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This is the fourth and last issue of the first volume of the Squiggolist. The contents of 
all the numbers of the first volume is given on the next page. The Squiggolist is a forum for 
people who work with the Bird- Meertens formalism. It is meant for the quick distribution 
of short papers, summaries of results, or current points of interest. You cannot subscribe 
to the Squiggolist: either you receive it, or you don't. The Squiggolist has been quite 
succesful until now: the number of submitted papers keeps growing, and quite a few are 
reactions upon papers in previous issues of the Squiggolist. I will produce the next issue 
in September or October, so all papers sent to me before September will be considered for 
the r. .. :t isue. 

Submit your contributions (camera-ready copy or a k\TEX-file) in A4 format. They will 
be reduced to A5 (x 0.71), so use pointsize 12. There are no restrictions on the fonts used 
in the camera-ready copy: it may be k'TEX, handwritten or typewritten, as long as it is 
black on white, readable and large enough to be turned into A5. I will be the editor, and 
contributions should be sent to me: 

Johan Jeuring 
CWI, dept AA 
P.O. Box 4079 
1009 AB Amsterdam 
The Netherlands 
email: jt@cwi.nl 
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Yes, let's calculate 

Jan Kuper 
University of Twente 

May 10, 1990 

In this note we will present an alternative approach to a problem discussed and 
solved by Richard Bird in two papers, entitled: Shall we calculate? and Shall we 
calculate-II? ([l,21). 

We thank Maarten Fokkinga for his stimulating criticism on earlier drafts of this 
note. 

1 The problem 

In order to make this note self-contained we start with a description of the problem. 
Our description is a partial quotation from [l] . 

Suppose we want to group the red-headed members of a set of people 
into classes depending on their sex. 

One obvious procedure is first to take the subset of red-headed people 
and then do the grouping by sex. 

Here is another procedure: first classify the original set of people by 
sex, and then take the red-headed members of each group. 

Are these two procedures the same? Imagine that Alice and Diana 
have red hair, while Bill and Edward do not. The first procedure leads 
to the single component partition 

{ {Alice, Diana}} 

while the second procedure, as stated, leads to the set of sets 

{ {Alice, Diana}, 0} 

It is clear, therefore that we need to amend the second procedure by 
removing empty sets. 
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In Il l a general form of the problem is formalized by means of the equation 

Eqf · p<J = (f 0) <J· p<J* • Eqf (1) 

where p is an arbitrary predicate (above: p = red-headed), and Eq f is a function 
that groups a set into equivalence classes under the relation of having the same 
/-value (where f is some given function. Above: f = sex) . The task is to define 
Eq f and to prove (1) by calculation. 

In Il l and 121 Bird proves equation (1) for two alternative definitions of Eq f 
which we repeat here. In Ill the proof is based on the following definition of Eq f : 

Y~1z ¢} fy = fz 

equiv f x y (y~ I) <J x 

Eq 1 f x (# 0) <J equiv f x * Dom f 

where Dom f denotes the domain off . 
In [21 the following definition is used: 

{y I gy = d} 

(# (/*u) = l} 
l#/ · all q1 <J ·lnv(u/ ) 

Especially the proof in [21 is unexpectedly complicated. It ends with the question : 
"can it be simplified?" . 

In the remaining part of this note we will formulate some conceptual consider
ations which motivate a different approach towards defining Eq f . We will prove 
equation (l} using a rather succinct definition of Eq f and prove its equivalence with 
several other definitions, a .o., Eq 1 f . We will not prove (1) for Eq 2 f directly (as 
is done in [21} but instead we prove that Eq 2 f is equivalent to Eq 1 f . We do not 
claim that it leads to a shorter proof than presented in [2] (we can not judge that 
since the proof in [2] is not complete) , but we think its elementary steps as well as 
its line of reasoning are rather simple and we hope that the techniques used will be 
applicable in other situations as well. We do not give all proofs in detail, partly 
because of lack of space but mainly because we want to focus on the central ideas 
in the approach. 

2 Some conceptual remarks 

In this section we will give some conceptual observations which lead to a simpler 
definition and proof than given in [l] . The simplification is given in three steps . 
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Step 1. Consider from the introductory description the fragment "do the grouping 
by sex". In general, the result of grouping a set x of people by their sex is a set of 
two subsets of x : the subset of men and the subset of women. But what, if x consists 
only of women (men)? We think that in that case too the process of grouping x by 
sex may yield two subsets of x: x itself and the empty set. Hence, in the example 
above both procedures may lead to the result 

{ {Alice, Diana}, 0}. 

Consequently, the conclusion in [1) that "it is clear, therefore that we need to amend 
the second procedure by removing empty sets", may be replaced by the conclusion 
that the first procedure must be amended by adding the empty set. To our opinion, 
this conclusion is closer to the intuition behind "do the grouping by sex". Hence, 
equation (1) becomes 

E f · p<l = P<l* · E f (2) 

where E f x differs from Eq f x in that it may contain the empty set. 
It is immediately clear that - if we want to get rid of the empty set after all - both 

sides may be filtered by ( ;i0) . It is remarkable how much simpler the original proof 
given in [1) becomes: its length is reduced by about 50%. The only intermediate 
results used in [l) which remain necessary, are (2) and (7) (these numbers refer 
to [11). 

