",y ! 'l' \;‘:J, 'II |
T e ” LA PN .
" | ' v r " " X \1"
.:l'l .-._I | " ' L . |!|'-".'-r %
‘. r,l-". ' ') ' "-l-i'. 4
,-.: - ,) W " '.'} _‘:_' i
by ¥ T | qm '|r'|'t§ {' y ! - b A
g s %x 'Ily'-hi_ '_mﬁh ﬁ“‘i .p"ﬂ . }k}%& S ' I SER ' : !
Al I,,_ .":‘ﬁ, i ll.tl lu.-' ?ﬂa..l'& ﬁ."] a"-Iu.-}" !-.’ ! 1| 1 1 '}l % ﬂ' m
' i H " trrr
| o0 o g i ' . 1, ! - . \
i H ™ — K i I 1 2k 4 . s
g‘*:‘ ol : '& q;;' AL 'a ?‘F et Lr“ % i &;.ﬂ‘{i ¥ 4l sin -t
.ﬂ- i s Blﬂ' W T A L « HoR oW L 4 i I gt 1
L "I. 'i _.l‘_
v e

| P e . .
Johan T. Jeurit

PERRTTLIF TR Pl d Bty DAL e e e e I T L T T I LR N T A A T T BT e oo e e PRI [T BRI . o e e e W i woo . . ' [EEE]

e Ny g or e 1 LR ¥ 4 SERET S i L W NN S B It Dygnwee 3EBE | 5
o 5o -)) s o A I . B UL B e LT .] n .{ RADFTAE L WA onn . !
%t " oy b,,,.ﬁ i_._ s u""'ﬂ-l ﬂi:mh@q -ef *E :'l-i'trl ;Li % !r ".{4..1- A ﬁ e ;ﬁt' e 4 4 . doh ; - i R 143’-} Jl'!i\ (. § ,?- ¥t !-".,._,5 -'ﬁ_ _ff._ ;hll_li‘ :.---' ,,:*I,;, ' !

B, Mg

e T 1 N T L PR B VR N U T T Sl . W [- e gy, arate e P . e e et mEg L e ot e, o s o, .- Co , P \ ' ,

ﬁ& ’h%ﬁ;: L g% Nm ?ﬂy%&ﬁyiqﬁ | Y & | - B N b ﬁ“ﬁ Eﬁﬁ!’g j"%‘ﬂ !'Eﬂ;‘;ﬁ_;ﬁ' % Begrvsa § ‘*’;él.".‘. mM’.q 33 11 E{”t,,,; Mhﬁ Py i &*f qu*t R N B S R TS g'? tya g“fl 4 S

b i:ll" L I |

eIy '

o W) ,l:-”' ..-. -I , . . '!-I. . . .: . r - .) .- " ., dAFa, . o . e N .;'f . :. , _— t 'h | ﬁ. [P,) ,) ,j'v voab , B ﬁ ! . . o hr *i . -I . 1 CL . .
TN . Huotlum pohee e A Pha mnmee e ot E W D b s ar arwenrmead p B Rlieeey wann WVt n b ey

:) 4 ,r‘“ ; : :) i " ! . ' : x n o 4
By vy T 1 ;‘a“"' vty .""_ I3 _4* LTI "j "' " i) - i FEL TS Gt hy Kby . "i LI ¥ f-‘\ ML N }-," ;o A 3 LR b Ly 1|1 b Trgy ey oy w8 e g L ;- Coh oA g k.' Vo LL IR E LA I o t-‘“ "t
duATgd AL R TIN5 S S T T N 3“4.4{' b H# A A Pl Er e G PR deaaat PR LT L o RSO B0 T T A S A ?1 RS S-S TN APPIE (o O SRR G I W E T IENUNIIE WS
. n,
ey 1 . . ' ! Lo N, I'il . ' , !
g " *' !' Yy e k. g Wik 'EI ' PR Voam 'I!' -a ' ' 4 f o i N E I."r 1 ' v | ! 1h ' -'.} ' . ! . ' ’ : ' .- ' , P i '
Yy N ?‘- 'l?- iﬁ“ 2 Ii'L w1 Ak vt . '! O L A W L ; n H) ! . RN . , u S P TR bt y H vy w gt oy s A ! A A T I LI
G’\.:Hk Ii ﬂlﬂ L1 l.'I { 'l* J'-.- i'-'h -1 I'*? h\l f’ :*l IIA"-I" g ﬂ'll L. " ’ *' ’ ‘T J .'.‘%uli i J"l ﬁg: ! 1 Il Th ! v ﬂ 1 % :'J iI& ¢ Eh % 4 a %' l‘l"l':“lﬁl. 1I ' i I!'hl"ﬁl T- :ll: J::.Ih :'-'5 ™ !1 + !}- E : F"-:Hj 3-‘ J 1 ;'\. E‘-r .1" : f" B Ii- "‘-”ﬁ:' 'y i h' ‘l-"-.l '.-"" -.-. - 4"'} ::'- F::-I- 3-"-Il ':' -i'l-l ' I“-'!"I e L'-"'
. h i K o '
: . L . ’ ! | -) i
- TR L R O L A k"'-'.“ g $ SIS TN E R ST PR ! SRR PSR IR (U IPET 0 ey e h e B e T ey R U S
|:q i\'..\';“ : !h r% . I’L‘#..l. u:ﬁ o i |”|" %hw#rd #'r'%ﬂ-v; %'-n:l iiﬁ ﬂ = p_.“!l[l‘uq i W E i E” T ':.,:: 1.!-r|. '-d } i.r-"i-- e ik 0" 'f: Yot _|:, E.rllr ;:..‘. , Chen ." i .';',., i "-;-:I M., W “{1 n ok .'I,. d) J"«I'"' ik -l| 100 i‘ ity
P "
') ik ii|, ™ }] I oy L . I : LN A W L Loy
& P TIE Y T !f'hufl.. 1 e Wy g il Lt . '],‘l-.lll,' y o '| " if'j T TS N .II;' Wy u-'.i‘ v e gt ! 1 , L atay abpy b et T vy e Lo PR Youpoi ;|
f. § h{:la? '€.r' & N, a 5 g\]j i .H.H}r :{ Y i q,:% E‘;_‘!.:EJ& ;:"1 ! & .'!l‘ . i Ty i I”r PR Ir'l'-fi * ‘ 4 . H”“Q |I+|I."| .' "i . '& '{ [} ILIfu-IQt:\' i El I'. y :, i *!;-JJ :Er 4 ; E‘,','\ ”"I Tyl b“!n i L:-.l, B 'E.-.r ‘-':I f,‘ i: J'f PE T
' et v i ' ,
5 W 1 ' = | i . f . .
tagt by :‘.’-ﬁ, 4 E‘% i § m[& S AR I UL R e i R A R L AR RTE TR LR T ST L TS L R RIS AP TSN R
i3 L, | % T T LvE oW vyl E g, % AN LR NP YR PO A SV A A INEL R Y AT v e A T LT ke d T B E T
|L [a !
Y . . ¢ (s . i
"oy e |rh .,:!_ |*| ﬂ- 'S r,. 'y Y ?‘“ . ' Iy T .- ' g..-, " j [o . 1 n . " e ab, vyt . f,.i ¢ i - i . .o ! . . o '
-| . |:. i ",| 1. .p £ $ah O M '?"'} Tk i RO T A N :‘ i 4: iority 5 W' I L] T .} 13 W b Ll ot
ﬁl é“r A ﬁl il'" fl * 4 ﬂ L B 1‘“ BRI ﬂ ‘ﬁf“ "{l -Ii. !I I':: ;-,-l : f.., LY E' -E 5- 1 'l'ifl -*|.1 ! i EI'I.'i!I b *1! -L"' I1 :" {n o d 'n'*q i "' & Il': ;:i-l'i:.‘ 1=I-k‘l JI| P-\.' ' I=I’fi‘r I‘l dr i 1 'l"?"l 1Illll. '.i g:"‘

LS sy B I."'l ok o B e 3
ek &t rf Yoyl by ' : d”"‘%*{f"

4 i o . . . L ! ,
ST RT VARSI I A TN LR TS I PF N AU L T I RN T AL N s
1y lt' ' WAy =t| a { % 3 ; J‘i.l v onw o by f l:' % '!:. Mg e T :-'":i'--ﬁ-'-rjﬁn :r L
) . "od o

LIS e B T e 8 .-q-_ "-L ﬁ ot

2

S
.
'l.--u-

-
i
S &=
-
-
o
e
e
-—
)
= -
e
—rim
- .
T
e
=
T
=
=
Eeram
ma
o

Yo ron e, Ll

i Taal, i*ﬁmﬁ Cotn

Mg e P
a 1!?‘“.!?&{"1}3,#;.1.““

- U
I "ﬁ‘-“nln" |
' ITc .
he ponsidered o LOFPIINI ey a0 | -
| el
B ackhouse
quirements, must be mept Lo the teo |
for ‘* S
R ST BN, ,
BN 193 &
o .
. . 4 | .
BR . cospm o Protest-meatine B | e L3 | | | -
! 0 Laduinat _ e _ C : _ _
| | wr e . ; - b . .
students. Phi) studerts \}E KA | | | . S -
| e B WL VA . : | S o | o
Benelux - tm ¢8}%%3 o TR ' B
i1 to r;:i.im: ! u‘% ; T o '_ * | | | |
plorable v N - . . . o
expioited b - | o R e Yk Y - .
Lo carsy out o | .
' - Wiy B i TR T iy " ¥ i) "1" " v
plover bene wiAthematios *z*‘*m. (U'W %Mwﬁ"ﬁﬁ. Seene ol
too late, sin .;%f;s:;wﬁ& mics & Architecture
was also the i07TY o o |
could be sub L aaany | R o | SR
Phid %tudm:&iﬁe | ol boxes full of pro- e \ IS e Tty | ~
posals to the EC ofhices first. A follow-up o o The el S
meeting has been W*"W*ﬁ upon. | o o IR o
| - | it Giew, 1] | - .

