Founded 1989
Editor—-in—chief:
Johan T. Jeuring

general thesis

tion. “The
which I advance can only be

understood when one reads

atively, which is
only ap ‘an of it; not
that * ! point of
vie ‘nplica-
B _ - my

2, .

T

my work

tendency
avoid calculatm,. Q).
jects which I ti. 0‘

which, I recogmzed, 1. Q

surmountable difficulty
those who would want
proceed generally with the
material that I treated.”

E. Galois, Preface, 1832.
(Translation J. Gray) In:

Fauvel and J. Gray. The

History of Mathematics: A
Reader. MacMillan Educa-
tion Ltd., 1987.

not promrly distribu
telecommunication

COInN-~-
keep complaining
about the distribution of
operators. Though the situa-
tion seems to be less urgent
than at the time of appear-
‘ance of the previous issue of
this newspaper, some Ccom-
panies have announced meas-
ures. These measures might
be successful, as shown by a
~company from Groningen,
~which, together with its rela-

panies

tions, has tackled many of
the problems caused by the

malfunction of dlstnbuuVuy
with success. -

Squiggoling in Context

X
.@rz?
,Cv
X.)O
-
o Q

em soid. U irecht Umw:r-
sity has sold the transforma-
tion system built by the
Computing Science depart-
ment to Volcam bv for

1.50,000. Both parties were

very happy with the deal:
Utrecht University because
the system had been built by
4 student who paid for rather
‘T got paid for butldi:
'stem, and Volcam bv
according {0 a
:: "Program
" is the future,
ant to mi

{&Qr
4

¢ 6

&

—An exercise in nub theorv
Johan Jeuring

The Largest Ascending Substre

Grant Malcolm

B . 1 e i , H AP) '

" ' il o i s R Fob .-'
. ' ok i 1] Erfes. i -|!

. -._I'r.ll.-: L AT -y LA . b : e i ¥ =] BRI

) X Ao i £ . ’ "o e
P e . : ;
LR T . Heng .
g e e T Bl ey gon 8,
AT A Ol
. .- L v Y. N

I‘.hc.m were
then there were binoids.
Now we know about
greedoids t0o. Richoid Boid
(of Oxfoid University) has
emplotd several students on
the matroid problem. “l en-
joud the work, although de-
vord of success, and this an-
noid me; 1 convoaid my feel-
.. ings to Richoid, and took up

Twi a Job m the city (Lloids)”

-~ aiig one student said. Paranoid,
oo Boid supploid unalloid praise
of the Matroid. “Years of
work have been destroid, and
we are left with a void, which
having toid with the ideas 1
was keen to avord. 1 reloid
too much on others, and this
deloid results.” Boid 1s un-
dergoing Froidian analysis.

o - |
Nl

. Yhe complete arucle is avail-

* on celluloid, in the form

~head projector slowds
.son Wesley]

Rk
4
1
b
o L A P
i
!
‘¥

L. @f- (8-)

2. h-gxx*-tnits

3. Suppose T = H#/ - f* - tails
Rewrite 4/ - f* - segs

address: Centre for Mathematics and Computer Science

Dept. of Algorithmics & Architecture
P.O. Box 4079
009 AB Amsterdam

The Netherlands

This 1s the third issue of the Squiggolist. The Squiggolist is a forum for people who
work with the Bird—Meertens formalism. It is meant for the quick distribution of short
papers, summaries of results, or current points of interest. You cannot subscribe to the
Squiggolist: either you receive it, or you don’t

Since until now the size of each issue is twice the size of its preceding issue, I expect to
send around thick books soon. I will produce the next issue of the Squiggolist in May or
June, so please send your contributions to me before the end of May.

Submit your contributions (camera-ready copy or a IATpX-file) in A4 format. They
will be reduced to A5 (x 0.71), so use pointsize 12. There are no restrictions on the fonts
used 1n the camera-ready copy: it may be IATEX, handwritten or typewritten, as long as

1t 1s black on white, readable and large enough to be turned into A5. I will be the editor,
and contributions should be sent to me:

Johan Jeuring
CWI, dept AA

P.O. Box 4079

1009 AB Amsterdam
The Netherlands

email: jtQ@cwi.nl

i L] .]
; gf’ 3 @"" :.‘eﬁ%ﬁfﬁ) ?@““ ™ -.#""&p}ﬂﬁ”
L0 AT e
tizn o0 i LR SR 4 LRI L TR - S

L
(AR, . : -I‘i:. oW , -5 e o, El . ey , g L P S QT R THIC
7 S ki el bk @ b gs, gy, gk %%{i}%? % i %% AT oY 8 %fp“ % %‘p n??t:fi '{ﬂj
f ' L ’::;{i,'-. e B 'r||--| ﬁr:-h L."é'EEJ'-"} P %1‘ é .:'.. -'.?#:Ti.‘ '.-'“ h 5! #mf?l"};i N lil:["f.iu':"\:-'I n E# R ”"I’Iﬂ ::l}-l + I'l’-'.'.f'll"li - {ﬁ' ::{'_'J%J' ?f] g_&'.#:‘i' f 'g"' .hli't

FhH i n o

ﬁy gﬂxtﬁ.. T Il '-“;';EE",’#"F..}" e '!:_F"HE‘-‘E s

’13{5. :i‘gll : T’:f} Hg:_ k: ﬁ’.“f ik o i i f‘.#
‘: o u t [:f,',. B B I

Roland Backhouse
Grant Malcolm

Groningen University

In this note we present a proof of a theorem to be found in Ehrig and Mahr [3].
The theorem states that a relation constructed from a given function is a congruence
relation iff that function is a homomorphism; we go on to generalise this result to the
relational homomorphisms treated by the first author in [1]. Specifically, we prove
that a congruence relation can be constructed from a relational homomorphism. Our
construction generalises that of Ehrig and Mahr. The significance of this note lies
both in the economy of our calculations and in the novel use we make of weakest
prespecifications.

We have been unable to extend the theorem to an equivalence: we offer the remaining
half of the equivalence as a challenge to the reader.

We consider a type 7 defined according to the paradigm 7 = u(7:f), where F is a
relator (such types are special cases of “Hagino types”, details of which may be found

in Hagino [4]). For the purposes of this note, the important properties of a relator r are
the following.

e if v is a type, then «oF 1s a type;
o if f € a — [1s a function, then there is a function fr € afF «— 0F;
o if R € a« ~ 3 1is a relation, then there is a relation RF € aF ~ [F;

¢ RF o SF = (R-S)F, for R and S either functions or relations (in fact, we shall
adopt the position that functions are special cases of relations, with the property

that z(f)y = =z = f.y: hence composition of relations and of functions is the
same thing);

e IFr = I, where I denotes the identity relation of the appropriate type;

o If R O S, then RF DO 5F; and

e (RF)v = (Ru)F, where Ru denotes the reverse of relation R; i.e., for all z and y
of the appropriate types, £{Ruv)y y(R)x.

The type 7 can be viewed as the least fixed point of the relator f, whose constructor
1s the total function 7 € 7 — TF. The type enjoys the following unique extension
property: given R € 3 ~ [3F, there is a unique relation (R]) € 8 ~ 7 which satisfies

(1) (R) o T = R o (R)F.

il

Moreover, if R is a function, so too is (R)).
As already remarked, we consider functions to be special cases of relations; their
additional properties are captured in the following definition.