Step 2. Consider again the fragment "do the grouping by sex": according to the 
same point of view as referred to in step 1 there should be exactly one equivalence 
class of people for every sex. That is to say, there is a bijection between the range 
of a function f and the set of equivalence classes which results from dividing the 
domain of f under ~ 1 . Clearly, this bijection is given by Inv f. It can be elegantly 
used in defining E f: 

E f x = (xn · Inv f) • Rng f 

where Rng f denotes the range off . 
In order to prove (2) using this definition we need one intermediate result: 

(3) 

p<J•xn = (p <J x) n (4) 

Its proof is simple and left to the reader. Now the proof of (2) contains only 
elementary steps: 
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(E f ·p<l )x 

definition of composition, E f 
((p <J x) n •Inv!) * Rng f 

(4), associativity of composition 

(p<l • xn · Inv !) • Rng f 
•-distributivity 

p <l • (xn · Inv!) • Rng f 
definition of composition, E f 

(p<l• · E f)x. 

Step 3 . After groui,ing a set of people by their sex, we will know which equivalence 
class is the class of women (men) not only by its members, but also by the grouping 
process itself. Hence, the result of the grouping process naturally is an indexed set 
of equivalence classes, i.e., it is a funct ion from { male, female} to the set of (possibly 
empty) equivalence classes. The indexed E f is written as Ei f and its definition is 
simple: 

Ei f x = xn · Inv f 

It is possible to reformulate equation (2) for Ei f. In doing so, map must be replaced 
by composition: 

Ei f · p<l = (p<l ·) · Ei f (5) 

The proof of (5) follows exactly the same lines as the proof of (2) under step 2. 
Clearly, we have 

E f x = E1 f x * Rng f (6) 

The proof that (2) follows from (5) by using (6) is straightforward and left to the 
reader. 

3 An application to the definition of Eq f 
We return to Eq f, i.e., the empty set is removed (if present) as proposed by Bird . 
In the light of the foregoing a straightforward definition of Eq f is: 

Eq f = ( f0)<J · E f (7) 

We prove (2) using this definition : 
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Eq f . p<J 

definition of Eq f 
(#) <J ·Ef · p<J 

cf. Section 2 

(f 0) <J· P<l*·Ef 

9d = d implies (r' d) <J · 9* = (f d) <J · 9* · ( f d) <J 
as the reader may check easily 

(f0) <J · p<l* · (f 0) <J · E f 

definition of Eq f 
( #)<J · p<l* · Eq f 

Definition (3) of Section 2 suggests an alternative definition of Eq f in which the 
intersection xn "afterwards" is replaced by the restriction ~x "beforehand": 

Eq fx = Inv(! ~x) * Rng(f ~x) (8) 

where f ~ x denotes the restriction of the function f to the set x, i.e ., 

(! ~x)y = fy if y E x 
undefined otherwise 

In the remaining part of this note it is understood that Inv f d is undefined if 
d .f Rng f, i.e., Dom· Inv= Rng. (An alternative choice would be that Inv f d = 0 
ford(/: Rn9 f.) So here (8) is equivalent to the following concise definition: 

Eq f = Rn9 · Inv · f~ (9) 

Finally, we give a definition which is a simpler variant of a definition mentioned by 
Bird (in [11): 

Eq f x = equiv f x * x (10) 

We prove that these definitions (7 - 10) are all equivalent to each other and to Eq 1 f. 
All definitions (except (9) which is equivalent to (8), see above) are touched upon 
in one calculation . The proof of their equivalence to Eq2 f is postponed to the next 
section. 

In the following calculation as well as in the rest of this note, it is understood 
that x ~ Dom f. 
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equiv J x * x 

(11), see below 

(xn · Inv J • J) * x 

*-distribution, f * x = Rng(J ~ x) 

(xn • Inv J) * Rng(J ~ x) 

(12), see below 

Inv(! ~ x) * Rng(f ~ x) 

(12) again 

(#0) <J (xn • Inv J) * Rng f 
J * Dom J = Rng J, *-distribution 

(1 0) <J (xn · Inv f · J) * Dom f 
(11) again 

(1 0) <J equiv J x * Dom J 

The properties used in this proof are: 

equiv f x = xn · In v J · f 

and 

[definit ion (10) ) 

[definition (8) ) 

[definition (7) ) 

x n (Inv f d) = Inv(! ~ x)d if d E Rng(f ~ x) 
= 0 if d E Rng f and d (/. Rng(J ~ x) 

Their correctness may be checked easily. 

4 A sketch of the proof of Eq1 f = Eq2 f 

(11) 

(12) 

In this section we will give an outline of the proof that Eq 1 f and Eq 2 f are equiva
lent . The full proof requires a lot of calculation and may be found [3) . 

We introduce some abbreviations: 

Eql f X A abbreviates 

B abbreviates (all q1<J • Inv(u/ ))x 

Clearly, Eq 2 f x = !#/ B . Notice that if xis infinite, it is possible that Eq2 f xis not 
uniquely determined. In that case f may be such that all b E B are infinite. Then 
there may be b1 , b2 E B such that #b 1 = #b2 ( = oo) and yet b1 I b2 • Therefore we 
will suppose that xis finite (for a generalization towards infinite sets, cf. [3)). 

