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A new volume, a new colour! This is the first issue of the second volume of the

Squiggolist. The Squiggolist is a forum for people who work with the Bird-Meertens
formalism. It is meant for the quick distribution of short papers, summaries of results, or
current points of interest. You cannot subscribe to the Squiggolist: either you receive it,

or you don’t. The next issue of the Squiggolist will be produced in the summer, or, if there
is a sufficient number of papers, at the end of the spring.

Submit your contributions (camera-ready copy or a [ATgX-file) in A4 format. They will
be reduced to A5 (x 0.71), so use pointsize 12. There are no restrictions on the fonts used

in the camera-ready copy: it may be IATEX, handwritten or typewritten, as long as it is

black on white, readable and large enough to be turned into A5. I will be the editor, and
contributions should be sent to me:

Johan Jeuring
CWI, dept AA
P.O. Box 4079
1009 AB Amsterdam

The Netherlands
email: jt@Qcwi.nl
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N.Volker *

University of Nijmegen

Abstract

In general, the filter operator p<3 does not promote nicely into the cross or
the cartesian product operation. However, if p factorizes in certain ways, then
such a promotion is possible. This holds in particular for prefix closed predi-
cates, and in this case the resulting transformation rules can be used for the
derivation of algorithms employing the so called ‘list of successes technique’,
see e.g. [BWSS].

Basic Definitions

The cross operator X takes two lists and returns a list containing all possible pairs
of elements of these lists. Formally we define 1t by

eX[] = 1]
rXla] = (,a)xz
s X(y+Hz2) = (¢ Xy)H(rXz)

On the set level, this operator coincides with the usual cartesian product. Note
that we have chosen the order of the pairs to conform with [Bir87], i.e. the first
index changes faster than the second index. This implies that the section (r X) is
a homomorphism. The relation with the ‘cross with &’ operator Xg from [Bir87] is
given by the equations

X = X

%Tﬁg}fﬁ@mh has 'b-'éénmsuppmtéd by the Dutch organisation for scientific research NWQO under
grant NF 63/62 - 518



uples are modelled by lists. This leads

¢p on lists ts) by

¢

of lists {or =
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From the definition of ¢p, we immediately obtain the equations

= [{]]

epl(rs 4 r) = cprs X ¥

which can be compressed into the following snoc world characterizatior
tesian product operator

cp =Xy [[]] (1}

A fspﬁwim case of the cartesian P roduct operat won is the power operation, w het
te

Iy

v

wking a set r to the power n is defined as the n fold cartesian product of r with
itself. Here it is expressed by the definition

. @ 72 = (f“p » £@*} E:E'“ﬂ’g

where we

assume {1..0] = |] and
a =z

&

i.e. 7° denotks the Lifting of r to a constant function.

The importance of the power operator is illustrated by the fact that the elements
of = T n correspond with the functions from an enumerated set of n elements into
x.




Promotion Lz

Both the cross and the ¢ p operator are easily proven to be natural transformations
of the respective ty pe functors. Fx pressed in formulas, this means that we have the

"

{ollowing promotion laws {or mapped functions mto eross

frxep = cp- feu

g

#

We will now state two corresponding laws for filter. The proofs can be found in a
separate section below,

U\ f’ -« P }«:@ po=oep P <]k i 3 ﬁ

(A-pllg)d - X = X.p<liigd "

Two special cases of the first law are worth mentioning. Let 7, and 7, denote
the projections from a pair to its first and second element, respectively. Also, let
true = TRUE?® stand for the function returning always TRUE. Using the identities
true<d = ud

A plitrue = p-x

A - lruellg = q-
we obtaln as a direct consequence of (2)
(p-m)a-X = X.p<ald (4)
(¢-m)a-X = X.id|jgd (5)

Equation (3) gives us a promotion law for filtering with predicates of the form all p,
where we assume the standard dehinition

ﬂnp = f\/ - P*

This 1s a very strong restriction on predicates and implies that they are prefix and
suffix closed. Prefix closedness on its own allows the following promotion theorem.

Theorem 1 Lef p

be a prefir closed predicate and d a derivative of p, i.¢. assume
pll = TRUFE
p(r }a) = prAd(zra)

Then we have

3



Proof:
pd-cp = (R+*-da-X) A (]
= { equation (1), prefix closedness of p }

p XA ]l = (R*x-da-X) A (pa([]D

<= { snoc list promotion }
pd - Xy = R*x-ddq -X-pd|id
= { definition of X, (4) }
pd - <Kx - X = *-dd -(p-m)d -X
= { map filter swap, compositon of filters }
Hx-(p-R)d-X = K*-(p-mAd)d -X
= { prefix closedness of p }

TRUE
O

We leave the formulation and proof of a corresponding theorem for suffix closed
predicates to the interested reader.

We will now take a look at the evaluation of the rhs of equation (6). Denote this
function by f, 1.e. set

f=(R*-da-X) A ]

The list f(zs +< z) is formed by combining each element s of fzs with those
elements a of z such that d(s,a) holds. In particular, only lists which satisfy
predicate p are extended. This underlying idea is sometimes called the ‘list of
successes’ technique. Note however, that if we employ outermost graph reduction
as our model of computation (c.f. [BW88]), the evaluation of f(z 4< a) will be
started already after the first element of the list f z has been computed. Hence

in this model of computation, f can be seen as the high level description of the
classical backtracking scheme.

