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DEN HAAG — Old book
discovered. In the vaults of the
ministry of justice of the Nether-
lands, an old book has been
discovered. The book contains
the play ‘Rule for rule’ from
Shakespeare, and is dated °s-
Gravenhage 1690. Its main in-
terest is i1ts form: the book con-
sists of thirty pages each of
which consists of forty slips of
paper. Apparently, the book
has been produced by first print-
ing it on a long slip of paper
and then tearing and glueing
this slip into the form of a book.
Dutch historians claim that long
before Turing wrote his ‘On

LOS ANGELOS — ‘Avalanche’
most popular language. Tharty
percent of the companies in the
USA use ‘Avalanche’ as their
main computer programming
language. Fortran has lost the
first position it occupied last
year to this relatively new
language, the author of which 1s
unknown. Since the author 1s
unknown, no rights have to be
paid for this piece of software,
which is one of the reasons for
its popularity. Another advan-
tage of ‘Avalanche’ over other
languages is the fact that it 1s an
extremely  well-designed and
user-friendly language. Accord-
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T his 1S the ﬁf?%{?&;;}l"lﬁ?l issue of the Squiggolist. The Squiggolist is a forum for people who
work with the Bird-Meertens formahism. [t is meant for the quick distribution of she
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papers, summaries of results, or current points of interest. You cannot subscribe to the
Squiggolist: either you receive it, or you don’t

This edition is sent to all attendants of the International Summer School on Construe.
tive Algorithmics. Although it s not possible to subscribe to the Squiggolist, U mnight send
the following editions provided a letter stating that receiving the Squiggolist is appreciatec
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is sent to me. Furthermore, all new squiggol-experts are invited to submit their interesting
ideas about squiggol.

Submit your contributions (camera-ready copy or a IATEX-file) in A4 format. They
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will be reduced to A5 (x 0.71), so use pointsize 12. There are no restrictions on the fonts
used in the camera-ready copy: it may be IATpX, handwritten or typewritten, as long as
it is black on white, readable and large enough to be turned into A5. | will be the m:*ﬁ;mx,
and contributions should be sent to me:

Johan Jeuring

CWI, dept AA

P.O. Box 4079

1009 AB Amsterdam
The Netherlands
email: jt@Qcwi.nl




Carroll Morgan

Abstract

Use of a right-assocative weakest-binding function-application operator can re-
duce the need for parentheses.

Function application, whether Eindhoven . or white space, usually associates to the left
so that (using white space)

fghz=((fg)h)z

Many derivations, however, involve expressions f-g-h, where the central dot - is functional
composition. Since - is associative, there’s no need for parentheses there; but when looking
for a left-reduction, say, one writes

(f-g-h)(z+]a])

to ensure the composition f-g-h binds tighter than the application to z#[a|. Subsequent
calculation to distribute the + leftwards then requires

f(g(h(z+t(al)))-

And that is a lot of parentheses.

In denotational semantics — the Squiggol of the seventies — a similar problem arose.

When using continuations, which are functions that represent ‘the rest of the program’,
one would write

CIF; G; H]pb = C[F]p(C[G]p (C[H]pH))), (1)

where ; denotes sequential composition of the imperative program fragments F', G, and H.
Mike Gordon' removed the parentheses by defining a functional composition operator
; that associates to the right and has weakest binding. Equation (1) above becomes

CLF;G; H]pb = C[F]p; C[G]p; C[H]pH,

with a nice pun between the syntactic semicolon (inside [---}]) and the new semantic one.
A similar pun rewards the use of ; in Squiggol. Having already written f - ¢ - A, then

belatedly realising a pointwise argument is required, one need only attach a comma to each
composition, from below:

L el

lGo;dan, M.J.C. The denotaiional description of prograrnming languages Springer-Verlag 1979




f - g - h becomes f;g;h,
T 1

¥ )

and now the argument (z+[a]) can be added with no further parentheses at all. In fact,
parentheses can be avoided altogether by writing

£ g5 h; z4+a].
Other equivalent expressions are (as lgltm points out)

f-g;h; x+|a] and f-g-h;xH]al



Jeremy Gibbons
Oxford University

When we are considering a prefix-closed predicate p, we often talk about ‘the derivative’
of p; that is, the function é such that

p(z4fa))=pzAdza (1)

Unfortunately, this doesn’t make a great deal of sense. Both occurrences of the word ‘the’
in that first sentence are sloppy, since there may be many such derivatives. Informally,
these derivatives may differ on what they assert about p z; since they are specified in the
above context, the idempotence of A ‘masks’ all these assertions.