Definition 1 (total functions) That f is a function is expressed by

(functionality) I 2 foefu
and that it is total by

(totality) fu o f) I.

Moreover, f is injective iff fu is functional, and f is surjective iff fu is total. O

Definition 2 For R€ a~ [fand § € v ~ §, therelation R «—— S € (a « 7) ~ (B8 — 6)
1S defined by: for all f and g,

f(R«— S)g = Reog 2O fol.

[

This overloading of the «— operator as a constructor of both types and relations has been
used severally by Wadler, de Bruin and Backhouse [6,2,1] to investigate properties of
polymorphic functions. Such overloading encourages us to confuse types and relations
yet further and write e € R if e(R)e.

The relational calculus allows us to formulate the following elegant definition of
congruence relations.

Definition 3 (congruence) Relation R € 7 ~ 7 is a congruence relation if it is an
equivalence relation and respects the structure of 7; that is, if R is reflexive: R D I,

transitive: B D R o R, symmetric: R = Ru, and furthermore 7 € R «— RF.
[

Elementary properties of equivalence relations will be assumed, namely: R is reflexive
iff Ru is reflexive, and R is transitive iff Ru is transitive.
We now prove the theorem on congruence relations from Ehrig and Mahr ([3], p. 77).

Theorem 4 (induced congruences) For total functions f € B « 7, fuo f is a
congruence relation if and only if f is a homomorphism.

Proof: by mutual implication.

(«=): It is straightforward to show that fu o f is an equivalence relation, for all functions
f; we prove only that a homomorphism f = ([g]) respects the structure of 7 i.e.,
T € (fuo f) «— (fue f)r. By definition 2, this means we have to show that

foofer 2 7o (fuaf)r

We calculate as follows:

fu o f o T

{ functionality of 7 }
T 0 Tw o fu 0 f Qo T

{ reverse }
re(for)oefor

{ (1), twice }
T © (gch)u 0 g O fF

{ reverse }
TofFuaguogch

{ totality of g; relators }

r o (foef)r

(=): Suppose now that fu o f is a congruence relation; i.e.

(2) fue foT 2 Tm(fucf)F,

We have to find g € 8 «— (BF such that (g]) = f. From type considerations alone we are
led to the following choice: ¢ & f o 7 o (fu)F and we must show

(3) foT = go fF

whence by the unique extension property, (g])) = f, and thus f is a homomorphism. We
prove (3) by mutual inclusion:

U

I

U

g o fF

1

{ defn. g }
foro(foo fr

{ relators }
f O 7T © (fuof)F

D { totality of f; monotonicity; identity }

for

So far we have not used that fu o f is a congruence; we do need that assumption to
prove the other inclusion:

g o fF
{ defn. g, relators }

fo’;'a(fuof)F

C { (2}
f o] fu 0 f o T

C { functionality of f }
for

Note that, in general, g need not be a total function, since it makes use of fu. However,
functionality of g follows straightforwardly from the property that fue f is a congruence;

a sufficient condition for g to be total is that f be surjective.
[

In the above, a congruence relation was constructed from a functional homomor-
phism; we now turn to the question of whether i1t is possible to generalise this to the
construction of a congruence relation from a relational homomorphism. We formulate
the generalised construction with the aid of the following definition.

Definition 5 For a relation R € a ~ [, the relation Rf € 8 ~ (3 is defined by the
following property: for all S,

R"I'QS = R;Rns
n

The relation R7 is the “weakest prespecification” R\R of Hoare and He Jifeng (see [5]);
its equational presentation lends itself well to the sort of calculational style of proof in
which we are interested.

Theorem 6 fuo f = f1.

Proof: we first notethat forall R, fuo f D R = f 2 f o R:
f 2R
= { monotonicity }
foof D fuofoR
=> { totality of f }
fuef 2 R
= { monotonicity }
fofuof 2 foR
= { functionality of f }
f 2R
Hence, by definition 5, fu o f = f1.
[

Property 7 Rf is reflexive.
Proof: R 2 R oI, hence by definition 5, BT 2 1.
[]

Property 8 R 2O R Rf.
Proof: R} 2 Rf, hence by definition 5, R O R ¢ Rf.
L]

Property 9 R7 is transitive.

Proof:
Rt 2 Rt Rf
= { defn. 5 }
R 2 Ro Rt Rt}
&= { property 8, twice }
R O R
true
[

Corollary 10 (R}) N (R7) is an equivalence relation.
Proof: intersection preserves reflexivity and transitivity.
»

Since R7 1s not in general symmetric, we have had to take the intersection of H1 with
its own reverse to obtain symmetry. Note however that if R is a total | unction, then
(RT)N(Rt)e = HRf, so taking the intersection is simply a generalisation of the previ-
ous construction. We have, then, constructed an equivalence relation. but is it also a

congruence relation? The following lemmata allow us to give a positive answer

g
]

&

Lemma 11 7€ R«— Rfr = 7€ Rv — (Ro)r.

Proof:

T € R —— RF

= { defn. 2 }
Roet1 2 7o RF

= { reverse; relators }
Tu o Fu Q (RL--*)F o T

= { monotonicity; functionality and totality of 7 }
Roer D 7o (Ru)

== { defn. 2 }

T € Ro «—— (Ru)F

This shows 7 € RF «— R < 7 € (Ro)F «— R.; since R was arbitrary, we may replace
it by Rv and so obtain the desired equivalence.
L

Lemma 12 If R is a homomorphism, then 7 € Rt «— (R?)r.
Proof: Let R be the homomorphism (S].

7 € Rt «— (RY)F

= { defn. 5 }
RtoT 2 7o (R})F
<= { monotonicity; totality of = }
Rt 2 7o (Rt)FoTu
= { defn. 5 }
R 2 RoTo(Ri)orTu
= (1))
R DO So Hfo (RT)F o Tu
= { relators }
R 2 So(Re Rf)FoTu
<= { property 8 }
R D 5o RFoTu
<< { monotonicity; functionality of 7 }
R o T 9_ S Q RF
. (1))

true

Lemma 13 f r€e R—— Rrand 7€ S «—— Sr,then 7€ (RN S) — (RN S)F.
Proof: Assume the antecedents; i.e.,

(4) RoeT DO ToRF
(5) SeT 2 7o SF

then we calculate:
(RNS)or

{ set theory, 7 is a function }

(Ro7)N(S o 7)

» { (4) and (5); monotonicity }
(7 o RF)N (7 o SF)

., { set theory }
7 o (RF N SF)

D, { monotonicity of relators }
T o (RN S)F

n

Corollary 14 If R is a relational homomorphism, then (Rt) N (Rf)v is a congruence
relation.
Ll

The open question that we leave to the reader is whether every congruence relation
on 7 can be expressed in the form (Rt)N(Rt)-, where R is a relational homomorphism.

Acknowledgement: Peter de Bruin pointed out to us that the component g of the
homomorphism constructed in the proof of theorem 4 is not necessarily total.

References

(1] R.C. Backhouse. Naturality of homomorphisms. Lecture notes, International Sum-
mer School on Constructive Algorithmics, vol. 3, 1989.

