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ABSTRACT
In this paper we consider stability and error estimates for nonuniform sampling. There is a large amount
of literature on the subject of error estimates for uniform sampling. In this paper we derive estimates by
means of operator norms and obtain new bounds for the amplitude error and the time jitter error, which
apply for non uniform sampling.
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0. INTRODUCTION

In this paper we consider stability and error estimates for the following problem. Given
the data {g;} € ¢*(¥) and time markers {t;}:c1, where g; is the value of some function at
time ¢;. Here I is an index set which is equal to Z in the first three sections. In the last
section conclusions are stated in the case that I is a finite subset of Z. The space ¢*(T) is
the Hilbert space of sequences of complex numbers {g;} such that

llgllzs := Y losl* < oo

iel

The problem is to find a function f which lies in a Hilbert space of interpolating functions

such that
Vrlr f(tim/r)y=g¢; Vi€l (0.1)
The reason for the factors = /r and /7 /r will become clear in section 1. In this paper we
consider stability and error estimates corresponding to problem (0.1).
The first error estimate we compute is the amplitude error, which is defined as fol-
lows. Suppose the data {g;} are perturbed to {g/}. The solution which corresponds to the
perturbed problem is called f’ and satisfies

Vrjr flltin/r) =g Viel. (0.2)

A second error estimate is called the time jitter error, which is defined as follows.
Suppose the measurement times {¢;} are perturbed to {t;}. The solution that corresponds
to the perturbed problem is again denoted by f' and satisfies

VT flti )y =g; Viel. (0.3)

The time jitter error is the difference between f and f’in the supremum norm,
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ey =1 = flleo:

There is a lot of literature on error estimates in the case of uniform sampling (i.e.
t; = i,for i € Z). The purpose of this paper is to prove new error bounds which a.pp}y for
non uniform sampling, by expressing the errors in terms of linear operators and to e.stlmate
their norms. In this way a rather transparent derivation of the error bounds is obta.lne‘d. In
the literature alternative methods are being used, which are discussed in the last section.

In the next section we explain some preliminary notions. In section 2 and 3 estimates
for the time jitter error and the amplitude error are given. In section 4 conclusions about
stability of the problem (0.1) are stated in the case of finite index sets.

1. PRELIMINARIES

Most of the material in this section can be found in [8]. The error estimates in this
paper are derived by using Riesz bases. Let H be a separable Hilbert space with inner
product { , )3y and orthonormal basis {:}ier-

Definition 1.1 . A system {¢;}ier is called a Riesz basis for H if there exists a bounded
linear invertible operator T on JP, such that

T(gi:hi, 1€l

An operator T on a Hilbert space is called invertible if its inverse, denoted by 77!,
exists and is bounded. Note that in particular any orthonormal basis is a Riesz basis.
Throughout this section {¢;} denotes a Riesz basis. The Gram matrix G of this system,

Gij = (SQJ»LPI)HV Z’J € I

generates a bounded linear invertible operator on £2(X) (cf. [8], Theorem 9, pp 32-38). Note
that G is the matrix representation of (TT*)~! with respect to the basis {h:}ier. For, by
Definition 1.1

Gy = (T'lhj,T‘lhi)H = ((TT*)'lhj,hi)H.
Hence
Gl = 174 (1.1)
Similarly
6= = 1IT)1> (1.2)

A system of vectors {t;}ies which satisfies
<So_17 d’i)'}-{ = §ij7 37] € I

is ca.ll.ed the. biorth?gonal system of {(;}ics. Here 6 is the Kronecker delta. In the case that
{w:} is a Riesz basis, we have the formula for its biorthogonal system,

Yi = T"h,. (1.3)

?“ is the a‘djoint of the operator T of Definition 1.1. So, the Gram matrix F of {%;}ier
1s.the. matrix representation of the operator TT*, with respect to {hi}icr. Any element f
lying in H can be written as (cf. (8] Theorem 5, p. 27)

f=3 %) yes

jel
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In particular, if f = ; for ¢ € I fixed,

¢i = E 'l;bn"pj HP = ZFUQOJ

jeI jel

The bar denotes complex conjugation. Hence,

Yi=Y (G V)¢, i€l (1.4)

jer

An example of a Riesz basis is given in the Hilbert space of bandlimited functions

IP,. We denote the support of a function f by supp(f). The Fourier transform of a function
f e LY(IR)N L2(R) is defined by

