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Essentially, all models are wrong,

but some are useful

1.1 Introducing the Key Players

dedicate the title of the very first chapter of my Ph.D. dissertation to George E. P. Box
I(l919 - 2013) who was, besides a British statistician, one of the greatest minds of the

20th century and famous for saying:

“ Essentially, all models are wrong, but some are useful. ,,
George E. P. Box

The models George E. P. Box was referring to are one of the key players in my Ph.D. dis-
sertation about fluxes and fluctuations in biochemical models. To understand what George
E. P. Box meant here, we first have to understand what kind of models he was referring to.

A Google (images) search mainly returns images of (beautiful) scantily dressed women.
This matches one of the fifteen descriptions given by The Oxford English Dictionary: “A
person employed to wear clothes for display, or to appear in displays of other goods.” The
Oxford English Dictionary additionally writes: “Originally used of women, and still usually
understood in this sense unless preceded by a modifying word, as child, male, etc.” Being
a brilliant statistician George E. P. Box was most likely not referring to scantily dressed
women in his book “Empirical Model-Building and Response Surfaces” (Box and Draper,
1987). In stead, he was referring to the following definition of a model given by The Oxford
English Dictionary.

Key Player #1: Model

A simplified or idealized description or conception of a particular system, situation,
or process, often in mathematical terms, that is put forward as a basis for theoretical
or empirical understanding, or for calculations, predictions, etc.; a conceptual or

mental representation of something.

These types of models are widely used for road maps (Fig. 1.1A), weather predictions
(Fig. 1.1B), stock market predictions (Fig. 1.1C), drug discovery, and parking guidance sys-

tems of cars, for example.
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Now that we know what kind of models George E. P. Box was referring to, we have
to try to understand what he meant by “Essentially, all models are wrong, but some are
useful”. Each of these models is by definition a simplified description of reality, which is the
nature of this type of models. This means that these models are by definition a simplified
description and they are, therefore, always wrong. Should we, scientists, try and seek to
get an as accurate as possible description of reality? We should not, and how can I better

describe this than George E. P. Box who wrote:

“ Since all models are wrong the scientist cannot obtain a “correct” one by exces-
sive elaboration. On the contrary following William of Occam he should seek
an economical description of natural phenomena. Just as the ability to devise
simple but evocative models is the signature of the great scientist so overelab-

oration and overparameterization is often the mark of mediocrity. , ,

George E. P. Box

Being simplified and therefore wrong does not mean that they cannot be useful. Let
me use road maps to illustrate this (and because I am going to use metabolic road maps
later). Road maps are a simplified representation of the actual roads we drive our cars on.
Creating an 1:1 scale road map would not only be cumbersome, but also impractical. Roads
maps are further simplified by leaving out many details (see Fig. 1.1A), details that do not
aid the driver to get from his starting point to his destination. This is what makes road maps
useful.

The biochemical models I developed and used in this Ph.D. dissertation fall exactly into
the category of models George E. P. Box was referring to. These biochemical models are
used to study the chemical processes within living organisms. We can study this with the
second key player of this Ph.D. dissertation: simulation, which is defined by the Oxford

English Dictionary as follows:

Key Player #2: Simulation

The technique of imitating the behavior of some situation or process (whether eco-
nomic, military, mechanical, etc.) by means of a suitably analogous situation or

apparatus, esp. for the purpose of study or personnel training.

This means that simulations can be used to predict a certain behavior of your model. Road
maps are, for example, exploited by navigation systems to predict the fastest or shortest
route from a starting point to a destination (Fig. 1.1A).

These navigation systems use a set of mathematical operations to determine the fastest
route from a starting point to a destination. Such a set of mathematical operations is called
an algorithm, the third key player of this Ph.D. dissertation.




The Oxford English Dictionary defines an algorithm as follows:

Key Player #3: Algorithm

A procedure or set of rules used in calculation and problem-solving; (in later use
spec.) a precisely defined set of mathematical or logical operations for the perfor-

mance of a particular task.

This definition might give the impression that algorithms are something exclusively for
computer scientists and mathematicians. These algorithms are indeed mainly developed by
them, but we all profit from these algorithms in our daily lives. Traffic lights are controlled
by algorithms and we use them every time we hit the search button on www.Google.com.
Besides profiting from algorithms designed by computer scientists and mathematicians, we
also develop and use our own algorithms in our daily lives. For example, we have recipes for
cooking a specific meal, which also involves a set of rules that need to be followed. Cooking
a frozen pizza can involve the following set of rules: remove all packaging and shrink wrap,
preheat oven to 225 °C, bake pizza for 12-15 minutes in the center of the oven until the crust
is light golden brown.

While we can perform simple algorithms by hand, simulating more advanced algorithms
requires (automated) software packages: We do not need an advanced navigation system
with fancy algorithms to tell us the fastest way from our desk to the coffee machine, but
we probably need this navigation system to tell us the fastest way from Amsterdam to
Berlin (Fig. 1.1A). This brings me to the fourth and final key player in my Ph.D. dissertation:
software, which is defined by the Oxford English Dictionary as:

Key Player #4: Software

The programs and procedures required to enable a computer to perform a specific
task, as opposed to the physical components of the system.

Software is indispensable in the era of the (personal) computer. We use anti-virus software,
web-browser software, audio player software, and e-mail client software on a daily basis.
In the next section, I explain how we exploited these key players—models, simulation,
algorithms, and software—in the emerging field of (computational) systems biology; a field
where software tools are nowadays also indispensable (Ghosh et al., 2011). I close this sec-

tion with another quote of George E. P. Box:

‘ ‘ Remember that all models are wrong; the practical question is how wrong do
they have to be to not be useful. ,,

George E. P. Box


www.Google.com

1.2 Exploiting these key players in systems biology

Before we can start exploiting the key players of this thesis—models, simulation, algorithms,
and software—in systems biology, we first have to understand what systems biology exactly
is. Systems biology uses a “systems approach” to study biology. We know biology from
high school as the study of life and living organisms and is defined by the Oxford English

Dictionary as:

The branch of science that deals with living organisms as objects of study.

Biological systems are complex systems that display emergent properties which cannot
be understood from a full understanding of the individual parts (Kitano, 2002b; Aderem,
2005). This reasoning is nicely illustrated by Kitano’s example of an airplane: “identifying
all the genes and proteins in an organism is like listing all the parts of an airplane. While
such a list provides a catalog of the individual components, by itself this list is not sufficient to
understand the complexity underlying the engineered object.” We need a systems approach
to obtain an understanding of the emergent properties of complex systems, thus we need a
systems biology approach to obtain an understanding of the emergent properties of complex
biological systems.

Of systems biology there exist, confusingly, many definitions. I present here three often

used, but different, definitions of systems biology:

« “Systems biology studies biological systems by systematically perturbing them (biologi-
cally, genetically, or chemically); monitoring the gene, protein, and informational path-
way responses; integrating these data; and ultimately, formulating mathematical mod-
els that describe the structure of the system and its response to individual perturbations.”
(Ideker et al., 2001)

«+ “To understand complex biological systems requires the integration of experimental and

computational research—a systems biology approach.” (Kitano, 2002a)

« “The new discipline of systems biology examines how biological cell components interact
and form networks and how the networks generate whole cell functions corresponding to

observable phenotypes.” (Palsson, 2006)

Each of these definitions focuses on different aspects. Luckily, they have something in com-
mon: Systems biology uses different approaches to understand complex biological systems,

not individual pieces.




The explicit definition of systems biology should not come from me, but if you ask me, I

would define systems biology as:

Systems Biology

Systems biology is an integrated approach of computational, experimental, and the-
oretical methods that aims to understand complex biological systems in terms of the

properties of its components and their interactions.

This is the definition of systems biology that I use throughout this Ph.D. dissertation.
Now we know what systems biology is, we can start using the key players of this thesis—
models, simulation, algorithms, and software—to understand complex biological systems.
Despite that I defined systems biology as an integrated approach I focus on computational

(and theoretical) approaches—computational systems biology.

Unraveling the mysteries of micro-organisms with computational systems

biology

Computational systems biology approaches can be used to study a wide variety of complex
biological systems. When applied to human health, these approaches can be used to study
health and disease (Butcher et al., 2004). Cancer, for example, is argued to be a systems
biology disease (Hornberg et al., 2006). This led to the development of a specific research
field: cancer systems biology (Kreeger and Lauffenburger, 2010; Werner et al., 2014).

In this Ph.D. dissertation, I focus primarily on micro-organisms—

Micro-organism

An organism so small as to be visible only under a microscope; esp. a bacterium,

fungus, or alga.

—of which bacteria, viruses, archaea, and some fungi and algae are examples. We have about
1.5 kg of these micro-organisms in and on us which corresponds to more than hundred tril-
lion micro-organisms (Xu and Gordon, 2003; Ley et al., 2006); they are together called the
human microbiota. Bacteria are the most abundant type of micro-organism in the human
microbiota. The majority of these micro-organisms help us to stay healthy as may be illus-
trated by the following examples. The bacterium Escherichia coli protects the colon against
harmful micro-organisms and produces vitamin K2. Methanobrevibacter smithii is an ar-
chaeum that aids the efficient digestion of polysaccharides in the human gut.

Despite the fact that we cannot see these micro-organisms by the naked eye, there ex-
ist numerous industrial applications of these micro-organisms. Food manufacturers exploit
that micro-organisms are able to ferment, which not only is required to make the prod-

ucts we love most—e.g. beer, bread, chocolate, cheese, yogurt and wine—but additionally



improves their storage life. In health care micro-organisms are used to produce antibiotics
and vaccines.

More importantly, micro-organisms are responsible for the composition of our bio-
sphere. They do this by (re)cycling the chemical elements that are a necessity for life, gener-
ating oxygen into the atmosphere and fixating nitrogen into a usable form (Dismukes et al.,
2001; Canfield et al., 2010). This makes them the base of many food chains by convert-
ing nutrients and inorganic elements that other life forms cannot access. Cyanobacteria,
for example, have been responsible for a significant fraction of the oxygen release in our

atmosphere (Dismukes et al., 2001).

Cyanobacterium as example micro-organism

Nowadays, these cyanobacteria are of increased interest due to the world-wide fossil fuel

scarcity. They are defined as:

Cyanobacterium

Any of a division of prokaryotic micro-organisms that contain chlorophyll (green)
and phycocyanin (blue), produce free oxygen in photosynthesis, and occur widely

in unicellular, filamentous, and colonial forms; also called blue-green alga.

Many different research facilities are currently studying the potential of cyanobacteria for
harvesting solar energy for industrial applications. This Ph.D. study was carried out in the
BioSolarCells fundamental research program: “Expanding society’s toolbox to harvest solar
energy” with a specific cyanobacterium, Synechocystis PCC6803, as model organism. While
most of the tools we developed are generic (except for the metabolic map of Synechocystis
presented in Chapter 3), I use the cyanobacterium Synechocystis PCC6803 as an example
micro-organism in my Ph.D. dissertation.

For industrial applications, cyanobacteria possess many advantages compared to other
micro-organisms. The most important advantage is that they use photosynthesis to har-
vest solar energy for growth. These cyanobacteria have therefore the potential to be used
as a cellular factory—fueled by sun light—for the direct conversion of carbon dioxide into
compounds of interest to society (Angermayr et al., 2009; Ducat et al., 2011; Quintana et al.,
2011; Wijffels et al., 2013; Savakis and Hellingwerf, 2014; Angermayr et al., 2015).

In the recent years, cyanobacterial strains have been developed that can produce re-
duced fuel compounds such as ethanol (Gao et al., 2012), L-lactic acid (Angermayr et al.,
2012; van der Woude et al., 2014; Angermayr et al., 2014), 2,3-butanediol (Oliver et al., 2013;
Savakis et al., 2013), glycerol (Savakis et al., 2015), and isobutyraldehyde & isobutanol (At-
sumi et al., 2009), although no sufficient productivity has been found yet for large scale

production of such reduced fuel compounds.




1.3 Outline of this thesis

By now, you should be able to grasp the aim of my Ph.D. dissertation—using models, simu-
lation, algorithms, and software—to understand complex biological systems in terms of the
properties of its components and their interactions. Besides using them to understand com-
plex biological systems, we also want to make them available to the scientific community by
developing useful software packages. In the remainder of this introductory chapter, I pro-
vide a brief overview of what is presented in the remaining chapters—this can be difficult to
understand if you are not familiar with these modeling and simulation (M&S) approaches.

In computational systems biology, many different M&S approaches exists. Each M&S
approach has its own advantages and disadvantages, thus we cannot say that one M&S
approach is better than the other. A M&S approach can only be more suitable to resolve
a specific question. For various scientific questions in the field of computational systems
biology, Table 1.1 illustrates—for those interested or familiar with different mathematical

methods—which approach is generally the most suitable.

Model Method Examples
ORI R BRI stoichiometric  Flux Balance Analysis Lewis et al. (2010)
(O CHTo it e DS stoichiometric  Flux Balance Analysis Deutscher et al. (2006)
N S  stoichiometric  Elementary Flux Modes  Jol et al. (2012)
WEELIES el Easla  stoichiometric  OptKnock Yim et al. (2011)
WIEELLES gl stoichiometric  Elementary Flux Modes  Trinh et al. (2008)
Optimal specific-flux states [t std Elementary Flux Modes ~ Wortel et al. (2014)
Single-cell dynamics  JE I ENT SSA Elowitz et al. (2002)
Population dynamics sttt ODEs van Heerden et al. (2014)
Bistable dynamics [ feldtRyste SSA Wei et al. (2014)

Structural dynamics of proteins EBiOeRiCIL! Molecular Dynamics Shaw et al. (2010)

Behavior of cellular structures JREIINEVSLIS Metropolis algorithm Szabo and Merks (2013)

Table 1.1. Examples of mathematical methods that are often used to solve scientific questions. Abbre-
viations: SSA: stochastic simulation algorithm, ODE: ordinary differential equation. Flux Balance Analysis (in depth
discussed in Chapter 2) is most suited to predict optimal growth yields by using genome-scale stoichiometric models
of metabolism as input. Stochastic simulation algorithms (SSAs) (in depth discussed in Chapter 6) are most suitable to
predict single-cell dynamics, while classical systems of coupled ordinary differential equations (ODEs) are most suitable
to predict population dynamics.

I'focus mainly on two important M&S classes: stoichiometric modeling and simulation
to investigate fluxes in biochemical models (Part IT) and discrete stochastic modeling and
simulation to investigate fluctuations in biochemical models (Part IIT). Understanding these
classes is not yet a requisite—both M&S classes are discussed in detail in Chapters 2 and 6.
In short, stoichiometric simulations are deterministic (the output of a specific simulation is
fully determined by a set of constraints), whereas stochastic simulations possess inherent

randomness (the same set of initial conditions and parameter values leads to an ensemble

10



of different outputs). Fig. 1.2 illustrates the outcome of both M&S classes; note the striking
resemblance between these simulations and the examples of daily life simulations shown in
Fig. 1.1:

(i) Stoichiometric M&S can be used to predict optimal routes in biochemical models.
In Fig. 1.2A, we predict the optimal biochemical route to synthesize glycogen from
light which is comparable to predicting the optimal (fastest) route from Amsterdam
to Berlin (Fig. 1.1A).

(if) Discrete stochastic M&S can be used to predict time dynamics and probability distri-
butions of stochastic processes. In Fig. 1.2B, we predict the behavior of molecule X
in a specific biological system which is comparable to predicting the future price of a
specific stock (Fig. 1.1C).

More specifically, I use stoichiometric M&S to predict and analyze steady-state fluxes
in biochemical models (the first part of the title). All processes in nature are, however,
fundamentally stochastic. While this stochasticity is often negligible in the macroscopic
world because of the law of large numbers, considerable experimental evidence indicates
that significant stochastic fluctuations are present and essential. I therefore use discrete
stochastic M&S to investigate fluctuations in biochemical models (the second part of the
title).

I start both Part I and III by discussing the start-of-the-art mathematical methods for
both stoichiometric and discrete stochastic simulations in Chapters 2 and 6, respectively.
We developed specific software packages that aid the community in understanding com-
plex biological systems (without fragmenting them into pieces). These software packages
are VONDA (Visualization of Network DAta), CoPE FBA 2.0 (Comprehensive Polyhedron
Enumeration FBA), and StochPy (Stochastic modeling and simulation in Python) which are
in detail described and illustrated in Chapters 3, 5, and 7, respectively. Each of these soft-
ware packages is (mainly) developed in Python. Python is a user-friendly, freely available,
and powerful programming language that is currently a popular programming language in
systems biology. This is demonstrated by the collection of systems biology tools that have
been developed in Python during the last years (e.g. PySCeS (Olivier et al., 2005), ScrumPy
(Poolman, 2006), CBMPy (Olivier, 2011), PySB (Lopez et al., 2013), and COBRApy (Ebrahim
et al., 2013)).

In short, we developed VONDA as a data integration and visualization resource for
metabolic models. As input VONDA requires a graphical map of metabolism in Support
Vector Graphics, which is what we developed and illustrate for Synechocystis in Chapter 3.
We also developed a plug-in to FAME, the first web-based Flux Analysis and Modeling
Environment. In Chapter 4 we first present a better understanding of the interplay be-

tween constraints, objectives, and optimization for genome-scale stoichiometric models of
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metabolism. We subsequently present in Chapter 5 an efficient method, CoPE FBA 2.0, to
enumerate optimal solution spaces of these genome-scale stoichiometric models.

In Chapter 7 we present StochPy as our tool of choice for stochastic simulation of molec-
ular control models inside living cells. We extended StochPy by incorporating explicit cell
growth and division events which we further describe and illustrate in Chapter 8.

I conclude with a discussion in which I elaborate on the importance of the key players—
models, simulation, algorithms, and software—in the emerging field of systems biology,

with a special focus on understanding fluxes and fluctuations in biochemical models.

A G3P RSP / /
< 12 }‘ RusP 6PG 6PGL GoP =285 G1p 22 ADP-Gle =228 Glycogen
; |
/ Pentose Phosphate 058[ |
S7p X5P
. Zl Pathwa}’ Fructose F6P D-Glucosamine 6-P D-Glucos
‘ 1.7
>heptulose 1,7-PP
- FBP M6P M1P GDP-Mani
1.7
35 Glycolysis
DHAP 29 Yeoly
G3P =====> DHAP
dTTP DNA
; 13DPG —— 23DPG
Calvin Cycle . aCTP —
6.9
ycolate 2PG RuBP PG3— 3PHP
35
B 800 I I I I I I
700
600
500
Z 400
300 |
200
100
0 !
0 2 4 6 8 10 0 0.0050.010 0.015

Time Probability (X)

Figure 1.2. Graphical representation of stoichiometric and discrete stochastic simulations. (A) flux bal-
ance analysis predicts steady-state fluxes in Synechocystis’ central carbon metabolism (Chapter 3). (B) stochastic sim-
ulation of the number of X molecules (nx ) in the Schlogl reaction system—left panel shows five different time trajectory
simulations and the right panel shows the nx distribution at t = 10 after running 250000 simulations (Chapter 6).
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This chapter is based on the publication:

Maarleveld T.R, Khandelwhal R., Olivier B.G., Teusink B., and Bruggeman F.J. (2013) “Basic
concepts and principles of stoichiometric modeling of metabolic networks”, Biotechnology
Journal, 8, 9:997-1008.

Stoichiometric Modeling & Simulation
2 P
1 FBA example

Sl<—> X

A

Unbiased methods: :

EEM, ExPA U Z=0.5],+ 0.5]
<J, <1 = G 3 U/

Biased methods: 0<Jy=<10

0<],<6
FBA, FVA, CoPE-FBA 0<].<8

Stoichiometric Modeling & Simulation: A widely used predictive approach to study metabolism at
the genome-scale level. Various mathematical methods exist of which Flux Balance Analysis (FBA)
is the most popular method.

The above example shows using FBA to optimize the objective function Z given the constraints.
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A toolkit for analyzing fluxes in

biochemical models: stoichiometric

modeling & simulation

Abstract

Metabolic networks supply the energy and building blocks for cell growth and maintenance.
Cells continuously rewire their metabolic networks in response to changes in environmen-
tal conditions to sustain fitness. Studies of the systemic properties of metabolic networks
give insight into metabolic plasticity and robustness, and the ability of organisms to cope
with different environments. Stoichiometric modeling and simulation of metabolic net-
works has become an indispensable tool for such studies. Herein, we review the basic the-
oretical underpinnings of stoichiometric modeling and simulation of metabolic networks.
Basic concepts, such as stoichiometry, chemical moiety conservation, flux modes, flux bal-
ance analysis, and flux solution spaces, are explained with simple, illustrative examples. We

emphasize the mathematical definitions and their network topological interpretations.