(2] P.J. de Bruin. Naturalness of polymorphism. 1989. Department of Mathematics
and Computing Science, University of Groningen.

3] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. EATCS Mono-
graphs on Theoretical Computer Science, Springer- Verlag Berlin, 1985.

[4] T. Hagino. A typed lambda calculus with categorical type constructors. In D.H.
Pitt, A. Poigne, and D.E. Rydeheard, editors, Category Theory and Computer Sci-
ence, pages 140-57, Springer- Verlag Lecture Notes in Computer Science 283, 1988.

15] C.A.R. Hoare and Jifeng He. The weakest prespecification. Fundamenta Informat-
wcae, 9:51-84, 217-252, 1986.

6] P. Wadler. Theorems for free! March 1989. Draft report, Dept. Comp. Science,
University of Glasgow.

Richard 5. Bird
Programming Research Group,

.
i

Oxford University

In the first 1ssue of The Squiggolist 1 posed the following exercise. Define
o al . 1 o e
(0) _L{; f — [Wﬁ#j ‘ {E[f é’f}”f g In ?i iwfj }

where ¢ f T is the condition that the set r 1s nonem ptyv and every value of ¢

#,

maps to the same value under f. Prove that

(1) Fof -pa=(#{})e-pax-Lyf

In this note 1 shall try and solve the exercise. In fact a somewhat more
general result is proved. Consider the {ollowing generalisation of {0):

(2) Hp =Ng/ - allpa- Inv(U))

|||||

el

+/r <6, both {{1,2,3},{4}} and {{1,4},{2,3}} are coarsest partitious of
{1,2,3,4}.
There is, however, a simple condition on p that ensures a unique coarsest
, , _ F i
partition, independent of details of the ordering. Say p is overlap-closed if

p(xUy)=prApy

for all z and y with x Ny $# { }. One example ot an overlap-closed predicate
is qr, as the reader can easily check. Another example 1s given below.

We sha

q q%“‘- i

ﬂm Fi

i o

{ﬁ?z‘ laim (6); see l:miﬂ;:aw}
all pa -/ Ilgx . l{same p)

e ‘gihﬂﬁ'ﬂ (9); see bel mw}
3

all pa- U/ 1l{same p)x- g

M { filter Promo tion }

U/ - (all pa- [l same p))x - [lg

yclaim (3);

see D fﬂﬂw}

hh*

H
“”“-%..c
fwﬂ‘%

(p - pa)x - llg
m ap distributivity }
Lﬂif ’ ﬁ%ﬁa - Pk - §

= {i.lﬁ?ﬁ nition of (# { })Q}
(# { }M - pax - Ilg

i
o

It remains to prove the claims. Claims (6) and (5) depend on

(4) H{samep)z = (#F {}) «{paz,~pazx}
We shall not prove (4). The proof of (5), viz

samep) = p - pd

| prove the following generahisation of (1) 1f ¢ 18 overlap-closed,

1S:

all p « Tl(same p) x
1@}
allpa(#{})a{par,~paz}
{ﬁlters c:on:u‘nute}
(#F{}aallpa{pazr,—~paz}
{deﬁnition of all p}
(#{}) a{paz}
{d@ﬁnition of p}
p(p<z)

|

|

|

The proof of claim (6), viz

(6)

1s as follows:

{

|

IIq-pa=allpa-U/ - lgx - ll(same p)

Mg (paz)
{claim; see below}
U/ {allpallg(paz),allp<allg(—paz)}
{deﬁnition of *}
U/ (allpa-1Ig) * {p<z,~pax}
{ﬁlter promotion}
allpaU/Tlgx{paz,~pazx}
{Me{} = {}}
allpaU/Tlg* (# {})«{paz,~paz}

{4}

all p<U/Tlq * II(same p) z

3

The claim used in the first step follows from:

|

all pallg(p <z)
all p «llg(—p a z)

paAx

{}

|

This leaves claim (9). So far we have not exploited the assumption that q is
overlap-closed. Now we do so. If ¢ is overlap-closed, then for any z there is a
unique coarsest partition of x into components satisfying ¢. In fact more is
true: 1if ¢ is overlap-closed, then the set of partitions of z into components,
each of which satisfy ¢, is equal to the set of refinements of any coarsest
partition. In particular, if there are two coarsest partitions, then each is a
refinement of the other, and so they are equal. Expressed equationally, we
have:

(7) all ga-Inv(U/) = Xy/ - Inv(U/)* - IIg

whenever ¢ is overlap-closed. We shall not prove (7). Note that X, is not
an 1dempotent operator, so the reduction X/ is not defined over (arbitrary)
sets. However, in the given context we can interpret U as disjoint set union,
since the reduction Xy/ is applied to a set of pairwise disjoint sets (of sets)

We shall prove that if p and ¢ are both overlap-closed, then

(8) U/ - IIp* - IIg = LJ/ - Il gx* - Ilp

In (8) the operator U can again be interpreted as disjoint set union since the
reduction U/ is over pairwise disjoint sets. Claim (9), viz

(9) U/ -Ilg* - II(same p) = U/ - L(same p)* - Ilg

follows from (8) since the predicate same p is overlap-closed.

We prove (8) by showing that the left-hand side is equal to II(p A q), from
which the result follows by commutativity of A.

II(p A q)
{@)]
Mg/ - all(p A g)a- Inv(U/)

{pmperty of all; see below}
Mg/ - all pa- all ga- Inv(U/)

{

|

4

Squiggoling in Context

Grant Malcolm
Groningen University

Distributivity properties lie at the very heart of Squiggol; in particular they underlie
the promotion theorems for the various data structures most commonly used in pro-
gramming (lists, bags, rose trees, term algebras...). While such data structures have
been quite succesfully incorporated into Squiggol, there remains the problem that cer-
tain properties, such as distributivity, are enjoyed by only a subset of a given structure;
for example, heap-sorted trees or lists of a fixed length. In such cases promotion cannot
be applied, and it often seems that the only recourse is to proof by induction (anathema
to the ardent Squiggolist!). In this note we examine such a case: a distributivity prop-
erty holds on the range of a given function, and we seek some means of including this
contextual information in our calculations in order that we may use promotion and avoid
explicit recourse to induction. To this end we “move up” into the realm of relations,
exploiting the properties of homomorphic relations as investigated by Backhouse [1].

The problem we address is stated in terms of non-empty snoc lists: we begin with a
brief revision of the type structure.

Definition 1 (non-empty snoc lists) For each type «, the type of non-empty snoc
lists over a (denoted by o+) has two constructors: the singleton constructor 7 € a+ « a,
and concatenation > € o+ « a+Xa; and for every f € 8+« and ® € 8« OXxq, there
is a unique function (f, ®]) € B+ a+ such that:

(1) (f,@)er =
(2) (f,®) e+ = @ (f, DXL

(For functions g € vy« «a and h € § «— 3, the function gxh € yxé «— ax[3 takes the pair
(z,y) to the pair {(g.z,h.y). In the above equations and henceforth we give x higher
priority than o.)