This is the second issue of the second volume of the Squiggolist. The Squiggolist 1s a
forum for people who work with the Bird—Meertens formalism. It is meant for the quick
distribution of short papers, summaries of results, or current points of interest. You cannot
subscribe to the Squiggolist: either you receive it, or you don’t. I have produced two 1ssues
of the Squiggolist each year. This implies that the next Squiggolist will be produced around
May next year. Of course, the date of production depends on the number of submitted
papers: if all of you submit a paper next week I'll be happy to produce a Squiggolist next
month. |

Submit your contributions (camera-ready copy or a IATgX-file) in A4 format. They will
be reduced to A5 (x 0.71), so use pointsize 12. There are no restrictions on the fonts I}Se‘d
in the camera-ready copy: it may be IATEX, handwritten or typewritten, as long as 1t 1s

black on white, readable and large enough to be turned into A5. I will be the editor, and
contributions should be sent to me:

Johan Jeuring

CWI, dept AA

P.O. Box 4079

1009 AB Amsterdam
The Netherlands

email: jt@cwi.nl

. } 'if-'rﬂ fg}l i) LT 4 1;3.:1 ! i:
:) nﬂ. f‘h i ﬁ-‘.!‘ N i ' L T -"; F-’: Th:) - - i L "'J-Ii. B .Ihli."-.'_.__-; o : ! .:—l
. * - . L 11 hn U "'\1& L R "y I g }tl o !’t‘l 1;3“ !i_’_;{ ﬁ i t?] : |' i) i 2 fﬁ‘r .E’r 3
L "'ra ol Y, 2. T TLogR 1y VT Mﬁ- i ¥ ﬂ" g A L] v b sy b iy 551;;1 (LI = P ; L I 45 i i) i
i 1‘ F}ij g ?j E‘j ;I'is ;% TE; ﬁjl }‘t %‘:ﬁ %hﬁ %H’ ;11 % {}‘F:r}' 31 o 4 ru '% G0 : e ab T"&-:ﬁ"' *:I hi‘ -ﬁ‘]ﬂ i il d tf' ool il i i
S b D056 Wia bl - .

: J o ey
i R -:I‘“q ﬁ-j I:.:";_]. ._.1r" - ,ﬁ‘i‘l T ,ﬁ
f:ﬁw ¥ioue had QoM

Contents

R.S. Bird — The smallest upravel

M.M. Fokkinga — Many-sorted algebras and initiality

J. van der Woude — Free style spec wrestling II: preorders

R. Backhouse — Sums and differentials

R. Backhouse — Some ergonomics of mathematical notation

R. Backhouse — On demonic composition

E. Boiten — How to compute y — z or why overloading is a minus

32 ~ 43
44 — 47
48 — 53
54 — 56
57 — 60
61 — 70

71

The smallest upravel

Richard S. Bird
Programming Research Group.Oxford University

11 Keble Rd. Oxford, OX1 3QD

June 26, 1991

Introduction

An unravel of a sequence z is a bag of nonempty subsequences of z that
when shuffled together can give back z. For example, the sequence “ac-
company’ can be unravelled into three lists “acm”, “an”, and “copy”. The
order of these lists 1s not important but duplications do matter; for exam-
ple, “peptet” can be unravelled 1into two copies of “pet”. Thus, an unravel
1s essentially a bag of sequences and not a list or set.

. An unravel i1s called an upravel if all its component sequences are as-
cending. Since each of “acm”, “an”, and “copy’ are ascending, they give
an upravel of “accompany”. Each nonempty sequence has at least one up-
ravel, namely the upravel consisting of just singleton sequences. However.
of all possible upravels we want to determine one with the least number of
elements.

The problem of the smallest upravel was first posed by Kaldewaij |[2],
who solved it by reducing it to another problem, that of computing a longest
decreasing subsequence. Subsequently, Meertens (3] gave a direct solution
based on an incremental strategy. Meertens’ derivation exploited indeter-
minacy and involved the invention of a certain partial ordering. Also, the
details were rather complicated. Here we follow a direct course, one that
eschews indeterminacy and stays within the framework of equational rea-

32

soning with functions. Some details remain complicated though.

Specification

We can specity the problem as one of computing sur, where
(1) sur = [lg/ -allup<a-unravels.

We omit the standard specification of up, the predicate that says a sequence
is ascending, and assume familiarity with the notations for reduction (e.g.
Mg/), for filter (¢) and for map (*). The operator My 1s here applied to two
bags of sequences and selects the smaller of its two arguments under some
total ordering <4 that respects size, i.e., bz <y by = #bx < #by. (By
the way, we use z as an identifier for sequences, bz for a bag of sequences,
and sbr for a set of bags of sequences.) Use of Mg/ characterises the
deterrministic approach to algorithm derivation: the ordering <4 1s fully
determinate, 1t 1s just that we haven’t chosen it yet. By constrast, the
specification

(2) sur € Min(#)-allup<: unravels

characterises the indeterminate approach. Equation (2) reads: sur z is spec-
ified to be a member of the set of smallest upravels of z. There is greater
freedom of action with (2), freedom that for some problems is essential,
but the price to be paid is a move to non-equational reasoning. It is a
bold decision to prefer the more restrictive (1) over (2) since there is no
guarantee that an efficient algorithm will emerge.

The interesting task is to specify unravels. This function has type
unravels € [A] — {Z[A]*’S}

for some ordered type A such as characters or numbers. Thus, unravels takes
a possibly empty sequence and returns a set of bags of nonempty sequences.
We shall specify unravels in two ways, one by an inductive definition, and
one using relational inverse.

To motivate the inductive definition, suppose sbz is the set of unravels
of z. Each unravel of [a] H z can be obtained by taking some bz € sbz and

33

adding [e| as a new component of br. or by pretising a to sone 113
component of br. If we do this 1 all possible wave, we obtann all the
%

]
unravels of [a] + r. The empty sequence has one unravel, nmnely ol
erupty bag. Hence we have

(3) unravels = &« {1},

where

eneral, f ® € Ax B Bi. In the present

In g
we 13 = {A E t i

case, we he

In the second method for specitving unravels, we first specify the inverse
function ravels. This function takes a bag of sequences and shuffles them
together 1n all possible ways. Thus, ravels returns a set of sequences. For
possibly empty sequences ¢ and y, the shuffles £ x y are defined by taking
z ¥ []=]] Xz ={z} and

(o)) U (bl x((a] + 2) 3).

Thus, 3 has type [A] x [A] — {[A]}. However, we canu restrict % to have
type [A]T x [A]T — {[{A]*} by modifying the above definition to exclude

the empty sequence.

For the next step we need some new notation. For @ €
introduce the lifted operator @°® defined by

(nonempty) sequences to a set of sequences. [t 1s associative and comunuta-
tive, with identity element {||}. Commutativity is easy to prove, but asso-
ciativity 1s a httle trickier and we ommt details. Note that {a}P®sb = a®°sb.

Now we define ravels = 3°/ - 7%, where 7z = {z}. For example,

ravels [[1}], [2, 3], [4]}

{[1]} =° {[2,3]} =* {[4]}

{[1]} =* {[4,2,3], [2,4,3], [2,3,4]}

= {[1,4, 2, 3], [4, 1, 2, 3], [4, 2, 1,3], 4, 2,3, 1],...}

|

I

[-

The result is the set of twelve permutations of {1,2, 3,4} in which 2 precedes
3.

By definition, the unravels of z are just those bags of sequences that
when ravelled give a set that contains z. We therefore have

(6) unravels = p(3x°/ - 7%),
where the operator u is defined by

If Fe¢ A — {B}, then uF € B — {A}. The function uF corresponds to
the relational converse of F' when F is interpreted as a relation R such that

aRb just when b € F a. Many of the properties of u are closely related to
Inv, the inverse image function.