(€)= -—1— z)e~ ¢4z,
f(f).-(m)/ﬂf() d

The Fourier transform can be extended to L2-functions and is also denoted by f
Definition 1.2. P :={ f € L*(R) | supp (f) C [-r,7] }

IP. is a Hilbert space with inner product

Ir, = [ S
R
and with orthonormal basis, {h;}icr, where

hi:= /r/x sinc, (-—in/r), iel. (1.5)

Here the sinc-function is defined by

sinc,(1) :=

sin(rt)
o 70
1, t=0

Let {t:}ies be a sequence of real numbers such that
ti—i<a<1/4, i€l,

and write

@i= \Jr[t sinc, (- — tim /7). (1.6)

Then, by [8] Theorem 14, pp. 42-44, {y;}icr is a Riesz basis for JP,. Moreover, the operator
T of Definition 1.1 satisfies

1
ITI< 7= TS 1+, (1.7)

where

A= 14 V2 sinm(a - 1/4). (1.8)

In this case we have that for any f € PP-
(Vx[r) f(tim/r) = (f, )P, (1.9)
We obtain by (1.9) the formula for the Gram matrix G
Gij = sincx(ti —t;), 4,j€ I (1.10)
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By (1.7) and (1.2) we estimate the norm of G2,
1

G2 = 11Tl < 7= (1.11)
where A is given by (1.8). Similarly
NGIM2 = |IT~Y < 1+ A (1.12)

It follows from (1.9) that the interpolation problem (0.1) is a special type of moment
problem in IP,. That is, given a Riesz basis {¢;}icr with a biorthogonal sequence {¥;}ier
and a sequence of complex numbers {g;}ier lying in £2(X), we want to find a function f
which lies in [P, such that

(froi)p. =gi, 1€l (1.13)
The unique solution to this problem is (cf. [8] Example 2, p. 148)
=3 g (1.14)
i€l

If f liesin Py, then by the Fourier inversion formula
1 T
)= (—— ’gtd .
I0=(7=) | Feea
By Jensen’s inequality it follows that
; 1 HEN 1 -~
I} < (= e = (= 2ge.
SO <) [ IRk = 2 [ 1R
Denoting ||f|lc := sup;cp|f(t)], we obtain

[flleo < (1/V2R) |Iflip,, € PPy (1.15)

2. THE AMPLITUDE ERROR

Let {g:}icr and {g!}icr be the data corresponding to problem (0.1), and the perturbed
data corresponding to (0.2) respectively, both lying in €2(I). Throughout this section the
index set I is equal to Z.

The following proposition holds in the case of separable Hilbert spaces H with or-
thonormal basis {h;}ier.

Proposition 2.1 . Let {¢:}icr be a Riesz basis in a Hilbert space H, with biorthogonal
system {t;}ier, and suppose {g:}, {g'} € ¢*(X). The following estimate holds,

1Y (g = ghwillyy < NGTHM g = o'lles-

iel

The Gram matrix G is given by

Gij = (@5, pi)y, 1,J €.

Proof:
By (1.3) and (1.2) we obtain

1> " (9i = gbytillpg =

iel
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1> (96 = gDThillyg < ITN D (9: — 9Dhallpg =

el iel
Il llg ~ 9'llez = G112 llg = ¢'lez-
This proves the proposition. o

Now take H = [P, and let {h;} and {¢;} be given by (1.5) and (1.6). The biorthogonal
system {1} of {¢;} is computed by (1.4). The solution to (0.1)is called f, the solution to the
perturbed problem (0.2) is denoted by f', which are Y,y g:%i and ¢y githi Tespectively
(cf. (1.14)). By (1.15) and Proposition 2.1 we obtain,

eamp < (1/V2r) [|GT'2 |lg = ¢'l| 2 (2.1)

From this estimate it follows that the solution is stable for perturbation of the data, since
G~! is a bounded operator on £2(I). The norm of G~! is estimated by NG < 5.,
where A is given by (1.8). We see that the norm of G~! in the case of uniform sampling
is equal to 1. In the case of nonuniform sampling the norm of G~! may become larger if
a tends to 1/4. The problem (0.1) is called well conditioned if ||G~}|| is not too large (i.e.
close to 1), otherwise it is called ill conditioned. In the case of uniform sampling (@ = 0) the
problem is well conditioned for perturbation of the data and the problem is ill conditioned
if « is close to 1/4.