[

We call such functions (f,®] “homomorphisms”. From the uniqueness property of
homomorphisms we can prove that (7, >+]) is the identity function in a+ « a+, a fact we
shall use later on. Two common examples are maps and reductions:

Definition 2 (map) For f € f« a, define f+ & (7o f, > cIX f]) € B+ — a+.
L]

Definition 3 (reduction) For & € a +— axa, define &/ 2 (I,®) € a «— a+.
0

The promotion theorem for the type is derived in the standard way (see Malcolm [5}):
Theorem 4 (promotion) Forgevy— 8, fe€f+—a,® € J—Oxaand® € v— yxa,

go(f,®) =([9°f,®) <« god®=®ogxL

One can now use promotion to verify the following properties of maps and reductions.

Property 5 @/o f+ = (f, &eIxf).
[l

Property 6 f+og+ = (fog)+.
O

The statement of the problem we shall consider is due to Zwiggelaar {6], and comes
from his investigation of the “aggregated segment sums” of Backhouse (see [2]). In

orm

solving the longest ascending sequence problem, the following subgoal occurs:
(3) i/ o (01,R])+otls = (01,0) € ZxIN— Z+.
where, form,m' € Z, l,I' ¢ N,z € Z++ and y € ZxIN:

(m,) f+ {(m', ") if { > I’ then {(m,!) else (m', ") fi

I

(01).m = {(m,1)
(m,l) @m' = (m',if m <m' then [+ 1 else 1 fi)
tls = (7o7,0)
rOm = ({(>+m)+.r)>T1T.Mm
yom = (y®@m)ft(m,1)

The difficulty in proving equation (3) is that we require that ® distributes backwards
through 1} (in that case the equality follows by Horner’s rule, cf. Backhouse 2]). How-
ever, the distributivity property does not hold in general: the crucial observation made
by Zwiggelaar is that it does hold when the first components of the pairs are equal, 1.e.,
for all m, [, I’ and a:

(4) (m, D)t (m,) ®a = ((m,}) ®@a)t ({m,l) ®a)

Now it is the case that in the lists of pairs in the range of the function (o1, ®])+ o tis all
the first components are equal, and Zwiggelaar’s inductive proof of {3) makes use of this
property: in the remainder of this note we construct a calculational proof in which we
can make use of the fact that we are working in the context of the range of the above
function. In order to be able to use contextual information of this kind we introduce

the notion of guards: these have been studied by Hesselink in the context of command
algebras and program transformation (see [3,4]).

1
o

(7)}

Mg/ - all pa-Xu/ - Inv(U/)* - T1q

= {filtf:r cross promotion; see below}

M/ - Xy/ - (all pa- Inv(U/))* - Ilg

|

{reduce cross promtion; see below}

J/ - (Mg/ - all pa- Inv(U/))*-1lq

()]

U/ - Mpx* - Ilg

I

The property of all used in the calculation 1s the combination of

I

all p N\ all g
Pa- Q«

all (p A q)
(P A Q)<

The filter cross promotion law is

i

all pa-Xy/ = Xy/ - (all pa)=
The reduce cross promotion law i1s: if ® distributes over @, then

&/ - Xo/ = ®f - @/ *

Use of this law is justified in the given context, since for pairwise disjoint
sets z, v,z we have

(z Mg y) Uz = (2 U z) Ny (y U 2)
In other words, U distributes through My
This completes the justification of the claims and the proof of the exercise.

For what it achieves the calculation is surprisingly complicated. Moreover,
there are one or two omitted proofs. Can it be simplified?

Definition 7 (guards) For predicate p € Bool — @, define the guard p? € a ~ @
by:

a{p?Yb = a=b A pb
Thus p? is the restriction of the identity on « to those elements satisfying p.
O

Property 8 (idempotence) p? o p? = p?.
(]

Property 9 (precondition) If f is a (partial) function, then p?e f = fo(pe[f)7.

(Note that we treat functions f also as relations, where a(f)b = a = f.b.)
]

By introducing guards and working in the domain of relations we do not compromise
our ability to calculate, as evidenced by the following result proven by Backhouse in [1]:

Theorem 10 (generalised promotion) The promotion theorem (thm. 4) also holds

for relations; i.e., when g€y~ 3, fef~a, ® € 8~ Fxaand ® € v ~ yx« are all
relations.

[

We can now construct some lemmas on conditional distributivity.

Definition 11 (invariance) We say that predicate p is @&-invariant if for all z and v,
p.(x & y) < p.x A p.y. This implication is equivalent to the equation:

PTo@ o p?xp? = @op?xp?.
]

The reader can easily check that equality of first components is {f-invariant: for any m,
construct the predicate (=m ofst) and we have for all z and ¥:

(5) fst.(z fty) =m <= fstz=m A fst.y =m.

Proper}ty 12 If p is @-invariant, then @&/ o (p?)+ = p? o« (p?, ® o p?x 7).
Proof:

@/ o (p?)+ = pT o (P?, ® o p? xp?)
{ property 5 }
(p?, ® o Ixp?) = p? o (p?, & o p?xp?)

i

& { promotion; p? o p?7 = p? }
p? o D o-p?XP? = £ o pr? “p?XI
= { defn. 11 }

P 1S G-1nvariant

Property 13 (conditional distributivity) Suppose p is G-invariant and f € ae
distributes over @ on condition p:

Jo®Deop?xp? = Do fXfop?xp?

(or, equivalently, f(z B y) = f.x @ f.y < p.z Ap.y); then

fo®f o (p?)+ = @& o f+o(p?)+.

Proof:
fo @/ 0 (p‘?)-l- — @/ o f-l- o (p?)+
= { property 12; properties 6, 5 }
fop?e(p?, ®op?xp?]) = (fop?, ®cIx(fop?))
= { promotion; fep?ep? = fop? }
fopToBop?xXp? = P o IX(fop?) 0 (fop?)XI
= { pis ®-invariant }
fo®optXp?=@o fxfop?xp?
Ll

With reference to the problem in hand, (4) gives the following conditional distribution

(®a)ofto(=mofst)?x(=mofst)?

I

Mo (®a)x(®a) e (=m o fst)? x (=m o fst)?
and we already have the invariance property (5), so property 13 gives:
(6) (®a) et/ o(=mofst)?+ = /o (®a)+o(=mofst)?+

We return now to the proof of (3): in fact, we shall use promotion to prove:
(7) i/ o (o1, @)+ o tlso (7, >]) = (o1, @).

This is equivalent to (3) since ({7, >+]) is the identity homomorphism. Promotion then
yields the following subgoals:

¢l
@ o (T o (o1,)+ o tls) xI

(8) 1t/ o (o1,R)+otlsoT
(9) T o (ol, ®)+ o tlso >+

The former is straightforward calculation using (1); we concentrate on the latter. We
shall use the following lemmas, the proofs of which are straightforward and omitted.

We define Ist & snd/.

Lemma 14 For all z € a+, tlso(=z)? = ((=lst.xzeolst)?)+otlse (=z)7.
]

Lemma 15 fsto (ol,®)]) = Ist.
-

Finally, the proof of (9) is given below: we use guards to introduce contextual infor-
mation, and then use the lemmas above to push this information leftwards through
the expression until we can apply conditional distributivity. The guards which are so
propagated always hold in their particular context, playing the role of comments in a.

program text: since the guards always hold, they can simply be omitted when no longer
required.