Theorem 1 can be generalized as follows.

Theorem 2 Let p be a predicate, d a relation and & a binary operator such that

|

p(r®a)=pzAd(z,a)
holds. Then we have

p<t - (Xoss ) = (@+ - d<t -X) 5 (p < )



Proof: From the snoc list promotion law, it follows that it is sufficient to show the
validity of

pd - Xg=@* - dd -X-p < ||id

However, this follows analogously to the corresponding part of the proof of theorem
1.

[

Suppose that p, d and @ are as in theorem 2, and assume further that the

binary operator @ 1s assoclative and has a unit 1g for which p holds. Because the

associativity of @ implies the associativity of Xg, we can form the undirected reduce
Xg /. Noting the simple equation

Ix., = lle]

theorem 2 yields
P -Xg / = (@* - da - X) 4 [1g] (7)

Our last promotion law deals with the special case of the power operation.

Corollary 3 Let p be a prefiz closed predicate with derivative d. Then we have

pd - T=f

where the function f is defined by

f0
f(n+1)

]
(4<* - dd)(fn X z)

Proof: It is sufficient to show that p<d - z T conforms to the same defining equa-

tions as f (Unique extension property for natural numbers!). Because prefix closed
predicates hold for the empty list, the definition of the power operator T implies

(p<t-zT)0=p <[]l =[]

As a direct consequence of theorem 1, we note

(p<a- (2 T))m = ((K *-da-X) A [[]]) (% [1..m]) (8)



Using this equation, the validity of the corollary follows from the calculation

(p< -z T)(n+1)
= { equation (8) for m =n+1}
(= - da - X) A [[]]) (=°% [1..n +1])
= { definition of [1..n + 1] }
((=*-da-X) A [[]]) (2° % ([1..n] K (n + 1))
= { h#*(z 4 a) = (h *xz) & (ha), definition of z° }
(% - d< - X) A [[1]) ((2° * [L..n]) = =)
= { definition of left reduce }
(= - d<) (({(= % - d< - X) A [[]]) (z° * [1..n]) X z)
= { equation (8) for m = n }

(*-d)((p<g -2 T)n X z)

An Example: The Eight Queens Problem

In the Eight Queens Problem (c.f. [BW88]), eight queens have to be placed on a
chessboard in such a way that no two threaten each other. This obviously implies
that there 1s exactly one queen per row, and hence we can represent the solutions
by lists of length eight which contain the column positions as entries. Using the
power operation introduced above, we specify

queens = nothreats <1 ([1..8] T 8)

where the predicate nothreats applied to a list z is true if and only if no two queens
in z threaten each other. The calculation of nothreats(z 4< a) can obviously be split
into whether any two queens in z threaten each other (nothreatsz) and whether
the new queen (represented by a) is threatened by any of the queens in z. Giving
the latter predicate the name safe, this means that we have the decomposition

|

nothreats(z 4< a) = nothreats z A safe(z, a)

Defining
nothreats || = TRUE



we percelve that nothreats is a prefix closed predicate with derivative safe. Hence
we can apply corollary 3 and obtain

queens = [ 8

where the function f is defined by

fo
f(n+1)

L]]
(+<* - safea) (f n X )

The remaining steps of the development depend very much on our model of compu-

tation. Assuming a functional language with outermost graph reduction and execu-
table operators map, filter and cross, the only remaining task is the representation

of the predicate safe by an executable function (c.f. [BW88]). If our target was the
standard algorithm in either a functional language with eager evaluation or some

conventional 1mperative language (c.f. [Wir76]), we would still have to explicitly

introduce a backtracking scheme and might prefer a non executable specification of
safe.

Proof of the cross filter promotion laws

For convenience, we recall the two equations we are going to prove

(A-pllg)a - X = X-pag< (2)
(A/ - px)<d - cp cp-p <+ (3)

For the proof of equation 2, note that for every list z, the left section of either side

of this equation with z is 4 — 4 promotable. Appealing to the unique extension
property, its validity therefore follows from the calculation

((A-pllg) -z X)[a]) = ((p < z)X-(g2)a])

= { operator calculus, definition of X }

(A-plle)a - (Ga)x)z = (X(g<la]))-pQ)z
= { extensionality }

(A -l - (a)x = (X (g<la]))-pd
= { map filter swap, case introduction }

(ha)x-(A-pllg- (a))a = (X(ga —[afi]]) - p<
= { operator calculus, case distributivity }

|

7



(a)x- ((A(ga))-p)d = (ga —=X[a];X]])- p<a
= { case introduction, simplification }
(;a)x-(ga — p; false)d = (ga — (,a)x;{}°) p
= { case distributivity, simplification }
(ga—(a)x-p<;[]° = (ga— (a)*- p;[]°
= { reflexivity of equality }
TRUE