3. THE TIME JITTER ERROR

Let {t:}ier and {{}icr be the sequences of exact, respectively perturbed time markers.
The solution to the exact problem (0.1) is written as f and the solution to the perturbed
problem (0.3) as f'. Define ¢! = /r/7 sinc,(. ~ tiw/r) and suppose
[ti~i <a'<1/4, 1€l

Then, by Section 1, {¢!'}ier is a Riesz basis for P,. So, the bounded linear invertible
operator T” of Definition 1.1, satisfies

T'(pg = h,'7 ie I. (31)
Moreover (cf formulae (1.11) and (1.12))

7)) < IT"-Y <14 X, (3.2)

1
1=

where
M:i=14+2 sin m(a! - 1/4). (33)

The biorthogonal system of {¢}} is denoted as {t/}, which can be computed by

Y=Y (G i€l (34)

jel
Here G’ is the Gram matrix of the system {¢}},
Gl = (¢}, ¢ty = sincx(t: — t5). (3.5)
Again we have a relation between 7" and G’,

(G2 = (7). (3.6)
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The solutions f to problem (0.1) and f’ to problem (0.3) are f = 3, ;9i¥i, and f' =
2 ie19i¥} The biorthogonal system {;} can be computed by (1.4):

b = Z(G‘l)ijsoj,

jel
G is given by (1.10) and the system {¢;} is given by (1.6).

In order to find an estimate for the time jitter error, we choose the following approach.
We look for a perturbation operator V, such that V; = ¢}, for all 2 € I. If such an operator
exists, then we have the relation ¥; = V*¢/.

The following proposition expresses the difference between f and f’ in terms of the
norm of the operator T' from formula (3.1) and I — V. This proposition holds for arbitrary
separable Hilbert spaces H.

Proposition 3.1 . Let {¢!} and {p;} be two systems of vectors in a separable
Hilbert space H, such that there exists a bounded linear operator V with V; = ¢!, for all
i€ X. Let {¢;}icr and {¥:}ier be their respective biorthogonal sequences and assume that
{g9:} € 2(X). If {©}}ier is a Riesz basis for H (cf. (3.1)), then

1Y g = 3 gidillag < I = VILIT'I llgllea-

iel iel
Proof:

I 0@t = vl = 1 D 0D = V)il < T = VY getilly =

iel i€l iel
W= VI 6T hillag < W = VT gihillyg = 1 = VIEIT'I| llglles-
i€l iel
which proves the estimate. n)

In the following we prove the existence of this operator V, and in addition, we obtain
an estimate for the norm of 7 — V' in terms of the difference of ¢; and t;. First we give two
Lemma’s.

If {¢;} is a Riesz basis, then by Definition 1.1, there exists a bounded linear invertible
operator T' which satisfies

T@g:hi, i€ 1.

Lemma 3.2 . Let {¢i}icr be a Riesz basis for a separable Hilbert space H. Suppose
{¢i}ier satisfles

Z; frps — enlt < CPlflG, YfeX,
where C is a constant. Then there exists a bounded linear operator V on H such that
Vei=gl, iel,
and |[I - V|| < ||T]IC.
Proof:

Let {;} be a Riesz basis for , then T¢; = h; and 9; := T*h; is its biorthogonal
system. Define the bounded linear operator W on H by

W= (fpi— ¢l vi.

iel
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Then,
IW AP = 1D (i = ehdpg will3y <
iel
TP OO I ei = edgyl?) < ITIPC1 13-

i€l
So [W|| < C||T||. The adjoint of W is

W*f =3 "(fwiy (i — o),
iel
and
(I =W")pi = ¢
The result follows by taking V =T — W=, ]
Lemma 3.2 is a slight generalization of Schifke’s Theorem [8], where the system {;}ier

is assumed to be an orthonormal basis. The following Lemma is proven in [8] (p. 181, Lemma
3).

Lemma 3.3 . Assume that {t;};es is a sequence of real numbers such that
(z/r) Y1t w/r)? < D¥|f|3,, Vfe P,
iel

where D is a constant. If {ti}icr is a sequence of real numbers which satisfies
lti —ti] <, i€l

then
(n/r) D 1Sf(tin/r) = f(tin/r)* < D*(e™ = 1| [lfp,, VS € Pr.
iel
An estimate for the time jitter error can now be derived, by means of a norm estimate
for I — V. The Gram matrices G and G’ are given by (1.10) and (3.5), respectively.