2.1 Introduction

ETABOLISM is essentially a large network of coupled chemical conversions (re-
actions) catalyzed mostly by enzymes. In this process, nutrients are converted
into building blocks, such as nucleotides, fatty acids, lipids, amino acids, and
free-energy carriers, for the synthesis of macromolecules, such as DNA, RNA, and proteins.
These macromolecules are required for the maintenance of cellular integrity and formation
of new cells. Fundamental processes in metabolism are enzyme-catalyzed reactions. In a
single reaction, substrates are converted into products and the number of atoms of a given
type, such as C, H, O, N, P, or S, and the net charge should balance on each side of the
equation (Roels, 2009).
These balancing principles are followed in genome-scale stoichiometric models (GSSM)
of metabolism (Thiele and Palsson, 2010). These GSSMs are defined as:

Genome-scale stoichiometric models

Models that are solely based on stoichiometry (not the kinetics) and that cover the

total (metabolic) potential encoded in the genome.
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Some aspects of balancing remain ambiguous, such as the protonation states of some of
the metabolites, because this may be dependent on intracellular properties, such as pH and
ionic strength. Every reaction occurs at a rate that depends on the concentrations of the
enzyme reactants, possibly a few effectors, and the enzyme kinetic properties described by

enzyme kinetics. Any reaction j can be written as

Mz

m
n,-_jxi — Z n;rjx,' (2.1)
i=1

Il
—_

in which we consider a network with a total of m metabolites (reactants), denoted by x;.
The n;rj and ni coefficients denote product and substrate stoichiometric coefficients respec-
tively, and equal the number of molecules produced and consumed per unit reaction rate.

1

We define v; as the reaction rate and typical units are mM min™" or mmol h~! (g biomass)~!.

The net stoichiometric coefficient of metabolite i in reaction j is defined as n;; = n;“j - njj.
The rates of change of the concentration of every metabolite can be equated in terms
of reaction rates and net stoichiometric coefficients, which gives rise to the following set of

ordinary differential equations:

d
2;%(6p) =Nv(x(t.p, p). (2.2)

Here the metabolite or state vector x is mx1in dimension and the rx1 rate vector, v, contains
the rate equations of the r reactions in the network, which are typically expressed in terms
of enzyme kinetics. The stoichiometric matrix N is m x r in dimensions and contains as
its i, j-th entry the net stoichiometric coefficient, n; js of metabolite i in reaction j. The
coefficient 7;; < 0 if metabolite i is a substrate in the net stoichiometry of reaction j and
n;j > 0 if metabolite i is a product in the net stoichiometry of reaction j. The kinetic and
environmental parameters are elements of the vector p and ¢ denotes time. Metabolites
that are held at a fixed concentration (boundary metabolites) do not enter the stoichiometry
matrix because they do not have a rate of change. They enter as parameters in the parameter
vector p.

Because our interest is in stoichiometric models, we do not discuss further enzyme ki-
netics that enter the rate vector v, see Cornish-Bowden (2013). The stoichiometric matrix is
the principle object of study in stoichiometric modeling and simulation. Herein, we discuss

basic analyses of the stoichiometric matrix.

2.2 Chemical moiety conversation

In metabolism, metabolites tend to occur that are solely recycled. Examples of such metabo-
lites include ATP, NAD(P)H, and coenzyme A. As a consequence of recycling, the maximum

concentration of those metabolites is constrained by a total concentration of a chemical
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moiety. For instance, in the case of phosphate and adenosine moiety conservation, the re-
lationships
Pr=3ATP+2 ADP+AMP +P,

Ar=ATP+ ADP+ AMP,

(2.3)

hold true at any moment in time with total phosphate and adenosine levels given as Pr and

Ar. Taking the derivative of Eq. (2.3) with respect to time yields

dATP . dADP . dAMP . d7P
dt dt dt dt

_ dATP N dADP . dAMP

dt dt dr

which indicates the linear relationships between the rows of the stoichiometry matrix and

0=3

>

(2.4)

0

allows for the expression of the rate of change of one metabolite in terms of other rates of
change (Hofmeyr, 2001). In matrix form, we can write this as

dxP dx!
—— =Ly— 2.5
dt 0 dt (25)
for the general case of metabolites of a metabolic network. The vectors x? and x! denote the
vector of dependent and independent metabolite concentrations. The matrix Ly expresses
the linear combinations of the rates of changes of the independent metabolites. In integrated
form, Eq. (2.5) becomes

xp—Loxr=t (2.6)

with ¢t as the vector of total concentrations of chemical moieties. By way of illustration,
for the moiety-conservation relationships given in Eq. (2.3) the vectors xp and x and the

matrix Ly are given in the following relationship:

d (AMP) i (—1 —1) d (ATP). o

dt p -2 -1)dt\ ADP
Using this Ly matrix, the dynamics of all metabolites (ATP, ADP, AMP, and P) can be ob-
tained from the dynamics of the independent metabolites (ATP, ADP). In other words, the
dependent species are redundant for determining the species dynamics. Different combi-
nations of independent metabolites can be chosen. This can intuitively be seen from the
relationships given in Eq. (2.3). For example, by choosing ATP and AMP as independent
metabolites, the concentration of ADP can be determined from At = ATP + ADP + AMP.
Subsequently, the concentration of P can be determined from Py =3 ATP+2 ADP+AMP+P.
The relationship given in Eq. (2.5) dictates the decomposition of the stoichiometric ma-

trix into two blocks as is given by

d|Xr) .. [Nr
dt(XD)—NV—(NO)v, (2.8)
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in which N is decomposed into blocks of Ny (the reduced stoichiometry matrix) and No
(Kholodenko et al., 1994; Reder, 1988). Together, the relationships shown in Egs. (2.5)

and (2.7) give rise to

T
LoNg = No — (~LolI) (ZIS):O_’(?\Z;) (-LoD)" =0, (2.9)

and indicate that the moiety conservation matrix in Eq. (2.10),

1
L= (Lo)’ (2.10)

can be derived from the left null-space of the stoichiometry matrix (Famili and Palsson, 2003;
Sauro and Ingalls, 2004). Typically, Ny is identified in N after the null-space is calculated.
The number of independent metabolites, my, is denoted by the rank of N, thus the reduced
stoichiometry matrix Ny is mg x r in size. This indicates that the stoichiometry matrix N
has m( independent rows and m — my moiety-conservation relationships.

In GSSMs, a biomass reaction is typically used to describe cell growth. This biomass
reaction is used as a sink for biomass precursors (e.g. DNA, RNA, proteins, and lipids)
that together define the biomass composition of the cell. These biomass precursors contain
moieties, such as adenosine, that require the continuous synthesis of adenosine. Therefore,
a non-zero flux through this biomass reaction results in a drain of the moieties. Hence, in
such a GSSM, a strict application of moiety conservation detection along the lines detailed
above, results in fewer moieties. Yet, to understand the dynamics of metabolic pathways,
they are relevant because the turnover of ATP is much greater than the rate at which the

adenosine moiety is synthesized.

2.3 Steady-state flux modes
By definition, at a steady state of the metabolic network the following relationship holds:
NgJ=0 (2.11)

where we used the convention that the reaction rate vector, v, at steady state is denoted by
J, which is the flux vector. Eq. (2.11) gives rise to my flux relationships, each of which rep-
resent a linear combination between fluxes. As a consequence, r — mg fluxes are minimally
required to determine all fluxes. Hence, Eq. (2.12) must exist because it describes all linear

combinations of independent fluxes (J ') that give rise to the dependent fluxes in J D.

I I I
]D:KOII_)I:(IID):(KO)II_)NR (KO):O. (2.12)
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This means that the right null-space of the (reduced) stoichiometry matrix equals the kernel

I
(1) o

The columns of Ng may have to be reordered to write the null-space in this form. In addi-

matrix, given by

tion, each column of K can be divided by any number; all resulting vectors continue to lie
in the null-space of Ng. The rows of K represent the flux values of a specific reaction.

If we denote the j-th column of K by kj, any flux vector J can be written as a linear
combination of the columns of K, as given by

r—mgo

J= ) ajk; (2.14)
j=1

in which the weighting coefficients, «, can take any value. The set of all flux vectors of the
metabolic network is contained within the null-space of Ng. However, this is a huge space
and below we discuss definitions that reduce this space by incorporating additional ther-
modynamic information or postulating optimal metabolic functioning. Eq. (2.14) illustrates
that the definition of K cannot be unique because multiplication of the multipliers «; by
any factor A can be compensated for by the division of every element in k; by A. Because
no restrictions apply to the values of the multipliers, K cannot be uniquely chosen.

The vectors k; have a network topological interpretation. They represent routes
through the network along which every metabolite is at steady state, if the fluxes carry
the values dictated by k;. This is why the k; terms are often called flux modes. In Fig. 2.1A,
a toy metabolic network is shown which contains 26 reactions and 23 metabolites. The ex-
ternal metabolites T, U, X, and Y are considered to be fixed; the other 19 metabolites are
considered to be variable. The stoichiometry matrix has full rank and, therefore, no con-
served chemical moieties occur. The number of independent fluxes equals seven (=26-19).
Or in other words, seven flux modes exist and they are displayed in Fig. 2.1B. The color
codes of the reactions indicate reaction rate values. Because all of these metabolites along
a flux mode are required to operate a steady state, the flux modes have to be either cycles
or routes from source to sink metabolites.

The flux modes do not necessarily agree with thermodynamics, since several irreversible
reactions are forced to have a negative flux. In addition, the flux mode in the upper-right
part of Fig. 2.1B is complex and could be swapped for a simpler flux mode if desired. This
indicates the problems associated with analysis of the null-space and explains why alter-
native definitions for steady-state flux routes in metabolic networks have been developed;
these are introduced and discussed in the upcoming sections of this chapter (2.4-2.9). These
alternative definitions are unique representations of the null-space and agree with the ther-

modynamic preference of the reactions.
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Figure 2.1. A simplified metabolic pathway to illustrate the concept of flux modes. (A) a network diagram
of a simplified metabolic network. Arrows indicate reactions and are labeled as R1, R2, ..., R26. Double-headed
arrows indicate reversible reactions. Irreversible reactions are indicated by single-headed arrows, which point in the
thermodynamically preferred direction. Underlined metabolites are considered to be fixed in concentration to allow
for a steady state. All reactions are uni-uni reactions, except R25, which has stoichiometry of A+ T—> U+ 05S.
We can rewrite this stoichiometry as Ay + P — AP + A to illustrate that there is no stoichiometric inconsistency with
the isomerization reactions. To deal with thermodynamic inconsistencies, imagine adding fixed metabolites V and
W to R24 to drive this reaction forward. A description of this model in the SBML level 3 format can be found in the
Supplemental Dataset S1. (B) an overview of the seven flux modes (colors correspond to flux values).
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2.4 Flux Balance Analysis

In Section 2.3, we discussed the steady-state relationship Ng J = 0. We illustrated that this
system of equations was underdetermined; more unknown fluxes occurred than the number
of linear relationships (r > mg). Therefore, the null-space of the stoichiometric matrix N did
not lead to a unique flux vector, but a whole solution space. To realistically narrow down

the solution space, Flux Balance Analysis (FBA) is a popular method.

Flux Balance Analysis

A linear programming approach to optimize (maximize or minimize) an objective
function subject to the steady-state constraint, thermodynamic constraints, and ca-

pacity constraints

FBA selects only those flux values that together can optimize some biologically relevant
objective, such as maximum biomass rate or maximum ATP production rate (Schuetz et al.,
2007). This optimization is achieved by a linear programming approach (Fell and Small,
1986; Savinell and Palsson, 1992) and FBA can be mathematically represented by

Maximize or Minimize Z,}; = Ty
subjectto NJ =0 (2.15)

Imin SISImax,

in which vector ¢ dictates a linear relationship between fluxes of J that forms the objective
function Z. The J™" and J™4* are vectors of minimum and maximum values respectively,
that any flux of vector J can attain during this optimization. These flux bounds can represent
experimental measurements by bounding all known flux values within experimental errors
or they can derive from thermodynamic considerations that force fluxes to be either strictly
negative or positive. This linear program narrows down the feasible steady-state flux space
of the stoichiometric matrix by applying stoichiometric, thermodynamic, and environmen-
tal constraints and by optimizing an objective function. Hence, this linear program results

in an optimal solution space,

Optimal solution space

The set of flux distributions that, in combination, give a unique and maximum value

for the objective function Z.

Mathematically, the optimal solution space can be written as

Fope={J:NJ=0,J™" <J<J™** cTJ=opt}, (2.16)
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which means that each flux distribution J must be in steady state (N = 0), satisfy the flux
bounds (J™" < J < J™4%), and satisfy optimality (¢TJ = opt). This optimal solution space is
considerably smaller than the space dictated by K.

Performing FBA on the toy metabolic model shown in Fig. 2.1A with the input flux
R1 < 1, and maximization of the flux through R26 as the objective function yields a flux
distribution, one of which is presented in the upper-left part of Fig. 2.1B. This example in-
dicates that the flux distribution that results from FBA can be (a linear combination of the)
flux modes of the stoichiometric matrix. We also performed FBA on the iTM686 model of
Synechocystis, further described in Chapter 3. Input fluxes represent a light limited growth
condition (photon and HCO3 maximum uptake fluxes of 3.7 and 30 mmol gDW ! h™! re-
spectively) and free exchange of ammonia, water, oxygen, protons, phosphate, sulfate, and
other metal ions. As the metabolic objective, we considered maximization of the rate of
biomass synthesis. This optimization predicts a growth rate of 0.052 h™! and a flux distri-
bution in which 40.0% reactions are inactive; about 60.0% reactions of the whole metabolic

network are used.

2.5 Flux Variability Analysis

A useful tool to gain an insight into network flexibility is Flux Variability Analysis (FVA):

Flux Variability Analysis

A linear programming approach to maximize and minimize each flux of the
metabolic network, while satisfying all given constraints at the optimal objective
function value (Mahadevan and Schilling, 2003).

FVA gives the span of the fluxes that exist within the optimal solution space defined by the
linear program given in Eq. (2.15) . The linear program for FVA is given by

Maximize or Minimize J; for j=(1,2,..., 1)
subjectto NJ =0
. (2.17)
c I= Zubj

Imin g]glmax,

in which Z,,; is the objective function value of the previous linear program (Eq. (2.15)). By
fixing the objective function value at the value obtained from the FBA optimization, FVA
determines the range for each flux within which all numerical values are valid FBA solu-

tions. The results of FVA optimization can be used to determine the spans (= | ]]E VA max _

JEVA™™ ) as an absolute difference between the FVA maximum (J f VA maxy and FVA min-

imum (];.U VA miny yalues of each flux J ; within the optima. On the basis of these spans,
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Figure 2.2. FVA performed on the toy metabolic model. Resulting spans are shown for all reactions in which
zero span is for fixed (in-)active reactions (gray, R25 is inactive), a span of one is for active but variable reactions
(purple), and large spans are for reactions (red, orange) in cycles.

we can determine the fixed and flexible parts of the metabolic network while it achieves a
particular metabolic objective. These spans can hit infinity because, in an optimal flux dis-
tribution of the metabolic network, some reaction rates may not be constrained at all. The
FVA span gives an indication of the range of values that a reaction may attain. However,
the actual value a reaction can take in a particular flux distribution depends on the entire
reaction network: Fluxes cannot be changed independently because this would violate the
steady-state constraint (Burgard et al., 2004).

Fig. 2.2 shows the absolute spans resulting from FVA for all fluxes in the toy metabolic
model. The constraints for this FVA are identical to the FBA calculations for this model dis-
cussed above and infinity flux bounds are represented by a large value of 1000. This analysis
depicts the reactions that have a fixed flux and a span of zero (gray arrows) and reactions
that have variable fluxes with a span of one (purple arrows). Reactions with a span of zero
are either active (essential) reactions because alternative optimal paths are not present or in-
active (non-essential) reactions because they yield a sub-optimal FBA solution (R25). Some
reactions (red arrows) have large spans because they are part of metabolic cycles (R2-R4,
R14 and R19-R21, and R23-R24). In any optimal FBA solution with a maximal flux of one
through R1, a net flux one is required from R1 to R5. Therefore, the allowed flux values of
R2-R4 are between -999 and 1000 (span = 1999); a flux of -999 through R2 results in a flux
of 1000 through R3 and R4 and vice versa. In contrast, to obtain an optimal FBA solution no
net flux is required through the second metabolic cycle (R14 and R19-R21). For instance, a
flux of one through R16-R18 results in no flux through R13-R15 in any optimal FBA solu-
tion. The reactions of this metabolic cycle can, therefore, operate at their maximum bounds
in both directions without violating optimal metabolic functioning (span = 2000). Also, a
net flux of one is required from R22 to R26. Because R24 is irreversible, the maximal flux
R23 can obtain in any optimal solution is one (with Jry4 = 0). Since R23 is reversible, an
optimal FBA solution can be obtained if the fluxes through R23 and R24 are -999 and 1000
respectively. The spans of R23 and R24 are thus 1000 (R23: -999 to 1 and R24: 0-1000).

We also performed FVA on the Synechocystis model iTM686 with the same constraints
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and objective function value as the FBA optimization described above. Analyzing the spans
of all fluxes revealed that only 9.1% reactions could vary in the optimal solution space. Of the
90.9% fixed reactions, 59.7% carry a non-zero flux and the remaining 40.3% are inactive. This
means that 63.3% (9.1% + 0.909 x 59.7%) reactions can have a non-zero flux. The percentage
of non-zero fluxes in an FBA outcome is equal or less, because some variable fluxes can also
be zero in an FBA solution.

2.6 Interpretation of the sensitivity parameters associated with an
FBA solution

Two sensitivity parameters—reduced costs and shadow prices—are associated with an FBA

solution. A reduced cost (r;) can be interpreted as:

Reduced cost

The sensitivity of the objective function with respect to the change in the j-th flux

value.

In biological terms, this can be interpreted in the following manner: If a flux J; has a re-
duced cost of r; in a particular FBA solution and this flux value is increased by 8/, then the
objective function value is changed to Z +r;0];. Reduced costs assigned to nutrient uptake
fluxes give us an indication of the growth-limiting compounds in the medium. The reduced
costs assigned to the uptake fluxes of substrates, that are not allowed to be consumed, iden-
tify which nutrients could be added to the medium to achieve a higher growth rate (Goffin
et al., 2010). Sometimes, inactive substrate fluxes are of no interest and scaled reduced costs
(srj) (Teusink et al., 2006) are used to identify the limiting substrates. Scaled reduced costs
can be represented by

sTj=——=. (2.18)

A shadow price (y;) is defined as:

Shadow price

The sensitivity of the objective function with respect to the change in a constraint
(Palsson, 2006).

Consequently, if metabolite i is added, then objective function value Z changes according
to the shadow price. Shadow prices have been used to analyze the effects of substrate avail-

ability on the growth in phenotypic phase plane analysis (Price et al., 2004).
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2.7 Elementary Flux Modes

Elementary flux modes (EFMs) and extreme pathways (ExPas) were developed to uniquely

characterize the right null-space K of a stoichiometry matrix. These EFMs are defined as:

Elementary flux modes

The non-decomposable steady-state pathways in metabolic models.

In contrast to FBA-related techniques, EFM (and ExPa) analyses are only based on model
stoichiometry and therefore allow an unbiased analysis without imposing an optimiza-
tion principle. These definitions rely on a convex set of flux vectors (Schuster et al., 1999;
Schilling et al., 2000). By taking a convex combination of these flux vectors (e,), any possi-
ble steady-state flux distribution (J) can be generated. Assuming that we have K EFMs, we

can write this as

M=

J=) arex (2.19)

k=1

where aj are non-negative weighting coefficients that total one,

i“k =1with (a; >0). (2.20)

k=1
EMFs (and ExPas) can be exploited to evaluate, for instance, pathway redundancy, to find
(sub-)optimal pathways for the investigation of pathway properties, such as cost and length,
and to study the effect of gene deletions (Price et al., 2002; Wiback and Palsson, 2002; Pa-
pin et al.,, 2002). Unfortunately, both approaches suffer from excessive running times, that
is, characterizing the right null-space of the stoichiometric matrix is a non-deterministic
polynomial-time (NP)-hard computational problem.

EFMs fulfill the following three conditions: (pseudo-)steady state, thermodynamic fea-
sibility, and non-decomposability (Schuster et al., 1999). These conditions have three impli-
cations. First, internal metabolites of an EFM are neither net consumed or produced due to
the steady-state condition. Second, all flux rates of an EFM are thermodynamically feasible
in contrast to the flux modes, k e And third, no subset of an EFM exists that fulfills the first
two conditions without violating the third condition. The complete set of EFMs can be par-
titioned into three types: (i) all optimal yield pathways converting one or more substrates
into a product, (ii) all sub-optimal yield pathways converting one or more substrates to a
product, and (iii) internal loops in the metabolic model.