For the proof of equation 3, we denote the function on the lhs with f and the one

on the rhs with g. Unfolding ¢p and employing map distributivity, we can write ¢
as the compositon of a reduce and a map

g =Xy [ - (rx - p<)*

However, this implies trivially that we have the following equations

gll = 1x,
g-7T = T™- -pd
g+ = Xu- 99

By the unique extension property, g 1s on the other hand uniquely described by these
equations, and it therefore suffices to show that also f conforms to these equations.
This is achieved by the following straightforward calculations

fll = (A -p¥)d: cp)]]
= (A -px) <[]}
= {[[]]
— 1x*
f-1 = (A px)d Xy [ TH*x-7T

(A ~px)d - Xy [ -7 - T*
(A] - px)d - T+

™ - (A -px-T)d

™ - (AT -p)d

T* - p <]

|

|

I

I

I
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A tribute to attributes

Lambert Meertens Jaap van der Woude

February 28, 1991

1 Introduction

A common phenomenon in programming is “flushing of results”, the ingredients of which
are built up in some structure (e.g. a stack). In many simple problems those ingredients
are plain values and recipes to combine them (operators). This structure depends on the

structure of the given data and it may be viewed as an instance of an attribute-decorated
parse tree.

We shall give another example of this phenomenon where the values may be functions.

The example is a stepping stone towards catamorphising attribute grammar problems in
general. T'wo aspects of this example are especially worth mentioning:

e Parameterised algebras and their catamorphisms; we propose a general expression.

e Lifting of operators, or rather algebras. Too bad, but we have to postpone that subject.

This note depends heavily on notation and calculation techniques that can be found for

instance in [2| and, in a slightly different setting, in [0]. The reader is advised to consult
these references (not merely as references, they are atleast as interesting as the note here).

A remark on the priorities of the occurring operators may be in order. The general rule is

that the precedence of the operator is antiproportional to its size. In weakening order we
have for instance:

y vy 9 {X)A}:{'{":V}:_‘_}

Depth in the leaves

The example we address may be formulated losely as follows: Given a tree, replace the
values in the leaves by the depth of the given tree.

For a brief sketch of the setting of the problem:
Let T be the type functor for trees over A . Its unary leftsection At is given by:

ATX = A+ X xX and Aff = dya+fF x f

10



We fix (Atree, 74 v H ) to be the initial Af-algebra, i.e.
Tag v H A+ Atree X Atree — Atree

The two concerns, depth and replacement, are given by the At-catamorphism

(1) 6 = (1°v F): Atree = IN  where +.(m,n) = | +mn
and the parameterised Af-catamorphism p:IN — (Atree — INtree)
(2) p.nﬁG(va%)a(n.—}*IXI)Dm(]T[Nan'v%b

In both (1) and (2) v* denotes the constant v function. The function we are to express
in terms of catamorphisms is 2.t = p.(6.t).t . One could defend that by (1) and (2) we
are done; however, what we want as a solution is the equivalent of a one pass algorithm.
In order to reformulate the requested function slightly, we need the usual apply ( @ ) and
the argument-swap ” ", defined by

(3) by.z2 = .z

For () we calculate

Hence we are looking for = Q. (pa d).

Since @ is considered to be ”simple”, we may reformulate our aim as: express p a6
as a catamorphism. With the tupling construction ([1]) in mind, knowing that § 1is a
catamorphism, it is sufficient to express 7 as a catamorphism (but we want more: an

explicit expression). Is there any chance of p being expressable as a catamorphism? By
(2) and (3), the type is right

p: Atree — (IN — INtree)
Soif p = (), we know that 2 should have the type
Y = agv PB: A+ (IN —» INtree) x (IN — INtree) — (IN — INtree)

where a: A — (IN — INtree) and B:(IN — INtree) x (IN — INtree) — (IN — INtree).
Indeed so, in the next section we show that (don’t mind the notation)

SN T

(4) p=(1"v #)

Let us calculate p A § using (4) and the tupling construction in [1}:

11



0 A

= { (4) &)1[1]}

((r°v ) AT a (I°v ) AT > )
= {1 ,v e +calc}

Q(T'V:Fa('(( X <<))A(1.v$a(>> X >>))D
= { v and A abide }

((T°a 1) o (F (K x K)aF (> x >)))
= {xXx o ace ,x=(LKx €)a(>»x>)}
((T°a 1) v (H# x +).00)

Indeed, this is the form we expected and it is sufficiently neat. The solution for ”catamor-
phising” {1 belng:
Q=Q@.((t°a1%) v (H X F).00)

Where oo denotes the “centre-swap” (&€ X € )a (> X >).
We still have to substantiate our claim (4). Knowing it 1s a useful claim, we roll up our
sleeves.

3 Calculation of

In the calculation to follow we use the polymorphic evaluation € (a curried form of the
apply function @, which in the literature is called evaluation frequently; so, be warned!):

e X = ((X—-Y)—>Y)

N———

defined by (e.z).y = @Q.(y,2) = <.z ; or, equivalently, € = I.
There is a link between the evaluation and the argument-swap, as follows

(5) g.z — £.2 a9

Assume 1 : Af(IN — INtree) — (IN — INtree) such that 7 = (+) orrather p = (v).

