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Abstract: It is well known in the world of multigrid that the order of the prolongation and the order of the restriction 
in a multigrid method should satisfy certain conditions. A rule of thumb is that the sum of the orders of the 
prolongation and of the restriction should at least be equal to the order of the differential equation solved. In this note 
we show the correctness of this rule. We notice that we have to distinguish between low frequency and high frequency 
orders for the transfer operators. For the restriction, the low frequency order is related with its accuracy, whereas for 
the interpolation operator both orders are related with the accuracy of the result of the interpolation. If an 
interpolation rule leaves all polynomials of degree k -1 invariant, then both the low and the high frequency order are 
equal to k. It is the high frequency order that plays a role in the above-mentioned rule of thumb. 
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1. Introduction 

The space of discrete /2-functions on an infinite regular n-dimensional grid is denoted by 

ti(lLZ)={uhluh:lLZ~K; L hnluh(z)l 2 <oo}, (1) 
zezz 

where K = IR or K = C, the field of real or complex numbers, 7L are the integer numbers and 

71..Z= {ihlJE7Ln}, (2) 

where h = (h1, h2 , ... , hn) with hi> 0, i = 1, ... , n, and jh = (j1h1, .•. , Jnhn). With the obvious 
norm II· II h,2 the space ti(ZZ) is a Hilbert space. 

The Fourier transform FT( uh)= uh of an Ii-function uh is defined by 

uh(w) = ( ~ )n I: e-ijhwuh(Jh), (3) 
y2'TT jEZ" 
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and it is readily seen that 

FT: ll(Zh) ~ L2 (T:), (4) 
with Thn = [-'IT/h, 'IT/hr an n-dimensional torus, is an invertible unitary operator (i.e., II uh II h,2 

= II uh 112). 
Convolution or Toeplitz operators Ah: l'},(Z/:) ~!'},Cl./:) are linear operators 

(Ahuh)(Jh)= L ah(kh)uh(Jh-kh), (5) 
kEZ" 

with ah E ll(Z/:). In practice, ah is mostly associated with a discretisation stencil and Ah is the 
discrete operator of a linear differential equation with constant coefficients. 

It is easily seen [3] that we can introduce the Fourier transform FT(Ah) =Ah of a Toeplitz 
operator Ah by 

Ahuh(w) =Ah(w)uh(w). (6) 

Remark. Let L be a differential operator with constant coefficients and i( w) its Fourier 
transform or "symbol". Let us denote by Lh a discretisation of L on a regular rectangular grid, 
determined by a unique stencil. Then i(w) is a polynomial of degree M, with M the order of 
the differential equation, and ih( w) is a trigonometric polynomial of the same degree. It is a 
classical result that 

1ih(w)-i(w)l=(1)(hfi) forh~O, (7) 
with p the order of consistency of the discretisation. 

2. Restrictions and prolongations 

Although the theory can be made more general [3], for a convenience of notation we restrict 
ourselves here to grid transfer operators between fine grids Z h and coarse grids Z 2h (also 
denoted by Z 'fl, H = 2 h ). We first introduce the elementary restriction and prolongation. 

The elementary restriction R~h: t'},(Zh) ~ !'i£(Z'fl) is defined by 

( R~huh) (JH) = uh (j2h), (8) 
and its Fourier transform is given by 

R'i,huh(w) = L uh( w + 2;: ), 
pe{O, 1}" 

(9) 

the sum is taken over all n-tuples with elements taken from { 0, 1}. Any regular restriction 
Rsh: llCZh) ~ !'i£(l..'fl) can be constructed as a combination of the elementary restriction and a 
convolution operator: 

RHh = R~hAh. (10) 
Similar to the elementary restriction, there is an elementary prolongation P~H: i'i£(Z.'Jt) ~ t'},(lh) 
defined by 

(Pinuh)(jh) = {uh(Jh), if jh E.Z.'H, (11) 
0, otherwise, 

and any regular prolongation Phs: i'i£(l 'k) ~ lf(Z. h) can be constructed as Phs = AhP~s· 
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To discuss Fourier transforms of prolongations or restrictions, we notice that any element 
) E Thn can be seen as a 2n-vector (w + -rrp/h), p E {O, 1y on TJ;. (The 2n frequencies w + 'rTp/h 
1n ZZ are those that correspond with the frequency won Z'JJ.) Hence, for uh E L 2(Tn we also 
lSe the notation fih E L 2(Tjf), with uh( w) the vector with entries uh( w + 'T'ip/h), p E {0, l y. 