The toy metabolic network shown in Fig. 2.1A contains 28 EFMs, as shown in Fig. 2.3. In
this toy model, we can identify all three types of EFMs earlier defined. To begin with, there
are 24 type I EFMs that characterize all optimal pathways, which are shown in Fig. 2.3A-X.
Any route from metabolite X to Y, ignoring reaction R25, is a type I EFM. In this network,
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Figure 2.3. Topological character-
ization of all EFMs. (A)-(X) EFM
type L (Y) EFM type II. (Z)-(AB) EFM
type III. Visualizing ExPas requires de-
coupling of all reversible reactions into
two irreversible reactions. Because all
exchange reactions are irreversible, the
set of relevant ExPas match this set of
EFMs. Colors correspond to reaction
values (red = 1, blue = 1/2).
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there is only one type II EFM that gives a sub-optimal yield (Fig. 2.3Y). Thus, any route
from metabolite X to Y, involving reaction R25, results in a sub-optimal yield because R25
has stoichiometry A + T — U + S . Finally, there are three type IIl EFMs that characterize
the internal loops of this metabolic network, as shown in Fig. 2.3Z-AB. Generally, these
cycles are responsible for the large number of EFMs. To illustrate this point, without these
three cycles the toy metabolic network has only five EFMs and there would be four EFMs to
characterize all optimal pathways, one EFM to characterize the sub-optimal pathway, and

zero EFMs to characterize internal loops.

2.8 Extreme Pathways

The alternative approach, ExPas, determines the edges of the cone that describe the steady-
state solution space and the thermodynamic preference of reactions (Schilling et al., 2000).
These ExPas are defined as:

Extreme pathways

A unique and minimal set of flux vectors that completely characterizes the steady-
state capabilities of GSSMs (Papin et al., 2002).

The set of ExPas does, therefore, not have to contain all pathways with an optimal and
sub-optimal yield, in contrast to the EFMs. Convex combinations of ExPas that satisfy the
three EFM conditions can be used to obtain all optimal and sub-optimal pathways. In addi-
tion to the three conditions of EFMs, ExPas require two additional conditions: (iv) network
reconfiguration and (v) systematic independence.

Network reconfiguration results in a classification of each reaction as an internal or ex-
change reaction. Moreover, each internal reversible reaction is split into two irreversible
reactions: a reaction describing the forward reaction and a reaction describing the back-
ward reaction. Systematic independence guaranties that an ExPa cannot be represented by
a non-negative linear combination of other ExPas. Because of the systemic independence
condition, ExPas are always a subset of the EFMs; each ExPa is also an EFM, but not neces-
sarily vice versa. This can result in fewer ExPas than EFMs for the same metabolic model.
For a metabolic model of the human red blood cell, the average number of EFMs used for
a given ExPa was about four (Papin et al., 2004). However, if all exchange reactions in a
metabolic model are irreversible, the sets of relevant EFMs and ExPas are identical. This is
a general property of EFMs and ExPas (Papin et al., 2004; Klamt and Stelling, 2003). Each
originally reversible internal reaction, split into two irreversible reactions, fulfills all ExPa
and EFM conditions, resulting in additional ExPas and EFMs. These ExPas and EFMs can
be considered irrelevant (Papin et al., 2004; Klamt and Stelling, 2003) because they only re-
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define reversibility. The exchange reactions (R1 and R26) in this toy metabolic model are

irreversible, so the sets of relevant EFMs and ExPas are identical.

2.9 Characterizing the optimal flux space

FBA can be exploited to calculate the maximum yield of a product on a certain substrate.
FBA simulation provides a steady-state flux distribution, which corresponds to a point in
the (optimal) solution space. A unique optimal steady-state flux distribution through the
metabolic network cannot be guaranteed because the constraints defined by the stoichio-
metric network are insufficient. Accordingly, a solution space of optimal steady-state flux
distributions exists that each give rise to the maximal yield. This solution space represents
a polyhedron (Grotschel et al.,, 1988) and this space is considerably smaller than the entire
steady-state solution space characterized by flux modes, EFMs, or ExPas. This reduction in
solution space is achieved in FBA by the consideration of additional constraints, a particu-
lar nutrient environment, and the demand for flux distributions that optimize a metabolic
objective. Characterizing the optimal solution space of FBA remains a NP-hard computa-
tional problem. Above, we characterized the variability of the flux values within the optimal
solution space. Next, we characterize this solution space in network topological terms.

In contrast to both the EFMs and ExPas approaches, CoPE-FBA (Comprehensive Poly-
hedra Enumeration Flux Balance Analysis) characterizes only the optimal solution space,
which is done in terms of a compact set of subnetworks (Kelk et al., 2012). These subnet-
works account for all alternative flux distributions in the optimal steady state predicted by
FBA. CoPE-FBA therefore provides the topological structure underneath flux variability, at
least in the optimal solution. The solution space of optimal flux distributions contains three
topological features: vertices, rays, and linealities.

Vertices are optimal paths of the metabolic network, including reactions with fixed and
variable fluxes. Rays are irreversible, thermodynamically infeasible cycles and linealities are
reversible cycles in the metabolic network (both can also be input-output pathways). No
net conversion occurs in either the rays or linealities of the FBA polyhedron. The optimal
solution space of the toy metabolic network can be described by four vertices (Fig. 2.4B-
E), one ray, and two linealities (Fig. 2.4A). The EFMs and ExPas also consist of these three
topological features. Therefore, rays and linealities are responsible for the increase in the
number of type I and II EFMs and ExPas. Alternatively, rays and linealities do not influence
the number of CoPE-FBA subnetworks.

Any optimal flux distribution that satisfies the metabolic optimum obtained in the FBA
calculation can be written in terms of the vertices, rays, and linealities using the Minkowski

sum,

s t u
JOP =Y arpe+ > Prdk+ Y. ViV (2.21)
k=1 k=1 k=1
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Figure 2.4. Topological characterization of the optimal FBA solution space. The optimal solution space of
our toy model contains one ray (panel A, blue, R23 and R24), two linealities (panel A, green, R2—R4 and R14, R19-R21),
and four vertices (panels B-E) which originate from two CoPE-FBA subnetworks (panel F). In Chapter 4, we show that
this is not a unique characterization of the optimal solution space.
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in which the vectors @y, ¢, and vy, represent the vertices, rays, and linealities, respectively
(Grotschel et al., 1988; Kelk et al., 2012). The weighting coefficients obey the following
restrictions: Y _jax =1, ax > 0, B > 0, and y, can take any value. These definitions
indicate that the vertices can be summed in a convex manner, the rays as a conical sum,
and a linear combination can be taken over the linealities.

The subnetworks that can be identified with CoPE-FBA (and explain the numbers of
vertices for a given FBA problem) satisfy three conditions: (i) only reactions belonging to a
specific subnetwork display correlation in flux values across the optimal solution space, (ii)
fixed net input-output stoichiometry of reactants, and (iii) thermodynamic feasibility. This
means that these subnetworks contain reactions that vary independently across all vertices
of the optimal solution space. Therefore, without violating the optimality condition, sub-
networks with alternative internal flux distributions can be independently chosen. For this
reason, the number of vertices can be determined by multiplying the number of alternative
internal flux distributions for each subnetwork (Kelk et al., 2012). This illustrates the likely
combinatorial explosion for the number of vertices of the optimal solution space for larger
metabolic networks.

The toy metabolic network contains two CoPE-FBA subnetworks given in Fig. 2.4F. Each
subnetwork has two alternative internal fluxes distributions: the top and bottom branch.
Multiplying the number of alternative flux distributions for each subnetwork, 2x2 = 4, gives
the number of vertices. In Chapter 4, we show that this analysis is not unique (i.e. different
sets of vertices are possible) but becomes unique (i.e. all non-decomposable flux vectors are
enumerated as vertices) when we perform reversible-reaction splitting. Larger metabolic
models tend to contain more vertices, while the number of subnetworks stays small. For
instance, the GSSM iTM686, consisting of 904 reactions and 816 species (see Chapter 3.4),
has about 368640 vertices when studied under light limited conditions (Chapter 5). Nine
subnetworks which contain about 8.1% of the total number of reactions in this model, are
enough to characterize the optimal solution space. Comparing the number of EFMs, ExPas,
vertices, and CoPE-FBA subnetworks gives an indication of the level of compactness of
these approaches. Typically, for larger models the number of EFMs, ExPas, and vertices
explodes, which gives # EFMs > # ExPas > # vertices > # subnetworks.

2.10 Biological implications of stoichiometric network analysis

The predictions made by any mathematical model depend heavily on the underlying as-
sumptions. The definitions of ExPas, EMFs, and those related to FBA have the steady-state
assumption in common. In general, the steady-state assumption is assumed to be valid
because of the timescale separation between (fast) intracellular metabolic conversions and
(slow) genetic regulation (Segré et al., 2002; Lee et al., 2006).
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In addition to the steady-state assumption, FBA assumes optimization of an objective
function, which is, in some cases, debatable from a biological perspective. Typical objective
functions are the yield of the biomass reaction or ATP production. Optimization of these ob-
jectives is always bounded by capacity constraints of other reactions that ultimately bound
the steady-state solution space. In other words, FBA optimizes an objective function rela-
tive to a limiting input flux. Thus, optimization of any reaction rate in FBA is always the
optimization of a yield defined as the objective reaction rate divided by the limiting input.
Optimization of growth rate rather than growth yield is a completely different strategy; this
can be easily understood because the yield does not fix the rates of the metabolic processes.
Selection for yield only occurs in the absence of competition for nutrients, which is an un-
likely scenario in biology. The assumption of one objective may actually not always reflect
reality: The occurrence of trade-offs between two metabolic objectives may cause cells to
optimize both of them simultaneously (possibly, with different weights), leading to Pareto

optimization problems (Schuetz et al., 2012).

2.11 Concluding remarks

We provided an overview of the most common mathematical techniques used in the sto-
ichiometric analysis of metabolic networks. We have not described in any detail the ap-
plication of these techniques to biological problems, which is found elsewhere (Feist and
Palsson, 2008; Raman and Chandra, 2009; Oberhardt et al., 2009; O’Brien et al., 2015). These
applications to biology are the reasons for the existence of pathway analysis, and there
are a number of success stories (Ibarra et al., 2002; Lewis et al., 2010). Yet, the simplifica-
tions and subsequent limitations of the described techniques are also clear and extensions
to pathway analysis methods include the incorporation of dynamics (such as in dynamic
FBA (Mahadevan et al., 2002)), additional constraints (such as space or resource limitations
(Beg et al., 2007; van Hoek and Merks, 2012; Branco dos Santos et al., 2013), multidimen-
sional optimality (Schuetz et al., 2012), and extensions to multi-species FBA (Stolyar et al.,
2007; Zomorrodi and Maranas, 2012). We therefore expect that such analysis will penetrate
biology in increasingly many ways to provide rigorous and quantitative hypotheses and

fundamental understanding.

Supplemental Material

Dataset S1. A description of our stoichiometric toy model in the SBML level 3 format
is available at http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-23537 and in the
online version of this article on which this chapter is based on.
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This chapter is based on the publication:

Maarleveld T.R., Boele J., Bruggeman FJ., and Teusink B. (2014) “A Data Integration
and Visualization Resource for the Metabolic Network of Synechocystis sp. PCC 6803”, Plant
Physiology, 164, 3:1111-21.
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"Google Maps" for metabolic highways: An interactive map of Synechocystis metabolism
and a corresponding genome-scale stoichiometric model. This interactive map allows for
visualization of both computational and experimental data.
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Developing Google Maps

for metabolic highways

Abstract

Data integration is a central activity in systems biology. The integration of genomic,
transcript, protein, metabolite, flux, and computational data yields unprecedented infor-
mation about the system level functioning of organisms. Often, data integration is done
purely computationally, leaving the user with little insight besides statistical information.
In this chapter, we present a visualization tool for the metabolic network of Synechocys-
tis PCC6803, an important model cyanobacterium for sustainable biofuel production. We
illustrate how this metabolic map can be used to integrate experimental and computa-
tional data for Synechocystis systems biology and metabolic engineering studies. Addi-
tionally, we discuss how this map, and the software infrastructure that we supply with
it, can be used in the development of other organism-specific metabolic network visualiza-
tions. Besides a Python console package VoNDA (http://vonda.sf.net), we provide a working
demonstration of the interactive metabolic map and the associated Synechocystis genome-
scale stoichiometric model, as well as various ready-to-visualize microarray data sets, at
http://f-a-m-e.org/synechocystis/.

3.1 Introduction

HE recent advances in high-throughput experimental technologies and whole

genome-sequencing resulted in an explosion of biological data availability. These

genome-scale data sets are generally described as “omics” data sets of which tran-
scriptomics, metabolics, and fluxomics data are examples (Gstaiger and Aebersold, 2009;
Wang et al., 2009; Kahn, 2011; Grabherr et al., 2011). Analyses and integration of these
data types can reveal important information about the system level functioning of organ-
isms (Berger et al., 2013) and these methods are having a large impact on biology. To gain
additional insight into cellular behavior, data sets are also used to develop computational
models at a genome-scale level. Both the central role of metabolism for maintenance of
cellular integrity and growth, and the availability of genome-scale data sets led to an in-

creased interest in genome-scale reconstructions of metabolism. These reconstructions are
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based on the metabolic reactions that they can perform, given the content of their genome
(Oberhardt et al., 2009; Thiele and Palsson, 2010). Essentially all metabolic reactions are
catalyzed by enzymes, but for most reactions, the enzyme kinetics are unknown. Conse-
quently, genome-scale reconstructions are often solely based on the reaction stoichiometry,
and they are therefore generally referred to as genome-scale stoichiometric models (GSSMs)
of metabolism.

To leverage the biological information that is included in GSSMs and to compute physi-
ological properties, various stoichiometric network analysis tools are available (Price et al.,
2004). Many of these tools are discussed in detail in the previous chapter, and they can be
used to computationally study the growth characteristics of micro-organisms in detail. For
instance, Flux Balance Analysis (FBA) and Flux Variability Analysis (FVA) have been used to
predict the internal flux distribution and its variability while optimizing for cellular growth
yield (Mahadevan and Schilling, 2003; Orth et al., 2010; McCloskey et al., 2013). Stoichiomet-
ric computational methods can also directly be of practical value. For example, OptKnock
(Burgard et al., 2003) can be used to predict which gene knockout strategies would result in
increased production of metabolites of interest, such as biofuels.

The analysis of GSSMs results in big data sets that often contain thousands of reactions.
These results come in the form of long lists of (reaction) identifiers and (flux) values. This
makes the interpretation of these data—which often come in files comprising thousands
of lines—a rather tedious process. Yet to be of any biological value, interpretation of, for
example, FBA results in terms of biological functions, modules, and pathways is required. To
achieve this, adequate visualization is paramount, and attempts to visualize genome-scale
data have indeed been made. These approaches can be classified into supervised (human-
driven) and non-supervised (fully automatic) ones. The latter approach, fully automated
mapping of GSSMs, results in (mathematical) graphs that are even more difficult to interpret
than the raw data one set out to visualize on them, so we do not discuss them in detail here.

Human-driven visualization methods, on the other hand, are considerably more popu-
lar, as hand-drawn maps are markedly easier to interpret. Tools like KEGG (Kanehisa and
Goto, 2000), Cytoscape (Smoot et al., 2011), CellDesigner (Funahashi et al., 2003), and the
COBRA Toolbox (Schellenberger et al., 2011) each offer their own particular take on model-
ing, simulation, and visualization. Nevertheless, since none of them was originally designed
for visualizing genome-scale models or genome-scale data, they are of limited use for this
purpose. This becomes clear when one attempts to share, extend, or adapt an existing map—
commonly, users who attempt this quickly find their progress obstructed by the need for
special software, incompatible identifiers, or simply by not being able to access an editable
version of the desired image.

Understandably, these issues have thus far prevented the wide-spread communal use of
visualization aids, as well as their use in combination with computational results. However,

the increased availability of high-throughput data makes the lack of adequate graphical
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interpretation tools more dearly felt than ever. Here, we address this problem by present-
ing the first comprehensive data visualization tool, namely, a graphical map of metabolism
that is capable of displaying any type of data that is associated with reaction identifiers,
gene identifiers, or metabolite identifiers. Based on the increased interest in photosynthetic
micro-organisms and its importance as a model-organism for metabolic engineering stud-
ies, we decided to base our graphical metabolic map on the metabolic reconstruction of
Synechocystis PCC 6803 (hereafter Synechocystis) (Shastri and Morgan, 2005; Knoop et al.,
2010; Nogales et al., 2012; Saha et al., 2012), the best characterized and most extensively
studied cyanobacterium. The direct conversion of carbon dioxide (CO;) into carbon com-
pounds makes these micro-organisms of great interest for the development of production
techniques for third-generation biofuels (Chisti, 2007; Ducat et al., 2011; Angermayr et al.,
2012). We illustrate the use of the map of this organism’s metabolism and discuss how
similar maps can be made for other organisms using the Synechocystis map as a template.
Our map is also directly useful for other (micro-)organisms, since the metabolic core
(e.g. the carbohydrate, energy, amino acid, and nucleotide metabolism) is highly conserved
between different micro-organisms (Peregrin-Alvarez et al., 2009). Therefore, the map can
easily be extended to cover additional pathways or organisms. This process becomes pro-
gressively easier as more reactions are added to the map, as any added reactions can in turn
be used in further mapping efforts. To demonstrate the usefulness of our graphical map,
we integrated our graphical map into FAME, the Flux Analysis and Modeling Environment
(Boele et al., 2012) at http://f-a-m-e.org/synechocystis/. Here, our map can be readily used
for the analysis and visualization of the Synechocystis GSSM, which also comes pre-loaded.
The map and a Python console application of our visualization software VoNDA, Visual-
ization of Network DAta, can also be downloaded separately from http://vonda.sf.net/. The
console application can be used to visualize output generated by other software packages
such as the popular COBRA Toolbox. We prefer using VoNDA in combination with CBMPy
(Olivier, 2011) (or COBRApy (Ebrahim et al., 2013)) because this allows for (interactive)

modeling, simulation, and visualization in Python.

3.2 Results and Discussion

Synechocystis’ metabolic map

We developed a comprehensive metabolic map of Synechocystis (Fig. 3.1A). Our compre-
hensive map is based on the metabolic reconstruction of Nogales et al. (2012), which we
extended with reactions from Knoop et al. (2010) and other sources (documented in Supple-
mental Data S3.1). The extended model contains 904 reactions and 816 species. The asso-
ciated map provides an overview of the reactions in the model and the resulting metabolic

pathways. Together, the model and the map act as a readily extensible framework for
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human-friendly visualization of simulation results or experimental data (Fig. 3.1). Through-
out this project, we aimed at offering an environment that can easily be extended with ad-
ditional data and analysis types. To ensure its applicability to a maximum number of data

and analysis types, as well as to maximize its potential for re-use and adaptation by the

cyanobacterium community or other communities, a number of considerations were made

during the development of the graphical map of Synechocystis’ metabolism.
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Figure 3.1. An overview of the graphical map of Synechocystis’ metabolism and its capabilities. Various
elements (reactions, metabolites, squares) are clickable and direct the user to the KEGG database, or to run result
details. (A) when displaying FBA results, the arrows denoting reactions are colored according to the color scale in the
upper left corner. Gray reactions carry no flux. (B) detailed view of a section of the map when it is used to display
FBA results. (C) detailed view of the same section of the map as in panel B, but now it is being used to display gene
expression results. Here, the reaction lines are only displayed to indicate the general structure of the metabolic map,
whereas the gene expression information is conveyed by colored boxes next to each reaction for which gene association
information is available.
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An essential feature is that simulation results, such as Flux Balance Analysis (FBA)
or Flux Variability Analysis (FVA), can be displayed within the tool that generated them
(Fig. 3.1A-B). Moreover, experimental data, such as various flavors of omics’ data sets, can
be displayed (Fig. 3.1C). This was achieved by ensuring that the identifiers of the reactions,
metabolites, and genes in the underlying model match those on the map. Such an annotation
link is essential, and as long as experimental data sets use the same identifier classification,
they can be visualized. In our map, the underlying identifiers can be easily detected by a
mouseover of the element of interest in a web-browser.