Now the proof of Eq 1 J = Eq 2 f runs as follows : 

60 



Eql f X 

definition of A 

A 

immediate 

1#/{A} 
if b E B and b -/- A then # b > # A, see (13) below 

l#/({A} u (-/-A)<1B) 

A E B, see {14) below 

l# / B 
definition of B and Eq, 

Eq , f X 

We have to fill in two gaps in the proof, i.e., we must prove: 

b E B I\ b -/- A implies # b > # A 

A E B 

To prove (14) we must prove two things {left to the reader, cf. [31) : 

u/A = x 

all q1 A 

{13) 

{14) 

The proof of (13) is more difficult. It also consists of two parts (suppose b E BJ: 

#b2'. # A 

#b = #A implies b = A 

{15) 

(16) 

In order to prove (15) and (16) we use a function h such that hu = v where u E b, 
b E B, v E A, and u <;:; v. Then h • b = A and we may use the following basic facts 
on magnitudes of sets: 

#b 2'. #(h • b) 

# b = #(h • b) iff h is injective on b, 

i.e.,ifflnv(h~b)-(h~b) = { ·H b 

Notice that the second fact is the "pigeon hole principle" which presupposes the 
finiteness of b (guaranteed by the finiteness of x) . 

Now (15) follows immediately from the first basic fact. With respect to (16) we 
remark that for any b E B 
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u/ · lnv(h ~ b) = Id A 

We may reason as follows: 

#A = #b 

¢} property of h 

#(h * b) = #b 
¢} basic fact, see above 

lnv(h~b)·(h~b) = { ·H b 

⇒ Leibniz 

u/ · Inv(h ~b) · (h ~b) = U/· ({·Hb) 
¢} property of h 

h ~ b = ldb 

⇒ immediate 

h * b = b 

¢} property of h 

A = b 

Except for the precise definition of the function h, this completes the proof of (16) . 
To define h, first define f (suppose u is a set such that #(/ * u) = 1) : 

f u = d iff / * u = { d} 

Finally, we define the function h: 

h = Inv(!~ x) · f 
The (calculational) proof that h has all the required properties is left to the reader 
and may be found in [3] . 

Remark The approach given in this note was motivated by a set theoretical way 
of looking at the problem. Its initial formulation was by means of logiuqs (a logluq 
is a symbol of predicate logic such as V, :3). The main problem was to reformulate 
it into a calculational format. 
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Calculation by Computer 

Paul Chisholm 
University of Groningen 

Email: paul@cs.rug.nl 

In recent years a great deal of effort has been expended on the implemen
tation of systems for interactive proof construction, or proof editors. Most of 
these systems fall into two main categories: those for handling goal-directed 
natural deduction or sequent-style logics, and more programming oriented 
transformation systems. The former category is typified by N uPrl or Isabelle 
where a goal is reduced to a number of simpler subgoals, and the process 
iterated until the subgoals become trivial. The latter style systems are con
cerned with the construction of programs from specifications via correctness 
preserving transformations (such as CIP-S or Affirm) . A common feature 
of most available systems is the rather poor interface presented to the user, 
making them difficult and frustrating to use. Certainly, the primitive inter
faces can be partly attributed to the fact that the implementors are mainly 
interested in the use of the formalism for constructing proofs, rather than in 
the presentation of proofs on a computer terminal. However, the principle 
on which these systems are built - that any proofs constructed be machine 
checkable - has a significant effect on how the user interacts with the system. 
One consequence is that proofs must be either forma!1 or sufficiently detailed 
that a formal proof can be automatically generated, often forcing the user 
to pursue uninteresting goals in excruciating detail; and the possible actions 
open to the user at any point tend to be somewhat limited. Attempts to 
overcome the complexity of formal proof have concentrated on automating 
the proof process, but the more work the system does the less control the 
user has over proof development. Two common problems in this respect are: 

1 In this context, we mean formal in the strict metamathematical sense 
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• the ability to introduce notational abbreviations is essential for prac
tical use, but the application of some automatic proof procedure may 
involve unfolding a number of notation instances during manipulation 
while the result is not folded using suitable notation. The user can, con
sequently, be presented with a structure which is considerably larger 
and more complex than that supplied as input, with a corresponding 
increase in effort required to interpret the result . 

• a proof procedure may be unable to completely prove a goal, but can 
present the user with a number of subgoals whose proof would establish 
the original goal, but the user may be left mystified as to how the sub
goals relate to the original goal. After all, we are not merely interested 
in having the machine say 'proved', the derivation itself is important. 

The cumulative effect of these problems is to discourage all but the most 
enthusiastic from using such systems. 