(ft/ © (o1, @)+ o tis).(z >+ a)
{ evaluation, using (2) and 2@ }

(1 o ((01, 8] e (>+a))+ o tls) .z 1t (a, 1)

= { (2); introduce context: = =z }

(/ o (®a)+ o [ol,R)+otlso (=2)?) .z Tt {(a,1)
{ lemma 14; property 6 }

(/o (®a)+ e ([ol,®]) o (=lst.z o lst)?) +otls) .z 1t (a, 1)
{ lemma 15 }

(T o (®a)+ o ((ol,®) o (=Ist.x o fsto (ol,®]))?)+otls).z 4 {(a,l)
{ properties 9 and 6 }

(11/ o (®a)+ o (=Ist.z o fst)?+ o (01, @]+ o tls) .z Tt (a,1)
{(6) }

(®a) ot/ o [o1,@])+ o tls) .z 14 {(a,1)
{20}

(/o (01,R])+otls) .z @ a

|

1

I

|

|

‘The above proof suggests that guards can be used effectively in calculational proofs,
even though we did cheat in the sense that introducing the identity homomorphism
into the equation (7) meant that we were effectively using induction under the name
of promotion. Backhouse’s demonstration in [1] that the equational approach to homo-

morphisms which we had developed in [5] could be generalised to relations provided the
setting for the use of guards.

Reference S

1] R.C. Backhouse. Naturality of homomorphisms. Lecture notes, International Sum-
mer School on Constructive Algorithmics, vol. 3, 1989.

2] R.C. Backhouse. Aggregated segment sums. Dept. Comp. Sci., Groningen Univer-
sity, 1989.

(3] W.H. Hesselink. An algebraic calculus of commands. Technical Report CS 8808,
Dept. Comp. Sci., Groningen University, 1988.

4] W.H. Hesselink. Command algebras, recursion and program transformation. Tech-
nical Report CS 8812, Dept. Comp. Sci., Groningen University, 1988.

5] G. Malcolm. Homomorphisms and promotability. In J.L.A. van de Snepscheut,

editor, Conference on the Mathematics of Program Construction, pages 335-347,
Springer-Verlag LNCS 375, 1989.

6] F. Zwiggelaar. A new Horner’s rule. Afstudeerverslag, Dept. Comp. Sci., Groningen
University, 1989.

Johan Jeuring”
CWI, Amsterdam

Ct io Il

(Given a binary labelled tree, a substree 1s a special subtree of that tree. Substrees can
be viewed as the equivalent of subsequences on binary labelled trees. In this paper
we derive an algorithm for finding the largest ascending substree of a tree. The main
motivation for undertaking this exercise is to apply nub theory, a theory for deriving
algorithms, introduced by de Moor and Bird in [dMB89]. Nub theory helps to solve
problems which require the tupling of extra information. Problems which can be solved
using nub theory are the longest upsequence problem and the “Mark Thatcher” problem.
Both of these problems are defined on lists; we solve a problem on binary labelled trees.

For this purpose, we have to generalize part of nub theory slightly. We suppose the
reader is familiar with the theory of binary labelled trees described in [Jeu89].

2 Substrees and substree promotion

A substree, defined on binary labelled trees, is the equivalent of a subsequence defined
on lists. Substrees are computed by means of a function subs, which is defined by

(a)]

subs (a) __
[(b)] # (subs 1) # (subs) +# ((,/b\.)* ((subs I) X (subs 7))) .

subs | b\, r

Hence subs is a tree homomorphism /X, /- f*, where f a = [(a)], and the ternary operator

X is defined by
| XKoo 7= [(B)] 4 L 7 4 ((/BN)% (1X 7))

Because the definition of X we use deviates from the previous definitions, and because
X plays an important role in the subsequent sections, we give its exact definition.

zXy=+#/Vyxzx

aVz = (al|)* x
al|lb = (a,b) .

*This research has been supported by the Dutch organisation for scientific research NWO,under
project-nr. NF 62.518.

We derive a promotion theorem for subs, that is, we give conditions under which

a homomorphism composed with the function subs equals a tree homomorphism. We
have, from [Jeu89],

@B/ - g*-subs
promotion theorem for trees

G/'h*:

provided

D/ gxrz Xoy= (D) gxz) O (D] g* y)

for some operator . In order to determine ®, we derive

B/ gxz X ¥
definition of X

®/ g% [(B)] + =+ y H ((LS/6N\)* (z X y))
property of homomorphism

(9 0)) B (B gxz)B (B gxy) & (B/ g% (/b\)* (z X)) .

The first three arguments of @ need not be developed any further. For the last argument
we have (see also [Jeu89])

1

B/ g% (VON)* (2 X y) = (®/ 9% 2) @y (B] g* y) ,

provided g is a tree homomorphism ®/ - j* such that ® distributes through @&. We have
proved the following theorem.

Theorem 1 (subs—promotion) Let h be a homomorphism @/ - g+ defined on lists, and
g a tree homomorphism ®/ - j% such that @ distributes through @. Then

h-subs = O/ - (g-())*,

where

zOpyY=(9(0)DzDYD (z®s7) -

'he largest ascending subtreecut

The specification of the largest ascending subtreecut problem reads
T4/ - ascending< - subs |

where # measures the size of a tree. The operator T4 is underspecified. It will have
to be refined later. If we rewrite T4/ - ascending< into the form of a homomorphism
T4/ - f*, we have that f satisfies the first condition of the subs~promotion theorem, but
it fails to satisfy the second condition, i.e., f is a tree homomorphism ®/ - 7, but the
operator ® we obtain does not distribute through T4. It follows that the subs—promotion
theorem is not applicable.

A special function, called the nub function, has been introduced by de Moor and Bird
in |[dMB89| to overcome difficulties encountered when distributivity conditions are not
satisfied (see for example the previous section). Informally, given a list z, a total pre-
order ®, and a total linear order @, nub(®, ®) enumerates the elements of z in increasing
®-order, choosing one representative from every ®@-equivalent class using the order @. We

will choose as representative the minimum element under ®, but any selector function
suffices.

The nub function is a homomorphism defined by
nub(®,8) = A/ - 7%,
where 1, is the identity element of A, and

(la] #z) A (] Hy) = [al 4 (A (B #) ifaeb
a le b H# (z A y) ifaeb
B # (([a] +2)Ay) fbea,

where & is the equivalence relation generated by the order ®.

In [dMB89] a number of properties of nub (an abbreviation for nub(®,®)) is listed.
The proofs of these properties are left as exercises, but apparently they are carried out
for the class/representative characterisation of nub. Using the homomorphic character-
1sation of nub, the proofs become more elegant. Every proof consists of two parts: the

(high level) calculational part using promotion, and the (element level) part where the
promotability conditions are verified.

We give proofs of the filter-nub rule, a modified version of the map-nub rule (both

from [dMB89]), and the cross-nub rule. In each proof we leave the verification of the
promotability conditions to the reader.

Given a pre-order @ and a linear order ®, the order @ & ® is defined by
1(@&Rb=abV(aebAbla).
We have the following property (called the no-loss lemma) for nub
(1) lexe/ = >/ - nub(®,8) .

The function p< may be promoted over nub provided a condition is satisfied. This
18 expressed by the following law.

Lemma 2 (filter-nub rule) If p satisfies

PYAZTS YNNI QY =>px,

then
(2) p<-nub(®,8) = nub(®,8) - pa.