The question then naturally arises, “is there a ‘canonical’ derivative?” To which the
answer 18, yes. In fact, there are at least two intuitive and elegant canonical derivatives,
the ‘weakest’ and the ‘strongest’. The weakest derivative asserts nothing about p z; the
strongest derivative asserts that p z is true.

Thus, for any predicate p with (a) derivative 8, the functions w and s, given by

W s=pr=>oézxa
srza=pxAdza

are also derivatives, and they satisfy the ‘ordering’
sxza = dzrza = wza

As it happens, the strongest derivative is not particularly useful, since it is subsumed by p
itself — s z a = p (z+4+|a]). However, I quite like the idea of the weakest derivative.



(Characterisation

Jeremy Gibbons
Oxford University

Theorem 1 A predicate p is prefir-closed iff it can be written wn the form all g - inits, for
some q which is satisfied by [ ].

Proof. Assume p 1s prefix-closed, 1.e.,

pl]=True |
p (z4la)) =pz A2

for some & (which is called the derivative of p). Let ¢ be given by

g []| = True
g (z4#]a]) =6z a

Then .
(all ¢ - inits) | ]
definition of inits

all g [[]]

definition of all
g (]

definition of g
True

p is prefix-closed

p[]

|

|

I



and, assuming that (all g -inits) z = p z,

(all g - inits) (z+4[a])
definition of inits

all g (inits z4 [z[a]])

all g (z#ty) =allgz Aallgy
all g (inits =) A all ¢ [z4-a]]
definition of all

all g (inits =) A q (z+#[al)
definition of g

all g (initsz) A6 z a
inductive hypothesis
pTAdITa

p is prefix-closed

p (z+|a])

This proves the implication from left to right. Now, assume conversely that p = all ¢ - inits,
for some ¢ which holds for [|. Then
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p ]

assumption

(all ¢ - inits) []
definition of inits

all g [[]]

definition of all

g [}

assumption
True

|

|

1

and
p (z+|a])

= assumption
(all g - inits) (z4[a])
definition of inits
all ¢ (inits z-H#[z+#[al])
all ¢ (z#y)=allgzAallgy
all g (inits z) A all ¢ [z+4][a]]
definition of all
all ¢ (inits z) A g (z+[a])
assumption
pzAq (z+[a])
introduction of § such that § z a = ¢ (z+#[a])
pxANdza

|

I

so p 18 prefix-closed. O
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Richard pointed out that the the
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It occurred to me that the theorem and the proof would be even simpler if the ¢ were
ced by p itself:

A predicate p s prefur-closed 1ff it can be writien in the form all p . inits®

The relationship between this and theorem 2 is that in the latter, there may be many g¢s
which will work; p is just the strongest such. The weakest such ¢ is

given by

g(z#al) = pr=dbra
= —prVodITa

The ¢ used in first half of the original proof 1s somewhere in between the two.



The least-effort cabinet tormation

Johan Jeuring
Lambert Meertens

This note is motivated by the latest Dutch elections, and the formation of a government
following on these elections. We derive an algorithm which minimizes the effort needed to
form a government (the reader is supposed to be familiar with the Bird-Meertens formal-

ism). This algorithm is an application of a theorem about problems which can be specified
by means of

l#/ » P -5€g5.

The Dutch House of Representatives consists of 150 seats, occupied by nine parties.
The parties can be ordered from left to right according to their political views.

It is generally acknowledged that a government should be supported by at least 80 seats
from the House of Representatives. Furthermore, if a number of parties form a government,
and there exists a party the political views of which are in between the political views of

the parties forming a government, this party joins the parties in the formation of the
government (this deviates from the current state of affairs in the Netherlands). Forming a

cabinet becomes more difficult when more parties are involved in the negotiations.