We used the Scalable Vector Graphics (SVG) format to represent the map, as this allowed
us to make our map interactive. Specifically, we included hyperlinks that can direct the user
towards sources of additional information (KEGG) or, when FAME is used to generate sim-
ulation results and display them on the map, to details about the run that generated the
displayed results. Had we utilized one of the budding visualization standards like the Sys-
tems Biology Graphical Notation (SBGN) (Le Novére et al., 2009) or SBML layout (Gauges
et al., 2006), this functionality would require the user to install additional third-party soft-
ware simply to view the image. Using SVG directly allows the user full graphical control
over the image and allows direct embedding of dynamic, interactive elements that point to
metabolite and reaction resources. The SVG format is commonly used on the web and pop-
ular image manipulation software (such as InkScape or Adobe Illustrator) can import SVG
files. Therefore, these files can be used for figures in scientific publications. Using SVG also
makes sure our map is readily extensible with new reactions or visualization applications.
Moreover, the format is programmatically accessible, which allows for extraction and visu-
alization of subnetworks of the entire metabolic map, or development of a new metabolic
map for another organism, using this map as a blueprint.

To demonstrate that our tool greatly simplifies the analysis of genome-scale data sets,
we provide two example use cases. One example concerns the physiological adaptation of
cyanobacteria to changing environmental conditions. The other illustrates the expansion of
the map with new reactions for biofuel production. Given GSSM constraints such as light
availability, FBA is generally an accurate method to predict the optimal product or biomass
yield. However, since these GSSMs are typically large, the associated metabolic flux distri-
butions are large, which makes them difficult to analyze in detail. To exemplify this, FVA
done on our GSSM predicts that, in an optimized GSSM, about 600-700 reactions can carry
a flux during light and dark conditions. Our metabolic map allows for visualization of these
FBA and FVA predictions, which allows for direct insight into, for instance, unexpected and

interesting behavior.
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A Light Metabolism
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Figure 3.2 (previous page). Example use cases of the map. Visualization of the difference in flux distribution
when growing in the presence (panel A) or absence (panels B and C) of light. When light is present (panel A), the
FBA solution harbors no surprises. However, when light is absent (panel ), FBA predicts that photorespiration is active,
which is unlikely. Adding a reaction that converts L-Pro to Hyp returns the model to its expected state under dark
conditions (panel C). Some glyoxylate is still produced from other precursors than glycolate (not shown here), to enable

the production of amino acids.

Visualizing the physiological adaptation to light and dark conditions

In this section we provide an example of unexpected behavior that was found by simulating
cyanobacteria in different environmental conditions. Cyanobacteria such as Synechocystis
are subject to a diurnal light-dark cycle and adjust their metabolism via circadian control.
The GSSM can be used to simulate these conditions by changing the availability of light
(photon influx) and adjusting the model constraints to indicate whether glycogen is to be
produced as part of biomass (see Supplemental Data S3.2 for details).

In Fig. 3.2, we illustrate FBA predictions of the metabolic activity under light and
dark conditions. We limit ourselves to the visualization of the metabolic surroundings of
ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO). RuBisCO is a well-known key
enzyme for carbon fixation during photo-autotrophic growth, which carboxylates or oxy-
genates D-ribulose 1,5-bisphosphate. The carboxylation process (carbon fixation) yields two
molecules of 3-phosphoglycerate (3PG), while the oxygenation process (photorespiration)
results in one molecule each of 3PG and 2-phosphoglycolate (2PG). 2PG is toxic to Syne-
chocystis and inhibits proper functioning of the Calvin-Benson cycle (Bauwe et al., 2012)
and, as a result, reduces the conversion of solar energy into chemical energy. Neverthe-
less, both carbon fixation and photorespiration are essential for cyanobacteria in photo-
autotrophic growth conditions (Eisenhut et al., 2008).

We predicted steady-state flux values through this segment of metabolism by using FBA
to optimize the biomass synthesis rate. This rate optimization is carried out relative to other
fixed nutrient uptake reaction rates and that we are effectively optimizing flux ratios (yields)
rather than rates. Now, instead of working one’s way through a list of about 1000 predicted
flux values for unexpected behavior, our map directly shows that both FBA and FVA predict
that, besides carbon fixation, photorespiration is essential for obtaining an optimal growth
yield in light and dark conditions (Fig. 3.2A-B). The reason is that, in the metabolic model,
photorespiration is the only way to produce glyoxylate, which is necessary for the produc-
tion of the amino acids cysteine, glycine, and serine.

As “dark photorespiration” is not generally considered plausible, an alternative was pro-
posed by Knoop and coworkers (2010). They added the conversion of L-proline to hydrox-
yproline (identified by a BLAST search (Altschul et al., 1997)) to provide a second, perhaps
more plausible mechanism for glyoxylate synthesis in dark conditions. After inclusion of
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this reaction, our computational analysis showed that in light conditions no activity was
predicted for the conversion of L-proline to hydroxyproline due to a lower carbon effi-
ciency. According to FBA simulations, glyoxylate synthesis via L-proline breakdown would
be more efficient in dark conditions (Fig. 3.2C).

Besides directing fixated carbon towards the production of precursors for (immediate)
growth (e.g. nucleic acids or amino acids), Synechocystis also synthesizes the storage com-
pound glycogen (Fig. 3.2A). During photo-autotrophic growth, this results in a sub-optimal
growth strategy as a lower growth rate is predicted. In the absence of light, Synechocys-
tis consumes the stored glycogen via either fermentation or respiration, depending on the
availability of O,. In the absence of light and presence of O,, FBA predicts the breakdown of
previously stored glycogen and energy generation via respiration. This enables the organ-
ism to maintain its integrity and grow under dark conditions. If the Synechocystis’ mainte-
nance requirements in the absence of light were known, modeling and simulation could help
determine the minimal glycogen amount that should be stored during the light phase. This
could represent an optimal strategy for this organism—optimize glycogen storage during

the day to grow as fast as it can and then survive the night on the stored glycogen.

Exploring the properties of Synechocystis photosynthesis

Besides photorespiration, photosynthesis is another key part of Synechocystis’ metabolism
that is essential for growth. We studied the flexibility of this metabolic subnetwork by max-
imizing the specific growth rate as a function of the bicarbonate (HCO3) and photon uptake
rates (Fig. 3.3A). The specific growth rates we predict are in agreement with experimentally
measured rates (Shastri and Morgan, 2005). We subsequently selected three combinations
of bicarbonate and photon uptake rates for further exploration (Fig. 3.3A). Briefly, these are:
(i) a state in which carbon and light are both limiting for growth (carbon and light limiting
state, CLLS), (ii) a state in which light, but not carbon limits growth (light limiting state,
LLS), and (iii) a state in which carbon, but not light limits growth (carbon limiting state,
CLS). We give a detailed overview of the characteristics of these conditions in Supplemen-
tal Data S3.2, and of the FBA predictions under each condition in Table 3.1. In this section,
we discuss some analysis results that illustrate the practical application of our tool.

Visualization of FBA predictions on our metabolic map immediately shows that the
model predicts different photosynthesis strategies under different conditions, indicating the
flexibility of this system. The predictions in the CLLS (Fig. 3.3B) and LLS (Fig. 3.3C) are con-
ceptually identical, although the predicted absolute fluxes are different. However, the two
conditions can be distinguished on the basis of carbon secretion: The CO, that cannot be
fixed in the LLS is released by the cell.

By comparing the visualization of photosynthetic fluxes, it is readily apparent that a
different strategy is exploited in the CLS (Fig. 3.3D). Excess photons are used to transfer
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Figure 3.3. We used FBA to explore the properties of the Synechocystis model and map under various
conditions (i.e. CLLS, LLS, and CLS). (A) predicted growth rate as a function of carbon and light uptake rates. The
black dots in the phase plane indicate the conditions (in terms of photon flux and HCOy uptake) that are shown in
panels B to D. (B-D) visualization of predicted FBA fluxes for the three scenarios (CLLS, LLS, and CLS). Arrows indicate
flux direction; the color bar indicates flux magnitude.

protons from the cytosol to the thylakoid, a process which is carried out by quinol oxidase
(Cytochrome BD). These protons are then used to generate ATP. This explains the relatively
low flux through photosystem I compared to photosystem Il (Jps;/Jpsyr) and relatively high
ATP formation flux compared to the NADPH formation flux (Jarp/J/napph); more details
can be found in Table 3.1. The resulting ATP is subsequently used in metabolism. FVA
results (not shown) suggest that quinol oxidase is not essential for obtaining a maximal
biomass yield. For example, the Mehler reaction can be used to oxidize the excess NADPH
to NADP+ (Fig. 3.4A); in that case, Jpsy/Jpsir =1 and Jarp/Inappy = 1.28 indicating linear
electron flow.
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Figure 3.4. Results of FBA knock-out simulations. (A) optimal strategy in the CLS for a quinol oxidase knock-
out. The Mehler reaction is used to convert the excess NADPH into NADP". (B) optimal strategy in the CLLS after
shutting down the flux through all AEF pathways.
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Jpsi/Tpsir - Jarp/INappH  Jruisco,co2/Tny ¢ (B™Y)  Taspp
CLLS 0.99 1.6 0.085 0.045 0

CLS 0.058 7.2 0.011 0.012 0

LLS 0.99 1.6 0.085 0.017 0

KO AEF 1.0 1.28 0.075 0.040 0
Biofuel 0.99 1.3 0.13 0.0045 0.427
Biofuel CLS 0.058 8.1 0.014 0.0012 0.113
Biofuel LLS 0.99 1.3 0.13 0.0017 0.203
Biofuel KO AEF 1.0 1.28 0.11 0.0045 0.37

Table 3.1. A summary of the results of various (flux balance) analyses on the Synechocystis model.
When optimizing for biofuel production, we fixed the growth rate to 10% of its maximum. The constraints that were
used for each of these simulations can be found in Supplemental Data S3.2. Jj,,, Photon flux; KO AEF, Knock-out of
AEF pathways; JryBisCo,c02/ hy> RuBisCo carboxylase flux divided by the photon flux; Jy3pp 2,3-butanediol flux;
u (h™1), growth rate.

In addition to the photosynthesis linear electron flow, different alternative electron
flow (AEF) pathways exist that allow for different ATP/NADPH ratios (Kramer and Evans,
2011). From Figs. 3.3B-D we can immediately conclude that these AEF pathways are active
during (these instances of) conditions of optimal growth yield. Indeed, when the AEF path-
ways are removed from the model, the predicted growth yield is lower, indicating that AEF
pathways are essential if maximum yield is to be attained under these conditions (Fig. 3.4B).

Apart from plotting model predictions on the map, we can use the tool for visualization
of many more data types. In Fig. 3.5 we use microarray data under conditions of carbon lim-
itation (similar to the conditions modeled above). Visualizing this type of data allows for
convenient identification of genes that are over- or underexpressed compared to wild-type,
in a pathway-specific manner. For instance, compared to wild-type, our visualization shows
that many genes associated to photosynthesis and respiration are initially underexpressed
(Fig. 3.5A) upon CO; limitation. The transcriptomics data are from a time-series, whereas
predictions from FBA assume steady state; therefore, these data sets are not directly com-
parable.

After 12 hours of CO; limitation, the situation most likely represents a steady-state
condition and it can therefore be compared with FBA predictions. When this comparison
is made, 73% of the photosynthetic gene expression data agree with predicted fluxes, while
27% do not match the flux predictions. For instance, genes associated with linear electron
flow were underexpressed (Fig. 3.5B). Indeed, FBA results visualized in Figs. 3.3B and 3.3D
show that lower fluxes are predicted in most reactions associated to the linear electron
flow. In contrast, a decrease in ATPase gene expression was found under CLS conditions,
whereas FBA/FVA predicted a higher flux through this enzyme. The gene expression data
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Figure 3.5. To demonstrate the applicability of our map to gene-associated (“omics”-size) data, we used
it to visualize microarray data for various CO, limiting growth conditions. The colored squares indicate
differential expression relative to wild-type; yellow corresponds to overexpression and blue corresponds to underexpres-
sion. The panels depict differential gene expression after 1 h (panel A), 12 h (panel B) of CO, limitation, compared to
wild-type Synechocystis.
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also indicate an increased expression of NDH-1 and NDH-1 type 3. While FBA does not
predict a flux through these reactions in CLS conditions, FVA results indicate that a flux
through NDH-1 related pathways would decrease the growth yield in LLS, but not in CLS
conditions. Thus, the NDH-1 gene expression data, too, are consistent with the predicted

solution space for Synechocystis’ photosynthesis fluxes.

A P-Homoserine

0.0246
0.0031
SULLE SN

Soluble Pool Protein L-Threonine
0.000497

Pigment co2 0.0131
0.209 0.0379

Protein 2-Acetolactate Pyruvate 2-oxobutanoate
0.00457 0.0131

DNA
co2 (8)-2-Aceto-2-
0.0241 RNA 0.0454 Biomass specific 0.0379 hydroxybutanoate
Growth Rate

0.00114 .
Peptidoglycan 0.0131
0.00713 . (R)-2,3-Dihydroxy-
Lipid ydroxy .
ipi isovalerate Isoleucine
0.00114 3 (R)-2,3-Dihydroxy
Lps v Vahr}e 3methylvalerate
00106 o 26165 Leucine 00131
CoA 2-Dehy 00238 2-Ketovaline (8)-3-Methyl-2-oxopentanoate
L-Glutamate L-Glutamate
2.61e-5 2.6le-5 0.0238 0.0141 0.0131
2-oxoglutarate 2-oxoglutarate
Dephospho-CoA Pamm\cB \ 2-Tsopropylmaleate L-Valine L-Tsoleucine
-Alanine
2.6le-5 2.6le-5 0.0238
AMP
Pantetheine 4'-P 3-Isopropy Protein Protein
2.6le-5 2.61e-5 0.0238
4-Phosphopantothenoyl &' Phosph (25)-2-Tsopropyl-3 cci 0.0238 4-Methyl L-Leucine
L-cysteine 26les ’ 0.0238

B <>

NADP+ NADPH CO2

2,3-Butanediol 04y R-Acetoin -
. : P-Homoserine
0.00246
0.00031
Soluble Pool Protein L-Threonine
4.97e-5 3
Pigment NADP+ NADPH CO2 co2 000131
0.0209 0.431
Protein 23-Butanediol - R-Acetoin . |2-Acetolactate Pyruvate 2-oxobutanoate
0000157 oo 0.00131
. coz (8)-2-Aceto-2-
0.00241 RNA 0.00454 _ Biomass specific 0.00379 hydroxybutanoate
Growth Rate
0000114 )
Peptidoglycan 0.00131
0.000713 Lipid (R)-2,3-Dihydroxy- .
isovalerate Isoleucine
0.000114 H (R)-2,3-Dihydroxy
Lps - Vahr}e 3-methylvalerate
Q0006 1ons 261e6 Leucine 000131
Co, 2-Dehy ' 000238 5 Ketoval (8)-3-Methyl-2-oxopentanoate
L-Glutamate L-Glutamate
261e:6 261e6 0.00238 0.00141 0.00131
2-oxoglutarate 2-oxoglutarate
Dephospho-CoA Panioate 2-Isopropylmaleate L-Valine L-lsoleucine
-Alanine
2.6le-6 2.6le-6 0.00238
AMP
Pantetheine 4'-P 3-Isopropy Protein Protein
2.6le-6 lZ 6le-6 0.00238
4-Phospt y  Phosol 2 13 ; 0.00238 thyl
R — (28)-2-Isopropy 4-Methy — L-Leucine

Figure 3.6. The addition of a biofuel pathway to the Synechocystis map. (A) results of an FBA, optimizing
for biomass production. This figure also illustrates that the total flux towards biomass is split into nine different
components. (B) after the additional reactions were inserted in the map, we performed another FBA in which biomass
production was fixed at 10% of the original optimum. Then, we optimized for 23BD production.
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Expansion of the map with a biofuel production pathway

To illustrate how the metabolic map can be extended or modified to other micro-organisms,
we added a biofuel production pathway to the map and model. Recently, the devel-
opment of a Synechococcus elongatus PCC 7942 strain that produces the bulk chemical
2,3-butanediol (23BD) was reported (Oliver et al., 2013). The production of 23BD using
cyanobacteria offers several benefits compared to other higher alcohols. For instance, 23BD
has a low host toxicity, which allows for a higher biofuel product concentration. More-
over, the common metabolite pyruvate is used as a substrate for 23BD production, and
NADPH can be utilized as a reducing agent; no conversion of NADH to NADPH is neces-
sary. Finally, catabolic enzymes from O;-tolerant organisms can be used for the production
of 23BD, which is important because O, is produced by Synechocystis’ photosynthetic ma-
chinery. We therefore extended our map with a pathway that produces 23BD (see Materials
and Methods and Fig. 3.6).

We performed FBA on the model after adding the 23BD synthesis pathway, under the
same conditions as above (i.e. CLLS, LLS, and CLS) (Fig. 3.7). Ideally, cyanobacteria can
be used as cell factories (Angermayr et al., 2012); a non-growing population that catalyzes
the conversion of CO; into products of interest. To account for biomass replenishment and
for the fact that a little growth always occurs, we fixed the growth rate to a basal growth
level of 10% of its maximum specific growth rate. We then optimized for 23BD production
(Fig. 3.7A). Given these conditions, our GSSM predicted 23BD production rates up to 0.90
mmol gDW ! h™!. Interestingly, the ratio of RuBisCo carboxylase activity over the photon
uptake flux was about 1.5 times higher when we optimized the flux to 23BD compared to
optimizing the specific growth rate (Table 3.1). Our metabolic map allowed for a straight-
forward identification of different factors (Fig. 3.8) that contributed to this difference. First,
HCO53 is not entirely converted into CO, when biomass is synthesized. Instead, a substan-
tial part (7%) of HCOj3 is used for the synthesis of malonyl-CoA, an essential precursor for
fatty acid biosynthesis. Second, the two reactions converting pyruvate to R-acetoin (the
precursor of 23BD) release CO;, which is subsequently fixed in the Calvin cycle. And third,
it takes fewer photons to optimize the flux to 23BD (compared to optimizing for biomass
production).

The production pathway of 23BD we added to the model requires NADPH, but not ATP
(see Fig. 3.6B). Therefore, we expected a lower Jarp//nappy ratio compared to the opti-
mization of specific growth rate. Our simulations show that, when optimizing for 23BD
production, the percentage of Jpg; devoted to AEF pathways is much lower for both the
CLLS and LLS (Figs. 3.3B-C vs. Figs. 3.7B-C). As a result, indeed, optimization of 23BD pro-
duction required a lower Jarp/Jnappy ratio. This ratio is relatively close to the ratio that
is obtained via a linear electron flow. Therefore, one may expect that the AEF knock-out

yields a similar flux towards 23BD.
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Figure 3.7. We used FBA to explore the properties of the Synechocystis model and map under various
conditions (i.e. CLLS, LLS, and CLS), while optimizing for 23BD production. (A) predicted flux to 23BD as
a function of carbon and light uptake rates. (B-D) visualization of predicted FBA fluxes for the three scenarios (CLLS,
LLS, and CLS respectively) indicated in panel A. Arrows indicate flux direction; the color bar indicates flux magnitude.

However, surprisingly, an AEF knock-out in the CLLS and LLS resulted in a decrease
of 12% in 23BD production production rate. As it turns out, the relatively small fraction of
flux through the AEFs is eventually used for HCO; uptake. Without the AEF pathways,
less HCO3 can be imported into the cell, which results in a lower production of 23BD. In
contrast, in the CLS, where light is available in excess, many metabolic routes lead to an
optimal FBA solution, even though the objective that is optimized for may differ—in the
case of our simulations, the objective was either growth (Fig. 3.3D) or biofuel production
(Fig. 3.7D). Consequently, the characteristics of the system in a carbon limiting state are

quite similar between these two objectives (cf. Figs. 3.3D and 3.7D).
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Figure 3.8. Our tool allows for simple identification of factors that contributed to the Jrygisco/Jhy dif-
ference between optimization of biomass (panel A) and 23BD production (panel B). These factors are: (i)
HCOj is not entirely converted to CO, when biomass is synthesized, (ii) fewer photons are necessary to optimize the
biofuel pathway, and (iii) additional CO, is released, which is subsequently fixed in the Calvin cycle. In addition, a

different oxygen evolution is predicted.
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Implementation

With the development of the first interactive map of cyanobacterial metabolism, we provide
the community with a graphical means of interpreting the large amounts of data generated
by high-throughput experimental or computational methods. Given the absence of com-
monly available visualization options for results of analyses of GSSMs, our main aim was
the creation of an immediately useful map of Synechocystis metabolism. Visualization of
heterogeneous data on this map is enabled by the standalone VoNDA package or the inte-
gration into FAME.

Besides providing a pathway-oriented, human-friendly overview of the contents of the
GSSM of Synechocystis metabolism, we included a number of features in our graphical map
that facilitate interpretation despite not being common practice in current-day visualization
efforts. An important one is the choice to include multiple instances of common metabolites,
such as ATP, ADP, NAD(P)(H), and other co-factors. These metabolites are included on the
map in various locations, which greatly reduces the clutter that would arise if only one
instance of each were drawn (graph based visualization solutions tend to do this).