Theorem 3.4 . Let {t}ier and {ti}icr be sequences of real numbers which satisfy,
[ti—i|<a<1/4, iel, (3.7)
ti—i<a'<1/4, iel, (3.8)
and
ti-t|<y<a+d, i€l (3.9)

The time jitter error can be estimated by

egj < (1/VZE) (IGHIGTHHIGID!? (€77 = 1) fgllee-

Proof:
If {t;} satisfies the above estimate, then {¢;} is a Riesz basis for IP.. Let f € PPy,

(x/r) S 1fm /o = Wafr Yt /r)hillp, =

igl

IVl 3 ftm/nT " wlp, S ITHRND_(Freawill, = IT P11

iel iel
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So, the conditions of Lemma 3.3 are satisfied with D = ||T~!||, whence the following in-
equality is obtained

S0 = yp P = S I (tim ) = F(m /)P <

iel i€l

[T S

Hence the sequences {p;} and {¢}} satisfy the conditions of Lemma 3.2, with
C = ||T7*||(¢™ — 1). This implies the existence of a linear operator V on [P, such that
Vi = ¢} and

1=Vl < ITINT™ (€™ = 1),
Since the {t}}icr satisfy (3.8), the system {¢!}icr is a Riesz basis. By Proposition 3.1 we
have that

I = flle, < UG THHIGTIGIN'? (€7 = 1) flglee-
f and f' are solutions to (0.1) and {0.3) respectively. The result follows by (1.15). u]

A few remarks are in order. From this estimate we see that problem (0.1) is stable for
perturbation of the time markers. By the norm estimates (1.11), (1.12) and (3.2) we obtain

IGII'* <1+,

1
—111/2 <
61 < =
and .
11—1 1/2
e
Here
Ai=14 V2 sinw(a —1/4)
and

Ni=14V2 sinn(a - 1/4).

In the case of uniform sampling (e is zero and ¢ is close to zero) the problem (0.1) is well
conditioned for perturbation of the time markers. If we sampled nonuniformly, especially

when o or o' is close to 1/4, the problem may become ill conditioned for perturbation of
the time markers.

This estimate for the time jitter error can also be obtained by means of the amplitude
error [2,5], which is the approach below. Suppose we did measure the data {g;}ies at the
time markers {t;7 fr};c;. Suppose that the sequence of measurement times is registered by
our device as {ti7/r};cr. The function we sampled is denoted by f, so g; = \/7/7 f(ti7/T).
The situation which is registered by our measuring device is false, since it says that the value
of f at tim /7 is equal to g;. However, the true value of f at tir/ris g} := (\/m/r) f(tim/7).So
we may consider {g}}ier as the exact data and {g:}icr as the perturbed data at {tir/r}ic1.
With the above notation, we have

F=3 0= g, (310)
i€l iel
and we define f' = 37, . g:%!. The time jitter error is given by

ey = I = lloo = 11D giti = > githillon = I D gtk = S 9:tlllco-

il i€l iel iel
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The estimate from Theorem 3.4 can now be derived by formula (2.1) as follows. Let
{t:i} and {t}} satisfy the conditions of Theorem 3.4. By applying (2.1) with %/ and G’ in
the role of ¥; and G respectively,

e = I = % < (U/V2r) 1 = £1%, = (1V2m) |3 (9 = ghwill3, <

i€l
V) G Y lgi = il = (1/V2R) |G (=/r) 3 |f(tamfr) = f(tim/r)P
iel i€l

From the proof of Theorem 3.4, we know that the sequence {t;};cr satisfies the condition of
Lemma 3.3, with D = |T~?||. Hence

et < (LV2m) G M (€7 - 1) 1)

The desired estimate now follows by (1.1), (1.3) and (1.14).
This shows that the estimate of Theorem 3.4 can be proven by using (2.1).

4. CONCLUSIONS AND REMARKS

In this section we consider the solution of the problem (0.1) in the case that the
index set I is a finite subset of Z and we state conclusions concerning the amplitude and
time jitter error. If the time markers ¢; are all distinct for all ¢ € I, then the system
@i = sincr(. — t;w/r) is linearly independent, so it is a Riesz basis for its linear span.

A solution to problem (0.1) is in this case f = 3,y gi%i. This solution is not unique,
but it is the one with smallest norm among all solutions, the minimal norm solution in [P,
to (0.1), see [1]. If both the t;’s and the t!’s are all distinct, then the estimates of Formula
(2.1) and Theorem 3.4 are valid. This implies that problem (0.1) in the case of finite index
sets is stable for perturbation of the data and the time markers.