The problem we consider is to minimize the effort of forming a cabinet. Suppose we
represent the House of Representatives as a list of natural numbers. The length of the list
i1s equal to the number of parties in the House, the parties are ordered according to their
political views, and every natural number represents the number of seats a party occupies
in the House. It follows from the above facts that a government is supported by a segment
of the list, the sum of which is at least 80. Since forming a cabinet becomes more difficult

when more parties are involved, we want to find the shortest segment satisfying the above
requirement. The specification of our problem reads

l#/ - sgs < -segs,

where the predicate sgs (sum greater than seventy—nine) is defined by

sgs = (> 80) - +/.



In this section we prove a theorem which gives the conditions under which |4/ - p < -segs
equals the composition of a projection function with a left-reduction.
Using the Segment Decomposition Theorem, see [Bir87], we have

l#/ - P < -S€gS
= SDT

l#/ (lg/ -p< -tails)* - inits

Note that the part |4/ - (lx/ - p < -tails)x from the last formula is a homomorphism. We
abbreviate | 4/ -p <-tails to sp. The following theorem, which is not proved, gives a solution
for problems of the form A - inits, where h is a homomorphism of a specific form. We have

Theorem 1 (inits—promotion Theorem). Let h be a homomorphism @/ - f* where f is a
left-reduction (©-hi). Then

(h - inits, f) = (®@-pe),
where e = (1,1), and ® s defined by

(m,y)@am ($®(y®a),y®a).

In order to apply the inits-promotion Theorem we want to find a left-reduction for
l#/ - p < tails. The ‘Theory of Lists’ developped so far provides lemmas which give a
left—reduction for functions of the form T4/ - p < -tails provided p satisfies some conditions.
Therefore, we try to express |4/ - p < -tails as Tg/ - ¢ < -tails for some predicate g. The
following three lemmas contain statements of the form

f =g on A.

By this statement we mean that fd = g d for all d € A. Using this construct, it is possible
to restrict the domain of equality of functions. Let = be the set of lists which satisfy the
predicate p, and let © be the set of of lists which satisfy — p (clearly ax = ZU ©). We
have

Lemma 1 Let p be a predicate such that — p s postfiz—closed, and define ¢ by g = — p - tl.
Then
sp =T/ - g < -tails on E.

We abbreviate Tx/-g<-tails to lq. This lemma is proved using the following two lemmas,
which can be proved using induction.

Lemma 2 Let = p be a postfir—closed predicate. Then

p <-tails =[] on O©.
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from & and we are finished. Suppose
By a straightforward calculation we obtain

% .J g%ﬁﬁ g wﬁ tﬁiﬁ s { z@?ﬁi % m } i J % ﬁ@ a@f‘ 5; i

A

We distinguish two cases. Fi rst, suppose

- p r holds. Then by Lemma 2 we

p < tailsr = ||,

and hence

14

On the other hand, ¢ |a| 42 = - p r also holds, and by applying Lemma 3 we find

if p z holds, then

(laj#x) L4 (sp 2)

= definition of tails, assumptior
= induction hypothesis

lq x
assumption

lq {a] 4=

2 * 1
AL

H

m.
The lemmas

all require the predicate p to

which give a left-reduction for T/ - p
. ve for nonempty x

Suppose - p 18 prefix-clos

ed. Then we ha

be prefix—closed.

7 Xt 3

= definition of g
- o tl x4 {

= = p is prefix—close

o tl @

= definition of ¢




Hence ¢ is prefix—closed on lists of length at least two. Furthermore, ¢ [a] = True for all
elements a. Since ¢ [] is undefined, ¢ is not prefix—closed. We call a predicate p almost
prefiz—closed if and only if it holds for all singletons and satisfies

pz+[a] = p z,

for all elements a and all nonempty lists z. The predicate ¢ is almost prefix—closed according
to the discussion above. We have the following variant of the Sliding Tails Lemma (see

[BGJ89)).

Lemma 4 Suppose p is an almost prefiz-closed predicate. Then

T/ - p < -tails = (@e),

where e 15 some fictitious element w, and the operator @ is defined by

r®da= xHa] iof p x-H[a]
W)@a ¥ Cpekldazsl

The equality given in Lemma 1 holds only for elements in =. Hence sp is a left-reduction
for elements in =. Suppose z is an element of ©. Then, by Lemma 3, Iq z = 2. However,
sp 2z =1, as is verified by an easy calculation. We have the following equivalence

(spz=1,,) & (- plq2).

We define |
zlsy= z f—-py
T |y otherwise

Note that the operator |s is associative but not commutative. By the above equivalence,
we have

La/ - (Lg/ - p <-tails)* - inits =g/ - (T4/ - ¢ < -tails)x - inits.