B A b £ 1]

p = ()
= { intro n , heading for fusion }
= {(2).0)}
(Ten*9 # ) = en.(v)
< { fusion }
(Ten® g H)o Af(en) = en o1
= { T y VOt C&lC.}
(1) Ton'y H o(emXen) = ene

Let us try to express the operands in the LHS of q as

Ton" = en.a and H .(emXen) = en.p

12



1

Indeed, (Ton®)y = 7n = 7°9.n = (€.n.7").y
More involved 1s the other one:

(H o (e.nxemn))y
= { vy € (IN — INtree) X (IN — INtree) ,say v = (v0,7) }
+ .((g.n).7v, (e.n).71)
= {def. €, 4 asinfix operator }
Y. H V1.7
[ # islifted version of -+ }
(Yo Hm)n |
= {def. €, H as prefix operator }
(emo H ).y

1

Hence

(1)
{ above }

(en.7)v(en. H) = eno
= { distribution }

ENo (T v H ) = en.t
< {exit n }

——

™ H = Y

i

This completes the proof of our claim (4).
Two intriguing questions are

e Can we give a generic solution for the catamorphisation of parametrised catamor-
phisms? Given a suitable setting we can, as will be demonstrated in the next section.

e We used H , the lifted version of -+ . Do there exist a setting and a theory for
lifting in general? Indeed, they do; but we don’t feel it i1s in a presentable form yet.

(Coming next in this theatre?)

4 Parametrised algebras and catamorphisms
A parametrised t-algebra for some (unary) functor f is a map
¢:Z — (At — A)

i.e. forevery z € 4, ¢.z: AT — A isa T-algebra. Such a ¢.2 induces a {-catamorphism
(¢.2) : L — A, where (L,in) denotes a fixed initial f-algebra. In other words, ¢

induces a parametrised catamorphism.

(?)op: Z - (L — A)

13



i,

Using the argument-swap ” 7, we see that
(?)ep: L — (Z — A)
has the right type for it to be a catamorphism, say (?). ¢ = (¢), where
b (Z > A)f = (Z = A)
Let us try and calculate 1 as we did in the former sections:

(7)o ¢ = (¥)
= { intro z , (5) }

(d.2) = €.z (¢)

= { fusion }

(99) .z . (e.2)f = €207

I

Here we are stuck! How do we reformulate the LHS of () such that we may "exit” z ?
In our example | was polynomial and we had an expresion for it, so we could express
(e.2)1 explicitly. L.e. there was a map ¢ such that, for every f, 9.f = f1. This seems
a strange identity: a functor always has an arrow-part, why denote it differently? The
question is: are we allowed to calculate with it inside the given category; or, is the arrow-
part internalisable? A functor with the property that its arrow-part may be represented as
an arrow itself 1s sometimes called strong, the theatre of operations should be a Cartesian
Closed Category. For a discussion of strong functors and examples see [3|. Assuming we
have such a setting and a strong functor, we resume our calculation

z = Y.z

= {exit z } {” 7 is an inversion }

@ .(pat.e) = ¢
This means that we have a general expression for ¢ , provided that the functor 1s strong

and assuming that (@ is an entity inside our categorical calculational system (strongness
of the exponent functor!). The argument swap in the expression may be pushed inside,
albeit (for the moment?) using pointwise arguments:

©-(patee) = @(¢"atoe)

here @ is the lifted version of @ : @.(9,;().2: = @.(8.z,x.z) . The pointwise proof is
left as an easy exercise for the reader.

The extra fun of this expression is that the leftover swapped arrow % . & is a natural
transformation that arises from a formalisation of lifting. Lifting is all over the place!

Although we didn’t need this general expression in our example, it might be useful for a
general theory on attribute grammar problems still to be developed.

14
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Neutral Suggestion

Lambert Meertens
CWI, Amsterdam, and Utrecht University

In the formalisms we attempt to create for program calculation a humble but important
role is played by what has been variously called the unit, identity element or just identity
of a (dyadic) operation. Richard Bird has used the notation :dg in several papers, and
Roland Backhouse has introduced the notation 1g for this in his unpublished Exploration
paper. Recently I noticed that Richard has taken to writing Og.

Many of the most important operations like 4+ and W are more of an additive than of a
multiplicative nature, and it is indeed perhaps a bit confusing to the innocent student if
1, = 0. On the other hand, if the operation is multiplicative, like x itself, and has a zero
element, then 0x = 1, as Richard’s new convention would have it, is equally confusing.

An identity element is also called a neutral element. This suggest the notation vg, from
the Greek letter nu, the first letter of the word “neutral” (which is of Greek origin). It

has the advantage that it is neutral with respect to tne perceived nature of the operation.
Then we have:

vy =[]

Vi == ()
Ve = 4

vy, = 0

Vs = 1

Uxo = \ig)

What about zeros (absorbing elements) of a dyadic operation? Turning to Greek we have
the adjective anabrotic, which means “gobbling up” (derived from bibréskein, to devour).
The word is listed in Webster as meaning “corrosive”. Unfortunately, unlike “neutral”,

this word is virtually unknown. Still, it shares its first letter with the common word
“absorbing”, and so we could use:

X = [
A = false
ax@ == Vy
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Lambert

Meertens, OWI & RUTU

February 13, 1941

rell known that any initial data type comes equipped with a so-called
map m nctor. We show that any such map-functor 1s the composition of two
functors, one of which 18 ~—closely related to— the data type functor, and the
other is —closely related to— the function u (that for any functor r yields an
initial F-algebra, if it exists).