It seems a long way from (6) to (3); nevertheless, the inductive definition
can be synthesised from (6) in a relatively straightforward manner. We
will not give details, but there are two key facts in the synthesis. First, we
can use the specialisation lemma (for bags) to obtain ravels = x° ¢ {[]}.

Second, we use the following theorem, cited without proof, for the relational
converse of a right-reduction:

Theorem 1 Suppose F € (A§ — {B} is defined by F = &° « e, where
®€ AxXxB—{B} and ¢ € {B}. Then

pF = con{]f§}ou(cone) U (>+°-id x pF)o u(®),

where ¢ is Kleilsi composition: Fo G = U/ - Fx- G, and > is defined by
e > 2z = laf§ ¥ z. The constant function con is defined by cona b = a, and

(f x g)(a,b)=(fa,gb).

35

Derivation

The strategy is to start with the characterisation of unravels as a right-
reduction and apply the promotion theorem for right-reductions. An alter-
native strategy is to start with Theorem 1 head for a greedy solution. For
details of the second approach, consult [1].

Using the inductive characterisation of unravels, specification (1) gives
sur = Mg/ - upravels, where

allupa-@®° «+ {]}.

We split the problem up in this way because we want to treat each part
separately. We use the promotion theorem for right-reductions to simplify
(7). In one form, this theorem states that h - @ ¢ ¢ = ® « ¢’ provided
he =¢e' and h - (a®) = (a®) - h. Another form of the theorem appears
below.

1

(7) upravels

For the first proviso, we have allup <« {] {} = {](}. For the second
Proviso, we argue

all up< - (ed°)
{ definition of &° }
allup<a - U/ - (aéb)

I

|

{ < promotion and * distributivity }
U/ - (allup< - (aep))*

{ introducing ® (see below) }
U/ -(allup — (a®), con { })x

{ law: U/ - (p — focon {)¢ = U/ - f+-pa }
U/ - (a®)* - all up«

|

{ definition of ®° }
(e®®) - all up«

The operator ® 1s similar to @ but returns bags of upsequences. It is defined
by

e ®@br = {lla]HziW(bz—-]zl)|z€bzANa<hdz}U{][a]f W bz}.

36

We omit the verification of the equation
allup<a - (¢®) = (allup — (a®),con{ })

used in the derivation above. The promotion theorem for right-reductions
now gives us that

upravels = ®° « {| | }.

To simplify sur = Mg/ -upravels we again appeal to the promotion theorem.
However, this time we need the more general form of the theorem, namely

that o - @ e = @ ¢ ¢’ if and only if he = ¢’ and
h-(a®) - ®@¢e=(a®) -h-®e

Introducing f = ¢ (mod h) as an abbreviation for f-h = g-h, the condition
above reads: h-(a®) = (a®)-h (mod ® «e). The following argument is
carried out modulo ®° « {] |}, i.e., modulo upravels:

N/ - (a®°)

{ definition of ®° }
Mg/ -U/ - (a®)*

}

{ / promotion and * distributivity }
Mg/ - (Ng/ - (a®))*

{ defining ® by (a®) =MNg/ - (a®) }
Mg/ - (a®)*

}

|

{ claim; see below }
(a®) - Mg/

The claim in the last step refers to the property
(8) Mg/ - (a®)* - upravels = (a®)-My/ - upravels

that we have yet to justify for a suitable choice of <j;. Assuming (8)
can be satisfied, the promotion theorem gives that sur = ® «] { since

Mg/ U5} =17.

37

Before tackling (8), let us rewrite the equation for ® using the definition
of ®:

(9) a®bz = Ng/{lla] HzfW(bz—]z))|z € bxrNa<hdr}
My ({le]} © bz).

We would like to simplify (9) by choosing a suitable definition of <y; at
the same time we will choose <4 to satisfy (8).

The ordering <, has to respect #, so its definition has to take the form
br <4 by = Fbx < #H#by V (#br = #by N bz <p by),

where <pg is some ordering on B = [[A]T{. From (9) and the definition of
<4 we obtain

e ®br = Ng/{lle] H+ z§ W (bx — [z§) | z € by} otherwise

where by = {z |z € ba Aa < hdz}

{ lla]§ & bz if by = { }

The ordering <p i1s an ordering on bags, and the only reasonable candidate
1s a lexicographic ordering:

|

bz <pby = bz=]{V Ny/bz<Ng/by V
(Mg/ bz =Ng/by) A (bz — [N/ bzf <p by — ML/ byf),

where < is some ordering on L = [A]T. Thus, <pg is the lexicographic
ordering on bags generated by the ordering <; on its elements.

In order to use <pg to simplify the definition of ® still further, we would
like to define <; so that

(10) z<ry = la]HzfB(bz —12f) <p {a] # yJ W (bz — 1yf)
for all z,y € bz with a < hdz and ¢ < hd y. Then we would have

{Z[ajswbz if by = {}

a®br = lla] H Mg/ byS W (bz — [N/ byl) otherwise

where by ={z |z € be ANa < hdz}.

38

y two conditions hold:

The second condition 1 satisfied if we choose < to be a lexacographic or
dering or

SN

(A, and the first s satistied 1f we reverse the standard convention

1d assign r < y when y 18 an mitial seginent of r. (In the reversed ordering

'] 18 the last entry in the dictionary.) Thus, we take

r<;y = y=1{] Vhder<hdy V (hdzr =hdy Ataile <; tail y).

i

g

representing bags by lists of sequences i ascending

t h-ﬁ‘?m e t

order under <;. We

zs -+ [[a]] if 28 = ||
Y& Mﬁl + hd ME +H tail 28 otherwise
where (ys,28) = (((< a)-hdars, ({(a <) -hd) < rs).

[l = [[a]] and

5 +- M +Hrs ifa < hdz
x| H (a ® zs) otherwise

Evaluation of a ® zs can also be implemented by binary search since the
first elements of sequences in zs are in increasing order. That means sur
can be implemented in O(n log n) steps, where n is the length of the input.

The claim

still have to prove claim (8), namely

L

Mg/ - (a®)* - upravels = (a®) - Mg/ - upravels.

) is monotonic under <x (modulo upravels), 1.e.,

N S # ‘yﬁ tore 41 T8 ﬁ # a 0 y &

39

for all zs,ys € upravelsz. However, (a®) 1s not monotonic under <4. A
simple counterexample is given by the fact that we have

[1,2], [3,4,0]] < [[1.2.3], [4]. [6]

but applying (5®) to these sequences gives

(1,2], [3.4,6], [5]] > [[1.2,3]. [4]. [5.6]]
Compare (8) with the following valid i1dentity:
(11) Mg/ - (a®)* - upravels = (a®)-Mg/ - upravels

Equation (11) holds because (a®) 1s monotonic under <g modulo upravels.
The proof involves a fairly straightforward case analysis, but we omit it for
reasons of space.

Well, 1 have been unable to find a proof of (8). Fortunately, this does
not mean we are stuck for we can prove another fact:

(12) Mg/ -upravels = Mg/ - upravels

In words, although <4 1s a different ordering than <g, the smallest upravel
under one is the smallest upravel under the other. This claim 1s not obvious
(witness the complexity of the proof given below).

How does (12) help? The answer seemns a devious one. Having identified
<p and proved (12), we can replay the dernivation, but with the new starting
point sur = Mg/ - upravels. One has to check that the new definition of @,
namely (a®) = Mg/ - (e®), defines the same operation as before (it does,
but we omit details). Then we can use (11) to complete the derivation.

Admittedly, this method is inferior to one based on (8) but it is perfectly
valid.

The proof of (12) i1s quite complicated. We are going to use a cut and
paste argument to replace one upravel of z by another, so we need to know
that what we cut and paste remain subsequences of z. For this reason
we need to keep track of the positions of elements in z. Replace each
element ¢ in z with a pair (a,j), where 7 is the position of ¢ in z and
so 0 < 7 < #z. Each upravel is now a bag (or sequence) of sequences of

40

pairs. Each sequence in each upravel is ordered on first components (the
sequence is an upsequence), but also on second components (the upsequence
is a subsequence of). Note, however, that the definitions of <4 and <g

one-dimensional result (about the elements of z) by using a two-dimensional
argument (about the elements and their positions in z). The proof hinges
on the following lemma:

Lemma 1 Let zs be the smallest upravel of z under <y and suppose each
element of zs is a sequence of pairs in the manner described above. Then
for all y,z € zs with y < =z,

(a,p) €EyA(b,g)Ez = a<bVp>aq.