Proof by promotion. We have that p< is (A, A)-promotable on singletons, i.e.,

}

Ly
(palz]) A (paly])

paly
pa ([z] A [y])

if p satisfies the above condition. Hence

|

p< - nub

definition of nub
PN/ T

promotion theorem
A/ (pa)* - T

map distributivity
A/ - (pa-T)*

equality below

|

1

/X\/-T*'p«a

i

definition of nub
nub - paq

T'he equality applied in the above derivation reads
T pd = (pq T)%

for all predicates p. The proof of this equality (using the unique extension property) is
easy and omitted.

(End of Proof)

We need a slightly more general version than the one given in [dMB89] of the map-
nub rule.

Lemma 3 (map-nub rule) Given a function f, let @ and @' be pre-orders, and @ and
®' linear orders satisfying for all z and vy

r Q' y = T Q5y
Ry = rQry,

then
(3) fx - nub(®, @) = nub(&', &) - f

Proof by promotion. If for some relations @ and @', f satisfies the implications listed
above, then fx is (A’, A)-promotable on singletons, where A’ is the operator of the

reduction part of nub(®’,@'). The function nub(®’,@’) is abbreviated to nub’. We have

nub(®,Q) - fx
= definition of nub
MN/[-T* - fx
= map distributivity, one-point rule, map distributivity
A/ - [Hx-Tx
= promotion theorem
fx-A'[]-Tx

definition of nub’
f*-nub(e', Q")

|

(End of Proof)

- Finally, we have a rule not mentioned in [dMB89|, the cross-nub rule.

Lemma 4 (cross-nub rule) Let @ and @' be pre-orders, and @ and Q' linear orders
such that for all =,y and a

roy = ((a|z) @ (ally) A ((zlla) @ (y]|a))
zey = ((alz) e (aflv)) A ((z]la) @ (vlla)).

Then
(4) nub(@',@") - X =Z - (nub(®,®)||nub(e,d)),

where = s defined by
zt=Zy=NAN[/(Vy)xz
Proof by promotion. We have

nub(®, @)z Xy
definition of nub and cross
A T 4/ (Vy)* z
reduction promotion, map distributivity
A [(R] (Vy))* z .
The function A’/ - 7% . (Vy) is developed as follows.

N[T+ (aVy)
definition of V
A [7% (al|)* y
= map distributivity, one-point rule, map distributivity
A [(al])s* 7+ y
promotion theorem (see proviso below)
(al|)x A/ T*y
definition of nub
(al|)* nub(®,8) ¥
definition of V
aVnub(®,8) vy,

|

|

I

|

I

provided (al|)* is (A, A’)-promotable on singletons. This follows from the conditions of
the theorem. We substitute the derived equality in the main derivation, and continue
the main derivation as follows

N[(N]-mx-(Vy))*z
derived equality

A’/ (Vnub(®,8) y)* z
introduction of =

A/ ((Enub(®,@) y)-7)* z,

I

provided Z satisfies |a] Z 2 = aVz. In order to make progress, we define = like X by
further requiring (z #y)=Zz2 = (zZ2z)®(yZ z). At this point, this equation is irrelevant,
and so is ®. But below we shall exploit this freedom. Proceeding with the derivation,
we obtain

A/ ((Enub(®,8) y) - 7)x z
map distributivity
A’/ (Enub(®,®) y)* T+
promotion theorem (see proviso below)
(Znub(®,8) y) A/ Tx z
definition of nub
(nub(®,®) z) = (nub(®,®) y),

1

|

1

provided (Zz) is (A, A’)-promotable on singletons. This condition is satisfied if the
implications given in the theorem hold, and if ® is chosen to be equal to A/.

(End of Proof)

Substree promotion revisited

Nub theory is used to derive a new substree promotion theorem. A predicate p on trees

is buc—closed (bottom-up components-closed) with derivative p’ if and only if for all =
y, and b,

b

plz/ONy)=@x)AN(py) AP b(z,y).
We have

Theorem 5 (subs-nub-promotion theorem) Given a total pre-order ® and a total
linear order @, define the order @ & @ by

a(@&Rb=a@bV(aebAadb),

where & 1s the equivalence relation induced by Q. Suppose there exist a total pre-order
@' and a total linear order & such that for all x, y, a and b,

z@y = ((allz) @ (ally)) A ((zlla) @ (ylla))
@'Yy = T Y

2@y = ((allz) &' (ally)) A ((z]la) &' (¥]]a))
2@y = T3 H. Y.

Furthermore, suppose the predicate p is buc—closed with derivative p' satisfying
pPynze ynzl y=>p z.
Then there exists a tree homomorphism ©/ - jx such that
lega/ pP-subs =>/-6/ 3%

Proof Using equality (1), we have

T@&@/ . p< - subs
= (1)

>/ -nub(®,®) - pa-subs.

So it suffices to prove that
nub(®,®) - p<-subs = 8/ - j* .

Similar to the derivation of the subs—promotion theorem, we apply the promotion theo-
rem for trees. This theorem is applicable provided

nub pa (BN} * (subs [) X (subs 7) = (nub pasubs [} = (nub pa subs r),

for some operator =. The definition of = is derived as follows.

nub pa (6N,)* (subs l) X (subs r)
= p is buc—closed with derivative p

nub (BN)* (p’ b)< (p<subs) X (p<subs)
map-nub rule (3)

(/bN\)* nub' (p' b)< (pasubs i) X (p<asubsr)
filter-nub rule (2)

(L/6N\)* (p' b)< nub’ (p<a subs () X (p<subs r)
cross-nub rule (4)

(/0N)* (P b)< (nub pasubs) = (nub pasubsr) .

The rules are applicable by virtue of the conditions of the theorem. The function = is
defined as in the cross-nub rule. For completeness’ sake we give the definitions of 7 and

O. | |
ja= [{a)] ifp(a)
1. otherwise

[opr =G O)MIAT A ((/BN)* (P b)alZT)

(End of Proof)

&

We apply the subs-nub-promotion theorem to find an efficient algorithm for the largest
ascending substree problem specified in Section 3. For that purpose, we have to refine
the specification of the problem. Define the orders @ and @ & ® by

An application

a®b
a(®@ & Q)b

a<#b
a@bV(aebAbBa),

I

where @ 1s some total order, which has yet to be defined. If we define @' by
(av b) ® (¢, d) = (a” b) < (#]#) (C: d) ,

7

it follows that
r®@y = ((allz)® (a]ly)) A ((zlla) @ (ylle))
r® Yy = Y

We have to find linear orders @ and @' such that

r®y = ((aflz)& (a]ly)) A((zlla) &' (y]|a))
r®y = T8 _p Y

This is the most difficult part of the derivation: we have to invent definitions of @ and
Q’. The following definitions of @ and @' satisfy the conditions. The proof of this claim
1s left to the reader.

TRQY = <top y VvV (-’1'-7 ~top Y AN < children y)

TR Y =1 <stify ¥
listify (a, b) = |a, b]

children {a)
children [/b, r

|
£

I
=
2,

T <Yy= x <T/-t0p# YV
T =1/.tops YNT <L.tops YV
T =1/-topx Y NT =L.topx Y N T <y) childrens ¥ -

where < 1s the lexicographical ordering defined on lists, and top computes the element
in the root of a tree. Finally, we have to show that the predicate ascending defined by

True
(ascending I) A (ascending r) A (b > topl)A(b > topr).