Consistent with this notation, Ah( w ), w E Thn, may be written as a 2n x 2" diagonal matrix 

Ah( w ), w E TJ;. (12) 

:be Fourier transform of a restriction RHh = R~hAh is now given by 

- - " ( 'rTP)" ( 'T'ip) RHhuh(w)-}2Ah w+--;:z uh w+--;:z, 
p 

~r. in vector notation, with uH = RHhuh 

uH(w) =RHh(w)uh(w), 

11here w E TJ;. Now Rnh(w) is a 1X2n matrix with entries Ah(w +-rrp/h). 

(13) 

(14) 

Similarly, the Fourier transform of a prolongation PhH = AhPiH with uh= PhnuH can be 
rntten 

uh(w) =Phn(w)un(w), (15) 

vith w E TJ;. Here Phn(w) is a 2n X 1 matrix with entries Ah(w + 'T'ip/h)2n. 

~. The order of prolongations and restrictions 

For the usual prolongations and restrictions, for which the stencils are real and have finite 
:upport, the components of their Fourier transforms have the form of a trigonometric poly-
1omial in (} = wh. To unify the treatment for both types of transfer operators, we write B( 0) for 
§h or 2nfJh in case of the restriction or prolongation, respectively. 

[)efinition 1. The low frequency (LF) order of a grid transfer operator Bh is the largest number 
n ~ 0 for which 

(16) 

[)efinition 2. The high frequency (HF) order of a grid transfer operator Bh is the largest number 
n for which 

.B ( o + p 'T'i) = m ( I o I m ) for I o I ~ o, 
'or all p E {0, ly, p +on. 

(17) 

ltemark. We may understand these definitions as: "A high-order transfer operator disturbs low 
:requencies by a small amount (high LF order), whereas the corresponding high frequencies do 
iot pop up too much (high HF order)". 

B:xamples. Simple computations show for particular transfer operators the following orders. 
(1) Injection R~h; stencil ah= [O, 1, O], A(O) = l; the LF order is infinity, the HF order is 0. 
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(2) The weighted restriction in one dimension, linear interpolation; the stencil is 

1(1 1 ]]· ah=22, ,2, 

the LF order is 2, the HF order is 2. 
(3) Half weighting; the stencil is 

1 
4 

1 
1 
4 

~ ]· 4 ' 

0 

the LF order is 2, the H.F order is 0. 
(4) Full weighting, or bilinear prolongation on rectangles; the stencil is 

[ 

1 
4 

l 1 

ah= 4 ~ 

l 
2 

1 
1 
2 

: 1 · 2 ' 
1 
4 

the LF order is 2, the HF order is 2. 
(5) Seven point restriction, or linear interpolation on triangles; the stencil is 

[ 

I 1 
2 2 

ah=i ot ~ 
2 

~]. 2 ' 
1 
2 

the LF order is 2, the HF order is 2. 
(6) Cubic interpolation in one dimension; the stencil is 

ah= H -rt;, o, :6, 1, -&, o, - rt;]; 
the LF order is 4, the HF order is 4. 

(18) 

(19) 

(20) 

(21) 

(22) 

Remark. There is a direct relation between the order of the transfer operator as defined here and 
the degree of the polynomial that is exactly interpolated by the corresponding interpolation rule. 
The following statements are easy to verify. (1) If a restriction leaves all polynomials of degree 
k - 1 invariant, then the LF order of the operator is k. (2) If a prolongation leaves all 
polynomials of degree k- 1 invariant, then both the LF and HF order are at least k. 

Proof of (1). If the restriction stencil [c1] leaves all polynomials Pk of degree ~ k invariant, 
then 

Pk(xk) = L,c1Pk(xk-J), 
j 

for all Pk, and hence 

{

1 = L,c1, 

O~ ~c/-jh)", Va, [a[ ,;;k. 

(23) 

(24) 
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Therefore, 

C{w) = L:CJ e-iwhJ = LCJ L d13 (-iwhj) 13 

j j 1/31 ;.O 

= L (iw )13 d13Lc1( -hj) 13 = 1 + L (iw )13 d13 2:,c1(-hj) 13 
l.Bl~O j l.Bl>k j 

= 1 + @((wh)k+I) for wh ~ 0. 