EJM ﬁ he a ammmm MME F o -+ A be an endo-functor on K. Then ur denotes “the”
Ao, af 1t exasts. Further, F(K'} i1s the category of endo-functors on
, sual, natural transformations; and F,(K) denotes the full

) whose objects are those functors rF for which ur exists.
Mﬁ‘ m.amwmfmma%m F, 6 and bi-functor { we define the composition re by x{rc) = (z¥)c,
and we denote by r 1 ¢ the mono-functor defined by z(f {1 6} = zfF } r6. Object A4 when
| as a functor 1s @:ﬁ@ﬁm@ by 24 = A for any object r and fA = :d, for any morphism
wternative notation for A H is the ‘section’ A‘g ) In the examples we assume that
a form a pmdum and

& i o - T L
s Fal e e 3L 08 @ ?. R - G
e i W5 Thae i " he
g i

ﬁ%ﬁ“@ that by (1) we have uf : ¥¥r — F¥. (Some authors in the Squiggol community are

s n@ U; in) = (F*, ur).) The mmmaw of ¢ that has to be taken in the right-hand

¢oe : 6¥F — GMG; the typing ¢ : F* -+ G* is then easily verified. In order to
atisfies the two other functor axioms, we present a lemma first.
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Proof (Within this proof we use the law names and notation of Fokkinga & Meijer [1
The reader may easily verify the steps by unfolding f : ¢ LA ¥ into ¢i f = fri, and using
p:F— 6 = (Vf:ufrid=d¢ifac).)
required equality
= FUSION
(l ¥) : ¢ipe = ¢
<= NTRF TO HOMO, ¢ : F — G
(ol ) : e = 4

— CaTA HomMmo

I

true.

(End of proof)

It i1s now immediate that # distributes over composition. For ¢ : F — G and % : 6 — H
we have ¢ : F — H and

(@
— (Fl gi9ps )
= Lemma (3), noting that i un : H¥6 — H¥
 (Fl ¢ ps]i (o] i pn)
Pk,
It is also clear that id” = id. Thus, * is a functor, ¥ : F,(K) — K.

(4) Remark  Another corollary of the lemma is this: for ¢ : F - ¢ we have that ¢*: f is
a catamorphism whenever f is a catamorphism. (The typing determines that the former
is an F-catamorphism, and the latter a G-catamorphism.) ]

Let us look at some ¢ : F > G and see what ¢* is.

Example Probably the most simple, non-trivial, choiceis F,6:=1+ AXI1, 14 1Iand ¢
:= ¢d + 7. Notice that F* = the (set L of) cons-lists and prF = nil v cons, ¢* = the (set IN
of) naturals and uc = zero v suc. We find

¥ = (F|id +Fizerovsuc) = size : L — IN.
{1

Example Another non-trivial choice is F = ¢ = A + I, so that F* = ¢* = the (set of)
non-empty binary join trees over A, and ur = tip v join. Apart from the trivial zd : F — 6,
we have ¢ :=1id + XM :F - 6 where X = 7 a . We have

¢ = (id+ Witipvjoin) = X/ reverse.

Since _* i1s a functor, we have a simple proof that reverse is its own inverse:

18



reverse; reverse
T B M
= functor axiom
(& 6)"

easy: Xl = id
1d*
ud.

Notice also that by Remark (4), reverse; f is a catamorphism whenever f is. M

|

|

Example Let { be a bi-functor and let F = Aflandc = 1{1. Take ¢ = !fid : AT1 -5 111
Then

¢* = (At11!11:dip(171) = shape (= !-map).

Factorizing map-functors

Let t be any bi-functor for which p(A 1) exists for all A. Recall that the map-functor
induced by 1 , ® say, is defined by

A® = target of u(A71)
Fo = (At1 fridu(BiD) : A" — B

for f : A — B. We shall now define a functor ': K — F,(K) in such a way that composed
with * : F,(K) — K it equals the map-functor @ : K — K. To this end define

AT At
f'r = ftid : Aft1— Bf1 (Wlth(f"'zd)cmech)

for any f : A — B. (That f' is a natural transformation is easily verified; it also follows
from laws NTRF TRIV, NTRF ID, NTRF BI-DISTR from Fokkinga & Meijer [1].) Indeed

At = (Afp* = A7
fte = (ftid)* (At1 fridip(Bin)) = f~.

So w = tpu.

Remark It can be shown that ' is just curry(t). (Here curry(_) is the well-defined
functor from the category A X B — C to the category A — (B — C), where each
arrow denotes a category of functors with natural transformations as morphisms.) Thus,
given bi-functor §, we can express its map-functor without further auxibary definitions as
curry(t) composed with . O3

References
[1] M.M. Fokkinga and E. Meijer. Program calculation properties of continuous algebras. December 1990. CW], Amsterdam.
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Iranslation from

Maarten Fokkinga, Johan Jeuring, Lambert Meertens, Erik Meijer

November 9, 1990

Let AG be an attribute grammar, with underlying context free grammar G and
attribute evaluation rules A. The function that decorates —according to A— a
parse tree with attribute values and then delivers the synthesized attribute value of
the root node, is denoted [A] . We translate G into a functor F such that any parse
tree for G is an element of the initial F-algebra. The attribute evaluation rules A
are translated to a function ¢ such that (F| ¢) is, in a precise sense, equivalent to

[A] -

1 The translation

We begin by fixing some terminology and notations. Let AG be an attribute grammar.
We define

G = the underlying context free grammar of AG.