We are exploring an alternative approach in which fundamental principles 
are that the system be flexible and easy to use, that proof construction is 
a syntactic editing process ( as opposed to being driven by the rules of a 
formal logic), and that the user determines at what level of detail a proof is 
developed; the requirements of formality and correctness being subjugated to 
these goals. In essence, we want a system to mimic as closely as possible how 
proofs are developed using pencil and paper. After all, despite the effort that 
has gone into the implementation of proof editors, pencil and paper is still 
the first choice for most people; to them, the restrictions imposed by existing 
systems are simply unacceptable. It is unreasonable to expect any system 
to exhibit such flexibility, but this lack is offset by the advantages of using 
a machine - rapid and reliable copying of expressions, automatic application 
of transformation rules, generation of code for typesetting, etc. The price 
to be paid for this flexibility is that the burden of ensuring correctness of 
proof is placed firm ly on the user, though we do not regard this as a serious 
deficiency. 

The following proof segment typifies the kind of proof we are primarily 
interested in: calculational in style, rigorous but not formal. 

E( i : 0 ~ i < n + I : xi) 
{ range split } 

x0 + E(i : 1 ~ i < n + I xi) 
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{ x 0 = 1, dummy substitution } 
l+~(i: O~i<n: xi+ 1 ) 

{ xi+I = x * xi, distribution } 
1 + x * ~(i : 0 ~ i < n : xi) 

This is surely a proof which anyone with a little knowledge of arithmetic 
and the quantifier calculus would be perfectly satisfied with. Indeed, for 
some a single step together with the hint "quantifier calculus" would suffice. 
Now consider the formalisation of this proof segment. We do not know how 
many formal steps would be required, nor are we interested in carrying out 
a statistical comparison, but it would be necessary to formalise and prove 
properties about addition, multiplication, exponentiation, the quantifier cal
culus in general, and the ~ quantifier in particular. A considerable number of 
steps would be involved, yet little would be gained other than the machine 's 
seal of approval. 

At Groningen we are implementing an interactive proof assistant based 
on the above considerations. Below we very briefly describe the important 
features of this system. For those interested in further details, two reports 
are available: 

Calculation by Computer: Overview 

gives an overview of the facilities of the system, while 

Calculation by Computer 

is a detailed system manual. Contact the author for copies of these reports, 
and send a Sun cartridge if you would like a copy of the system ( which is still 
at an early stage of development and only available for Sun workstations). 

At the core of the system is an untyped >.-calculus with abstraction, 
application, composition, tupling, and tuple mapping as primitives. The 
user is free to declare new operators and introduce notational abbreviations, 
while infix binary operators may be arbitrarily sectioned to reduce the need 
for bound variables. 

The style of proof of primary interest to squiggolists is the calculational 
style displayed in the above proof segment, and the system is geared towards 
such proof structures, but a form of bottom-up natural deduction proof al
lowing the formalisation of contextual information is also possible. 
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The basic method for constructing expressions and proofs is via the fa
miliar structure editing paradigm: one builds up a structure by inserting 
templates for various forms of expression or proof at selected locations. Struc
ture editing is complemented by various primitive editing actions - such as 
distribution - for quick and easy manipulation. 

Before carrying out any proofs, the user will typically set up an environ
ment to tailor the system to the theory in which they are working. Such an 
environment contains three components: 

• a table of operator declarations. Such operators may be unary pre- or 
postfix, or infix binary ( associative, left associative, or right associa
tive). 

• the definition of notational abbreviations. The ability to extend the 
language of expressions to the problem domain is essential for effective 
calculation, and we allow user-defined notation which is both param
eterised and admits explicit manipulation of bound variables. Nota
tional flexibility is further enhanced by a character set extended with 
approximately 100 commonly used symbols. 

• the definition of transformation rules. A tool is provided allowing the 
user to install transformation rules, then apply those rules to extend 
a proof. Such application is performed by selecting the subterm to be 
transformed, then clicking the mouse over the desired rule in a window 
displaying rules. 

Although proof can be performed using rules, we should emphasise that in 
many situations such a simple approach is not successful: it is all too easy 
to become embroiled in minutiae in an effort to be highly rigorous, but con
sequently lose sight of our goal. It is possible, and, we believe, advisable to 
perform some ( or even all if context so-determines) steps simply by syntac
tically editing the expressions involved. In fact, much of our implementation 
effort has gone into ensuring that syntactic editing is quick and easy. 
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Selector Guards 

Maarten M Fokkinga 

Centre for Mathematics and Computer Science, Amsterdam 

University of Twente, Enschede 

The notion of selector guard is defined and some of its properties are investigated. 
A selector guard is a function that may be used as any other function; in the context 
of a selector it behaves as a "guard": it takes care that certain values will not be 
selected by the selector. 

Selector guards are more flexible than constructions with a guard on a fixed 
position like guarded commands and McCarthy conditionals. Some filters may be 
replaced by mapped selector guards, and this has calculational advantages. 

1 Motivation and Origin 

Consider the following problem, which is an abstract version of a derivation step in 
Fokkinga [2]. Let a E Nat and s E Nah and suppose s is ascending. It is required to 
compute 

T#/ •(a<• last)<l • inits+ • s. 

Function inits+ yields the set (or bag or whatever) of nonempty initial segments of its 
argument sequence, and last yields the last element of its argument sequence. No doubt, 
anyone who understands the formula, knows that the outcome is either s itself, namely 
if it is nonempty and satisfies a < lasts , or else T#/0 (whatever that may be) . The 
problem is: can we generalise this result and prove it calculationally? 