If the time markers ¢; are lying close to each other, then the system ¢; may become
effectively linearly dependent, from a numerical point of view and the matrix G (formula
(1.10)) may become singular. Hence the biorthogonal system {t;};c7 which is given by (1.4)
cannot be computed. In such a case the algorithm to compute f breaks down. Then the
problem (0.1) is ill conditioned for perturbation of the data and of the time markers.

We applied the above interpolation technique in magnetic resonance imaging (MRI),
which is a diagnostic method to measure and display cross sections of a human organ, e.g.
the beating human heart. A cross section of the heart has to be reconstructed at prescribed
measurement times, which are called phases. But since the time markers at which data are
measured do, in general, not coincide with the phases, an interpolation technique is used to
obtain information at these phases [9,10].

Since there is a vast amount of literature on this subject, we want to make some
remarks on error estimates. In the literature the bounds for the time jitter error and the
amplitude error are given in the case of uniform sampling.

A bound for the amplitude error is obtained in [4] and [5] by means of the estimate,

l19llc < (\/7/7) |lgllpP,, for g€ P;. (4.1)

It can be proven by the Fourier inversion formula (cf. Section 1) and by the Cauchy-Schwartz
inequality,

ol < /) [ me <

v ([ 1a)" ([ worde)” = /o lale.
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Define the amplitude error for uniform sampling by (cf. Section 1)
€amp = Hf— f,"oo7
for f, f' € PP,. Note that f - f' € P.. By (4.1) one obtains

€amp < (\/T_/?) IIf = f’“Pw

This estimate from [4] and [5] depends on the bandwidth r. If we use (1.15) instead of (4.1),
then we would obtain a similar estimate which is independent of 7,

eamp < V2o |if - flie.- (4.2)

(4.2) is a special case of (2.1). For, define g; := (y//r) f(ix[r) and
gl := (/7]r) f'(ix/r) for i € Z. We then have

(f- ) = Y (6 —gO(/r/r) siner(t —in/7),
ie Z

and
If = flle. = llg = 9'llez zZ)-

Hence (4.2) is rewritten as
eamp < 1/V2r)llg - 'l zZ)- (4.3)

If we take ¢; = i forall i € Z in formula (2.1), then the Gram matrix G (cf. (1.10)) is the
identity matrix and (2.1) is the same as (4.3). So, the estimate of [4] and [5] is similar to
(2.1) applied for uniform sampling.

Another bound for the amplitude error is derived in {3) Theorem 3.1, via the truncation
error (which is not considered here),

1+ ;
eamp S T (2+r/7r||f||L1(R)) €ln(1/€).

Here ¢ := sup,. 7 |9: — g}l and || flls(ry := [g |f(t)|d¢. This bound holds for all continuous

-~

functions f € L'(R) such that supp (f) C [~r,7].

The time jitter error for stochastic jitter is derived in [5) by applying the mean value
theorem to the sampled function. In [2] Theorem 3.11 the time jitter error for uniform
sampling (cf. Section 1)

egj =l Y (f(in/r) = f(tin/r)) siner(- — in/7)||oo
ie Z
is estimated via the amplitude error and one obtains

ej < (4/B)(V5 [|0/0t fllo + VB My €1/4) § 1n(1/6). (4.4)

Hehre t% satisfies |(¢{ —t})7/r| < 6 < min {r/r,1// e} fori € Z and f has to satisfy (among
others
f&) < Mylt]™", for |t 2 1, (45)

for some 0 < 8 < 1. My is a positive constant depending on f.
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Applying Theorem 3.4 of this paper to the case of uniform sampling (i.e. t; = i for
i € Z) we obtain

1
cos Ty + sin Ty

ey < (1/v2m) ( )€™ = Difllp.- (4.6)
t! has to satisfy |¢ — /| < ¥ < 1/4, for i € Z. Estimate (4.6) holds for functions in IPr,
while (4.4) holds for a broader function class. However, in (4.6) the condition (4.5) on the
growth of the sampled function f is not needed. 7 in (4.6) plays the role of § in (4.4).

In this paper new bounds for the amplitude and the time jitter error which apply in
the case of non uniform sampling, are obtained by using the special structure of the Paley
Wiener space (cf. Lemma 3.3) and by expressing the errors in terms of bounded linear
operators. Explicit formula’s for the error bounds are obtained by estimating the operator
norms (cf. (1.11), (1.12) and (3.2)).
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