Other helpful features are hidden when they are not in use, but deserve a brief explana-
tion here. Space has been reserved on the map to display flux values for reactions and the
direction in which the reaction takes place. An example are reaction-associated squares,
which can be used for the visualization of gene expression data (Fig. 3.1C and Fig. 3.5).
Each metabolic reaction has three such squares associated with it; if a reaction has more
than three genes associated with it, we visualize the three genes with the highest differential
expression value. Furthermore, when displaying run results generated in FAME, metabolite
names link to a page with a list of fluxes that produce and consume the respective metabo-
lite. Finally, when displaying run results, the lines that represent reactions are color-coded
to represent the magnitude of the flux through them (or the variability of this flux, in the
case of FVA results), and an explanatory color bar is displayed at the top of the image.

Exploiting Synechocystis’ metabolic map for other micro-organisms

To alleviate the effects of our design decisions on users that would have favored another
approach, we created the entire map in SVG, an open source image format. Our GSSM uses
the BiGG nomenclature (Schellenberger et al., 2010), and therefore, our map is of direct value
for all GSSMs that utilize this commonly used nomenclature. In addition, all identifiers on
the map can be easily migrated to cognate identifiers in another nomenclature system (e.g.
(Lang et al., 2011; Bernard et al., 2012; Kumar et al., 2012)). More importantly, the map
can be modified to suit different species than Synechocystis. The addition of reactions and
metabolites to the map can be done using either text or image manipulation software; when

using an image editor, one must make sure that each new element is somehow assigned
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the correct identifier. We provide an online SVG-editor in FAME, which allows for easy
manipulation of the metabolic map, including any results superimposed on it. While the
quality of any customized map strongly depends on the knowledge and skill of whoever
modifies it, and of the quality of the model it describes, this work presents the community
with a solid basis from which to start this process. We provide an example of how one can go
about this in Materials and Methods and in Supplemental Fig. S3.2. Our demonstration of the
expansion of the map and model with a biofuel production pathway not only illustrates the
extensibility of our work, but also how adequate visualization can lead to novel biological
insights.

Regardless of any discussion about its implementation, the presentation of the first map
of metabolism that is both computer-friendly and human-friendly will surely help advance
our understanding of Synechocystis, but also of other organisms to which the map can be
adapted. By offering this resource not only as a flat file, but also as an integrated part of an
interactive online analysis environment, we expect that our map will be of even greater use

to the community.

3.3 Conclusions

The increased pace at which experimental data can be generated has fueled genome-scale
research efforts, which presently call for genome-scale interpretation efforts. For the case of
Synechocystis, an important model organism for biotechnological applications, we now en-
able the interpretation of these data from a biological (pathway) perspective by presenting
the first comprehensive graphical map of its metabolism. This is the first results interpre-
tation tool that is graphical, interactive, machine-friendly, and, importantly, extensible. We
expect that it will add great value to the community of cyanobacterium researchers, but also

to the scientific community as a whole.

3.4 Methods

Adaptation of the Synechocystis model and creation of the corresponding

map

We present a metabolic map and a corresponding stoichiometric model of Synechocystis
metabolism consisting of 904 reactions, 816 species, and 686 genes. The model we present
here is an extension of the iJN678 model described in (Nogales et al., 2012). Pathways
that were amended include the tricarboxylic acid cycle (Zhang and Bryant, 2011), arginine
metabolism (Schriek et al., 2007, 2008, 2009), and proline metabolism (Knoop et al., 2010). A
full list of the modifications we made can be found in Supplemental Data S3.1. For example,

we modified the succinate dehydrogenase reactions in iJ]N678 to ensure that FADH, can be
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synthesized and degraded (originally, iJN678 was unable to degrade FADH;). This modi-
fication also allowed us to extend arginine metabolism, where FADH, is synthesized. To
facilitate the interpretation of results deriving from the model, we decomposed the biomass
function into reactions towards nine major components (e.g. DNA, RNA, and protein). This
allows users to track the uptake and destination of each of these components individually
(Supplemental Fig. S3.2).

In spite of its usefulness to biotechnology, the biological relevance of 23BD to organisms
is relatively low, which makes it a rare find on metabolic maps, and our initial version of
the Synechocystis map was no exception. The first reaction, the conversion of two pyruvate
molecules into 2-acetolactate and CO, is an essential metabolic reaction and was therefore
already on our map. We added two new reactions to our map (R_ACLDC and R_23BDD),
as well as the metabolites they connect (R-acetoin and 23BD). We also added exchange
reactions to the map and model.

In total, we added 44 reactions and 22 species, removed 7 reactions, and we revised in-
correct mass and charge balancing for 19 reactions. We refer to our new version of the model
as iITM686 (Supplemental Data S3.3 and S3.4); the model can be accessed or downloaded in
the SBML Level 3 format at http://f-a-m-e.org/synechocystis. The model’s constraints and
objectives are represented using features from the recently launched Flux Balance Con-
straints (Olivier and Bergmann, 2013).

Analyses performed on the model

We analyzed all instances of the Synechocystis model using Flux Balance Analysis (FBA)
and Flux Variability Analysis (FVA). As these analyses hinge upon the quasi-steady-state
assumption, they can only predict steady-state flux distributions. More details can be found
in Chapter 2. In-depth descriptions of these computational methods are abundant in litera-
ture. We refer to Price et al. (2004), Orth et al. (2010), and Santos et al. (2011) for an overview
of the technical and methodological details. Throughout this chapter, wherever we mention
performing an FBA, this FBA was performed with the additional objective of minimizing
the absolute sum of fluxes to obtain a more biologically sensible solution. The details of
all simulations, including the constraints and objectives that were used are described in

Supplemental Data S3.2.

Integration with FAME

To demonstrate the functionality of the map as well as to facilitate its use, we added
a Synechocystis-specific section to FAME, the Flux Analysis and Modeling Environment
(Boele et al., 2012). Visiting http://f-a-m-e.org/synechocystis causes the Synechocystis GSSM
(iTM686) and our map to be loaded. The user is then able to view, edit, and run the model,

49



http://f-a-m-e.org/synechocystis
http://f-a-m-e.org/synechocystis

and to have analysis results visualized on the map we present in this chapter. Though the
ability to visualize results on custom-made maps was already present in FAME, the URL
described above pre-loads the model and map and eliminates the need for loading several
files separately.

In addition, we expanded FAME with an in-browser image editor, and with the ability
to visualize gene expression data from microarray profiling experiments on maps that sup-
port this kind of data. We pre-loaded the results of 98 experiments from the CyanoExpress
microarray dataset (Hernandez-Prieto and Futschik, 2012) into the Synechocystis section
of FAME. These data sets can be selected and superimposed on the map for analysis, as a
demonstration of the ability of the Synechocystis map to display gene expression data as

well as flux analysis results.
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The tip of the iceberg: The predictions made by FBA are the tip of the ice berg; there
typically exists a multidimensional optimal solution space of flux distributions that
gives rise to optimization of the FBA objective function.
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Interplay between constraints,

objectives, and optimality for

metabolic highways

Abstract

High-throughput data generation and genome-scale stoichiometric models have greatly fa-
cilitated the comprehensive study of metabolic networks. The computation of all feasible
metabolic routes with these models, given stoichiometric, thermodynamic, and steady-state
constraints, provides important insights into the metabolic capacities of a cell. How the fea-
sible metabolic routes emerge from the interplay between flux constraints, optimality ob-
jectives, and the entire metabolic network of a cell is, however, only partially understood.
We show how optimal metabolic routes, resulting from flux balance analysis computations,
arise out of elementary flux modes, constraints, and optimization objectives. We illustrate
our findings with a genome-scale stoichiometric model of Escherichia coli metabolism. In the
case of one flux constraint, all feasible optimal flux routes can be derived from elementary
flux modes alone. We found up to 120 million of such optimal elementary flux modes. Op-
timal flux routes no longer depend exclusively on elementary flux modes when we impose
additional constraints; new optimal metabolic routes arise out of combinations of elemen-
tary flux modes. The solution space of feasible metabolic routes shrinks enormously when
additional objectives—e.g. those related to pathway expression costs or pathway length—
are introduced. In many cases, only a single metabolic route remains that is both feasible
and optimal. This chapter contributes to reaching a complete topological understanding
of the metabolic capacity of organisms in terms of metabolic flux routes, one that is most

natural to biochemists and biotechnologists studying and engineering metabolism.

4.1 Introduction

Research in biotechnology and medicine benefits from understanding the metabolic ca-
pacity of organisms, including their sensitivities to genetic and environmental changes.
Genome-scale stoichiometric models (GSSMs) of metabolism (Edwards and Palsson, 1999,
2000) and the availability of annotated genome sequences have greatly accelerated
metabolic research. The combined use of high-throughput metabolomics data, compre-

hensive protocols (Thiele and Palsson, 2010), and (automated) reconstruction tools (Henry
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et al.,, 2010) has resulted in an explosion in the number and size of GSSMs of metabolism
(Price et al., 2004; Oberhardt et al., 2009). Stoichiometric simulation has become an indis-
pensable tool to deal with these large models, used in biotechnology (Teusink and Smid,
2006; Nogales et al., 2013) and medicine (Raman et al., 2005; Shlomi et al., 2011).

The most common stoichiometric mathematical method is Flux Balance Analysis (FBA)
(Lee et al., 2006; Orth et al., 2010), which—given certain capacity constraints on fluxes—
optimizes an objective function, for example, the biomass production flux (Feist and Pals-
son, 2010). The accuracy of FBA predictions depends on the availability of realistic flux
constraints, which can be derived from experimental data. Generally, there are insufficient
flux constraints to obtain a single unique solution and a large space of optimal flux distri-
butions results (Mahadevan and Schilling, 2003; Reed and Palsson, 2004; Kelk et al., 2012).
These alternative flux distributions give an impression of the robustness of a metabolic net-
work (Stelling et al., 2002), but not every alternative is equally favorable for the organism. In
some environments organisms are strongly selected for yield, almost regardless of the pro-
tein burden, while in other environments the protein burden has a significant impact. The
solution space can be analyzed further with secondary objectives (Blank et al., 2005; Snitkin
et al., 2008; Grafahrend-Belau et al., 2009; Mazumdar et al., 2009; Collins et al., 2012), e.g.
minimization of the number of active fluxes (Schuetz et al., 2007) or the sum of absolute
fluxes (Holzhiitter, 2004), which have been used as proxies for maximization of the protein
expression efficiency and minimization of the protein burden, respectively.

Analyzing the solution space and optimizing secondary objectives requires adequate
mathematical and computations methods. Several approaches were proposed to give insight
into the geometry of the optimal solution space (Mahadevan and Schilling, 2003; Burgard
et al., 2004; Reed and Palsson, 2004; Wiback et al., 2004; Bilu et al., 2006; Bordel et al., 2010),
which is mathematically represented by a polyhedron (Grotschel et al., 1988). Flux Vari-
ability Analysis (FVA) (Mahadevan and Schilling, 2003) and Flux Coupling Analysis (FCA)
(Burgard et al., 2004) provide valuable information on the boundaries of the solution space,
but do not give understanding in terms of metabolic routes. Such an understanding would
be extremely helpful, as most biologists intuitively think in terms of metabolic routes.

Characterization of the optimal solution space provides valuable insight into how our
limited knowledge of constraints affects the prediction of a metabolic state of an organ-
ism. The recently developed method, CoPE-FBA (Comprehensive Polyhedron Enumeration
FBA) (Kelk et al., 2012), enumerates the vertices, the corner points of the optimal solution
space. The number of vertices originates from the feasible, alternative metabolic routes
through a small number of subnetworks, consisting only of reactions with correlated flux
variability (Fig. 4.1). This method provides the structural insights that FVA and FCA lack,
and explains the typical combinatorial explosion of the vertices; the optimal solution space
can easily have millions of vertices that arise from independent combinations of alternative

flux routes through only a few, small segments of the metabolic network. However, CoPE-
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Optimal Solution Space Characterization:
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Figure 4.1. Characterization of the optimal solution space of metabolic models. The optimal solution space
can be characterized by three topological features: vertices, rays, and linealities. Typically, optimal solution spaces of
microbial GSSMs are characterized by many vertices and only a few linealities and rays. Linealities do not exist when
reversible reaction are split. Vertices can be described by a fixed active part which is identical for each vertex and a
variable part, a few CoPE-FBA subnetworks (Kelk et al., 2012). We refer to Fig. S4.1 for examples of rays we found in
the E.coli iAF1260 GSSM of metabolism.

FBA suffers from computational difficulties, it is slow, and—perhaps more important—the
provided solution does not yield all non-decomposable flux routes in the optimum, limiting
the use of CoPE-FBA. For instance, it cannot be used to assess the influence of secondary
objectives on the solution space.

We aim to obtain a better understanding of the interplay between constraints, objectives,
and optimality for GSSMs. We uniquely characterize the optimal solution space by adjusting
CoPE-FBA to split each reversible reaction into two irreversible reactions; this yields all non-
decomposable flux routes in the optimum. Developing a computational method to efficiently
enumerate all non-decomposable flux routes in the optimum is the topic of the next chapter.
In this chapter, we start by illustrating the differences between the CoPE-FBA outcomes
of metabolic models with and without reversible-reaction splitting. Next, we explain the
relationship between these vertices and elementary flux modes (EFMs) with an optimal

substrate-product yield. Finally, we show that secondary objectives typically collapse the
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optimal solution space to a unique solution (a vertex) or to a small set of vertices, using the
1AF1260 GSSM of Escherichia coli metabolism.

4.2 Results

Characterization of the optimal solution space: lllustration with a toy

model

We developed the toy network shown in Fig. 4.2A to illustrate: (i) the characterization of
the optimal solution space of an FBA in terms of metabolic flux routes, (ii) that reversible-
reaction splitting guarantees finding all non-decomposable metabolic flux routes in the op-
timum, (iii) the relationship between vertices and optimal-yield EFMs, and (iv) the opti-
mization of secondary objectives over the optimal solution space. Our toy network consists
of 18 metabolites and reactions where the source metabolite X and sink metabolite Y are
considered boundary metabolites. All reactions, besides the reactions where ATP and ADP
act as cofactors, are isomerization (uni-uni) reactions. Reversible reactions are illustrated
by two headed arrows.

For our FBA model, we selected maximization of the flux through reaction R18 as our
objective function, Z,; ;. To constrain the solution space we used one inequality constraint,
J1 < 2. Throughout this chapter, we call this type of (inequality) constraint a restricting

non-zero flux constraint. The resulting FBA is formulated as the following linear program:

Maximize Zobj =Ji8

subject to NJ =0,

— 00 < Jyey < 00, Jrev € reversible reactions, (4.1)
0< Jirrey < 00, Jirrev € irreversible reactions,
0<i<2.

Here NJ = 0 is the steady-state constraint with N as stoichiometric matrix and J as flux
vector (or flux pathway). Simple metabolic models can be optimized by hand, but linear
programming is required for the solution of any realistic GSSM. FBA optimization confirmed

that, for this set of capacity constraints, maximization of our objective function gives /13 = 1.

Characterization of the optimal solution space for a metabolic model with

reversible reactions

Several flux pathways maximize the objective Jig = 1; our FBA model is underdetermined.
We can describe the optimal solution space with the Minkowski sum (see Eq. (2.21)) in terms
of three mathematical objects: linealities, rays, and vertices (Fig. 4.1) (Grotschel et al., 1988).

Each of these mathematical objects relate to a topological motif in a metabolic network.
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Figure 4.2. The optimal solution space of a toy model with reversible reactions. Metabolites (capital
letters) are converted by reversible (two headed arrows) and irreversible (single headed arrows) reactions to achieve
the conversion of X to Y (underlined metabolites are boundary species). The forward direction of reversible reactions
is defined from left to right or from top to bottom, and a backwards flux is denoted by a minor sign (-R13 indicates
conversion from K to J). We maximized the flux through R18 with FBA, subject to steady-state constraints and ]} < 2,
where ]| is the flux through reaction R1. The optimal solution space is characterized by one lineality (panel A) of
reactions { R2-R4} (red) and (panel B) four vertices that arise from two branches at intersections D and I: V1 (blue), V2
(red), V3 (green) and V4 (purple). (C) two CoPE-FBA subnetworks illustrate the alternatives that create the four vertices
(panel B); in subnetwork one (blue) these are { R6-R8} (V1 and V2) and {R9-R10} (V3 and V4), and in subnetwork two
(red) {R12-R14} (V2 and V4) and {R15, -R13, -R14} (V1 and V3).

Linealities are reversible cycles or input-output pathways (boundary to boundary
metabolite(s), see Fig. S4.1 for an example) that indicate in which flux directions the op-
timal solution space is unbounded. Linealities cease to exist when we split each reversible
reaction into two irreversible reactions later. The set of reactions R2, R3, R4 (i.e. {R2-R4})
form a lineality (Fig. 4.2A). The reactions can take any value, but there must be a net flux
of two through {R2-R4} that converts A into B.

Rays are irreversible (thermodynamically infeasible) cycles or input-output pathways.
Our toy model does not contain a ray. If at least one of the reactions R2, R3 or R4 would
have been irreversible, {R2-R4} would have been a ray (Fig. 4.2A).

Vertices are the corner points of the FBA polyhedron—the solution space of optimal flux
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distributions—and therefore they cannot be represented as a convex combination of other
optimal flux pathways (they are non-decomposable). Convex combinations of neighboring
vertices form the facets—“edges”—of this polyhedron. Our toy model contains four vertices
termed V1-V4 (Fig. 4.2B). A combination of these vertices and cyclic networks can be used

to represent every optimal flux vector.
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Figure 4.3. Vertices correspond to optimal-yield EFMs or convex combinations of those EFMs. Vertices
correspond to optimal-yield EFMs if they are restricted by one flux constraint (panel A) and to a convex combination
of EFMs if they are restricted by more than one flux constraint (panel B). Colors represent different flux values (red =
2, orange = 1.5, green =1, and blue = 0.5). (A) visualization of EFM1, EFM2, and EFM3 (out of the twelve optimal-yield
EFMs normalized to J1g = 1). Both EFM1 and EFM3 have a corresponding vertex with and without splitting, whereas
EFM2 has only with splitting a corresponding vertex. (B) taking a convex combination of EFM1 and EFM2 or EFM1
and EFM3 (panel A) corresponds to a vertex when the constraints are J; <2 and J15 < 0.5.
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Vertices originate from combinations of alternative flux distributions in CoPE-FBA sub-
networks, quickly leading to a combinatorial explosion (Kelk et al., 2012). In the optimum,
these subnetworks consist of reactions with correlated flux variability and have a fixed net
input-output stoichiometry of reactants and products. The toy model contains two sub-
networks (Fig. 4.2C). In the subnetwork consisting of {R6-R10}, the alternative flux dis-
tribution {R6-R8} is anti-correlated with alternative flux distribution {R9-R10} and the
reactions within these sets are positively correlated with each other (Fig. S4.2). Both sets of
reactions have an identical input-output relationship: D + ADP — H + ATP. Multiplying the
number of alternative flux distributions through each subnetwork gives the total number
of vertices; both subnetworks of the toy model have two alternative flux distributions—the
lower and the upper branch—which gives a total of four vertices (Fig. 4.2B).

The disadvantages of metabolic models with reversible reactions

The representation of the network in its current form—where reversible reactions are not
split into two irreversible reactions—complicates the characterization of the optimal solu-
tion space; not all non-decomposable optimal pathways are vertices and the set of vertices
is not unique. This set of vertices corresponds to the minimal generating set of the optimal
solution space, a well-known concept in EFM analysis (Wagner and Urbanczik, 2005). For
our toy model, we enumerated all (optimal-yield) EFMs to illustrate the difference between
the set of vertices we enumerated with CoPE-FBA and the set of non-decomposable flux
pathways in the optimum.

If there is only one upper bound (as in the toy model), all non-decomposable optimal
pathways are instances of the optimal-yield EFMs. EFM analysis showed that our toy model
has thirteen EFMs of which twelve are operational modes that produce Y with an optimal
yield (see also Fig. S4.3 for a more detailed analysis). Thus, for only one third of the optimal-
yield EFMs, there exists a corresponding vertex (Fig. S4.3B). The remaining eight EFMs
do not have corresponding vertices, because: (i) two non-decomposable optimal pathways
are a convex combination of different vertices; 1/2 V1 (EFM1) + 1/2 V2 (EFM3) = EFM2
(Fig. 4.3A) and (ii) six more optimal pathways are a linear combination of vertices (or of the
two convex combinations) and the lineality (with flux through {R3, R4} rather than {R2}).
Because of these additional non-decomposable optimal pathways, finding all the possible
pathways that optimize a (secondary) objective directly from the vertex representation is
not possible—we shall return to this later.