My own attempt was as follows. First observe 

• Ascendingness of s means that last is 5c# -+ 5c monotone on inits+ s 
(i.e., for x,y E inits+ s:: x 5c# y => lastx 5c lasty) . 

• Section a< is 5c -+ => monotone 
(i .e., for x,y: : x 5c y => (a<x => a<y)). 

• Hence a< • last is '5c# -+ => monotone on inits+ s. 

Now try and prove the following theorem. 

(1) Theorem Suppose pis 5c -+ => monotone on A . Let T denote T 5 . Then 

T/ · p<i·A (id~ p ~ w•) · T / · A 
TI . p<l . T . TI . A. 
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Here ... <l ... f> ... means ... if ... else ... , and w abbreviates T / 0. The second right hand 
side is just a calculational more attractive alternative for the first one. Function T is the 
singleton former. 

No doubt, the theorem is true. But how do we prove it? One method is to use the 
Unique Extension Property (or Induction). Thus it is sufficient if we can show that 

1. /hs · T = rhs · T on A, 

2. both lhs and rhs are U -, T promotable on A, 

where lhs and rhs is the left hand side, respectively right hand side, of the claimed 
equality without ' · A'. Part 1 is easy, and the promotability of lhs is immediate by the 
form of the expression. With some case analysis one can also show that rhs is U -, T 
promotable on A. 

However, I do not like this proof. It is not calculational. Moreover, the right hand 
sides of the equality of the theorem are ugly. Can't we do better? Yes, we can. Selector 
guards provide the solution. 

2 Definition 

A selector is a binary function (operation) EB satisfying the so-called selectivity property: 
xE!)y E {x,y}. Thus a selector is idempotent. In this note we require selectors to be 
associative and commutative as well, thus excluding for example operation 'left one' «. 
We let D range over (associative and commutative) selectors. 

Let p be a predicate, and D be a selector. Then we define p? o as follows: 

p?o X X if px 
10 otherwise. 

When no confusion can result, we omit the subscript to?. Function p? is called a selector 
guard, or specifically, a □-guard. 

As an example of its use, suppose that l o is defined to be a zero of/, g and h. Then 

(I · p?) □ (g · q?) □ (h · r?) 

might also be denoted by p -> f □ q -> g □ r -> h, although the meanings may differ from 
each other if not p V q V r = true. Selector guards are just functions, so expressions like 

p?. I and p? · I · q? · g · r? 

make sense as well. This facilitates more freedom in expressing what you want to express. 
The requirement that l o is a zero off is not too strong a requirement, and can always 

be achieved. It simply means that we have to replace f by a new function f' defined by 
f' x = if x = lo then l o else / x . So even when f has already been defined for lo we can 
suppose that "lo is (locally!) made a zero of a particular occurrence off". 
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3 Some Properties 

The verification of the following properties poses no problems, and is therefore omitted . 

(2) 

(3) 

(4) 

p? · I = I · (p · !)? 

? is V -, D promotable 

? is /\ -, 0 promotable. 

In the first one it is assumed that 1 □ is a zero of / ( or more precisely, that l □ is made 
a zero of the left most occurrence of/ in the right hand side, as described above) . The 
middle one means that (p V q)? = p? □ q? and false•? = l □- The last one means that 
(p I\ q)? = p? • q? and t rue•? = id. From these it follows that p V q = p ⇒ p? □ q? = p? 
(and similarly for/\) . On account of the injectivity of? the converse implication is also 
true. Thus 

(5) 

(6) 
pVq=p 

p/\q=p 

p? □ q? = p? 

p?. q? = p? 

(Recall also that p V q p equivales q ⇒ p; the former is calculationally far more 
attractive. Similarly, p I\ q = p equivales p ⇒ q.) Another property is 

(7) pis D -, V distributive ⇒ p? is D -, D promotable . 

This property, in fact, encapsulates the case analysis mentioned in the proof sketch of 
Theorem {l). Therefore we shall prove it here in full. 

Proof Immediately from the definition of? we have that p? l e = l □ , independent of the 
value of p 1 □. Further, let x, y be arbitrary, and assume without loss of generality that 
x□y = x . Observe that py ⇒ px since 

py ⇒ px 

proposition calculus 

pxVpy=px 

premiss 

p(x□y) = px 

assumption x = x□y 
px =px 

Leibniz 

t rue. 

Now, consider the case that py holds. Then, by the above, px holds too, and : 

p?(x□y)=p?x □ p?y 

assumption x = x□y 
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p? X = p? X □ p? y 

truth of py and px 

X = x□y 
assumption x = x□y 

true. 

In case py does not hold, we have 

p?(x□y) = p?x □ p?y 

assumption x = x□y 
p? X = p? X □ p? y 

case assumption py = false 

p? X = p? X □ l e 

value l e is identity of D 

true. 

The converse implication of property (7) holds as well if it is given that p l e = false: 

pis D --+ V distributive = p? is D --+ D promotable 

provided that p l e = false . 