Proof of (2). If the interpolation stencil [c1] leaves all polynomials Pk of degree ~ k invariant, 
then 

j 

for all multi-integers p E {O, iy. It follows that, for all p, 

and hence 

{
l = :~::::C2)-P' ' 

0 ~ ~c21_,((p - 2j)h) ", 'Va, 0 <I a I<; k; 

C(O+p'IT) =2-nLCJ e-i(w+rrr/h)hJ=2-n r, LC2j-m e-i(wh+p'lf)(2j-m) 

j mE{O, l}" j 

= 2-n ~ eip'lfm~ c . eiwh(m-2j) 
L,_, L., 21- m 

mE{O,lr j 

=2-n L (-l)pmLC2J-m L d13(iwh(m-2j)) 13 
mE{O,l}" j 1.Bl;.0 

=2-n L (-l)pm{l+ L d13(iw),BLC2j-m((m-2j)h) 13 } 
mE{0,1}" l/31>k j 

= 2-n{ L (-l)pm 
mE{0,1}" 

+ L d13(iw) 13 L (-l)pmLC2J-m((m-2j)h) 13 } 
1/31 >k mE{O, 1}" j 

if p = 0, 

if p * 0. 

4. Requirements for transfer operators in multigrid 

Let L be a constant-coefficient, linear-differential operator of order M, then 
M 

f(w) = L cmwm, 
lml=O 

(25) 

(26) 

(27) 
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where, for the more-dimensional case, we use the multi-integer notation again. Let Lh and LH, 
H = 2h, be discretisations of L of order p. We suppose that Lh and LH both are determined by 
the same unique stencil. Then 

" M 1 
Lh(w) = L Cmhmsm(wh), 

\rn\=0 

(28) 

where sm( wh) is an m th-degree trigonometric polynomial satisfying 

sm(wh) = e((wht) for wh ~ 0, 

sm(wh)=£!J(l) forwhE[-'TT,'lTr, 
(29) 

and 

(30) 

Now we keep w fixed and let h ~ O; hence (} = wh ~ 0. 
To find the conditions for the grid transfer operators to satisfy in a multigrid algorithm, we 

first consider 

and for p E {0, l}n, p =I=- On and(}~ 0, 

ih(w+'TTp/h) 

i2h(w + '!Tp/2h) 

The amplification operator of the two-grid coarse-grid-correction operator is [2] 

MhCGC = Ih -PhHLi/RHhLh, 

and hence 

or 

"CGC( ) (1 0) "-1( phH(w) )(" " Mh w = 0 -LH ,.. ( ) RHh(w), RHh(w+'ITp/h)) 
1 phH w+'ITp/h 

( 
ih( w) 0 ) 

X 0 ih(w + '!Tp/h) · 

(31) 

(32) 

(33) 

(34) 

Now we denote the LF and HF order of the prolongation (restriction) by m1 and m2 
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(respectively by n1 and n 2 ), to obtain for 0 ~ 0 

MhCGC(O)=(l o)-(l+(!)(Om1))(l+(!)(On1) (9(0n'))(l+(!)(OP) 0 ) 
0 1 (9(0m 2 ) ' 0 (9(0-M) 

=(lP(Om1)+(9(0n1)+(9(0fi) (9(0n 2 -M) ) 
(9(0m') l+(9(0m 2+n 2-M) · 

For 0 ~ 0 the eigenvalues of M( 0) approach 

A. 1 ::::: 1 and A. 2 ::::: (!)( on,+m,-M). (35) 

Hence, a necessary condition for nonincreasing high frequencies arising from a coarse grid 
correction is n2 + m 2 ~ M. This corresponds with the well-known rule of thumb, used in the 
multigrid community [1,2,4]. However, we have to be aware that it is the HF and not the LF 
order that shows up in this rule. 

In [4] it is shown by an example that the rule gives a necessary condition indeed. There it is 
seen that a set of transfer operators that satisfies the conditions for a convection operator fails as 
soon as an additional diffusion operator becomes significant. 

In order that the norm of the amplification operator of the error is also bounded, one should 
require n 2 ~Mand m 2 ~ 0. 

Similarly, for the residual amplification operator, i.e., Mhcoc = Ih - LhPhHLif 1RHh' we find 

(36) 

If we want its norm to be bounded, then we find the conditions m 2 ~ M and n 2 ~ 0. 
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