Metabolic models usually contain many sub-optimal modes—modes with a lower yield—
or non-operational modes—modes that cannot produce any objective flux. Our toy network
was designed to not contain suboptimal operational modes. The non-operational mode is
the lineality shown in Fig. 4.2A.

The EFM analysis further showed that the optimal solution space can be described with
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different sets of vertices. For instance, CoOPE-FBA gave that {R2} was part of each vertex
and {R3, R4} was only part of a lineality. Reversing this situation by making {R2} part
of the lineality and {R3, R4} part of each vertex is also a valid description of the optimal

solution space. This means that this decomposition is not unique.

Reversible-reaction splitting yields all non-decomposable flux pathways in the

optimum

To solve the issues with uniqueness and completeness, we exploited an existing technique in
the field of EFM analysis: Splitting reversible reactions into separate forward and backward
reactions (Klamt and Stelling, 2003; Wagner and Urbanczik, 2005). In the split model, the
vertices are instances of exactly the non-decomposable pathways in the optimal state. Since
all reactions are irreversible after the splitting procedure, linealities do not exist anymore.
The split toy model contains seven rays, because each split reversible reaction forms an
additional ray and two more rays from {R2-R4} in forward and backward direction (see
Fig. 4.4A). After splitting, rays no longer signify thermodynamically-infeasible irreversible
cycles. Each forward and backward reaction together forms a new EFM, but the set of
optimal-yield EFMs is identical before and after splitting (Fig. S4.3A and S4.3D), which was
also proven by Gagneur and Klamt (2004).

For our toy model, each optimal-yield EFM now has a corresponding vertex (Fig. S4.3E);
the vertices lie on their corresponding EFMs. This means that our toy model contains now
twelve rather than four vertices. To explain the difference between the set of vertices with
and without splitting, we first focus on {R2-R4}. With splitting, the model contains vertices
with both {R2} and {R3, R4}, while without splitting vertices only contain either {R2} or
{R3, R4}. The variability in reactions {R2-R4} causes the number of vertices to double
(2x2x2vs. 2x2), because {R2-R4} is also a CoPE-FBA subnetwork (Fig. 4.4B) in the
split model. The second difference originates from the CoPE-FBA subnetwork described by
{R12-R15}. The flux distribution through {R12, R15} (see also EFM2 Fig. 4.3A) cannot be
obtained via a convex combination of alternative flux distributions and is, therefore, now
also a vertex. This difference causes the number of vertices to further increase from eight
to twelve (2x2x 3 vs. 2x2x2).

Additional non-zero flux constraints cause a dissimilarity between optimal-yield

EFMs and vertices

After reversible-reaction splitting, the set of optimal-yield EFMs corresponds to the set of
vertices if there is only a single non-zero restricting flux constraint (for proof see Box 4.1).
With more constraints this is not necessarily the case, because EFMs are based on stoichiom-
etry and thermodynamics alone, while vertices also depend on flux constraints. We illustrate

this by discussing examples of different types of flux constraints on the sets optimal-yield
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Figure 4.4. Reversible-reaction splitting guarantees finding all non-decomposable flux pathways in the
optimum. Metabolites (capital letters) are converted by irreversible reactions to achieve the conversion of X to Y
(underlined metabolites are boundary species). Split reversible reactions are denoted as R3f and R3b. We maximized
the flux through R18 with FBA, subject to the steady-state constraint and J| < 2. The optimal solution space is now
characterized by seven rays (panel A) and twelve vertices which originate from three CoPE-FBA subnetworks (panel
B). (A) the five split reversible reactions and { R2—-R4} in forward and backward direction form together seven rays. (B)
three subnetworks give rise to twelve vertices (2 x 2 x 3). The third subnetwork (red) now has a third alternative flux
distribution {R12, R15} which was without reversible-reaction splitting a convex combination of the other two flux
distributions, {R12, R13f, R14f} and {R15, R13b, R14b}.

EFMs and vertices: setting a flux to zero, adding a restricting constraint, and adding a de-
manding constraint.

Setting a flux to zero (e.g. an anaerobic growth condition) effectively removes a reaction
from the system. The set of optimal-yield EFMs still corresponds to the set of vertices (of
course all pathways using the removed flux, e.g. oxygen uptake, are absent). As an example,
removing R15 from our toy network would result in the same set of four optimal-yield EFMs
and vertices.

We illustrate the effect of adding an additional restricting non-zero flux constraint (e.g.
an upper bound on oxygen uptake) in our toy model with: J;5 < 0.5. With this constraint,
J1s =1 cannot be achieved with EFMs that include reaction R15 (e.g. EFM2 and EFM3 shown
in Fig. 4.3A). The corresponding vertices are infeasible, because vertices are only defined in
the optimal space (see also Fig. S4.3C and S4.3F for a more detailed analysis). The corner
points of the new optimal solution space are now described by a different set of vertices:
still feasible vertices and vertices that arose after adding the second constraint. Each newly
introduced vertex arose from an infeasible vertex and a neighboring feasible vertex. An
example of such a vertex is given in Fig. 4.3B, which corresponds to a convex combination
of EFM1 and EFM2 or EFM1 and EFM3. In this example, the number of corner points of the
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optimal solution space decreased after adding the second flux constraint, but this is not a
general outcome.

Demanding a flux through a reaction that decreases the substrate-product yield (e.g.
ATP maintenance reaction) yields different vertices. An optimal-yield EFM through the
demand reaction is then added to each vertex. The number of vertices increases if multiple
optimal-yield EFMs coexist through the flux demanding reaction (which then form another
CoPE-FBA subnetwork).
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Extreme points
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Figure 4.5. Schematic representation of the optimization of the biomass objective function (J;). We used
reversible-reaction splitting to make all reaction rates positive. (A) the resulting solution space is a pointed cone C.
Its extreme rays are the intersection of the planes with the zero vector. These extreme rays coincide with the EFMs as
proven by Gagneur & Klamt (2004). (B) before we maximize the biomass objective function, J;,, we first fix the input
reaction, J; = 1. (C) the intersection of the cone C and the plane Jj defines the polyhedron P. (D) maximizing J;, (which
is a linear function) gives the optimal solution space V. The corner points are vertices and optimal-yield EFMs with
J j=L
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Here we describe the proof that after reversible-reaction splitting, each optimal-yield EFM
has an instance that is a vertex if there is only a single non-zero restricting flux constraint.
This proof is analogues to the proof that the solution to the optimization of a specific flux are
always extreme rays as described by Wortel et al. (2014).

We want to maximize a linear objective function given a capacity constraint on an input
reaction, /; <1. This is the only constraint, thus J; =1 in the optimum. This linear program

(LP) can be formulated as

max{cT-]‘NI=0,IminSISImax> J= } (B1)
I —
hyperplane
where N is the stoichiometric matrix, ¢ is a vector of coefficients that represent the contribu-
tion of each flux in vector J to the objective function. Reversible-reaction splitting simplifies
this LP, defining all fluxes as positive. This introduces a new stoichiometry matrix N and rate
vector i s
foPt:argmgx{cT-f‘N]_=0,I_20, ]j:I } (B2)
j _— ;
C, a convex set hyperplane
The feasible flux space is the cone C defined in Eq. (B2) (Fig. 4.5A). C is characterized by
its extreme rays. The intersection of the cone C with the plane J; =1 (Fig. 4.5B) defines the
solution space (Fig. 4.5C),
p:{]‘cmjﬂ}. (B3)
The extreme points of the polyhedron P are the extreme rays of C. Gagneur & Klamt (2004)
proved that these extreme rays are the EFMs of the original metabolic network. Next, we

maximize the linear function ¢” -J over P which defines the optimal solution space (Fig. 4.5D),
V:{I‘PchfOPt}. (B4)

The corner points of V are EFMs of C (but not every EFM is a corner point of V). Since we
maximize a linear function over polyhedron P, the optimum is achieved at either a corner
point (vertex), an edge or a face. The objective function is often simple and includes only
a single or a few fluxes (e.g. biomass production), thus the optimal solution often coincides
with a face of the (many-dimensional) polyhedron The vertices of this optimal face coincide
with the vertices of the polyhedron P, and are therefore instances of EFMs.

In this proof we performed two EFM elimination steps: (i) EFMs that do not satisfy J; = 1are
not part of P and (ii) EFMs that do not satisfy ¢ jOP* are not part of V. By fixing J; =1and
maximizing T J we only delete corner points of C; we do not create new corner points (as
would be the case when we include additional constraints). These corner points are defined
as vertices of the optimal solution space, thus the set of vertices of V' correspond to the set

of optimal yield EFMs if there is only a single non-zero restricting flux constraint.
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Secondary optimization collapses the optimal solution space

In this section, we demonstrate how secondary optimization simplifies after reversible-
reaction splitting and that secondary optimization reduces the solution space to only one or
a few vertices. As a secondary optimization objective, we used minimization of the number
of active fluxes—hereafter pathway length P;; see Eq. (4.5). Mathematically, this secondary

optimization can be written as

Minimize Py

subject to NJ =0,

Jis=2Zopi =1,
! (4.2)
—00< Jrey < 00, Jrev € reversible reactions,
0< Jirrey <00, Jirrev € irreversible reactions,
0<J1<2,

in which the output flux of the toy model is set to its maximal value obtained with the
previous FBA, shown in Eq. (4.1). We used mixed-integer linear programming to select
the flux pathway with the minimal P; from the optimal solution space for one (J; < 2) and
two (J1 £ 2, J15 < 0.5) restricting flux constraints, which gave a minimal Py of 11 and 12
respectively. Next, we determined the P; for each optimal-yield EFM and vertex of the
“non-split” and “split” model (see Fig. S4.4 for more details).

Without splitting, the vertices are instances of a subset of all possible non-decomposable
pathways (EFMs) in the optimal state. Therefore, for the optimization of secondary objec-
tives in the non-split model, we cannot focus solely on the vertices. We have to take into
account the whole optimal solution space—the Minkowski sum of vertices, rays, and lineal-
ities (for details see Methods)—which is cumbersome.

Analyzing the effect of linealities and rays is counterintuitive because both linealities
and rays represent cycles that catalyze no net conversion. This makes them independent
from the chosen growth medium and objective function. However, without splitting, lineal-
ities and/or rays can influence secondary objectives when they share reactions with one or
more vertices. In this case we can construct non-decomposable optimal flux pathways that
are not vertices by taking, for instance, a linear combination of a vertex with a connected
lineality. An example is the lineality described by {R2-R4} (Fig. 4.2A). Adding {R2,R3, -R4}
to one of the four vertices gives rise to a new optimal flux pathway; one with more active
reactions.

Taking a convex combination of vertices shortens P; when more active reactions be-
come inactive than vice versa. A reaction becomes inactive when it goes in different direc-
tions with the same flux in alternative flux distributions. When J; < 2 is the only constraint,

a convex combination of alternative flux distributions in {R12-R15} (Fig. 4.2C) shortens P
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by one reaction: Specifically, R13 and R14 carry flux in both alternative flux distributions
whereas in different directions. This analysis shows that the minimal P; is a convex com-
bination of vertices V3 and V4 (Fig. 4.2B). This optimal pathway becomes infeasible when
we add the second flux constraint J;5 < 0.5; then, vertex V4 minimizes Py .
Reversible-reaction splitting allows us to directly enumerate all possible non-
decomposable pathways in the optimal state; no convex combination turns active reactions
inactive, because all fluxes are positive. The shortest optimal flux pathway is always a ver-
tex (and corresponds to an optimal-yield EFM if it is restricted by only one non-zero flux
constraint). Theoretically, multiple shortest vertices can co-exist. The fact that only a vertex
or several vertices optimize the secondary objective is a specific result for pathway length
minimization (see also Fig. S4.5). For instance, the optimal solution space after minimiza-
tion of the sum of absolute fluxes as secondary objective (Eq. (4.7)) can consist of a line or

a plane, besides (multiple) single point(s).

Concluding remarks about reversible-reaction splitting

Reversible-reaction splitting has many advantages for the characterization of the optimal

solution space. We first summarize those advantages before we set out to analyze a GSSM:

(i) The vertices discovered with CoPE-FBA are all possible non-decomposable pathways
in the optimal state. For the analyses of optimal flux pathways, we can, therefore,
focus solely on vertices. These vertices can be compactly described by a set of sub-

networks that describe all the variability in non-decomposable optimal flux pathways.
(ii) The optimal solution space is uniquely characterized.

(iii) Secondary optimization yields an optimal solution space consisting of one or multiple

vertices.
(iv) Rays no longer signify thermodynamically-infeasible irreversible cycles.

Typically, splitting yields many more vertices and rays (each split reversible reaction
forms an additional ray). We identified three different mechanisms that contribute to the in-
crease in vertices. First, splitting can yield additional CoPE-FBA subnetworks that originate
from rays or linealities with a input-output relationship different from zero. An example is
the lineality given by {R02-R04} (Fig. 4.2A) that is a subnetwork with splitting (Fig. 4.4B).
Second, optimal flux pathways that are convex combinations of vertices before splitting be-
come vertices after splitting. We encountered such a case in the toy model where the con-
vex combination of vertices V3 and V4 resulted in an additional vertex after splitting. And
third, rays or linealities connected to CoPE-FBA subnetworks give rise to additional vertices.

Imagine for the toy network, for instance, a reversible reaction that converts metabolite F
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into metabolite E (the reverse of reaction R7). Before splitting, R7 and this newly intro-
duced reaction form a ray. After splitting, an additional vertex exists through this newly

introduced reaction.

A real life example: Escherichia coli growing on glucose

We analyzed the realistic GSSM iAF1260 of Escherichia coli (E. coli) metabolism (Feist et al.,
2007). By modifying the oxygen uptake constraint, we constructed three different FBA
models of iAF1260 that depict aerobic, aerobic restricted, and anaerobic growth (for details
see Methods). We set maximization of biomass production rate as the objective function.
For these growth conditions, general CoPE-FBA results for both the model with and with-
out reversible-reaction splitting are shown in Table 4.1. With splitting we found for each
growth condition many more vertices (up to 120 million). Since we also used an ATP main-
tenance demand constraint of 8.39 mmol gDW‘1 h™!, our vertices are not instances of EFMs.
Without this constraint, all vertices in both the aerobic and anaerobic growth condition are
instances of their corresponding EFMs (not shown). We found only a few CoPE-FBA sub-
networks which together completely reveal the variability in the vertices. Most reactions
are inactive after optimizing the objective function (Table S4.1). In the remainder of this
section, we use the results obtained from the model with splitting because this yielded all

non-decomposable flux pathways in the optimum.

Gaussian and multimodal distributions of vertices after secondary optimization

We studied the distributions of objective values of a secondary optimization over the ver-
tices obtained in the first optimization. For each vertex, we determined the pathway length
P, pathway sum of absolute fluxes Pj, and pathway cost Pc (see Methods). Similar to
work done by Shlomi et al. (2011), our protein cost definition was solely based on enzyme-
synthesis cost. For instance, we did not take the protein lifetimes into account. Ignoring
protein lifetimes implies that P; and P¢ are closely related; P¢ is taking Py multiplied with
a protein cost for each individual reaction. In Fig. 4.6, we thus only show the results for Py
and Pc. Initially, we intuitively expected many vertices with intermediate Py, Pj, and Pc,
and few with relatively low or high Py, P;, and Pc. In other words, we expected a Gaussian-
shaped distribution for both Py, Pj, and Pc. As expected, the P; was indeed Gaussian-
shaped distributed for all tested growth conditions. This is illustrated by the dashed black
lines in the top panel of Fig. 4.6 which correspond to a Gaussian distribution where we used
the sample mean and standard deviation as input.

In contrast, Pc was clustered into distinct groups (i.e. a multimodal distribution). An
accurate determination of pathway cost is a challenge and we hypothesized that a different
cost function could show a different distribution. Therefore, we investigated four different

definitions of protein cost: minimum, maximum, average, and equal (i.e. sum of absolute
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Model Toy model E. coli iAF1260 model

Reversible-reaction splitting Yes No Yes

Growth condition Anaerobic
Total reactions 3226

Rays 0 26 604
Linealities 1 1 0
Vertices 4 12 839808 120932352
Subnetworks 2 6 9

Model E. coli iAF1260 model E. coli iAF1260 model
Reversible-reaction splitting No Yes No Yes
Growth condition Aerobic restricted Anaerobic
Total reactions 3226 3226
Rays 25 602 25 602
Linealities 1 0 1 0
Vertices 1679616 40310784 31104 1492992
Subnetworks 4 4 6 8

Table 4.1. Characterization of the optimal solution space with and without reversible-reaction splitting,.
The optimal solution space is typically characterized by many vertices and a few rays and linealities. Vertices originate
from a combinatorial explosion of only a few CoPE-FBA subnetworks. Reversible-reaction splitting yields a unique
characterization of this optimal solution space, but typically many more vertices (and rays) exist. With reversible-
reaction splitting, there is one additional ray in the aerobic growth condition which concerns an irreversible cycle of
oxygen.

fluxes; Py). When multiple proteins were associated to a particular reaction via an OR rule,
the minimum, maximum or average was taken (for more details see Methods). In all cases,
we found a multimodal distribution. Nonetheless, we did find an effect of the cost function;
taking the “minimal” cost function typically resulted in the largest difference between both
clusters, while taking the “equal” cost function typically resulted in the smallest difference
between both clusters (Table S4.2, Fig. S4.6). These results show that for explaining the
multimodal distribution of vertex cost, the effect of fluxes was much more important than
the effect of protein costs.

We already explained that enumeration of a model with reversible reactions does gener-
ally not result in a unique characterization of the optimal solution space; different subsets of
all non-decomposable flux pathways in the optimum exist. To illustrate the possible differ-
ences, we enumerated the E.coli iAF1260 model including reversible reactions for the same
conditions of which results are shown in Fig. S4.7. Comparison with Fig. 4.6 shows that

during aerobic growth conditions only two rather than four clusters were found.
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Figure 4.6. E.coli vertex cost follows a multimodal distribution. For three growth conditions—aerobic (red,
circle), aerobic restricted (purple, triangle), and anaerobic (blue, square)—we analyzed the vertex cost (P¢ ) and vertex
length (P ) of each vertex. Each dot in the main panel represents a vertex with a specific cost and length. Our results
indicate that for E.coli the vertex length follows approximately a Gaussian-shaped distribution (dashed lines are Gaus-
sian distributions with sample mean and sample standard deviation). Vertex cost follows a multimodal distribution;
vertices are clustered in distinct groups with a specific cost. Due to file size limitations we only show a subset (10000)

of vertices for all conditions in the scatter plot.

CoPE-FBA subnetworks explain differences in secondary optimization

CoPE-FBA subnetwork analysis revealed the shape of the distributions of the length, sum of
absolute fluxes, and cost of vertices. Several different CoPE-FBA subnetworks contributed to
the total length difference and within the majority of these subnetworks we found alterna-
tive flux distributions with different lengths; the length distribution within the subnetworks

were uniform or already Gaussian in shape. It is, therefore, not possible to reconstruct many
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E. coli iAF1260 growth condition

Aerobic Aerobic restricted Anaerobic
min(P;) 432 36 72
min(P;) 24 24 24
min(P,) 1 1 1

Table 4.2. Secondary optimization can reduce the optimal solution space to a unique flux distribution.
For the E.coli iAF1260 GSSM, secondary optimization reduced the optimal solution space from 1-120 million vertices
to about 1-432 vertices. When we minimize pathway cost (Pc) a unique optimal flux distribution exists, but many
suboptimal flux distributions do exist (Fig. 4.6).

vertices with a short or long vertex length, which explains the Gaussian-shaped distribution
of vertex length.

Alternatively, one (aerobic restricted and anaerobic cases) or two subnetworks (aero-
bic case) explain the main differences in P; and Pc. Within these subnetworks, we found
two distinct modes—a relatively cheap and a relatively expensive mode. While some of
these subnetworks were relatively large, our results show that the main cost difference
in this particular subnetwork originates from only a few metabolic reactions (Table S4.3).
As a consequence, we found many vertices with a relatively low Pc and many vertices
with a relatively high Pc—a multimodal distribution of vertex cost. In the aerobic growth
conditions, the cost difference mainly emerged from using different electron acceptors for
the NADH dehydrogenase; cheap pathways used ubiquinone-8 and costly pathways used
menaquinone-8 and/or demethylmenaquinone-8. In aerobic growth conditions ubiquinone-
8 is the major quinone in E. coli (Unden and Bongaerts, 1997; Bekker et al., 2010). In anaero-
bic growth conditions, the cost difference mainly emerged from exploiting a different strat-
egy for the ATP-dependent conversion from PEP and F6P to DHAP, G3P, and PYR in main
carbon metabolism (Fig. 54.8).