Finally, we mention the law that we will refer to as the Filter-Guard* exchange: 

(8) □;. f*. p<l = □;. f* . p?* 

provided f l e = l e. The proof is easy: by the Unique Extension Property the equality 
holds if both sides are join --+ D promotable (which is immediate from their syntactic 
form) and pre-composed with T they are equal (which is easy to check, using the proviso 
f l e= l e). 

Since ph is just a map, it is easier to manipulate than the filter p<J. TI-ue enough, 
several authors, e.g., Jeuring [3], observe that p<l = *I · (p<, · T)* (since p<l is join--+* 
promotable), so that 

□; . p<l 

- □/•*l ·(p<l·T)* 

= 0/ . 0/ * . (TJ<l. T)* 

- 0/ · (0/ · p<l · T)*, 

and, indeed, p? = D/ • p<l · T . But this observation has not suggested to investigate the 
promotion properties of p? and of? itself (which is the function >.p:: D/ • p<J • T). In view 
of the nice promotability properties, D/ • p<l • T deserves a notation of its own, which is 
what we propose in this note. 
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4 Application 

As an application of selector guards we show that the theorem mentioned in the intro
duction is really a triviality. Throughout the discussion we let T mean T < · First observe 
that , just by unfolding, -

(9) pis :::,; -+ ⇒ monotone = pis T -+ V distributive . 

More generally, any selector □ determines a linear order :::,; 0 given by x :::,; 0 y = (x = x□y), 

and we have T ~
0 

/ = □, so that 

(10) pis ::,;a -+ ⇒ monotone _ pis □ -+ V distributive. 

Proof of T heorem (1) 

i / • p<J • A = right hand side 

express right hand side in terms of selector guards ; 

filter-guard* exchange in left hand side 

Tl . p?* . A = p? . TI . A 

promotion theorem 

p? is T-+ j promotable on A 

property ( 7) 

pis T -+ V distributive on A 

observation (9) above 

p is :::;; -+ ⇒ monotone on A 

premiss of the theorem 

true. 

In this series of proof steps, the most inventive one is the first - introducing the selector 
guards. T he most complicated one is the proof of property (7) which we have given in 
full above. The remaining steps are trivial indeed. 

D iscussion Since monotonicity is a special instance of distributivity, in the sense of 
(10), and since - thus far- all calculational laws refer to the notion of distributivity 
rather than monotonicity, it is to be expected that looking for distributivity properties 
right from the beginning is at least as easy as sometimes looking for monotonicity prop
erties. Thus we are led to reformulate Theorem (1) in terms of distributivity properties 
of p. Moreover, now that we have introduced selector guards, and know that they are at 
least as easy to manipulate as filters, we use these in the formulation too. Generalising 
a bit, we come to the following triviality: 
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(11) Theorem Suppose f and p? are □ -> □ promotable (where we know that for the 
latter it suffices if pis □ -, V distributive). Then 

0/ · f* · p?* = f · p? · □/ . 

Obviously, this claim - although it is true- is not worth the status of a Theorem. It is 
merely an application of the Promotion Theorem. 

5 Conclusion 

The idea of "guard" is not new. As early as 1972 De Bakker and De Roever [l] use partial 
identity relations p?', i.e., p?' c:;;; I, to describe various programming language constructs 
(like conditionals and repetitions). Recently, Malcolm [4] uses this very construct in the 
derivation of a program: the guard is used to record context information. However, as 
Peter de Bruin has remarked, the relational guard p?' can not be used in a filter-guard* 
exchange, since with the relational interpretation we have p?'* = (allp)?' and this is 
certainly not a valid equation for our p7* . For example, 

forR=(D/-(0=)?'*) wehaveNOT OR[0,l] 

for f = ( □/ -(0=)? *) we DO have o=f [0, l]. 

Meertens [5] has introduced a notion of functional guard p? but only for the inde
terminate choice selector O. The novelty of our concept is its relation to a particular 
selector, so that in particular the filter-guard* exchange law is valid. 
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Soft arrays 

Alan Jeffrey 

Programming Research Group, Oxford 

In A Theory of Arrays for Program Derivation (Chris Wright, Oxford University, 
1988), arrays are defined as an initial algebra. Whereas *-lists are the initial 
mono id, arrays are the initial binoid. A binoid on Ct is an algebra ( X, EB, 0, !) 
with carrier set X, embedding / : Ct -+ X and associative operators EB and 0 
which abide, that is: 

(wEBx)0(yEBz) = (w0y)EB(x0z) 

For example, (N, +, +, K1 ) and ([a],*,~,[·]) are both binoids on a, and the 
algebra of arrays ((a), e, ¢, (·)) is the initial binoid. 

Unfortunately, e and ¢ are partial operators, and so we need some rather 
messy constraints that say when x e y and x <I> y are defined. If we define width to 
be the homomorphism from ((a), e, ¢,(·))to (N, • ,+,Ki) then x e y is defined iff 
width x = width y, and similarly for ¢. 

All this is rather ugly, so I wondered what would happen if we made e and ¢ 
total operators. So, define a total binoid on Ct to be a binoid on a, (X, EB, 0,/), 
where EB and 0 are total. Then define ((a),+, ♦ , ( ·)) to be the initial total binoid 
on Ct. We will call this algebra soft arrays, for reasons which should become 
apparent. 