Proof. The argument is by contradiction. Suppose the conclusion is false
and there is some ¥,z € zs, with y <; z, and some (a,p) € y and (b, q) € z
with @ > b A p < g. Without loss of generality, suppose (p, ¢) 1s as small
as possible under the lexical ordering on pairs. Let

y=u-+[(a,p)] Hv and z = w H[(d,q)] +H1

Suppose u has last element (¢,n) and w has last element (d, r) where, to
avoid a case analysis, we take (—o0, —o0) as last element if « or v 1s empty.
Since y and z are upsequences we have

c<eAn<p and d<DbAr<g
Combined with the assumption a > b A p < ¢, we get
(13) c<aAn<qg and d<aAr<gyq

By the assumption that (a,p) and (b, q) are the earliest critical pair, we
have that neither (¢,n),(b, q) or (a,p),(d, r) are critical pairs, and so

(14) c<bVn>q and e¢<dVp>T
Combining (13) and (14) we get

c<bAn<q and d<aAr<p

41

and so

y' ' =u+H[(b,g)] Ht and z'=wH[a, p)Hv

are upsequences of z. Define a new upravel zs’ by replacing y, 2 with y’, 2’.
We have #zs' = #zs and zs’ <p zs since y' <; y. whence 3’ <x zs. A
contradiction. O

Armed with this result, we can prove (12). Suppose Mg/ upravelsz = zs
and z8 = [z, Z9,...,2Z,]. Let y8 = [, ¥2.-..,¥m] be another upravel of z,
so m > n. We aim to show that zs <g ys. Since zs 1s not a proper initial
segment of ys (otherwise zs and ys cannot ravel to the same sequence z),
there 1s a) with z; = y; for 1 <1 < 3, and z; # y;. We have to show that
T, <L Y-

If z; 1s an initial segment of y;, then we can replace z; by y; in zs, deleting
all elements in y; but not in z; from other components in zs. The result is

another upravel zs’ with #zs' < #zs and z3’ <p zs. Hence zs’ <y zs, a
contradiction.

So, z; 1s not an 1nitial segment of y; and we have z; = u H [(a,p)] H v
and y; = v H# [(b, q)] H+ w for some a # b and p # q. We show that the
assumption a > b leads to a contradiction. If a > b, then (b, ¢) cannot
appear 1n z; or in any z; with ¢ < j, so 1t appears in some z; of zs, where
k>j. Let z = w H [(b,q)] H s. If ¢ < p, then we can replace z; and z;
in z8 with new upsequences u -+ [(b, ¢),(a,p)] + v and w + s. This gives
a new upravel zs’ with #zs’ = #zs and zs’' <p zs. Hence zs’ <y zs, a
contradiction.

In the final case, we have ¢ > b and p < ¢. But appeal to the lemma
shows that we get a contradiction in this case too. O

Comments

‘There are good points and bad points about the above derivation of an
efficient program for the smallest upravel. One good point is that we have
a simply structured derivation based on equational reasoning. Moreover,
the invention of the ordering <., was systematic and rabbit-free. The only

42

problem is that the proof of the equation (&) 1s missing. The bad point 1s
in the last part with the truly awful proof of (12).

Here are three questions well worth answering:

e Starting with (2), is there a simpler derivation of the final algorithm?
¢ What is the proof of (8)7

¢ What is a better proof of (12)7

References

(1] R. S. Bird (1991), Unravelling greedy algorithms. Journal of Functional
Programming vol X, no X (1991)

2] A. Kaldewaij (1985), On the decomposition of sequences into ascending
subsequences. Information Processing Letters, vol 21, page 69.

3] L. Meertens, (1985), Some more examples of algorithmic developments.
IFIP Wg2.1 Working Paper, Pont a Mousson, France,

43

Maarten M Fokkinga, U nive

raity of T wente

The categorical notion of just ‘algebra’ is general enough to cover also "many
sorted” algebras. This holds also with respect to initiality. A real generalisation
of ‘alge ds *dialgebra’.

1 Introduction You might wonder whether the notion of algebra is rich enough to
model also so-called many-sorted al.
collection

sebras. For example, in a traditional formulation, the

{mj [.nat: true. fﬂ, Ise., bool-to-nat, revro, suce, e ﬂf}

is or suggests a two-sorted algebra, the two sorts (types) being bool and nat. In view of
the tvping bool-to-nat : bool —+ nat and equal : nat < nat — bool both sorts are needed

simultaneously to specifv the operations.

We shall show that by instantiating the base category to a product category, the con-
ventional category Alg(F) consists of many sorted algebras indeed. Besides that, a single
initial many-sorted algebra can be expressed as many initial single-sorted algebras. Thus
the existence conditions and the construction for mmitial algebras over a product category

bras over the component categories. These two results sav that

are reduced to initial alge
the theorv for just ‘normal’ algebras also applies to many-sorted algebras.

Ne formalise only the case “manv = two”. It has the advantage that the formulas are
simpler than in the general case, whereas all essential aspects are covered. You can easily
generalise the discussion to "many = n " for arbitrary natural n.

ek

lgebras Recall the categorical formalisation of algebras. Let C be a category, and
he an endofunctor on C. An F-algebra in C 1s: a morphism ¢ : Fa —¢c a in C,
for some object a = ['¢ called the carrier of ¢. let ¢,y be [-algebras; then an F -
homomorphism from ¢ te ¢ is: a morphism f in C satisfving ¢. f = F f v, denoted
"o —p . These algebras, as objects, and homomorphisms, as morphisms, constitute
a category called Alg(F); the composition (hence also the identities) are inherited from
the underlying category C . Initiahity in Alg(F) of an F -algebra « means that for each

i,

F -algebra ¢ there exists precisely one homomorphism from o to ¢, which we denote by

(a = ¢)p. If a and F are clear from the context we write (¢)), or just (¢). Thus,

cata-CHARN

44

If Alg(F) has an initial object, we let uF denote one; it is called an (or the) initial
F'-algebra.

Whenever we say that C is ‘the base category’ we omit explicit mentioning of C; in

particular, we then write —¢ as just — . Finally recall that & is the tupling or pairing
operation.

3 Many-sortedness The examplein theintroduction motivates the following definition.

e A two-sorted f,}-algebrais: a pair (¢,7) with ¢:atb—4 a and v :alib—gb,
for some a,b called the sorts of the two-sorted algebra.

o A two-sorted f,}{-homomorphism from (¢,%) to (x,w) is: a pair (f,g) with
o f=f1g:x and Pig=f1lg:w.

For this to make sense t and 1 should be bifunctors with common source A x B and
targets A and B respectively, for some categories A and B. Clearly, the two-sorted
algebras with their homomorphisms constitute a category, 2-Alg(t,1) say.

There 1s, however, a simpler definition for two-sorted algebras. Recall the notion of
product category: its objects and homomorphisms are pairs, and composition etc, are
defined coordinatewise. Taking T and } as above, the composite t 2 is an endofunctor
on A X B. Spelling out what it means to be an object or morphism in Alg(t21) (having

underlying category A x B), you’ll see that these are exactly the two-sorted 7, f-algebras
and homomorphisms defined above.

_ (¢,%) in Alg(ta 1)
~ (¢%): (Fa1)(@,8) —axs (a,b) for some a,b
m¢:aTb~+Aa and Y :aib-—pghb for some a,b

and further

_ (f,9) : (6,%) — Alg(tat) (X, w)
_(@9)i(f,9) = (12 D(f,9) (x,w)
S ¢sf=ftegix and Yig=figiw
Thus, 2-Alg(t,1) = Alg(t 2 1), and the prefix “two-sorted f,I-” equivales just “t+ai-”.

4 Theorem Let t,I be bifunctors. Suppose that u(tb) and u(a}) exist for all a,b.
Then there exist endofunctors F, G such that

(uFy pG) is initial in Alg(ta).

Specifically, F =1t L and G = (UuF)}, where L is the map functor induced by 1.
For this to make sense it is required that there are categories A, B, and that functors

T,I have source A xB and target A and B respectively, and that F, (G are endofunctors
on A X B; it follows that L : A — B.

45

Proof We shall synthesise a pair F,(and an expression for (puF, uG) — ... DT&I such
that assertion

(z,y) + (BF,uG) —4ar (&,%) = (z,y) = ((LF, pG) = (6, ¥)), 44

1s valid, thus establishing initiality of (uF, uG) in Alg(ta1).

