnetic field

energy and involves ordinary Eulerian spatial coordinates

(denoted by x). This expression of the Lagrangian comes

from the general form of the phase-space Lagrangian15,21 for

the Maxwell-Vlasov system, as it is expressed in Lagrangian

coordinates. The difference between the above Lagrangian

and the standard phase-space Lagrangian for Maxwell-

Vlasov lies in that the above expression does not carry the

electric field energy term

e0
2

ð
@A

@t
þru

����
����
2

d3x ;

which is neglected in the neutral limit e0 ! 0. The same

approach has been followed in Ref. 12 for the two fluid

model.

The equations of motion for the Lagrangian trajectories

follow from the Euler-Lagrange equations

@

@t

dL
d_zs

¼ dL
dzs

;
dL
du

¼ 0 ;
dL
dA

¼ 0 ; (7)

where we have used the standard notation for functional

derivatives. Upon making use of delta functions, the last two

equations give the Lagrangian form of the neutrality relation

and Ampère’s current balance in Eq. (3)

X

s

qs

ð
f0sðz0sÞ dðxÀ xsðz0s; tÞÞ d6z0s ¼ 0

lÀ1
0 rÂrÂ Aðx; tÞ

¼
X

s

qs

ð
_xsðz0s; tÞf0sðz0sÞ dðxÀ xsðz0s; tÞÞ d6z0s ;

while the first Euler-Lagrange equation gives

_xs ¼ vs

_vs ¼ À qs
ms

rxsu xs; tð Þ þ @tA xs; tð Þ
À Á

þ qs
ms

vs Ârxs Â A xs; tð Þ;

where we recall the notation (6) for Lagrangian trajectories.

In order to obtain the formulation in terms of Eulerian

variables, we define the Lagrange-to-Euler map for the sth
species

fsðz; tÞ ¼
ð
f0sðz0sÞ dðzÀ zsðz0s; tÞÞ d6z0s;

where we have denoted the Eulerian phase space coordinates

by z¼ (x, v). The Lagrange-to-Euler map has the fundamen-

tal role of expressing the Eulerian Vlasov density fs(z, t) in
terms of its (fixed) Lagrangian correspondent f0s(z0s). This
map is used as follows to express the invariance property of

the Lagrangian

Lf0sðzs; _zs;u; _u;A; _AÞ ¼ Lfsð_zs � zÀ1
s ;u; _u;A; _AÞ;

where

ð _zs � zÀ1
s ÞðzÞ ¼ ð _xsðzÀ1

s ðz; tÞ; tÞ; _vsðzÀ1
s ðz; tÞ; tÞÞ

¼ ðusðz; tÞ; asðz; tÞÞ ¼ Xsðz; tÞ (8)
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is the phase space vector field generating particle trajecto-

ries. Then, the reduction from Lagrangian to Eulerian varia-

bles leads to the reduced Lagrangian

‘ Xs; f ;u; _u;A; _A
À Á

¼
X

s

ð
fs z; tð Þ

�
msvþ qsA x; tð Þð Þ Á us z; tð Þ À ms

2
jvj2

À qsu x; tð Þ
�
d3x d3vÀ 1

2l0

ð
jr Â A x; tð Þj2 d3x :

(9)

At this point, one considers the reduced Hamilton’s principle

d
Ð t2
t1
‘ dt ¼ 0, by using the Euler-Poincar�e variations10,11

dXk ¼ @tYs þ ðXs Á rzÞYs À ðYs Á rzÞXs; (10)

dfs ¼ Àr Á ðfsYsÞ ; (11)

with Ys arbitrary and vanishing at the endpoints t1 and t2.
These variations are obtained from the definition Xs