Unfortunately, soft arrays aren't the same as arrays. Consider the soft array 

(
_·l· l·i · I al· 
· I b I· 
• I · I · 

where'·' just represents an element whose value we don't care about. This is just 
a pictorial representation of 

((·) ♦ (·) ♦ (·)) + ((·) ♦ (a) ♦ (·)) + ((·) ♦ (b) ♦ (-)) + ((·) ♦ (-) ♦ (-)) 
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Then using associativity and abiding of + and ♦ we can show 

(
_·1·1·) ·Ia I· 
· I b I · 
·I· I · 

( : '. ~ b; . ) = ( . I 
1
,; .I,-) (= a; b =) 

· · 1 · -:- I · I · · · · 

(
~ I · I ·i (-: it:) -lalbl· Ta-.-
· I· I~ -- 1---

(
_·1·1·) · I b I· 
·Ia I· 
·I· I· 

In fact in any rectangular soft array, we can move around any elements that aren't 
on the border. However, the borders remain fixed-this can be shown by defin ing 

• top is the homomorphism to ([a-],<,*,[·]), 

• bottom is the homomorphism to ([a-],~,*,[·]), 

• left is the homomorphism to ([o], *, <, [·]), 

• right is the homomorphism to ([o], *, ~, [·]). 
As top, bottom, left and right are homomorphisms, they are well-defined , so the 
borders of any soft array are fixed. Similarly, bagify is the homomorphism to 
(Io 5, 1±1, 1±1, I· S) , so the bag of elements a soft array contains is fixed. 

So, any rectangular soft array can be defined by its borders and its elements. 
Unfortunately, this is not the case for soft arrays in general, as 

(-1~1 · l~I -) 
and 

(-1~1 · l~I -) 
aren't the same, but have the same borders and elements. In fact, I don't know 
what the intuition for soft arrays is, or any uses for them. J u~t about the only 
thing we know is that they aren't arrays, so arrays will have to stay partial. 
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Balanced Binary Trees 
as a 

(Partial) Free Algebra 

Jeremy Gibbons 

1 A little bit of type theory 

In [BCMS89], Backhouse et al. give two classifications of types. 

• A type can be a free type, or it can be a congruence type. Free types are 
initial algebras. There are no algebraic laws unifying terms - there is an 
injection between 'terms' which can be built from the constructors and 'el
ements' in the algebra. Peano numbers and 'cons' lists are examples of free 
types. Congruence types, on the other hand, have some additional laws uni
fying terms; the mapping from terms to elements is surjective but no longer 
injective. For example, the type of 'cat' lists or monoids is a congruence type. 

• A type can be constrained (also called a subset type), or it can be uncon
strained. Backhouse has described a subset type as a type 

in which elements of the free type are restricted to those satisfying 
some given property 

though presumably one can also have a subset congruence type. (It is a pity 
that subset types are not quite those in which the mapping from terms to 
elements is no longer surjective.) The type of even naturals is a subset type 
of the type of naturals; they are the natural numbers which enjoy the 
property of being even. 

In constructive type theory, the context of [BCMS89], all functions and construc
tors are total, but in a context which allows partial types we can differentiate 
further: 

• ( the constructors of) a type may be partial or total 

78 



Ba.lanced Binary Trees J eremy Gibbons 

The difference between a partial free and a subset free type, and indeed the property 
that makes subset types difficult to work with and algebraically undesirable , is that 
the subset type doesn't have its own constructors; an element of a subset type is not 
necessarily constructed from smaller elements of the same type. In some cases, it is 
possible to reformulate a subset type as a non-subset type; this immediately makes 
it easier to work with, since we can operate directly in the algebra of interest. Take, 
for example, the type of even (natural) numbers used above. The even naturals are 
isomorphic to the (even and odd) naturals; they can (naturally!) be constructed 
Pea.no-style from the const ructors zero and add two, which form a much simpler 
basis. 

2 Balanced trees 

We turn now to our area of real interest, trees. A balanced tree is a ( not necessarily 
binary) tree such that the depths of any two of its immediate subtrees differ by no 
more than 1 . Equivalently, its depth is no more than 1 greater than its 'proximity ', 
the shortest distance from the root to a leaf. 

We use leaf-labelled binary trees for a concrete example to discuss in this note, 
but the following applies equally well to any kind of tree. As a subset type, the 
type baltree o. of balanced binary trees is given by 

.o. o. -+ baltree o. 
± (ba ltreeo. x baltreeo.)-+ baltreeo. 

constrained such that the condition a ll balanced · subtrees is satisfied, where 

ba lanced t = depth I - proximity t ,;;;; 1 

and subtrees is as you might expect. 
Now, consider the further restricted type baltreen o., 'balanced binary trees of 

depth n '. These are trees t such that 

all balanced (subtrees t) /\ depth t = n 

You could think of these trees as forming another subset type of the type of binary 
trees. Alternatively, you could think of them as being constructed without any 
constraints from the operators 

.o. o.-+ baltree0 o. 
± (baltreen o. X baltreen+l o.)-+ baltreen+2 o. 
± (baltreen o. X baltreen o.)-+ baltreen+l o. 
± (baltreen+l o. X baltreen o.)-+ baltreen+2 o. 