For whatever F' and (G are going to be, put a,b = UpF,Uul;. Let (4,y) be an
arbitrary 1 a I-algebra, say

® : c¢ctd—oc
Y : cid—d

tor some c¢,d. It follows that ¢ : @ — ¢ and y : b — d (for the z,y in the desired
equivalence). Now we argue

(z,y) : (uF, pG) —4a1 (6, 9)

product category
uF.z=x2ty;¢ A pGiy=xly:¢

bifunctor (aim: express y as a homomorphism from uG')
uF z=zty;¢ AN pGiy=ud,ly;xlids; ¢

define G :=al = (UpF)i, cata-CHARN
uFiz=zty:i¢ A y=(ztidsiv)g

cata-FACTORN1 (applied to the rhs of y),

abbreviate f = ()., and define L = map functor induced by }
puF z=zfyi¢ AN y=Lz;f

substitute ¥y = Lz ; f 1n left conjunct, functor
uF.e2=UtLx;d.Tf:¢ AN y=1Lx;f

define F=11L, cata-CHARN
r=(d. T f:id)p N y=Lx;f

product category

(:Ca y) = (([Zda W ¢>DF3 Lx ,f)
Thus we have found the required definitions of F,G and ((pF,uGG) = ...Diy- O]

Il

It

i

1l

1l

5 Dialgebras The notion of algebra is not general enough to cover distribution prop-
erties and algebra-like structures that you encounter in practice. A slight generalisation
of algebra yields the notion of dialgebra. Briefly, for dialgebras the target type may be
(Ga rather than just a. The formal definition reads as follows. An F,(7-dialgebra i1s: a
morphism ¢ such that ¢ : Fla — Ga for some a = /¢ called the carrier of ¢. For this

to make sense it is required that F' and (are functors, F,G : A — C say, and A,C
are categories (and C is taken as the base one).

46

Let ¢,% be F,(-dialgebras. An F,G -homomorphism from ¢ to i is: a morphism
f for which ¢;Gf = Ff;i{ denoted f:¢@ —rg . It follows that f: U¢ — Urp. These
dialgebras and homomorphisms constitute a category, called DiAlg(F,G). You may now
prove yourself that Alg(F) = DiAlg(F,I); here it follows that A = C since the source
and target of I are equal. Co-algebras are obtained by taking F,G =1,

6 Bialgebras A datatype like stack with operations empty, push, isempty, top and
pop has not the form of an algebra ¢ : £'a — a, but israther a pair (¢,%) with ¢ : Fa — «a
and Y : a — (Ga, for some endofunctors F,(. To be specific, for stack we have

o empty v push . 1+bxa—a

== Fa— a
Y = isemptyatopapop : a— bool xXbXxa

a — (Ga

il

where b is the type of the stacked values (and a is the type of the stacks themselves).
We call such a pair (¢,%) a (single-sorted) F, G -blalgebra. An F, (G-bialgebra homo-
morphism from (¢,%) to (x,w) is a morphism f satisfying

é:fme,X and ¢,Gf=f,w

Clearly, these bialgebras and homomorphisms form a category, called BiAlg(F,), that is
built upon the base category.

As for many-sorted algebras, a bialgebra is a particular dialgebra. Let F,(G be endo-
functors (on the base category), and consider DiAlg(F a I,I s (). Then we find

- {(#,¥) in Didlg(F al,12@)
: (d,0) : (Fal)a— (IaG)a for some a

¢:Fa—a and v :a— Ga for some a

and moreover

_ f . (ﬁf’ﬂ/)) DiAlg(Fal,IaG) (X,UJ)
_(6,9):(TaG)f = (FaD)f s (xw)
- é;f=Ff;x and ¢,Gf=f;w

So, this proves BiAlg(F,G) = DiAlg(F a I,] » G). The generalisation to two-sorted
bialgebras is straightforward. It is an exercise for you to define the notion formally.

7 And so on For more such interesting observations, read my forthcoming thesis.

47

Free style spec wrestling II: preorders

Jaap van der Woude

18-10-1991

1 Introduction

Some games seem truely masochistic, for instance: give a pointfree proof of something
that is easily proved with pointwise reasoning. With a pointfree proof I mean a proof in a
pointless world, not just a proof without points in the formulae to be manipulated. Such
games are not played just for fun or to keep us from other popular pastimes like ramriding.
They kind of test the calculational power of the spec algebra and they may induce further
streamlining of the spec calculus. I do admit that I am not spec wizard enough to conclude
that the outrageous prooftime I needed until now is sufficient reason to abandon the spec
calculus, but I do have my doubts on the current state of affairs.

An almost ridiculous sample-game was presented in the Liber Amicorum for Lambert
Meertens (pp 110-115), constructing those proofs took me about three days (not counting
the time to shape things up). An easier one (took me six hours, so at least five too many)
is the following challenge from Richard Bird, transferred to me by Wim Feijen:

Define for a preorder X , i.e. X is reflexive and transitive, the leasting AX by
AX.S = {meS|(As:s€S : mXs)}

So, AX fed with aset S returnsthe X-least points of S (by lack of antisymmetry this
may be a substantial subset of 5). 1

(1) Challenge Prove for preorders X and Y the existence of a preorder Z with
AN = DAY « A X

By pointwise reasoning one finds such a Z quite easily: X M (=X" U Y), and it turns
out to be unique (thanks Wim).

One way to meet the challenge is to prove that the proposed candidate is a good one
(that is what I did first), but that smells like cheating. Here I want to present a proof

that at least makes it sweetly reasonable that one could have arrived at the candidate by
careful calculation.

48

Translation and

Since set theory can be played in an extensional (monotypical) spec algebra, where points
are represented as impish leftconditions, we represent sets as leftconditions; so, without
name changes, the set S is represented as a spec S such that S = S . T . A subset
A of S is a leftcondition A £ S and a full relation A x B on S isgiven by A . B .
A preorder X is of course a specsuchthat /] U X . X C X .

The definition of AX amounts to: AX.S is the greatest solution of
A:: ACS AN A.S5'C X

Thus, by definition of the division operator,

(2) AX.S = §n X/S°

The challenge is to construct for preorders X and Y a preorder Z such that for every
S

(3) ' SnZzZ/SY=58nX/5°nY/(SN X/SY)"

Since /SY is conjunctive we are led to believe that Z = X M Z' for some Z’ probably
depending on Y .

Oh ... you are right, it is very well possible you don’t know all calculation rules for the
division operator by heart. Let me give you a few:

(4) P/Q 2 R P 3R.Q
(5) P (P/Q) - Q

The first is the defining characterisation of /@) as an “adjoint” of . @ , the second is a
direct consequence: the cancellation rule. Two junctivity rules are:

(6) (PN Q)R P/IRN Q/R

(7) | P/(@ U R) P/Q N P/R

The observation that the numerator of AX.S is a preorder invites the following rule to
join 1in:

(8) X/P = X .(X/P) < X is a preorder

Since in the denominator of AX.S a wokked leftcondition (so a rightcondition) occurs, it
might be useful to note for leftcondition L , rightcondition R and arbitrary P and Q@ :

ILd il

|

(9) P/R 1is a leftcondition
(10) P.(RNQE) = P.RMNP.E
(11) L-R = LNR
(12) Leoe@ = L NQ
(13) L« T L0OL°

I do assume familiarity with the (left) domain operator.

49

.et’s do it

First consider the RHS of (3); direct manipulation fails because of lack of suitable rules
with conjunctions in the denominator of a division. So I try

(LHS J P = RHS I P) = (LHS = RHS)

i

a good possibility since ” /" occurs in both sides.

Snx/s¢ny/(Sn X/S“) JP
= {assume S M X/S* 3O P ;(4) }
Y 3 P.(Sn X/SW)M
= { SY is rightcondition ; (10) }
Y 3 P.SYM P.(X/SY)
<= { get rid of /SY by cancellation; P C S }
Y 3 P.SY M X
= { shunting ; (4) ; assumption on P }
SMX/SYnNn(=X“UY)SY 3P
- {(6))
Sn(Xn((=X“uyY)/s* 3P

So, indeed, I arrived at the candidate X N (~X"Y LI Y') with only one little rabbit: remove
/S* in order to construct a candidate that does not depent on S . However, the price
i1s an implication! while an equivalence was needed. It is by no means clear that such an
equivalence is possible. To obtain it, it would be nice if

(14) P.S'MXYC P.SYMN P.(X/S")

under the assumption put on P in the above calculation. Since in (14) P is only
composed with rightconditions and P 1s contained in a leftcondition by assumption, P
may even be assumed to be a leftcondition.

Reintroduction of /S in the LHS of (14) while enlarging it leaves me no other choice
than exploiting P & X/SY, but where? Ah..., in that situation X" has to be removed!
so (8) may help. This asks for introduction of a (P" o)-translation of X", indeed:

P.SY N XV

= {(11); (12) }
PmnsYnPc. XY

50

C { P< C {(13)} P C (X/S5°)° }
P SYn (X/S“)Y.XY

= { (8) }
PrSYn (X/SY)

= {(11) ; "wok”)
P.(S N X/S4)

This proves the wish and so the equation (3) for the candidate Z = X M (-XY U Y).
The heuristics may have shrunk the rabbits, but I think they still are alive.

The candidate may be perfect for the equation (3) (that was why it was constructed the
way it is), but that doesn’t mean that the challenge is met: is the candidate a preorder?
Reflexivity is for free, how about transitivity?