X = the type of the inherited attributes (explained in (2, 3)).
Y = the type of the synthesized attributes (explained in (2, 3)).
T = the set of parse trees for grammar G (explained in (4)).

A = the attribute evaluation rules of AG (explained in (5)).

the function that, given t € T and =z € X, {decorates tree ¢ ac-
cording to rules A when the inherited attribute of the root node of ¢
is set to 2, and } yields as result the synthesized attribute value € Y
of the root node of ¢; thus [A] : TxX — Y . (Explained in (6).)

[A]

|

In this note we construct a catamorphism for AG that is equivalent (equal) to [A] .
(Neither [A] nor the catamorphism is intended to yield a parse tree when given an actual
string. However, one can extend any AG to AG’ in such a way that [A4'] (¢,z) yields the
fully decorated parse tree; see Example 2.)

Plan We shall proceed as follows.

e First we show that we may assume that AG has a simple form, so that the actual
translation can be formulated without too many indices and the like.

20



ite gramimar For notational simphicity we make
of generality.

rminal a is produced only by rules of the form
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ipling the inherited attributes of each nonterminal, and
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be achieved for any pling
also the synthesized ones. Notice that a
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{“hiﬂ?@%d thanks:

i
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sequel we let P be the domain over which p ranges. Rule p determines a functor F,,
and all rules together determine a functor F and an F-algebra, as follows.

Fp = 1 if n = 1 and wvp is terminal; recall (1)
o = IX...XI (n times) otherwise. The product is 1 if n =0.
F = . PiLF

(T,in} = the/an initial r-algebra

in, = aneinj, :T'Fg—T" for all p |

in = VUp:in,, follows from preceding lines.

(1 is the identity functor, and 1 is the constant functor. Mono-functor FXé 1s defined by
z(FxG) = zFxzc for any type and function z. Similarly, (3 p :: Fp) = 2 p :: F, for any
type and function z.)

(4) Lemma There exists an embedding from the parse trees of G into (T',in).

Proof As we have not yet given a definition of (the algebra of) parse trees, we do it here.
A parse tree t for production rule p consists of an indication “ node, >> and n (possibly 0)
immediate constituents t,...,%,_1 such that, for all 7, ¢; is a parse tree for a production
rule that has v; in its left hand side. Let us use the notation “ node,(%o,-..,%tn-1)” for ¢.
Thus “node,” is made into a partial operation of type T™ — T . It is partial since the
arguments of operation node, have to satisfy a condition.

Now define function e: (7T, v p:: node,) — (T, vp:iny) by
e(nodep(to,. .. tn-1)) = iny(eto,...,€tn_1). Thus € is an fF-homomorphism from T to
T’ that has a post-inverse; it is an embedding. (Note that ¢ does not necessarily have a
pre-inverse, since not every in,(to,...,f,—1) € T’ satisfies necessarily the condition that
each ¢; has v; in its root. This happens in Example 2.)

In the sequel we identify ‘node, with in,. .

Attribute evaluation Consider again production rule p, now provided with the at-
tribute evaluation rules:

P U= Vg***VUn-1 with (f:gO)*”:gn-*l):

or shightly more suggestive (the A is explained below)

() p: u(Az,” f(2,9)) — - vilg(z,y), Ags) --

where y abbreviates (yo,...,yn-1), an abbreviation that is valid throughout the sequel.
The occurrences ‘Az’ and ‘ \y;’ are binding occurrences, their scope is the entire rule and
systematic renaming is allowed. This rule says, for a tree ¢ = inpy(Loy -..,tn-1) in which
every node has been assigned two values (called attributes), that

.f(m: y)
g:(z,y) for all 2

the second attribute of ¢
the first attribute of ¢,

I

|
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; the first attribute of ¢ and y; is the second attribute of £;. Now [A] is defined
e function such that

(t,z) = Let ¢’ be tree { in which every node has been assigned two
values (called attributes) in such a way that the first attribute
of the root of ¢ equals =z and all subtrees satisfy the above
condition (for the appropriate p). Then yield as result the
second attribute of the root of ¢’.

> that AG is such that a [A] exists; in the proof of Theorem (8) we shall further
> choice for {A] . The specification implies

ing(tor .- rtn1)s2) = f(z,y) where i i i = [A] (&, 9:(2, v)) -

ion suggests to compute the second attribute of any (sub)tree by “attribute
" within that (sub)tree; hence this attribute is called synthesized. Similarly,
on suggests that the first attribute of any (sub)tree is to be determined by the
e., by attribute evaluation in the enclosing tree or by the environment 1n case
-ee 1s the entire parse tree; hence this attribute is called inherited. As argued in
1s (2, 3), the typing within rule p (5)is:t z: X, y: Y™, f: XxY" —= Y, and
— X .

tion of the catamorphism Attribute grammar rule p (5) determines a func-
1d all rules together determine a function ¢ and a catamorphism (@] as follows.

ciyPno1) = (Az:: f(z,y) where i :: y; = ¢:i(9:(z,y))) possiblyn =0
: (X —> Y)” — X —Y
= (vp i ¢p)
: (X —=2Y)F— (X —-Y)
T"— (X —-Y).