1

ascending {(a)
ascending [/b, T

{

satisfies the condition of the theorem. From the definition of ascending it is immediately
clear that ascending is buc—closed predicate with derivative p’ defined by

pb(l,r)=b>toplANb>topr.

Since from z @ y it follows that T/ topx z < T/ top* y, and from p' b vy it follows that
T/ top* y < b, we have T/ topx x < b, and hence p’ b z, so the condition is satisfied.
All the conditions of the subs-nub-promotion theorem are satisfied, and we obtain

the algorithm
>>/ * 6/ * j* 9

~ where j a = [(a)], and the operator © is defined by
leyr=[(D]AIATAN(/OD\)* (D b)<(l=T)).

Given a tree of size m, this algorithm requires time O(n?) to compute the largest as-
cending substree.

m

pa
BEF

il

Nub theory seems to be applicable to many problems where tu
by AL Al g&g@)y H 1 Tor ﬂ I aj 3t ;"

%
have illustrated nub theory by dm m%g; |
substree of a tree, Another pr
finding the largest treecut Hw S uﬁ“" m%w%g 15 at most a given constant { A
of an al 2 rithm for this pro blem 1s present ted 1 H elRY: }; 1he res E o @é@ W E
in {[dMBR9Y| provide a way to derive this algerithm much simpler. T
interesting because the preorder used 1s not < g, as in all the examp .% es we h AVE SeeT

iiiiii

until now, but instead <4 ;.
The proofs of the relevant rules of nub theory can be formulated elegantly

promaotion. However, more elegant proofs may be obtained if the ‘de Bruin-Reynolds.

Wadler’ theorem is applied. Becaus

se of the polymorphic nature of nub, Lemma 2 and
Lemma 3 seem to follow easily from this theorem. [do not vet see how to prove the
cross-nub rule with the dBRW theorem.

[dMB89] O. de Moor and R.S. Bird. Lecture notes on nub theory. Lecture Notes

International Summer School on Constructive Algorithmics, Hollum- Ameland,
The Netherlands, 1989.

[Jeu89| J. *

i ih@ N@mﬁ%ri@ndm DAges ‘?“?‘9 “’Wﬁ WW%

Factorisation and Promotion

Nico Verwer *
RUU

January 23, 1990

1

Why this note?

Reading Grant Malcolin’s paper ‘Factoring Homomorphisms’, I did not like the
notation for type functors very much. I would like to have a more concise notation,
to show the essence of the factorisation theorem more clearly. The notation used here
is based on the one Lambert Meertens used at the ‘wednesday afternoon sessions’.
It uses categorical concepts, but little knowledge of category theory is required to
read this note.

Using this notation, I found that proving the factorisation theorem is really a
simple diagram-chasing exercise. I also found that 1 had to generalise the notion
of reductions (which I also define for snoc-lists) and factorability. It appears that
factorability can be seen as a property of homomorphisms, not of type-functors.

Together with Johan Jeuring, [found that the new notation can also be used to

express the promotion theorem more clearly. We also made a link with the simple
promotion law which 1s used in squigol.

A remark on the presentation: Some people like to draw diagrams instead of
writing down formulas, whereas others maintain that pictures give a false sense ot
understanding and can not give an exact description. Personally I like diagrams as
an illustration of formulas, and I think they can help 1n understanding formulas.
Therefore I shall use them throughout this note, but I shall not rely on them for

proofs. The diagrams were typeset with Francis Borceux’s macro package [1], which
saved me a lot of time and work.

*verver@cs.ruu.nl

We write A + B for the disjoint union of A and B. This is a functor, and we have
a corresponding action on functions; for f : A — A’, g : B — B’ we have

f+g9g:A+B — A"+ B
We also have a ‘case-construction’

1 f,gl:A+B—C

for f:A— C,g: B— C.

Other functors we often use are the cartesian product x and constant functors.
The functor which constantly yields A when applied to any type, can (like every
functor) be applied to functions, and then yields i4, the identity on A.

A data type definition consists of the name of a type functor, and constructors
for the new type, with the types of their components. For example, list-formation is
indicated by *, and the type A* of lists over A has constructors O and >4, which

have component types 1 (the one-point set) and A x A*. This is generalized in the
following definition.

Definition 1. A Hagino type-functor | is determined by

o Its corresponding components-functor, indicated by [{| (f with a box around
it). The type of the components needed to construct a Af-value is A' [f] A.

e Its constructors, given by a polymorphic function

e:AA.At[ﬂA-—)-At.

Also, the type Al is inztial, i.e. for every type B with a function
¢:Blf|]A— B

there 1s a unique function

¢ : A" - B

which is a homomorphism (respects the structure):

Plocs = ¢o(d [lia)

This is shown in the following commuting diagram.

row indicates that 1t is the unigue function which makes the dia gram

ronstructor € 18 an asomorphism, with inverse (e il) {see for instance 14]).

his isomorphism, A! can be seen as a fixed point of ([T}4):

sotne people write 4% as (u X . X

licitly - functional programming languages to do case-analysis on
~a term. This provides a recursive definition of ¢f (which is easil y

mting diagram):

4 T e X%

BrHE i ; & » s i)
ctor fl = AXAA (X ©o A4
S S § B T A T TP G YR YT

ey L H "
- i5 A

@n A). He also sometimes writes (Fi,..., F,)
Although in many cases the components-t ype 1s indeed a disjoint union

ink that it is not necessary to indicate this, and we rather have one
components-functor.

t

At ﬁ]A — . CA4 At
(ep o (inr 1)) His (eolip {1)) = F'

Btf A Btf B

tB

igt [{] f

This definition 1s exactly the same as the one in Malcolm’s paper [2], who also
proves that maps indeed preserve identity and composition.

Proposition 5.
floea =epo(f).

Proof. This corresponds exactly to the commuting diagram. Using the fact that
(bi)functors preserve composition,

(k) o(pHl g) = (hop){(koq)

the identity laws and the definition of f', we obtain

(gt M F) o ((egolip @) Bis) = (eolmBH)AS= RS

In the case of lists, this proposition amounts to

fleO=0 , flo>t=>to(f x)

which is just the usual recursive definition of map on lists.

4 Reductions

On cons-lists, we define reductions @ ¢+, : A — A as

(B #e)O =€ , (Be)la>t2z)=0a® (D Fe)r)

for @: A X A — A and e : A. This 1s slighty different from the usual definition,
where @ : A X B — B (see the note below). A reduction is primarily a function on
the structure, not on the elements of a A'-term. (One might argue that the function

+ 4~ : N* — N does affect the integer elements in the list, but this is really a
consequence of equations that hold in the integer domain.)

We can define reductions as homomorphisms, just as we did for maps.

Definition 6. A At-reduction is defined for functions

¢p: AflA — A

S

as

o' At — A,
This is illustrated by the diagram below.

At A—=4 At
*
(%) {ial 9’5”
! ;
AR A

[

Reductions are usually written as @ <, for ¢ = [e, @] (for cons-lists), or another
notation considered appropriate.