¼ _zs � zÀ1
s and the Lagrange-to-Euler map for the particle

density fs; one shows that Ys ¼ ðdzsÞ � zÀ1
s (see Refs. 2, 10,

11, and 21). Upon using Eqs. (10) and (11) in the reduced

Hamilton’s principle, one finds

Xk x; v; tð Þ ¼ v ;
qs
ms

Eþ vÂ Bð Þ
� �

(12)

with E ¼ À@tAÀru and B¼rÂA, while taking the time

derivative of the Lagrange-to-Euler map yields @tf
þrz Á ðfXÞ ¼ 0. Eventually, one is left with the Vlasov

equations (1), which are accompanied by the last two Euler-

Lagrange equations in Eq. (7), thereby returning Eq. (3). The

dynamics of the vector potential A can be recovered by find-

ing Ohm’s law, for example, as in Eq. (4). Then, taking the

curl of the latter returns Faraday’s law.

As pointed out in the Introduction, the neutral Vlasov

model recovers all collisionless neutral plasma models

appearing in the literature over the decades. Few examples

are listed below.

(1) Neglecting electron (mean flow) inertial effects (i.e., let-

ting me/mi ! 0 in Ohm’s Law (4)), yields a model that is

equivalent to the kinetic-multifluid model introduced by

Cheng and Johnson.5 In this model, Ohm’s law (4) is

written in terms of the total current J by ignoring terms

of the order Oðme=miÞ (see Eq. (8) in Ref. 5). We remark

that neglecting these terms in Ohm’s law destroys the

variational structure, which was recently recovered23 by

neglecting the electron mean flow inertia in the

Lagrangian Eq. (9). This procedure leads to inertial

Coriolis forces that cannot be captured by other standard

methods.

(2) Consider the case with two species, i.e., s¼ i, e. If the
ion kinetic equation in Eq. (1) (with s¼ i) is replaced by

its fluid closure, the neutral Vlasov system returns a

hybrid reconnection model proposed by Hesse and

Winske9 to capture electron pressure anisotropies. These

models are obtained by a second order moment trunca-

tion of the electron kinetic equation and have been

presented over the years29 in two different variants,

depending on whether the electron mean flow inertia is

retained or not. When these terms are neglected in

Ohm’s law (4), then the variational structure is lost and

the model can be derived by truncating the electron

moment hierarchy in the kinetic-multifluid model by

Cheng and Johnson.5

(3) If the ion kinetic features are retained and the electron

kinetics in Eq. (1) (with s¼ e) is replaced by its fluid clo-

sure, the neutral Vlasov model returns a hybrid model

proposed by Valentini et al.26 (see Eqs. (1)–(3) and (14)

therein). It can be shown that this model also possesses a

variational structure. Notice, in the computational imple-

mentation, the mass ratio value me/mi is usually non-

physical, for numerical convenience.26

(4) When the electron inertia is neglected in the previous

case, one obtains a class of widely studied hybrid models

for a massless electron fluid coupled to collisionless ion

kinetics.14,18,28 These models have been shown to have a

Hamiltonian structure in Ref. 24, while the correspond-

ing variational structure can be derived by neglecting

terms $Oðme=miÞ in the Lagrangian for the hybrid

model in Ref. 26, mentioned in the previous point.

(5) When both ion and electron kinetics are replaced by their

corresponding fluid closure, one obtains the neutral limit

of the two fluid plasma model (see, e.g., Ref. 20). In the

incompressible limit, the corresponding fluid system has

been studied in Ref. 6.

(6) In the previous case, neglecting electron inertia yields

the celebrated Hall-MHD equations. Eventually, neglect-

ing the Hall term leads to ideal MHD, whose hybrid ver-

sions4,24,25 are also recovered from neutral Vlasov by

considering an extra species of hot particles.