t the where-clause defines y by recursion; this corresponds to the potential
in the attribute evaluation when [A] (¢, z) is computed as suggested by grammar

em [A] (¢,z) = (F| ¢) t=.

ty holds for all £ € T, not only for £ € T'. This is possible thanks to our
1 (2) that any node in a parse tree has precisely two attributes; these have not
d, and have been referred to as “the first” and “the second” attribute of the
e attribute evaluation rule (6). Also, we have assumed in (3) that all functions
accept all kinds of values (though they may return a result in the summand
g inputs). The theorem could have been formulated as [A]" = (¢) , where -
= currying operation.

induction on the structure of ¢. Suppose ¢t = tny(to,...,¢tn—1). (Notice that
= 0 so that i, : 1 — (X — Y); this covers the so-called base case.) We
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(¢) iz

= case assumption on I

() (inp(to,-. . tn-1)) 2

= evaluation rule for catamorphisms

bp ((@D Loy ..., (@) En-1)
== unfold definition of ¢,

f(z,y) where ¢ :: y; = (@) & (g:(z,y))
(x) = induction hypothesis

f(z,y) where i :: i = [A] (&, 9i(2,9))
attribute evaluation equation (7)

[A] (in,(to, .- - tn-1), )

case assumption on ¢

[A] (2, z).

In step (%) of the calculation it turns out that the circularity in the attribute evaluation
and the mutual recursion in the definition of ¢, should be resolved in the same way. For
example, if in the definition of ¢, the y; are defined to be the least fixed points of the
equations % :: ¥; = ¢:(g:(z,¥)), then so must specification (6) of [A] be understoed. O

|

{

2 Examples

Linear parse trees Consider the following attribute grammar AG:

p - u(/\:r:,fy) — u(gma AY)-
q: u(Az, hz) — .

‘T'his is a very simple example since there is no circularity at all. The parse trees are linear.
Attribute evaluation of a tree £ of depth n gives (f" o h - g")z as synthesized attribute
value of the root node when its inherited attribute value is set to . In other words,
[A] (t,z) = (f" ch-g™)z. Our construction of the previous section gives

F = I+1

T’ =~ N

#($) = (Ao fy wherey = ¢(g(2,))) s0 ¢, = (g 0= f)
iq() = ‘(;m :: hz) so ¢, = h°

' = p V Pq 0@ = h*
(Fl ) : NS (X-Y) o ¢=lgom )Y
(80t = (9o f)e-ro(go f)-h = frehogt

where, in the last line, t is assumed to have depth =, i.e., t = (tnge---oin, cing)().
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Binary parse trees The following attribute grammar works on binary (parse) trees
with numbers at the tips. The attribute evaluation yields (as synthesized attribute value)
a tree of the same shape as the input parse tree ¢, having all tip numbers equal to the
minimum tip value in ¢. This function has been discussed by a number of people, e.g.,
Bird [1], Kuiper and Swierstra [3, 4], Fokkinga [2]. We use + as join-operation of trees, [.]
as tip-former, | as minimum-operation, and we let s,t vary over trees and k,m,n over
numbers. The type of trees with numbers at the tips is denoted Nx. Let us first present
the attribute grammar in the conventicnal form, i.e., not yet simplified.

D u(t) — v(m, Am, At).
g : v(Ak,min,sHt) — v(k, Am, As) v(k, An, At).
Ty o v(Ak,1, [k]) — 2. for all numbers ¢

In rule p we see that the (synthesized) first attribute value of v is specified to be equal
to the (inherited) second attribute value, and in rules ¢ and r» we see (by induction) that
the second attribute value of v is specified to be the minimum of the input parse tree. So,
eventually, in the third attribute value of v the required tree is delivered. (Kuiper and
Swierstra [3] need ten lines for this grammar.)

Nonterminal « has no inherited attribute; it may considered to have a “nullary” at-
tribute of type 1. Rather than taking X =1 + N for all inherited attributes, we give u
a dummy inherited attribute of type IN; this avoids the introduction of many injections
and inspections. Also, we give u an extra synthesized attribute, and then tuple the two
synthesized attributes everywhere giving values of type Y = INXINx; in order to avoid

many projections we use “parameter matching” at the binding lambdas. Thus we get the
following attribute grammar that satisfies the assumptions (1, 2, 3):

D : u(Ak, (m,t)) — v(m,A(m,t)).
q: v(Ak,(mln, s4t)) — v(k, A(m,s)) v(k, A(n,t)).
r; v(Ak, (2, [k])) — <. for all 2

The construction of the catamorphism gives now the following.

-
T!
Pp(¢)

I+ X4+ (D2 1)
the carrier of the initial r-algebra
(Ak :: (m,t) where (m,t) = ¢m)
(Ak :: (mln, sHt) where (m,s) = ¢k, (n,t) = k)
(Ak :: (2, [k])) | for all 2
Dp V Py v (V2 i P,;)
: (N — NxNx)F — (N — INxINx)
(o) : T — (N — NxNx*)

Il

o5 9
o, P
=

S
||

Notice that, as you can see from the equation for F, 7' not only contains binary trees (as
each parse trees is), but also trees in which a node has just one immediate constituent;

these trees can not result from parsing by the underlying context-free grammar. See also
the discussion just following Theorem (8).
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rom largest to maximal