Example 7. On non-empty join-lists, reductions are defined for functions
f,®]: B+ (B x B) — B.

In the special case that f =ip, we write ®/ for the reduction [ig, ®]'. We shall use
this notation for other data types to emphasize the fact that some homomorphism
1s a reduction. The above diagram gives the recursive definition of &/. O

Note that in the above definition we do not require 1 to be factorable, like Mal-
colm [2| does. Thus reductions over cons- or snoc-lists can be defined in the usual
way. For instance, the reduction which i1s normally written as @ #. is exactly
the same as [e, @]' In this case, the commuting diagram from the definition above
amounts to the definition of @ «4. given earlier.

In the literature on constructive functional programming, reductions on cons-
lists are often defined for operators @& : A X B — B. Although this is more general,
we chose not to do so, because then reductions would be exactly the same as homo-
morphisms. We feel that reductions like they are defined here can be very useful,
because on the elements of a structure A! they act as a function from A4 to A. In
Malcolm’s paper, reductions act as the identity function on elements. We had to

mention this property explicitly in the join-list example above. Reductions in the
sense of Malcolm [2] are also reductions according to our definition.

5 Factorisation

It 1s well known that homomorphisms on lists can be factored into a map followed
by a reduction. In his paper, Malcolm [2] shows that homomorphisms on factorable

type-functors can be factored this way. His definition of factorable requires [f] to
have a special form, namely

XfHA=A+XF

where A does not occur in X¥. Also, functions from Aff] B to B must be of the form
(f.¢]: A+ BY¥ - B.

This means, for instance, that join-lists are factorable, but cons-lists are not (reduc-
tions are not even defined for cons lists).

In the previous section we defined reductions for all type functors. Still it 1s
not possible to factor every homomorphism we can think of into a map followed
by a reduce. We define the factorability of homomorphisms as a property of the
homomorphisms themselves, not of the type functor on which they are defined.

Definition 8. A homomorphism ¢ : A' — B is factorable if the function
¢: B[f]A — B can be written as

¢ = Do(ipfil f)

where

®:BfjjlB—B , f:A— B.

]

Proposition 9. Homomorphisms on a type functor which is factorable in the
sense of Malcolm [2] are factorable in the sense of the previous definition.

Proof. Consider a homomorphism ¢! : A' — B, where } is factorable in Malcolm’s
sense, i.e. X []A = A + X¥. Then by his definition, ¢ = [f,g] : A + BF — B. Now
because

f 9l iB,g]e (f +ipF)
[iBsg] © (13 [_ﬂf)

¢ 1s factorable according to our definition, as shown in the diagram.

I

BA=a+BWhdl . p
1;3_[?{3? [1339]

The inverse of [, >+] is ([0, >+] ®mi4)" which splits up a list in its head and tail:

([D,>+]Ec]iA)ha 0 = il 3 ([Daﬁ]@i‘é)h"ﬂ' — iA X iA"‘-

1

Example 3. Another type-functor is the non-empty join-list constructor *, with

BmA=A+(BxB) , gaf=f+(gxg)

€4 = [[]v ++].

The reader i1s encouraged to draw the corresponding diagram, and investigate its

meaning. (We have not required 44 to be associative, so we really have specified
binary trees.) O

A map 1s the part of a type-functor that works on functions. In general we have,
for a type-functor t and a function f : A — B, a mapped function:

ft: A" - Bt

Functors preserve identity and composition:

it =i, (gef) =g ft

The idea is that a mapped function only works on the A-elements of a A'-term,
leaving the structure unchanged.

We can define maps as homomorphisms. In order to do so, we try to find a
function

¢:B'f]A — B!
such that
#=f'.
We can do this by first applying f to the A-elements of the (B [f] A)-term, giving a

“term in B[] B. Then we embed this in a Bl-structure by applying the constructors
€R.

Definition 4. The map corresponding to a type-functor { is defined for all
functions f: A — B as
fl= (€8 o (1Bt fﬂf))h*

This is illustrated in the following commuting diagram.

4

We can now formulate the factorisation theorem, which says that factorable
homomorphisms can be factored into a map followed by a reduction:

Proposition 10. If ¢* is factorable and ¢ = @o(ig[i] f), where @ : Bf|B — B
and f: A4 — B, then

¢ = (@) f"
Proof. We first prove:

@/oftoEA
®/oepolipt [l f)o(fT[His)
Do (®/[Mi)o (ipt{l f)o(fTHia)

Do(ip{flfe(®/[ia)e (fT[{ia)
$o((®f o f)Hia).

By definition, we also know that ¢* = (@ (igf[flf))h i1s the unigue function which
satisfies

(map diagram)

(reduction diagram)

(functors preserve composition,
identity laws)

(functors preserve composition,

definition of ¢)

|

Plocs = do(p'[ia)-

e

Since @/ o f! has the same property, we conclude that

th — @/off.
Al[f A tA At
fH 14 map | f1
v

B[A ipe [f] f Bifj]B—=2—- Bt |¢

@/[ﬂifl ®/[ﬂi5 reduction €9/

B A

ig[fl f

6 Promotion

A very important theorem is the promotion theorem given by Malcolm in [3]. In
our notation it reads:

Proposition 11. Let ¢ : BfJA— B,y :CfflA— Cand f: B — C. If

fop=1vo(f[lia)
(f is ¢ — y-promotable), then

W= fogh
Proof.
(fodt)oey = (def. of ¢")
fodo(d'[{lia) = (promotability-assumption)
o (flia)o(¢"[llia) = (functors preserve composition)
o ((fod"){ia)

Since ! is the unique function with the property

Ploes = o (W fig)
we conclude that

! = fodh.

AtflA—%4 | 4t
i At —

|
¢hﬁ]iA| d’h -

Slia] f
i l
Ci|lA—
i P

[l

A special case arises when ¢ = @ : A[fJA — A, (then ¢" is a reduction), and "
1s factorable as

Y=o (icflf).
Then the promotion theorem becomes:

Proposition 12. If

fo® =®(f[i/f)
(f is & — ®-promotable), then

®/°ft=fo@/.

9

Bl
elg P H b;l.- i ;
i :1‘5?“"%“ afl‘i
i h ks : N
T LTt n Ml_:'lll

Proof. Because of the simmphfving assumptions, ¢* may be written

e factorisation th eI V% n /o f T Submtitutin i thiis 1 the gener al Promaot Lo
heoretn then g 50 FOUREEERENS § oy

Pzt
M
3
£ w
il
b=
o

t
¢

R
¥,
M,
.

o P e

L

Example 13. In the case of non-empty join-lists, the last proposition is the
well-known law for list-promotion. If we substitute [i4, @] for &, and [i5, ®] for ®,
the promotability-condition becomes

foth =@o(f x f)
and we then have

fo®d[=0fof

where b/, &/ are defined as in the earlier example.)

References

11] Francis Borceux, User’s guide for the diagram macre’s, UCL, Louvain-la-Neuve,
Belg

gium. (this macro package can be obtained via FTP from praxis.cs.ruu.nl,
131.211.80.6.)

[2] Grant Malcolm, Factoring Homomorphisms.
3] Grant Malcolm, Homomorphisms and Promotability.

[4] G.C. Wraith, A note on categorical data types, in Category theory and computer
science 1989, LNCS 389.

10