We recall that the standard treatment of linear plasma

waves in a homogeneous magnetized plasma described by

the Vlasov-Maxwell system is cast in the form

nÂ nÂ EþDE ¼ 0, where the dielectric tensor D is

defined as D ¼ I þP
s vs; vs represents the susceptibility of

the species s, and n is the index of refraction vector.22 By

taking the neutral limit e0 ! 0, one can notice that the

dielectric tensor reduces to D ¼ P
s vs. The form of the sus-

ceptibilities depends on the particular model one employs

for each individual species. In this section, we show the dis-

persion relations for Alfven and whistler waves, at parallel

and oblique propagation, by comparing the standard Vlasov-

Maxwell results with the results obtained with the neutral

Vlasov models (1)–(3) and with a hybrid model. As custom-

ary, we consider the background magnetic field aligned to

the z direction, and the wavevector k lying in the (x, z) plane.
We denote by h the angle between the wavevector and the

magnetic field, by x the wave real frequency, and by c the

damping rate. For simplicity, we treat an ion-electron plasma

with equal electron and ion temperatures. The plasma beta

(the ratio between thermal and magnetic energy) is equal to

0.5, and the ratio between ion plasma and cyclotron fre-

quency is of the order of 7Â 103, which are typical values

for, e.g., the solar wind. In Figure 1, we show the real fre-

quency (top panels) and the damping rate (bottom panels) as a
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function of the parallel wavevector kk (normalized to the ion

Larmor radius qi), for a whistler wave. Frequencies are nor-

malized to the ion cyclotron frequency Xi. We have chosen an

hybrid model equivalent to the one presented in Valentini

et al.,26 with fluid isothermal electrons and kinetic ions. The

range of wavevectors shown emphasizes the limit of validity

of hybrid models. Indeed, as expected, the damping due to

electron kinetic is not captured in hybrid models, and already

for kkqi¼ 4 at oblique propagation there is a non-negligible

mismatch with the correct Vlasov-Maxwell solution. On the

other hand, neutral Vlasov model captures the whistler disper-

sion relation exactly. Figure 2 shows, in the same format as

for Figure 1, the dispersion relation for Alfven waves. Once

again, the neutral Vlasov recovers exactly the full Vlasov-

Maxwell solution, both for parallel and oblique propagation.

Although now the ion damping mechanisms are present in the

hybrid model solution (dashed lines), one can still notice a

certain mismatch. Also, an interesting feature of branch cross-

ing is apparent for oblique propagation (approximately at

kkqi¼ 7), which is consistent with the simulations presented

in Ref. 27. It is important to emphasize that although the neu-

tral Vlasov model is computationally more expensive than the

hybrid model (because both species are treated kinetically),

the mismatch in the damping rates presented in Figures 1

and 2, even at moderate kkqi for oblique propagation, for the

hybrid model, can result in an excess of energy at small scales,

which usually need to be artificially damped, for instance by

using numerical filters.

At this point, the neutral radiationless limit of the

Maxwell-Vlasov equations has been considered and the result-

ing neutral Vlasov system has been approached from different

perspectives. The mathematical and physical consistency of

the kinetic model has been supported by its variational formu-

lations in both Lagrangian and Eulerian variables, upon using

Euler-Poincar�e reduction in geometric mechanics.10 By con-

struction, the neutral Vlasov system recovers all collisionless

neutral models appearing in the literature, some of which have

been briefly discussed. The linear theory of neutral Vlasov has

been compared to both its hybrid closure (with fluid electrons

and kinetic ions) and the Maxwell-Vlasov system. While it

has been emphasized that electrostatic Langmuir waves are

lost in the neutral approximations, no mismatch was found

between the fully kinetic models, for the range of wavevectors

considered. In particular, the kinetic systems totally agree for

Whistler and Alfvèn waves at any direction of propagation.

This agreement is lost between the kinetic theory and its

hybrid closure, although the latter seems to capture some of

the features in Alfvèn wave propagation. In conclusion, the

neutral Vlasov model represents a promising alternative

whose computational cost is in between hybrid and fully ki-

netic models, yet recovering all of the radiationless features of

magnetized plasma dynamics. For instance, it is expected that

the stringent constraints due to numerical stability typical of

explicit fully kinetic codes can be relaxed, thus allowing for

larger timestep/grid sizes. This is similar to what is achieved

by the implicit moment method,13,17 yet with a simpler algo-

rithm that takes advantage of Ohm’s law (4) to evaluate the

electric field.
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