Richard Bird
Programming Rescarch Group

11 Keble Rd. Oxford. OX1 3QD

January 28, 1991

Introduction

At the recent jubilee celebrations for Lambert Meertens I gave a talk in
which, partly as a joke, I proved that the longest subsequence of a sequence
15 the sequence 1tself. Here 1s that proof:

L_]#/ . Hlﬂ)ﬂ
= { definition of subs, with U ¢ = {[]. lal} }
U/ - X/ - Ux

semiring lemma

-H—/ 'U#/**U-*

|

|

map distributivity }
H/ - (Uy/ - U)r
defimition of U}
"'H”/ 1

I

1

identity homomorphism on lists |}
1d

Our mterest here is 1 the step labelled “semuring lemma™. An algebra
(A,®,®,0,1) 1s a semiring f: (1) @ 1s associative, commutative, and 1dem-

potent, with i1dentity element 0; (i1) ® 1s associative with identity element
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Ut & distmbutes over ) (v) 0 1s the zero element of ®. The wmiﬁnﬁ
lenmn states that (A4, &, ®@. 0, 1) is a semring if and only of

T

c [{4}] - 4

a7

There are many examples of seminngs. including
/RS I N U

* L

which arses 1 the maxinmm segment sum problem, and [ clammed

g ]; ﬁg J‘ . L & L { % }

The step labelled “seminng lemma™ e the derivation s just the assertion

that the above structure 15 mdeed a semirng.
But, as I fully realised at the time, the clann s not quate right. There

15 no problem i finding a total ordenng < g that respects length and 1s
such that +# distributes through Uy, For example, define r <4 y to be
true if #r < #y or #r = #y and r is lexicographically less than y. It is

easy to check that the semiring conditions hold. so our proof goes througlh.
However, there are many refincinents of < 4 for which +# does not distribute
over Lig. What happened to these in the proof?

There are two answers, The first is that the step labelled “semiring
lemnma™ s valid not because of the semiring lerma., but because the identity

holds provided @ is selective (e, & @ y is either r or y) and ® distributes
over @ at least on the range of F. More precisely, supposing F : B — { A},
we require

® to be associative (for the reduction ®/ to be defined over
lists}), @ to be associative, commutative and idempotent (for @/ to be
defined over sets), @ to be selective, and

for all z. y, 2z in the range of F.
These conditions hold for all refinements of Lig in our proof because
U returns sequences of different lengths. So everything is OK. Although I
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knew that this was the real truth of the matter and was not particularly
pleased with 1t, I was not that bothered either. T have recently come across
similar examples where the use of an identity 1s valid onlv in the context of
the whole expression. In other words, although we would very muceh like to
describe our rules 1n terms of general algebraie properties, this s not always
possible. This problem, whiclh Lambert has called “squiggoling in context™.
1s most acute when we try and express all our identities at the composition
level. Phrasing an cxpression usimg functional composition means we lose
the context of the particular arguinent to which the expression s applied,
and so the context conditions which may be crucial become difficult
tO eXPress.

As I said above, there 1s a second answer. The standard response of
the new breed of squiggolists to such problems 1s to sav that the problem
goes away 1f one replaces our functional caleulus by a relational one. Since
Oege de Moor has shown that our functional constructions can be extended
in an essentially unmque way to relations. we can contine to use the sane
forms of expression as betore but just mterpret themn as relations. The only
difficulty 1s that some equations become meguations (and so some identities
hecome midentities?).

In the present coutext, the programune of work would be to formalise the
distributivity conditions of a semiring as a property of relational operators
and then see if essentially the same proof goes through. This seemed to
require expressing distributivity i variable free form. so that the result
could be lifted from functions to relations. Lambert and I tried this for
a short while the dayv after my talk. but we were both tired and did not
pursue 1t in any detail.

A good job too, for the real solution 1s much simpler, one that mvolves
both relations and functions but one that does not insist on 1dentifyving the
two. Actually, the only kind of relation we need 1s the concept of a partial
ordering.

Let C be a partial ordering on A with least element w. Further, let
(A.®.0) be a monoid 1n which & 15 monotonic under L, 1.c.

tCy = 29z0y@z AN z@xz L 2Dy

Finally, let M = M(E) be a function with type M : {A} — {A} that
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returns the maximal elements under . Under the above conditions on
and @& we have

I

M- Xg/ =M -Xg/ - Mx*

This 1identity replaces the semiring lemmea.,

Here 1s my new proof of the longest subsequence problem. Writing
M = M(<,) we have

M - subs
= { definition of subs, with U ¢ = {[].[e]} }

|

{ -+ is monotonic under <y |}

J’M X"H"/ '.«ﬁM* ‘ U*

|

{ map distributivity }

definition of U and M |}
M Xy /- (a1 )=

1

I

map distributivity }

{

1dentity homomorphism on lists }

.aiM . ]. L)

I

one-point rule for M }

In words, we have shown that the set of maximal elements, under the partial
ordering that respects length, of the set of subsequences of a sequence is a
singleton set consisting of the sequence itself.

I have positive warm feelings about this proof. Of course, there is
nothing really new in it; for example M is just the relational interpretation



of Ly/. T also used the same 1dea about five years ago i the treatient of
the paragraph problem. Nevertheless, the reasonmg s condneted ennirely

at the function level and there 1s not a relation i sight.

31