For transitivity the distributed form of the candidate is helpful:

(X N =XY)Yu (X nY)

The first disjunct is the well-known nonreflexive partial order generated by the preorder
X and so it is transitive. The second disjunct is the conjunction of transitive specs, thus
transitive; so the cross-compositions remain. It turns out that the cross-compositions are

all contained in the first disjunct. The proof thereof and the proof of the transitivity of
the first disjunct follow immediately from

(15) Note (X M -XY)X U X. (X N=-X"Y) C XN -X"

Proof. (X N-X")X E X M -X"
< { - X is monotonic }
XX MN-XY- X LC X N XV
‘<=={ X is preorder }
XY, X C =XV
= { left exchange }
XY. XY C XV
= { X is preorder }
true
]

Transitivity of X M -X" follows from (15) since X N -X" C X .
Inclusion of the cross-compositions in X M —-X" follows from (15) via X MY C X .

More challenges are anxiously awaited.

S1

Appreciation of the spec approach depends also on the alternative pointwise treatment of
the challenge, but note that the pointwise approach does not cover the general situation.

First the derivation of Z such that
(AS :: AZ.S = AY.(AX.9))

The candidate is derived by instantiating doubletons for S in the above, using the fact
that
(16) aXb = a € AX {a,b}

as follows:

alb
= { (16) ; instantiation ; def. \Y }
a € AX{a,b} A axAX{a,b}CY
= { (16) ; case analysis }
aXb A (aYb VvV bé¢IX{a,b})
= {(16))
aXb A (a¥Yb V b=Xa)
= { calc. }
a(X M (Y U ~XY))

The derived candidate indeed does the job (for transitivity see the former section):

me€NX M (Y U —~XV)).8

= {def. X }

mesS A mxS5CX A mxSCY U -Xv
= {def. X\ ;calc. }

meAX.S A (As:3€S5: mXYs = mYs)
= { calc. }

meEAX.S AN (As:3€S5S A sXm:mYs)
= { meAX.S = (sXm = se) X.5)}
meAX.S A mxAX.SCY

= {def.)\ }

m € AY.(AX.S)

Ji

S2

This proof is not really shorter than the spec proof, but it is a lot easier if not straightfor-
ward. Does this mean that the calculational system of the spec algebra is too extravagant,
or 1s it extra evidence that I lack sufficient adroitness?

Thank you Richard for this interesting challenge. I feel that there is a lot to do to turn
the spec calculus into an acceptable alternative for this kind of exercises; these challenges
may help. | hope others will make my solution look ridiculous in the near future.

53

Roland Backhouse

October 8, 1991

Abstract

An elementary example is given of how the identification of a Galois
connection can assist in algorithm derivation.

In the coming months a major activity of the Eindhoven Relational Type
Theory Group will be to explore the theory and applications of Galois connec-
tions and adjunctions. In order to explain more clearly the sort of objectives
[had in mind for such an exploration [sought an appealing example that
could be presented within the space of twenty minutes. By good fortune,
in connection with a quite different matter, my attention was drawn to the
section on “finite calculus” in the book “Constructive Mathematics” by Gra-
ham, Knuth and Patashnik. Further reading led me to the construction of
the following example which seems to fit my two criteria.

Let f and g denote functions from numbers to reals. Assume that f.0 = 0.
Define the operators A and ¥ by
(Af)x = flz+1)— fa
(Bg)x = Y(y: 0Sy<z:gy)

for all numbers z. Then we have the Galois connection:

(1) f=2g Af =g

The proof of this 1dentity involves very elementary quantifier calculus and is
therefore omitted.
Applying the extensionality axiom (two functions with the same domain

are equal if and only if they are equal at all elements of their common domain)
we obtain the equivalent but lengthier:

(2) VMY(z: fox = (Zg).2) V(y 2 (Af)y = g.y)

il

i

54

Sz (Af)z B
U 0
CT C
fx+g.uz (Af).z + (Ag).x

f.r X g.x faxx (Ag)x+g(z+1)x(Af).x
Table 1: Table of Differentials

Let us suppose our goal is to develop a body of rules that enable one to
find efficient ways of evaluating finite sums Xg for given function g. This
goal may be approached by tackling the easier problem of developing a body
of rules to compute differentials Af and then using the Galois connection
(1) to convert the rules to rules about .

To illustrate this idea let us restrict g to the class of polynomial functions.
Our goal is thus to develop a little theory that will enable us to compute finite
sums of polynomials such as ¥(y: 0 <y <z: y*+3y +1).

We begin our theory development by exploring the differentials of poly-
nomials. Since a polynomial function of z is either a constant function, the
identity function, the sum of two polynomial functions or the product of two
polynomial functions, table 1 suffices to rewrite (A f).z as a polynomial in
z for any given polynomial f.z satisfying the assumption f.0 = 0. (In the
table ¢ denotes an arbitrary constant. Verification of all four statements is
straightforward.) We observe that a table of differentials in the finite calculus
looks like a table of differentials in the infinite calculus but for the unfortu-
nate form of the product rule. In particular taking derivatives reduces the
degree of a polynomial by exactly one.

[deally we would now like to construct a similar table for 3. Four entries
would be required, one for constants, one for the identity function, one for
a sum and one for a product of two polynomials. The A entry for products
frustrates this particular goal but nevertheless an algorithm for expressing
the sum of a polynomial function as a polynomial function can be derived
that exploits the above table of differentials. I shall illustrate the algorithm
by considering the % entry for the identity function.

Since taking derivatives reduces the degree of a polynomial by one we
conjecture that the sum of the identity function is a quadratic polynomaial.
The coefhicients of that poynomial are calculated as follows:

55

By construction of a and b:

V(z: ar+bz? = Z(y: 0<y<zx: y))
= { Galois connection: (2) }
V(iy :: Az — az +bx%)y = y)
= { differential calculus: table 1 }
Viy:: a+by+bo(y+1) = y)

{ arithmetic }
a+b =0 AN 26 =1
{ arithmetic }

e 1 —
a.-----z—/\b-.—-

1
2
We have thus established the identity
Y(y: 0fy<zr:y) = —zz+32°

Extrapolating from this four step calculation one can easily see that it
embodies an algorithm to express 2¢ as a polynomial function for any given
polynomial function g. The steps in the algorithm are: postulate that Xg
is a polynomial function f with degree one higher than g. Compute (sym-
bolically) the coefficients of A f using the table of differentials. Equate the
expressions obtained for the coeflicients of f to the corresponding given co-
efficients of g. In this way one obtains a system of simultaneous equations
which is then solved to obtain the coefficients of f.

The point of this little example i1s to show how one can predict the be-
haviour of a relatively complicated operator — in this case ¥ — by studying
the behaviour of its adjoint — in this case A.

56

Some ergonomics of mathematical notation

Roland C. Backhouse
September 30, 1991

Put your hand in your pocket and pull out a number of coins, preferably
all of the same denomination. Show them to a friend and ask how many
there are. If there are less than five your friend will be able to see instantly
how many there are; if there are more than five he will be obliged to count
them before giving a reliable response.

[have no doubt that there are many learned articles dealing with this
and similar experiments in a proper, scientific way. For me, however, the
experiment has a very simple and far-reaching — albeit subjective — signii-
icance. The experiment demonstrates to me just how unintelligent I and my
fellow human beings are. We may try to convince ourselves of our supreme
intelligence but the fact remains that we are quite incapable of assimilating
or exploiting all but small amounts of information at any one time.

In spite of our inherent stupidity the human race has achieved a very
great deal (achievement being quite different from intelligence). Recognition
of one’s limitations is the first step towards improving one’s achievements.

The evolution of mathematical notation has been of fundamental impor-
tance to the development of science. Because 1t is both concise and precise,
mathematical notation helps to simplify concepts to a level at which we can
begin to understand them and to overcome our tendency to woolly and dis-
orderly thinking. However, whether it is used well or badly can make all the
difference between whether mathematical notation makes molehills out of
mountains or mountains out of molehills. The ergonomics of mathematical
notation is a little-discussed but vital aspect of creative mathematics.

A non-mathematical example may be the best introduction to the sort of
points I want to make. If, when doing a crossword puzzle, I suspect that one
of the answers i1s an anagram of some phrase then I write the letters of the

57

phrase in a circle. This notational trick is enormously helpful in enabling the
eye to see different permutations of letters. Compactness of the notation is
highly significant: a computer-generated listing of all permutations of a given
set of letters may be a more reliable way of discovering all the anagrams but
is decidedly less effective. Computer-generated lists are just not for human
consumption!

Recognising human characteristics is important to the design of good
notation. One of the first rules that one should learn about mathematical
notation is that the precedence chosen for a binary operator should determine
the size of the symbol used to denote that operator, the higher the precedence
the smaller the symbol. This is because small symbols “pull” their neighbours

together thus suggesting a grouping of the symbols. For example, in the
expression

a-+bec+d

one naturally sees the sequence b.c as a group because the variables b and ¢
are close together.