Lastly, we studied the reduction of the solution space after secondary optimization. For
the E. coli iAF1260 model with splitting, secondary optimization reduced the solution space
to only one or a few vertices (Table 4.2). In case of P-minimization, only vertices can be
optimal solutions, since convex combinations increase the number of active reactions. Com-
pared to minimization of P; and P, the solution space after minimization of P;, contained
more vertices in all of the tested growth conditions. This was expected because Py is solely
based on the number of active reactions, specific flux values are not of interest. Taking
these flux values into account typically results in more diverse outcomes. Hence, it is less
likely to find as many vertices with a minimal P;. Similarly, adding different protein costs
to each reactions further diversifies these outcomes. As a result, the optimal solution space

for Pc-minimization resulted in a unique flux distribution for all tested growth conditions.
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4.3 Discussion

The recently developed computational method, CoPE-FBA (Comprehensive Polyhedra Enu-
meration Flux Balance Analysis) (Kelk et al., 2012), offers the premise of a simplified bio-
logical understanding of the optimal solution space of metabolic network models; a kind
of understanding which is not possible with other popular methods such as Flux Variabil-
ity Analysis (Mahadevan and Schilling, 2003) and Flux Coupling Analysis (Burgard et al.,
2004). We further developed this method: Rather than enumerating the minimal generating
set, we used reversible-reaction splitting (Wagner and Urbanczik, 2005; Klamt and Stelling,
2003) to enumerate all non-decomposable flux pathways in the optimum. This allows us to
focus solely on the vertices for the analysis of optimal flux pathways.

The further development of CoPE-FBA facilitated in achieving a better understanding
of how optimal flux pathways resulting from FBA arise out of EFMs, use of constraints, and
optimality conditions. We recall that the vertices correspond to optimal-yield EFMs if there
is only a single restricting flux constraint. Both restricting and demanding flux constraints
modify the (optimal) solution space. Typically, the optimization problem remains underde-
termined and an optimal solution space continues to exist. Adding additional constraints
that concern all flux values in the model (e.g. protein cost constraints) can result in a unique
solution. Then, the optimal state is an instance of an optimal-yield EFM if there is only a
single restricting flux constraint. Alternatively, the optimal state corresponds to a convex
combination of optimal-yield EFMs.

Other constraints that also concern all reactions, but not their flux values, such as min-
imal Pj, often leads to optimal solution spaces. While these objectives have been used
frequently to find more realistic FBA outcomes (Blank et al., 2005; Snitkin et al., 2008;
Grafahrend-Belau et al., 2009; Mazumdar et al., 2009; Collins et al., 2012), we showed that
for both minimization of Py and Pc, optimal solution spaces continue to exist (Table 4.2).
This result shows that we should be careful drawing conclusions from predicted flux distri-
butions after using a secondary objective. Using CoPE-FBA with only irreversible reactions
allows for a straightforward identification of the origin of the remaining solution space.
Specifically, these solution spaces originate from identically favorable pathways through
CoPE-FBA subnetworks. Similarly, these CoPE-FBA subnetworks can be used to directly
explain the differences after secondary optimization, as we showed for the multimodal dis-
tributions of vertex cost.

In this research, we further demonstrated the use of CoPE-FBA for the E. coli iAF1260
GSSM of metabolism by determining P; and P¢ for each enumerated vertex for different
growth conditions. We found Gaussian-shaped and multimodal distributions for P; and P¢
respectively. These results can be further used to deduce a hypothesis of the selection pres-
sure if we know the flux distribution. If the objective of E. coli would be to minimize P¢ (or

Py), we would not expect E. coli to exploit the unique optimal solution since the difference
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between this optimal solution and many suboptimal solutions is almost negligible. We do,
however, expect E. coli to exploit the “cheap” reactions that cause the bi- or multimodal
distribution of vertex cost. Interestingly, in aerobic conditions, our analysis predicted that
all cheap pathways exploit ubiquinone-8 which is also the major electron acceptor in E. coli
under these conditions (Unden and Bongaerts, 1997; Bekker et al., 2010). If the objective
of E. coli would be to minimize P;, many different flux vectors give rise to an optimal or
near-optimal solution. The multitude of optimal solutions hinders the construction of a
hypothesis about P; from individual reactions. In future research we see as possible appli-
cation of our method, finding the minimal flux distance between alternative optimal flux
vectors in different conditions, to answer questions about how species can adapt to chang-

ing conditions.

4.4 Conclusions

We present a better understanding of the principles of the optimal solution space and we
show how we can enumerate all non-decomposable flux pathways in this space. This paves
the way to answer biological questions about the flexibility of organisms while growing at
optimal states. This work, therefore, contributes to reaching a topological understanding of
metabolic functionality in the optimum in terms of metabolic flux pathways. In the future,
the development of graphical maps (as demonstrated in Chapter 3) can further simplify the
analysis by allowing for straightforward visualization and inspection of these metabolic flux

pathways.

4.5 Methods

Minkowski sum

In Chapter 2 we described the Minkowski sum (Eq. (2.21)) which provides a description of
any J°P ¢ in terms of vertices, rays, and linealities. Linealities do not exist after reversible-

reaction splitting, which reduces the Minkowski sum to

s t
JP =N arpi+ Y. P (4.3)
p P

where the vectors ¢y and ¢y represent the vertices and rays respectively. Additionally, s
and t represent the upper boundaries of the sum functions indicating the number of vertices
and rays respectively, and aj and f; represent the weighting coefficient that satisfy the
following constraints: )} _; af =1, a; >0, and B4 > 0. In words, vertices can be summed by
a convex combination and rays can be summed as a conical combination.

Each split reversible reaction fulfills all conditions for a ray, thus many more rays ex-

ist when we split each reversible reaction. Each of these additional rays is also an EFM
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and an extreme pathway which are considered irrelevant because they only reformulate
reversibility (Papin et al., 2002; Klamt and Stelling, 2003).

Rank test

We successfully used the rank test (Klamt et al., 2005) to show that each enumerated vertex
v is an instance of an (optimal-yield) EFM. First, we determined the zero indices of v. Sec-
ond, from the stoichiometric matrix N of the subnetwork we eliminated all columns with
a zero index in v to create a submatrix Ny,;. Third, we used single value decomposition to
determine the rank of N,,,. And fourth, we used the rank-nullity theorem to determine its
nullity,

nullity Ny, =1, (4.4)

the dimension of the right nullspace which should be one if v is an EFM.

Secondary objectives

As a secondary objective, we used, in addition to pathway length (P;) and pathway sum
of absolute fluxes (Pj), also pathway cost (P¢)—a proxy for the minimization of the ATP

utilization in protein synthesis—to reduce the size of the solution space,

PL:H]]]]:#OH, (4.5)

Pr=>"1jl, (4.6)
j=1

Pc =) ¢jlIjl. (4.7)
j=1

The Py is identical to the number of flux carrying reactions, while the P¢ is identical to the
sum of absolute flux values multiplied with c;, the protein cost for each individual reaction.
This cost is the scaled length of the proteins that were associated to this reaction, which
we used as a proxy for all costs. In other words, ¢; <1 when the associated protein length
is less than average and vice versa. We set ¢; = 1 when no information about associated
proteins was available. Because multiple proteins can be associated to a particular reaction
via AND and OR rules, different definitions of c; were used: maximum, average, minimum,
and equal. An AND rule corresponds to taking the sum of protein lengths, while an OR rule
corresponds to taking the maximum, average, or minimum. Using equal cost is identical
to minimizing the sum of absolute fluxes, a widely-used secondary objective. Taking the
maximum, average, minimum, or equal definition of c¢; did not effect the interpretation of

our results.
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Genome-scale stoichiometric models

The aerobic restricted version (maximum O, uptake was 18.5 mmol gDW ! h™!) of iAF1260
was obtained from the BiGG database (Schellenberger et al., 2010). Maximum glucose up-
take was set to 12.77 mmol gDW ™' h™! and we modified the bounds on the O, uptake
reaction to create specific aerobic (no constraint on O, uptake) and anaerobic (exchange of
O3 set to zero) conditions. In all cases, the model required an ATP maintenance flux of 8.39
mmol gDW™! h™!. The model was edited and prepared for enumeration using PySCe$S
CBMPy (Olivier et al., 2005; Olivier, 2011). All models are provided as Supplementary
Dataset S4.1. Optimization of secondary objectives (minimization of Py, Pj, and P¢) was
also done with PySCeS CBMPy. We used a mixed-integer linear program to minimize Py

and a linear program to minimize Pj and Pc.
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The TimoTimo (CoPE-FBA 2.0) quickly enumerates the optimal solution space in
terms of vertices and rays.
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The TimoTimo: a revolutionary
“navigation system” for analyzing

metabolic highways

Abstract

Organisms depend on huge networks of molecular reactions for environmental sensing,
information integration, gene expression, and metabolism. The metabolic capacities of a
cell can be studied with genome-scale stoichiometric models (GSSMs) of its metabolism. In
the preceding chapter we presented a better understanding of the optimal solution space
of these GSSMs and we showed how to enumerate all non-decomposable flux pathways in
the optimal solution space. However, we did not mention that, for GSSMs, the enumer-
ation of all non-decomposable pathways in this space was considered to be not feasible.
To enumerate each non-decomposable flux pathway in the optimum, we used the Timo-
Timo—the tool we present in this chapter that allows for the fast enumeration of all distinct
non-decomposable pathways in the optimal solution space. In this chapter, we show its
description, implementation, and performance and end with an illustrative example where
we used the iTM686 GSSM of Synechocystis’ metabolism. We believe that our tool opens up

new opportunities to study the flexibility of organisms while growing at optimal states.

5.1 Introduction

HE metabolic capacities of a cell can be studied with genome-scale stoichiometric

I models (GSSMs) of metabolism. Comprehensive insight into the entire metabolic
capacity of a cell is obtained by computation of all feasible metabolic pathways that

agree with stoichiometric, thermodynamic, and steady-state constraints, such as elemen-
tary flux modes or extreme pathways. When additional constraints and optimality condi-
tions are imposed, the set of feasible metabolic pathways reduces considerably. This set
of optimal metabolic pathways defines the optimal solution space. Flux Balance Analysis
(FBA) is a popular method to determine an optimal flux distribution (Lee et al., 2006; Orth
et al., 2010), however, it does not provide any insight into the optimal solution space. Tra-
ditionally, Flux Variability Analysis (FVA) was the method to get insight into the optimal
solution space by quantifying the range of flux values that a single reaction can take in the

optimal solution space (Mahadevan and Schilling, 2003).
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The computational method CoPE-FBA (Comprehensive Polyhedron Enumeration FBA)
was recently developed to characterize this optimal solution space in terms of vertices, rays,
and linealities (Kelk et al., 2012), whereas this method suffers from extensive running times:
days to weeks for most GSSMs of metabolism. In the preceding chapter, we presented a
better understanding of the principles of the optimal solution space of these GSSMs. We
also further developed CoPE-FBA by using reversible-reacting splitting to enumerate all
non-decomposable flux pathways rather than the minimal generating set in the optimum.
Characterizing the optimal solution space before reversible-reaction splitting is hard, but
characterizing this space after reversible-reaction splitting is very hard to impossible for
the majority of GSSMs of metabolism. In fact, we were not able to generate the results
presented in the preceding chapter with CoPE-FBA as it was presented by Kelk et al. This
means that there was a need for a more efficient method to characterize this optimal solution
space. Besides the fact that CoPE-FBA suffered from extensive running times, it is also
platform dependent and requires the use of four different programming languages (Java,
Gawk, Python, and Bash).

We present the TimoTimo, a user-friendly computational method developed in Python
that efficiently characterizes the optimal solution space in terms of optimal pathways. We
call this method the TimoTimo (hereafter CoPE-FBA 2.0), because it determines the optimal
metabolic routes (metabolic highways) just as the TomTom (the global leader in navigation,
traffic and map products) determines the optimal route on road maps. We show that CoPE-
FBA 2.0 allows us to characterize the optimal solution space in the order of minutes for
most (bacterial) GSSMs on just an ordinary computer. We further use the GSSM iTM686
of Synechocystis metabolism (presented in Chapter 3) as an example illustrating the use of

secondary objectives to collapse the optimal solution space.

5.2 Tool Description

CoPE-FBA 2.0 characterizes the optimal solution space (see Eq. (2.16)) which allows us to,
as explained in the previous chapter, characterize in terms of linealities, rays, and vertices.
In short, linealities are reversible cycles or input-output pathways, rays are irreversible
cycles or input-output pathways, and vertices are the corner points of the FBA polyhedron.
We also showed that vertices originate from combinations of alternative flux distributions
in CoPE-FBA subnetworks, quickly leading to a combinatorial explosion (Kelk et al., 2012).
In the optimum, these subnetworks consist of reactions with correlated flux variability and
have a fixed net input-output stoichiometry of reactants and products. Mathematically, this

can be written as
NaJa=d+0, (1)

76



where A is a vector of reactions that form the subnetwork, N4 and J4 are the stoichiometric
matrix and the flux vector of the subnetwork, and d is the fixed input-output relationship
of the subnetwork (Miuller and Bockmayr, 2014).

These CoPE-FBA subnetworks are specific F-modules that are defined as sets of reac-
tions (i.e. subnetworks) that yield always the same net input-output relationship. The F-

modules are mathematically defined as
NpJa=d. (5.2)
In other words, two types of F-modules can be distinguished:
« F-modules essential for optimality (i.e. d # 0); and
« F-modules not essential for optimality (i.e. d = 0).

In the flux space without futile cycles, F-modules essential for optimality are identical to
CoPE-FBA subnetworks while F-modules not essential for optimality do not exist. Alterna-
tively, in the flux space with futile cycles, F-modules not essential for optimality are rays or
linealities not connected to optimal flux pathways. Then, F-modules essential for optimality
can be a CoPE-FBA subnetwork, a ray or lineality connected to optimal flux pathways, or
any combination thereof.

The design of CoPE-FBA 2.0 is based on its predecessor CoPE-FBA, thus we start the
description of our computational method by describing the basic principles of its predeces-
sor, CoPE-FBA, developed by Kelk et al. (2012). CoPE-FBA first enumerates the linealities,
rays, and vertices and then the CoPE-FBA subnetworks in the flux space without futile cy-
cles (Fig. 5.1); the space where these vertices are defined. We propose to do the reverse:
use a divide-and-conquer approach to first determine the subnetworks and then determine
the vertices (Fig. 5.1). The divide-and-conquer approach breaks down the problem to many
(simple) subproblems where each subproblem should be simple enough to solve within sec-
onds to minutes. To determine all non-decomposable flux vectors in the optimum, we need
to determine the subnetworks within the flux space with futile cycles. In Fig. 5.2 we show
how enumerating the flux space of our toy model without futile cycles yields four vertices
(see also Fig. 2.4) while enumerating the flux space with futile cycles yields twenty-four ver-
tices. These twenty-four vertices originate from four F-modules (Fig. 5.2C) that represent
a lineality connected to optimal flux pathways (orange), a CoPE-FBA subnetwork (red), a
combination of a CoPE-FBA subnetwork and a lineality (purple), and a ray connected to

optimal flux pathways (yellow), respectively.
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Figure 5.1. Conceptual representation of CoPE-FBA 2.0 and its predecessor. We illustrate both approaches

for the iTM686 GSSM of Synechocystis’ metabolism. Determining the vertices for all subnetworks alone results in

enumerating 8.2 x 10~% % of the vertices at the network level. This results in a significant speed advantage (weeks vs.

minutes for this particular example).
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Figure 5.2. Subnetworks in the flux space with and without futile cycles. (A) futile cycles—linealities (green)

and a ray (blue)—in the toy network (before reversible reaction splitting). (B) in the flux space without futile cycles

there exist two subnetworks that give rise to 4 vertices (2 x 2). (C) in the flux space with futile cycles there exist four

subnetworks that give rise to 24 vertices (2 x 2 x 3 x 2).
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5.3 Implementation

The CoPE-

FBA 2.0 pipeline we present here and all data files used during these study

are available for download from http://memesa-tools.sf.net. Our pipeline is written in the

Python language. We implemented CoPE-FBA 2.0 in Python because it is a great scripting

language, allows for the use of numerous scientific libraries written in compiled languages,

and can be freely installed and used on a wide range of operating systems. The CoPE-FBA

2.0 pipeline

consists of three processes: model preparation, model enumeration, and model

analysis (Fig. 5.3).

SBML ==

Model Preparation | Model Enumeration > Model Analysis > output

Figure 5.3. Schematic description of the main processes of the CoPE-FBA 2.0 pipeline.

Each of these processes is executed by different elements (Fig. 5.4):

(i) Model Preparation

a)

b)

d)

f)

Model Setup. This module loads the metabolic network written in the Systems
Biology Markup Language (SBML) (Hucka et al., 2003) and creates the required
directory structure.

Scan for Reaction Duplicates. We use CBMPy (Olivier, 2011) to scan for re-
actions with an exact matching stoichiometry. All redundant pairs that are not

biologically relevant should be removed.

Get F-modules. We use (floating-point precision) FVA to determine the set
of variable reactions and subsequently a Python implementation of FluxMod-
ules (Miiller et al., 2014) to determine the F-modules.

Convert SBML to H-format. For mathematical stability we first replace “fake”
infinity bounds (+ 1000 or + 999999) with +oco. Then we use the Polyhe-
dra format (H-format) from the CDD manual (Fukuda, 1997) to describe the
convex polyhedron in exact arithmetic. These files use the extension “ine”
(inequalities).

Perform exact FBA. We use exact arithmetic (QSopt_EX) to perform an FBA—
this is required because we need the exact input-output relationship of every
F-module. The FBA output is used in the next step to fix d of every F-module

and in the final step to set the fluxes in the fixed part of the network.

Model to Modules. We combine the output of the preceding steps to construct
stoichiometric models for each F-module with exact arithmetic. We added in-
put and output reactions to fix d of each type I F-module in the optimal solu-

tion space. Dummy species were added both the input and output reaction to
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guarantee use of both reactions. We split reversible reactions to ensure that we
characterize all non-decomposable flux pathways in the optimum. We use again

the H-format to describe the modules.

g) Model Reduction. We reduce each model by removing fixed reactions. We
ensure steady state of each metabolite by adding the stoichiometric coefficients
of the removed reactions to “b” (i.e. NJ = b % 0).

(i) Model Enumeration. Use the F-modules with split reversible reactions as input.

a) Enumerate vertices and rays. Polco is used to enumerate the set of vertices

and rays.
b) Check Scaling. The vertices output by Polco are scaled when necessary.

c) Check Vertices. As a final sanity test, the first ten vertices are checked to see
if they do actually occur in the optimal solution space (the default argument is

set to ten, checking a different number if also possible).
(iii) Model Analysis

n a) Translate. We translate the Polco output to a HDF5 data format that is specifi-
cally designed to store and organize big numerical data sets.

b) Modules to Model. We reconstruct network vertices by reintegrating the F-

modules fluxes with the fixed fluxes that were removed earlier in the pipeline.

c) Vertex Features. We can easily determine vertex features such as length (num-
ber of flux carrying reactions), sum of absolute fluxes, and cost (sum of absolute

fluxes multiplied with a proxy for cost).

We use CBMPy (Olivier, 2011) for various steps in the described pipeline (e.g. scan for
reaction duplicates, convert SBML to H-format, and FVA). We use QSopt_EX (Applegate
et al,, 2007) as a rational FBA solver and Polco (Terzer, 2009) to enumerate the vertices and

rays of the polyhedron respectively, which are both freely available.

5.4 Results and Discussion

Benchmarking CoPE-FBA 2.0

We selected metabolic GSSMs of different micro-organisms to benchmark CoPE-FBA 2.0
against its predecessor. The first step was to compare the output of both methods. Or in
other words, do we get an identical characterization of the optimal solution space? Table 5.1
gives an overview of the characterization of the optimal solution space with reversible-

reactions splitting. CoPE-FBA was not able to characterize the optimal solution space with
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Organism (model)  Reactions Source Vertices

S. PC6803 (iTM686)* 912 glycogen 1.4 x10° 242 12
S. PC6803 (iTM686)* 912 light 41803776 242 12
E. coli (1AF1260)* 2374 glucose 40310784 604 4(8)
E. coli (1AF1260,0x)* 2374 glucose 120932352 604 9 (13)
E. coli (iAF1260,n00x)* 2374 glucose 1492992 602 8 (12)
L. Lactis 735 glucose 1218240 511 8
S. thermophilus 555 methanol 280 186 6 (7)
M. tuberculosis (iNJ661)* 1020 glycerol 705 x10° 313 14 (16)
M. barkeri (1AF692) 638 methanol 104.832 238 6
E. coli (iJR904) 1066 malate 6912 264 9 (10)
E. coli (iJR904) 1066 glucose 138240 264 7 (8)
E. coli (iJR904) 1066 fumarate 7680 264 10 (11)
E. coli (iJR904) 1066 tryptophan 13824 264 6 (7)

Table 5.1. Overview of the optimal solution space characterization after reversible-reaction splitting for
different GSSMs for growth on different sources. The number without and within parenthesis in the subnetwork
column represent the number of CoPE-FBA subnetworks and the number of F-modules respectively. Unpublished L.
lactis and S. thermophilus reconstructions were provided by Prof. B. Teusink (Vrije Universiteit Amsterdam).