‘The following theorem is obtained by applying the inits~=promotion Theorem and the variant
of the Sliding Tails Lemma.

Theorem 2 Let h be the homomorphism |4/ - pa, where — p is segment—closed. Let q be
the predicate — p - tl. Then

h - segs = m - (O-51),
where 1 = (w,w), and the operator @ is defined by

(z,9)@a=(zls (y®a),y®a),
where the operator & 1s defined by

z®a= zH[a] if ¢ z+[a]
Ft;-r)@a Z_j:(“" g zt[a]) Az # ]
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Consider the problem described in the introduction, It is required to find an efhicient
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o = ((4/)0) © () 0 (o(&)) o (»

((x)o) o (%)

SR
IR

and
((x)o) o (o) o (o)

Maarten M. Fokkinga
Centre for Mathematics and Computer Science, Amsterdam

Unwversity of Twente, Enschede

The aim of Algorithmics is to derive
algorithms from a specification by al-
gebraic transformations (Meertens [4]).
It is well known that bound variables
tend to stand in the way of decompos-
Ing an expression into its semantic con-
stituents, and hence hinder the calcula-
tion (Meertens [5]). Thus there is an ever
growing tendency to use combinators that
allow to avoid variables (see e.g., Back-
house [1}). In this note we bring it to an
extreme by providing a variable free ex-
pression for cross-with-plusle, Xg. In prin-
ciple the S,K,I combinators (or even a sin-
gle combinator, Fokker [2]) enable us to
eliminate all variables — but the result-
ing combinator code 18 hardly readable.
(For a convincing test, run any type in-
correct SASL program and inspect its er-
ror message!) Instead of S,K,I we use our
old and well-known friends compose o ,
converse ~, and partial and full sectioning

(currying):

(zoy)z = z(yz)
rdy = YOz
(z®)y = z®y = (Dy)z

(@) = (&z)

As usual, function application is denoted
by juxtaposition; in this note it associates
to the right, so that ( fogoh)z = fghr =
f(g(hz)). Recall the following defining

equatlon for cross-with:

Xey =
fya

Notice that in the defining expression
there occurs just one H/, one @, and two
*x’8. This 1s, of course, also true of the ex-
pression in the theorem.
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Theorem

X = ((H/)0) o (%) o (o(®)) o ()

Proof By extensionality. (In each step
we underline the main part of interest.)

(((#/)o)o(*¥)o(o(®))o(+) ¥

three compositions applied

((4+/)0) (¥) (o(®)) (*) ¥

sectioning

((4/)0) (%) (a(®)) (+v)

sectioning

|

Il

i



((#/)0) (%) ((xy) o (&))

- sectioning

((#/)0) (2 ((+) o (&)))

converse

((4#+/)2) (((xy) o (©))*)

sectioning
(/) o (((+y) o (&)%)

and so it suffices to show that f, =
((*y) o (®)), which we do again by exten-
sionality:

((*¥) 2.(D)) a

composition applied

(*y) (®)a

= sectioning

(*y) (a)

It

)

|

]
o
Z
4
4

(xy) (a®)
sectioning
(ad®)*y

|}

as required. O

For those who love calculating with ex-
pressions that can hardly be understood,
we give some exercises.

Exercise 1  Define ¢z = gz. What
function compositions are expressed by

(of) o (®)o(g) ,
(ho) o (&)

and investigate the distribution of con-
verse over these,

Exercise 2 Formulate and prove — vari-
able free — the two cross laws:

f+(zXgy) =
;;-"’X(ug)o(@)o(h-)y = (9*3’))(@(“11)

Exércise 3 What law is expressed by

((¥)0) o (%) = ((x)o) o (0) o (o)

Exercise 4 Give an expression for cross
in which also the variable @ has been
eliminated.

I have taken these problems as a case
study for the question whether 1t i8 prac-
tical to identify an operation & with a
higher order function that expects the ar-
guments one after the other (Fokkinga (3]).
As you might guess, it turns out that there
are too many “shuffie” steps needed during
a calculation in order to get the arguments
in their place, Hence it seems better to
design special operators that enable us to
eliminate variables without the penalty of
so many shuffle steps during the calcula-
tions. This has been done by Meertens [5].
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