Note that the size of a symbol should also include the amount of white

space around it. Text produced by a typewriter illustrates this well. The
expression

a+b.c+d

has been printed in teletype mode, i.e. in such a way that each symbol
has exactly the same width. The intention may be that the dot has higher

precedence than plus but one must work very hard in order to read the
expression in that way.
The principle underlying the precedence rule 1s that mathematical nota-

tion should suggest relevant groupings of symbols, or at least not be biased

to specific groupings. For example, if @ 1s an associative operator then one
should denote 1ts application using infix notation; for then in an expression

like

aDbBchHd

one can choose at will whether to continue the calculation by manipulating

a®b bbc, orcdd In contrast, if Polish notation i1s used the expression
above could be written in five different ways

B(D(D(a, b),), d)

58

each of which 1s biased to particular groupings of the arguments.
The advantages of infix notation for associative operators are not so strik-
ing because they are very familiar. A less familiar example is provided by

so-called “abide” laws. T'wo binary operators ® and @ are said to abide with
each other if for all u,v,w and =z

(RO (w@®z)=(uOw)® (v x)

Written as above the law seems hideously complex; a two-dimensional nota-
tion reveals the true nature of such laws. The name “abide” signifhes that
the operators can be written above or beside each other as shown below

u & v (7 (3
= QK O
w T w T

A standard example of an abide law is provided by multiplication and division
in real arithmetic. (Replace “®@” by “x” and “@” by “/”.) The validity of
this law 1s the only justification I know for why the operands in a division
are written one on top of the other. Take, for example,

u-v

w - I

Because the arguments are pulled together the eye is more readily encouraged
to spot different groupings of the operands — w-v, %, w -z, £ and, since
multiplication is commutative, % or £.

Aside Abide laws abound in mathematics, sometimes being called inter-
change laws. However, they don’t seem to be well known. One example
occurs in boolean algebra: Suppose p...u are booleans and define

p(q)?“ = 1f ¢g then p else r.
Then

—~
V)

S S
Il
—~
s
~—
—~
wd
~—
i "
¥y
~

End of Aside

(Readers of The Squigolist will know that the term “abide law” was coined
by Richard Bird and that the above example of such a law is due to Tony
Hoare.)

Subscripts and superscripts are probably the most abused elements of
mathematical notation. Because they are smaller than the symbols around
them they are easily overlooked. Just like the small print in legal documents
this can be deliberately used to deceive the reader, or it can be used to
suppress details that are only relevant in exceptional circumstances. Very
occasionally deception can be beneficial! Suppose a given function distributes
over a given binary operator. Denoting the function by C, the operator by

x and function application by an infix dot, distributivity can be expressed
syntactically by

C(X xY)=CX xCY

for all X and Y. An alternative denotation is obtained by choosing ¢ to

denote the function and using superscripting to denote function application.
We then obtain

(X x¥Y)=X"xY°

for all X and Y. (To emphasise my point about the size of superscripts I
have used capital letters for the dummies.) What is the essential difference
between the two notations? Well, compare C. X x C.Y with X¢ x Y¢. In the
former “X” and “Y” are relatively far apart, in the latter “X” and “Y” have
been pulled together by the relative size of the dummies and the superscript.
In the latter, therefore, the intention is that the eye is tricked into overlooking
the superscript and grouping together X and Y. The notation avoids the
need to consciously remember the distributivity law.

Now you know why the “Iindhoven School” insists on beautiful handwrit-
ing: clear handwriting, paying attention to the ergonomics of mathematical
notation, pays dividends whereas bad handwriting can often deceive you into
making mistakes. And those computer algebra systems that are currently all
the rage? How anyone can begin to do creative mathematics with an input-
output system that is hardly better than that of a teletype is beyond me!

60

Demonic composition has been the subject of at least two recent articles
1, 2]. In both these papers a pointwise definition is given from which, by
agic, a — rather ugly — point-free definition is plucked out of the blue.
subsequently, proofs are given of the associativity of the so-defined operator.
Neither proof provided to my mind any justification for point-free reason-
ing. Rather the opposite: Berghammer’s proof [1] struck me as a “machine-
code proof” in that the definition of demonic composition was used to expand
the two possible ways of composing three specs into — inevitably very long
~— expressions involving the primitive operators of the plat calculus. These
expressions were then laboriously proved to be equal. Van der Woude’s proof
2] used exactly the same strategy but was a little better in that his primitives
were a little less primitive than Berghammer’s and consequently the expres-
sions he had to manipulate were a little shorter. To be fair to van der Woude
he made his own dissatisfaction with the proofs explicit by entitling the pa-
per “Free style Specwrestling” and concluding with the words: “Frustating
is still the fact that the truth of the statements in the tasks is easily seen
with a pointwise interpretation but a rigorous proof on the spec level is still
appealing.” In this note I want to take up the challenge of constructing
ealing point-free proof of the associativity of demonic composition.
The task according to van der Woude [2] begins as follows: “Define the
demonic composition R; S as the usual composition, provided that it is only
defined in states x such that R is defined on all the S-results Sz.”
Interpreting this specification literally we are required to specify R;S
formally via two clauses: The first clause states that it is “the usual compo-
sition” but with a restricted right domain. l.e.

(1) RS = Ro S o R&S

61

where
(2) monotype.(R&S)

Thus R&S is the “restriction” on the right domain.
The second clause states that the said restriction should include only those
“states x such that R is defined on all the S-results Sz.” Replacing “states

z” by “monotypes B”, we formulate this second clause as the requirement
that R&.S satisfy the specification:

(3) A:: V(B: monotype.B: A J B

R> 3 (5°B)<)

1 Preliminary Analysis

Before embarking on the task of proving that demonic composition is indeed
associative let us examine the more elementary consequences.

We begin with the conjunction of (1) and (2). An immediate consequence
— at least immediate to the experienced “speculist” — is

(4) (R;S)> = (R°S8)> e R&S
whence also
(5) R;S = RoSe (R;S)>

For the proofs of (4) and (5) we appeal to a slightly more general lemma and
its corollary, specifically:

Lemma 6 For all specs S and monotypes A,
(SeA)> = S5>0 A
Proof

(So A)>
{ domains }
(S> o A)>
{ S> and A are both monotypes.
Hence, so is S>0 A }
(5> » A)

|

62

Corollary 7
3(A : monotype.A: R = S°cA) = R =05°R>

Proof Follows-from is obvious. For the implication we have:

R = S-A
= {S = 505>}

R = S o A = S o S§>0 A
== { lemma 6 }

R = 5o R>

O

(Lemmas that have two-step proofs may not be “immediate” to the novice
but surely are to the more practised.) Equation (4) is an instance of lemma
6 in which S is instantiated to Re.S and A to R&S. Similarly, (5) is an
application of corollary 7 in which the same assignments are made to .S and
A, and R is instantiated to R; S.

Now we consider (3). The immediate question is whether there is a solu-
tion to the specification. To see that this 1s indeed the case — at a glance
— we observe that both the functions < and Se are universally L-junctive,
hence so is their composition and thus

(8) U (B: monotype.B A R> 1 (S°B)<: B)

solves (3). As a function of R it is also obviously a monotype transformer
(i.e. a function mapping monotypes to monotypes), and we may conclude
that the binary operator & does indeed exist.

Knowing this formula is however of little help in any calculations involving
R& S since the inevitable first step in any such calculation will be to return
to (3). More progress can be made if one is aware that being universally
LI-junctive is equivalent to having a certain sort of adjoint. Note that the
requirement on R&S — for all monotypes B and all specs R and S,

(9) R&S 3 B = R> 3 (S B)<

— 18 almost a Galois connection between the function (R — Ré&.S) and the
function (B — (S B)<). That it is not so can be solely attributed to the
occurrence of the right domain operator on the right side of (9).

63

We can dismiss this obstacle by noting that, for all monotypes A we have
A> = A and, in particular, (R>)> = R>. Consequently,

(10) R&S = R>&S
where, for all monotypes A and B,
(11) A&S I B A 3 (§5<B)<

Property (10) tells us that the left operand of & may always, without loss of
generality, be assumed to be a monotype. Property (11) says that — with the
said assumption — the function &S is adjoint to the function (B +— (S ¢ B)<).

I.e. in the domain of monotypes there is a Galois connection between &S
and the composition of the two functions < and So.