The equations for ± can in turn be interpreted in two ways. Either they specify a 
single partial constructor, which combines only compatible subtrees, or they specify 
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a ( countably infinite) family of total constructors, constructing left-, not- and right
squint balanced trees for each natural height. Either way, the disjoint union' baltreen 
for all natural n' is isomorphic to the type baltree, and is a free type (either partial , 
or with an infinite basis). 

The important point is that balanced trees can be constructed from smaller 
balanced trees. 

3 Coda 

What I would like to know is 

• Is this well known? In [BBMS89], height balanced trees are given as the 
example of a subset type, which suggests that this is not the case. 

• Is it at all useful? 

• What are the ramifications of making the constructor partial? Or of having 
a type with a (countably) infinite basis? 

• For how many more constrained types can this be done? 
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Tupling and M utumorphisms 

Maarten M Fokkinga, CWI, Amsterdam 

We prove, in a very general setting, two folklore theorems about tupling, one of 
which involves mutumorphisms, which generalise both cat a-, para- and Malcolm's 
zygomorphisms, and have useful properties for calculation. 

* * * 

Throughout this note we let F be an arbitrary functor, and we let (L, in) = µ(F), the 
initial F -algebra with constructor in E L <- LF . An F -catamorphism is denoted Q¢,D 
where ¢, E A <- AF; it is the unique function f E A <- L satisfying ¢, • /F = f • in . 
The tupling / fr g of f and g is defined by (! fr g)x = (Ix, gx). Further, (! II g)(x, y) = 
(fx,gy), and «(x,y) = x and »(x,y) = y . 

(1) Theorem 

Proof An easy calculation, using the catamorphism property in the first step: 

Q<t>D * Q'I/JD . in 

(¢, . Q¢,DF) * (7/J . Q'I/JDF) 

¢, 117/J · Q¢,DF * Q'I/JDF 
¢, 117/J · ( « · Q¢,Dfr Q'I/JD)F * (» Q¢,Dfr Q'I/JD)F 

¢, 117/J . «F * »F . (Q<t>D * Q'I/JD)F 

Hence, by the catamorphism property, the equation of the theorem holds. 

* * * 
We say that f is F -catamorphic modulo g if for some ¢, 

¢, • (! fr g)F = / · in 

which we denote by f : ¢, [ in mod g. Similarly, g : 'ljJ [ in mod' f means that 
7/J • (! fr g)F = g • in. We call functions like f and g above mutumorphisms, since 
their essential property is that they are defined mutually recursive by induction on the 
structure (morphe) of the data of the initial data type L . 

(2) Theorem Suppose f and g are F -catamorphic modulo each other: 

f : ¢, [ in mod g I\ g : 7/J [ in mod' f. 
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Then f 1r g is a F -catamorphism; in particular we have: 

I=« · Qr/> 1r 'lf'D u = ». Q¢1l''lf'D . 

Proof An easy calculation, using the catamorphism property in the first step: 

/1rg=Qr/>1r'!f'D 

¢1r'lf' · (/'ftg)F=/1)'9 · in 
</> • (! 1r g)F = / • in /\ 'If' • (! 1r g)F = g in 
true 

So, any mutumorphism can be expressed as a catamorphism followed by a projection. 
The following facts, observations and corollaries can be proved very easily from the above 
theorem and from what we already know for catamorphisms, which is sufficient reason 
for us to omit the formal proofs. 

First we have that proper catamorphisms are mutumorphisms as well: 

{3) 

Using this we find that mutumorphisms generalise paramorphisms in that any paramor
phism is a mutumorphism as well: 

{4) [¢] = « • Qr/> 1r (in • »F)D i.e. , [¢]: ¢ f- in mod id{= QinD). 

The same holds with respect to the zygomorphisms developed by Malcolm in his forth
coming thesis: 

(5) {r/>,x)q=« · Qr/>1r(x · »F)D i.e., ( ¢, x)q : ¢ f- in mod QxD . 
Tupled mutumorphisms are useful in program derivation by calculation, since they have 
the following properties. (Notice that by the type and combinator calculus we have that 
any Qr/> 1r 'lf'D equals a tupling / 1r g for some f and g .) 

{6) 

First, the catamorphism property and the theorem gives us MUTUMORPHISM: 

¢ . (/ 'ft g)F = / • in 
'If' . (! 1r g)F = g · in 

Then we have the UNIQUE EXTENSION PROPERTY for tupled mutumorphisms: 

(7) f=h 
g=j <= 

/ : ¢ f- in mod g 

g : 'If' f- in mod' / 

h : ¢ f- in mod j 

j : 'If' f- in mod' h 

Finally, the PROMOTION THEOREM for tupled mutumorphisms: 

{8) 
/ : ¢ f- ( 1r T/ mod g 

g : 'If' f_ ( 1r 7/ mod' f ' 
<= 

and the 'follows from' is an 'equivales' if Q( 1r 11D has a right inverse (i.e ., is surjective). 
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