The recognition of a Galois connection is a very crucial observation and

unleashes a welcome gush of properties. In order to proceed more quickly to
our main task we limit attention to those that prove to be directly relevant.
There are just two. The first is the cancellation property:

(12) A 3 (8 o A&S)<
Equivalently,
(13) Ao § o A&LS = § o A&S

Il

Comparing (13) with (4) the experienced speculist should spot that
(14) (R;S)> 5> o R&S

I

which proves to be a crucial lemma in the proof of associativity. The four-step
proof of (14) follows:

(R; S)>
{()}
(R o S o R&S)>
{ domains }
(R> o § o R&S)>
{ (10, (13)'}
(S o R&S)>
{ lemma 6, R&S is a monotype }
S> o R&S

|

64

The second is that the monotype transformer &S is universally M-junctive.
Since, however, for monotypes the M operator coincides with composition
the monotype transformer &S5 is universally composition-junctive and, more
particularly, for all monotypes A and B,

(15) (Ao B)&S A&S o B&S

2

Now let us turn to the task in hand — proving that demonic composition is
associative. We consider the two terms R; (S;T) and (R; S); T, and expand
each using (1) very cautiously in order not to allow the formulae to grow too
big. First, we obtain

R;(S;T)
{ (1)}
R o (5;7T) o R&(S;T)

{(1)} _
RoSoT o S&T o R&(S;T)

(Note that the outermost occurrence of “;” has been expanded first. Ex-
panding the innermost occurrence leads to a larger formula.)

This i1s a pleasing result becauses it expresses R;(S;7T) in terms of a
restriction on the right domain of R « § o 7. Now for the other term:

(R; S); T
{(1)}
(R;S) o T o (R; S)&T
{ Applying (1) for a second time would introduce an
undesirable restriction on the left domain of 7', not on
the right. We search around for something more suitable.
Aiming for (13) we apply (5) }
RoS o (R;S)> T o (R;S)&T
{ (10), (13)3 R,S = (R; S):T}
Ro S oT o (R;S)&T

Thus (R; S); T has also been expressed in terms of a restriction on the right
domain of R o § o T and we can infer that

65

R;(S;T) = (BSKHT
&=
S&T o R&(S;T) = (R;S)&T

The reader will undoubtedly have observed that only limited use of (3)
has been used. The cancellation property (12) has been used but nowhere
have we used the fact that R&S is the limit of a set of monotypes. This

element of the specification will figure highly in the final proof obligation
which is to show that

(16) S&T o R&(S;T) = (R;S)&T

Demonic composition is still present in both the left and right sides of this
equation. Let us try to remove it using the adjointness of the & operator. We
choose to begin with the right side of (16), this choice being made because
the demonic composition appears in the left argument of the & operator and
we know so much more about the behaviour of that operator with respect to
its left operand than with respect to its right operand.

(R; S)&T

{ (10) }
(R; S)>&T

{ (14) }
(§>0 R&S)&T

{ (15) }
S>&T o (R&S)&T

{ (10) }
S&T o (R&S)&T

I

Summarising,
(17) (R;S)&T = S&T o (R&S)&T

The right side of (17) is very close to the left side of (16). Only the terms
R&(S;T) and (R&S)&T differ. We now try to eliminate the demonic com-
position appearing in the former and simultaneously prove its equality to the
latter. (It turns out that they are not equal but that is our proof strategy
nevertheless.)

66

Since the demonic composition appears in the second operand we have
little choice but to apply (9). We have, for all monotypes B,

= (@)
g “S ; T} o B)m

1))

{S’ o T o S&T o B)ar:

o assume S&T I B, monotypes }
R> 3 (ST e B)<

= { domains }
R> 3 (8 o (T o B)<)<

= {®)
R&S 2 (T o B)<

=)

S&T 31 B A R&(S:;T) 2 B

B>

S&T 1 B A (R&S)&T 21 B

from which it follows (since all inclusions are between monotypes) that
(18) S&T o R&(S;T) = S&T o (R&S)&T

Combining 1d (18) we have established (16) and our task is complete.

3

Our concern here has not been to establish a mathematical theorem — that
demonic composition is associative has been known for decades — but with
economy and elegance of calculation. Writing the note was prompted by
discontent with the only two proofs that I know of using the axiomatic re-
lational calculus, In this section I want to take the opportunity to compare
those proofs with that given here in order to clarify my criticisms and to
reinforce the lessons that I believe can be learnt form this exercise.

Discussion

67

{1 Berghammer use explicit, quantifier-free formu-
ined earlier, are pm@?kwﬁ out of the blue. Before
f relative merits 1t 18 worthwhile to see how
i ”“w task 18 thus to derive a definition of
.S thi Mw ﬁw@ aﬂ mnma as given by (1)}, (2) and (3). (The formula
(8} 18 1n M equate because 1t 18 not g ummhw free.)

E he calculation mmmnw to finding a closed form for R& S which is then

bstituted in {1). In broad terms the calculation of H&S consists of three
steps. In the firgt step v

ve reduce the prbﬁﬁm m the calculation of A&S,
@@ wm Hm En th@a %wmad ste

p the adjoints of < and Se are
ON¢ 1 does not map monotypes to
mmhmmmn 18 overcome. In detail

ing eps. For

An m&gmm hm been found but is not
ansformer. We reintroduce <

(S\(A s Tfm o TT 2

68

The right side of (21) is an ugly formula, and direct manipulation of it
is strongly discouraged. Some simplification is possible although the gain
is marginal. The (equivalent) formulae used by van der Woude [2] and

Berghammer [1] were, respectively,

(22) R;S = (ReS) N (TTeR)/Sv

and

(23) R;S = (ReoS8) M ~(=(TTeR)-S)

The main difference between the proof that I have presented here and
those of Berghammer and van der Woude is the ubiquitous use of monotypes
and the domain operators instead of right conditions/vectors. (“Right con-
dition” is the term used by van der Woude, “vector” is the term used by
Berghammer. Their meaning is the same, namely, spec R is a right condi-
tion/vector if R = TT o R.)

The choice of which to use is difficult because right domains and right
conditions are intimately connected — indeed Galois connected. Specifically,
for all monotypes A and specs R we have

(24) A J R = TTeA IR

(which result is due to van der Woude). Moreover, this is a somewhat special
(Galois connection in that (TT ¢ A)> is equal to A, whereas the existence of a
(zalois connection predicts only an inclusion between the two.

The principle argument for the use of right conditions is that they are
closed under negation whereas monotypes are not. Against that must be
weighed the fact that intersection coincides with composition for monotypes
and the domain operators both have adjoints for arbitrary specs rather than
just for monotypes.

In my own mind I have no doubt that the emphasis on right (and left)
conditions is misplaced. Those who work with them have to clutter their
brains with ugly distributivity laws such as

(28) Ro (STTNT) = (RMN TToS8u)oeT

whereas for the user of the domain operators it suffices to be aware that
composition in the expression

(26) R S<oT

69

s associative. That right conditions are closed under negation 18, In my
@ff???.?%gwi%ﬁﬁf"%ﬂfi% rarely relevant. Indeed, one reason for preferring van der Woude's
nroof to Berg h amme '8 16 ¢ %ﬁ at ng 1on h A8 al mu ‘i been eliminat ez?d, {In fact,
%W mmz r Dedekind’s ' '

pmp@»wmm M mMai ﬁ,,.EMHhMuNH 18 ﬂhmcmm
yhenomenon, When two functions are con-
| connec %mm m s often the case that one has very amenable
lge , ey whereas ﬁ;h@ other 18 much more dithicult to work with.
ﬁmm mon iy M% one function is well-known, the other not {for example, think
of composition and factors). From a calculational viewpoint a commendable
hw ristic would thus seem to be to himit explicit use of the algebraic prop-
srties of the “ugly sister” as much as possible by appealing instead to the

Galois connection combined with the properties of its more beautiful partner.
*’E"”hm m the ta :;..m that has been adopted above.

D

-

ﬁ% A

PM? L

B _:-f
m ﬁ

| “ p. Bearing this in mind, | believe that the length
compares favourably with those of van der Woude and

M H’W wﬂ@? Em lons
Berghammer.

pes and programs.
und@swahr Munmhén, Fakultat fur
Mfmwmmk, &%&pmmb@r ' ,

Jaap van der Woude. Iree style specwrestling: Demonic composition
and choice. In Lambert Meertens, CWI, Liber Amicorum, 1966-199].

Stichting Mathematisch Centrum, Amsterdam, January 1991,

70

How to compute y — &
or why overloading is a minus

Eerke Boiten

It is required to write a Squiggol function that computes, given the pair (z,¥),
the value y — . Let us call this function ©. A first definition of © might be:

E})(:z:,y)my—-:z: (1)

So far, so good — but this definition uses dummies! Heresy!
We now give two derivations of ©, one top-down, one bottom-up.

Top-down development

A careful look at specification (1) leads us to consider two subproblems: first ex-
change z and y, and then apply ordinary —. Thus we have (using known solutions
for the subproblems)

o=—-(>,<)
which, using @ - (3>, <) = @ can be written as:

S =—

Bottom-up development

Let us just see what we can do. If we just apply — to (z,y), we get £ — y. This is
not what we need, but fortunately we have the unary operator —, which turns z — y
into y — x. Altogether, we have:

Combining the results of these two developments, we get a concise formulation of a
well-known law of arithmetic:

o

NFE— L] - wiea——

71