* Enumeration was not done successfully with CoPE-FBA.

reversible-reaction splitting for the GSSMs denoted with a * in Table 5.1. For these GSSMs,
we observed no difference in the characterization of CoPE-FBA 2.0 and its predecessor with-
out reversible-reaction splitting (not shown). If CoPE-FBA was able to characterize the opti-
mal solution space with reversible-reaction splitting, the characterization was in agreement
with the results obtained with CoPE-FBA 2.0.

The second step was to compare the performance of both methods. That is, how much
faster can we now characterize the optimal solution space? An overview of the running
time of both methods is given in Table 5.2. We distinguished between preparation and
enumeration time (analysis time is ignored but takes significantly longer with CoPE-FBA
due to the “translate” step). While preparation times between both methods were similar,
the enumeration time of CoPE-FBA 2.0 is many orders of magnitude faster. More specifi-
cally, CoPE-FBA 2.0 typically enumerated the optimal solution space within approximately
a minute while its predecessor required several days to enumerate each of these optimal
solution spaces.

To illustrate this, the 41804776 vertices enumerated for the iTM686 GSSM of Synechocys-
tis metabolism (presented in Chapter 3) originate from twelve subnetworks with respec-
tively 288, 3, 1, 4, 3, 2, 28, 3, 2, 2, 3, 2 vertices (as previously shown in Fig. 5.1). This
means that while we determined in total only 341 vertices (the sum), we actually enumer-

ated 41804776 vertices (the multiplication) within one minute.
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Running time (s) Running time (s)

Organism (model) Source CoPE-FBA CoPE-FBA 2.0

Prep. Enum. Prep. Enum.

S. PC6803 (iTM686) glycogen 103 FAILED 112 95

S. PC6803 (iTM686) light 102 FAILED 99 22
E. coli (1AF1260) glucose 688 FAILED 524 147600

E. coli (1AF1260,0x) glucose 680 FAILED 527 36

E. coli (1IAF1260,n00x) glucose 682 FAILED 520 27

L. Lactis glucose 87 475420 67 15

S. thermophilus lactose 49 345362 45 11

M. tuberculosis (iNJ661) glycerol 133 FAILED 126 60

M. barkeri (1AF692)  methanol 71 265760 58 11

E. coli (iJR904) malate 150 324793 122 15

E. coli (iJR904) glucose 149 575983 126 16

E. coli (iJR904) fumarate 149 584690 125 16

E. coli (iJR904)  tryptophan 156 695883 132 14

Table 5.2. Comparison of running times for CoPE-FBA developed by Kelk et al. (2012) and our version,
CoPE-FBA 2.0. Running times (seconds) represent preparation and enumeration time. For a fair comparison all
simulations were done on the Lisa Compute Cluster. Unpublished L. lactis and S. thermophilus reconstructions were
by Prof. B. Teusink (Vrije Universiteit Amsterdam).

We want to stress that there can be exceptions where CoPE-FBA 2.0 cannot characterize
the optimal solution space in the order of minutes. We found one particular example, the
1AF1260 GSSM of E. coli metabolism with a specific growth condition—growing on glucose
with a restriction on the oxygen uptake. This particular enumeration took about 41 hours,
but note that we were not able to enumerate the optimal solution space with CoPE-FBA
at all (Table 5.2). Our divide-and-conquer approach failed here to break down the problem
in many simple-to-solve subproblems, simply because they do not exist. In this specific
example, we obtained one subproblem that was still very difficult to solve: A subnetwork
that consists of many vertices (e.g. in the order of a million or more). This subproblem
cannot be further simplified, which means that we found one enormous subnetwork that

explains most of the variability.

A real life example: Exploring Synechocystis’ metabolic potential in the

optimum

We have now demonstrated that CoPE-FBA 2.0 outperforms its predecessor. This opens
up new opportunities to explore the metabolic potential in the optimum. We illustrate this

here by analyzing the optimal solution space of iTM686 GSSM of Synechocystis metabolism
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(presented in Chapter 3) with CoPE-FBA 2.0; a type of analysis no other method to date
can perform. We constructed two different FBA models of iTM686 that depict autotrophic
and heterotrophic growth. We set maximization of the specific growth rate as the objective
function. The biomass composition of Synechocystis is different under these growth condi-
tions. As discussed in Chapter 3, the iTM686 GSSM produces glycogen during autotrophic
growth which can be utilized during heterotrophic growth.

With CoPE-FBA 2.0 we were able to enumerate the vertices in both growth conditions
(see also Table 5.1). We used the enumerated vertices for subsequent analysis where we
studied the distributions of objective values of a secondary optimization over the vertices
obtained in the first optimization, optimization of specific growth rate. For each vertex,
we determined the pathway length (P) and the pathway sum of absolute fluxes (P;) (see
Methods of Chapter 4) of which the results are shown in Fig. 5.5. We found again Gaussian-
shaped and bimodal distributions for P; and Pj respectively. The origin of these distribu-
tions was discussed in detail in the preceding chapter. In short, they are the result of flux
distributions through the subnetworks. Many different subnetworks contributed to the dif-
ference in P; and within these subnetworks we found alternative flux distributions with
different lengths. In contrast, one particular subnetwork explains the main difference in P;.
Within this particular subnetwork, we found a relatively cheap and a relatively expensive
flux distribution.

In autotrophic growth conditions, the sum of absolute fluxes is mainly explained by
using a different strategy for bicarbonate (HCO3) uptake. We analyzed a light limiting
autotrophic growth condition, which means that there was an excess amount of HCO3
available. This means that, to maximize the specific growth rate, cheap pathways used the
minimal HCO3 uptake required and expensive pathways used the maximal HCOj3 uptake
possible (Fig. 5.6). The difference between both strategies is 11%.

5.5 Conclusions

We presented a fast and user-friendly method, CoPE-FBA 2.0, for the characterization of the
optimal solution space of GSSMs of metabolism. This method exploits a divide-and-conquer
approach which allows us to characterize this space typically in the order of minutes, while
its predecessor requires for similar models days to weeks to complete. We expect that our
tool will aid in research about optimality principles in metabolism and that it will fulfill
the premise of CoPE-FBA by providing a simplified biological understanding of the optimal
solution space of metabolic network models.
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Figure 5.5. Synechocystis vertex sum of absolute fluxes follows a bimodal distribution. For two growth
conditions—autotrophic (red, circle) and heterotrophic (blue, square)—we analyzed the vertex sum of absolute fluxes
(Py) and vertex length (Pr) of each vertex. Each dot in the main panel represents a vertex with a specific sum of ab-
solute fluxes and length. Our results indicate that (also) for Synechocystis the vertex length follows approximately a
Gaussian-shaped distribution (dashed lines are Gaussian distributions with sample mean and sample standard devi-
ation). Vertex cost follows a bimodal distribution; vertices are clustered in distinct groups with a specific cost. Due to

file size limitations we only show a subset (10000) of vertices for all conditions in the scatter plot.
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Figure 5.6. Different bicarbonate uptake strategies of Synechocystis. Predicted in silico fluxes for a minimal
(panel A) and maximal (panel B) HCOy uptake. We highlighted which reactions are dependent on enzymes and which
are dependent on diffusion.

5.6 Supplemental Material

Dataset S1. A description of the stoichiometric models in SBML format can be found at
http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-23540.
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Fluctuations in Biochemical Models
Discrete Stochastic Modeling & Simulation
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Section “Example 4: Stochastic simulation predicts active-state locking” is based on the

publication:
Wei K., Moinat M., Maarleveld T.R., Bruggeman FJ. (2014) “Stochastic simulation of

prokaryotic two-component signalling indicates stochasticity-induced active-state locking and

growth-rate dependent bistability”, Molecular BioSystems, 10, 9:2338-46.

Stochastic Simulation Algorithms
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Stochastic Simulation Algorithms: A popular discrete stochastic approach to study the (emergent)
properties of biochemical models. In 1977, Gillespie published both the direct and first-reaction
method which are still used today. More efficient algorithms such as the next-reaction method have
been developed to improve the performance of stochastic simulation algorithms.
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A toolkit for analyzing fluctuations
in biochemical models: stochastic

simulation algorithms

Abstract

Biological systems are heterogeneous by nature which can be to a large extent explained
by the stochasticity of biochemical reactions that creates non-genetic cell-to-cell variability.
While traditional chemical kinetics fail to capture this stochasticity, there exist stochastic
modeling and simulation approaches that do capture this stochasticity. Various stochas-
tic approaches exist, but we focus here on discrete stochastic approaches (the stochastic
simulation algorithms) which are arguably the most popular these days. We start with the
chemical master equation and explain that stochastic simulation algorithms generate time
trajectories that are in accordance with the chemical master equation. In the remainder
of this chapter, we provide an overview of both exact and inexact stochastic simulation
algorithms and highlight their importance in systems biology with various simple and il-

lustrative examples.

Introduction

ETERMINISTIC models fail to capture the discreteness and stochastic effects that oc-

cur when molecules are present at low copy numbers. Molecular dynamics is the

most accurate method to describe the time evolution of a biological system. For

each time point molecular dynamics determines the position and velocity of each molecular

species making molecular dynamics simulations very expensive computationally. Assum-

ing that the system is well-stirred simplifies the problem incredibly. This means that we

can ignore the simulation of non-reactive molecular collisions; the collisions that require
the majority of the simulation time in a molecular dynamics simulation.

The well-stirred assumption allows us to focus only on the reactive molecular collisions,

thus molecular positions and diffusion can be ignored. Assuming, additionally, a constant

system volume and temperature allows us to use the chemical master equation (CME)—
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Chemical master equation

The equation that determines the probability that the system is in a specific state at
a given (future) time.

—to describe the stochastic process which gives an exact description of the Markov process
through time (McQuarrie, 1967). A Markov process is defined as:

Markov process

A random process whose future probabilities are determined by its current state.

Or in other words, in a Markov process the next state depends only on the current state,
not on the past history of the states. Markov processes are extensively used for a broad set
of applications. In economics and finance, these Markov processes are, for instance, used
for prediction of future stock prices (e.g. with geometric Brownian motion as illustrated in
Fig. 1.1C).

A single state is in this formalism represented by a particular combination of the number
of molecules per cell. We consider a system of m species and r reactions. From the stochastic
perspective the state is a vector of integers that each represents the (copy) number of a

specific molecule per cell. The general description of the CME is given by

dP(t)
dt

and describes the time evolution of a stochastic system with biochemical reactions. Here, S

- SP(t) (6.1)

is defined as the transition matrix and each element P, (t) of P(t) equals the probability of
the system to be in state n at time t. A more specific description of the CME is given by
dP(x, t|x0, to) _

r
i =Y aj(x—v;)-P(x—vj,t|xo,t0) -
=

.
Zaj(x)~P(x,t|x0,t0),
=1

(6.2)

where x is the state vector which contains the number of molecules (denoted later by n;
for species index i) of each species in time, P(x, t|xg,to) is the probability to observe the
system in state x at time ¢ given the initial state x¢ at time to, v; is the state-change vector
of reaction index j (vector with stoichiometric coefficients), and a;(x) is the propensity

function of reaction index j, that is,

a;j(x)dt = the probability that reaction j occurs once in V in the time interval [¢, ¢ +dt)

given that the system is currently in state x.
(6.3)
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We use a simple and widely used model, the birth-death process (Fig. 6.1A) in one of its
simplest forms (constant birth rate), to illustrate usage of the CME. This birth-death process
is an example of a (continuous-time) Markov process. The birth-death process consists of
two state transitions (Fig. 6.1B): births, which increase the state variable by one and deaths,
which decrease the state variable by one.

We exploit the birth-death process to study the time evolution of the number of mRNA
molecules (n,,gn4) in a single cell. mRNA molecules are synthesized and degraded. We
therefore call these state transitions the synthesis and degradation of mRNA respectively
and refer to this model as the synthesis-degradation process. We start by determining
the propensity functions, the state-change vectors, and the state vector for the synthesis-
degradation process. The propensity functions are given by

ai(x) = ksyn, (6.4)
aZ(x) = kdeg "MmRNA>
where ksyn and k., denote the synthesis and degradation rate constant respectively. These
rate constants are volume (V) independent, whilst rate constants of bimolecular reactions
are inversely proportional to V; the search time for two reactant molecules depends on
V (Berg and von Hippel, 1985).

The state-change vectors for our synthesis-death process are given by
V= (l),
vy =(-1),

of which the entries correspond to the stoichiometric coefficients of the molecules in the

(6.5)

same order as they occur in the state vector x,

x=(nmRrNA)- (6.6)
Substituting Eqgs. (6.4)-(6.6) into Eq. (6.2) gives the CME for our synthesis-degradation

model:

dP(nm,rNa>t|%o,to)
dt

:ksyn 'P(nmRNA —l,t|x0,t0)+

kaeg(Nmrna +1) - P(nmrna +1,t%0, to)- (6.7)

(ksyn +kaegnmrna) - P(nmrNas tX05 to).
Most CMEs cannot be solved analytically and this is where stochastic simulation algorithms
(SSAs) come in.

Stochastic simulation algorithm

A Monte Carlo method to numerically generate time realizations which are in agree-
ment with the CME.
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This means that the SSA numerically simulates the Markov process which the CME de-
scribes. The CME and SSA are derived from the same principle: the propensity function.
Gillespie (the developer of the first SSAs) calls the propensity function the fundamental
premise of stochastic chemical kinetics, because everything else in the theory follows from
it via the laws of probability (Gillespie, 2007). The important advantage of SSAs is that they
are simple to implement, especially compared to procedures used to numerically solve de-
terministic models. Before we discuss these SSAs in detail, we use our synthesis-degradation
process to illustrate the SSA and compare the SSA to a macroscopic description of the
synthesis-degradation process.

If we ignore the fluctuations in biochemical models, we can write down the macroscopic

description as
dmRNA(t)

dt

which represents a continuous, deterministic process. The rate equations of the synthesis

=Vsyn ~Vdeg> (6.8)

and degradation process are given by vs,, and v4, ¢ respectively. The macroscopic descrip-
tion is usually done in concentrations; mRNA(t) is the mRNA concentration at time ¢. For
convenience we set the cell volume to 1 (cell volume of E.coli is about 1 fl (Milo et al.,
2010)) such that #n,,gna(t) corresponds to mRNA(t). Assuming that both reactions occur
spontaneously allows us to use mass-action kinetics to describe vsy, and v, 4. We can now

rewrite Eq. (6.8) to

dn,, t
1;7];’14() :ksyn_kdeg'nmRNA(t)’ (6~9)

which represents a first-order linear non-homogeneous differential equation. Solving
Eq. (6.9) analytically yields

k
nrNA(t) = nmra(0) e et 4 0 (1 gTRaer't), (6.10)
deg
which simplifies to
k
nmrNa(t) = k—y (1 e Raeg't) (6.11)
deg

if we start our simulations with zero molecules of mRNA. Additionally, from Eq. (6.9) we can

determine the expected mean mRNA copy number in steady state which should be equal to

k
<nmRNA,ss> =27 (6.12)

kdeg

and since this model is described by a Poisson distribution at steady state—

Poisson process

A stochastic process where events occur continuously and independently of one

another.
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—the coefficient of variation depends on

1
Cp= . (6.13)

(nmRNA,ss)

This means that the stochasticity is inversely proportional to the steady-state mRNA copy

number.
A B
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Figure 6.1. Modeling and simulation of single-cell transcription. (A) vsyn and vy, < denote the synthesis and
degradation rates of mRNA molecules respectively. (B) transition diagram of the Markovian synthesis-degradation
process. Transition rates are indicated at the arrows. The synthesis rate is independent of n,, g N - Panels C and D show

time simulations with ksyn = 2.0 min~1, kdeg =0.2 min~! and ksyn =40 min~1, kdeg =0.2 min” !, respectively.

In Fig. 6.1C-D, we compare the SSA output with the analytical solution for two different
parameters settings. The results confirm the expectations: (i) the time realizations generated
by the SSA fluctuate around the analytical solution and—in the steady-state regime—(also)
around theoretical (mRNA) and (ii) ¢, decreases with increasing (#,,rN4,ss); @ determin-
istic approach cannot capture this stochasticity. We used an implementation of the direct
method (Gillespie, 1976, 1977), the first SSA created by Gillespie, to generate these time
realizations. In 1976, Gillespie introduced both the direct and the first-reaction method of
which the direct method is more efficient when the number of reactions exceeds three. In

the next section we discuss this direct method in more detail.
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6.1 Direct Method

The direct method (Gillespie, 1976, 1977) is the classical SSA that is used to generate exact
trajectories for biochemical models, which are in accordance with the CME. This means
that the direct method generates a complete and detailed history of x by simulating every

reaction event. To generate exact trajectories the direct method asks itself two questions:
(i) when does the next reaction fire?,
(i) which reaction fires next?

More specifically, the first question asks only when a reactions fires, so it asks for a point
in time. The second question asks only which reaction fires, not when this occurs (this is
asked by the first question).

We start by providing the mathematics that are required to answer these questions.
Then we show how the direct method determines when and which reaction fires next. The

theoretical basis to answer these questions is given by
P(z,jlx,t) = aj(x)-e )7 with (12 0;j=1,2,...,7), (6.14)

which describes the probability that the reaction with index j fires at ¢ + 7 given that the

system is in state x at time ¢, and where
r
ao(x) =) a;(x). (6.15)
j=1

This means that a(x) describes the sum of all the propensities. Eq. (6.14) is a joint proba-

bility function of 7 and j given that the system is in state x at time ¢, that is,
P(z,jlx,t) = P(7|x,t) - P(jl7,x,¢) with (2 0;j=1,2,...,7). (6.16)
Summing Eq. (6.14) over r reactions gives the probability that the next reaction fires at ¢+ 7,
P(1|x,t) = zr:aj(x)~e_“°(x)r with (7> 0). (6.17)
j=1
Using Eq. (6.15), we can rewrite (and simplify) this relationship to
P(1|x,1) = ag(x) - e~ )7 with (7> 0), (6.18)

which is an exponential distribution and therefore 7 is an exponential random variable with
mean 1/ag and variance 1/a3. The probability that reaction with index j fires next is equal

to its normalized propensity function,

_aj(x)
)= ap(x)

P(jlt,x,t

with (j=1,2,...,7). (6.19)
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We can obtain this relationship by integrating Eq. (6.14) over all 7. Multiplying Egs. (6.18)
and (6.19) yields as expected again Eq. (6.14).

To generate samples of both 7 and j the direct method uses a Monte Carlo method:

Monte Carlo method

Any method which solves a problem by repeatedly generating random numbers

More specifically, 7 is generated by

1 1
T= In(———
ap(x) rand;

), (6.20)

where rand is a random number between [0,1]. By generating an array of rand; values,
you can confirm that Eq. (6.20) generates an exponential distribution with mean 1/a¢ and
variance 1/aj. The direct method uses roulette wheel selection to determine the index j
of the reaction that is going to fire next. For each time event, the direct method plays one
game on the roulette wheel. The size of the bins are proportional to the likelihood that a
reaction fires first; the reaction that fires first is the one where the roulette ball falls in the
bin. The direct method does this by drawing a second random number rand, between [0,1]
and selects the smallest integer j satisfying
J
aj(x)>rand;-ao(x). (6.21)
=1

J

We use the synthesis-degradation process with a constant synthesis rate (Fig. 6.2) to
illustrate this roulette wheel selection method. The roulette wheel of this process is com-
pletely different than the typical roulette wheel you can encounter in a casino. It consists
of two bins, a (black) bin for the synthesis reaction and a (red) bin for the degradation reac-
tion (Fig. 6.2A). We start our simulations with zero molecules of mRNA (Fig. 6.2B), thus the
likelihood that a synthesis reaction fires first is 100%. The roulette wheel, therefore, has at
t = 0 only one bin; the bin for the synthesis reaction. Remember that the roulette wheel only
determines which reactions fires, not when. As we generate more time steps, the system
starts stochastically fluctuating around its steady state. The propensities for both reactions
are then similar (Fig. 6.2B). After each time step, the roulette wheel is updated according
to the current propensities (Fig. 6.2A). For instance, at ¢ ~ 31.54 min the propensity of the
synthesis reaction is higher than the propensity of the degradation reaction and the reverse
is true at t ~ 43.96 min.
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Figure 6.2. Illustrating roulette wheel selection. (A) the roulette wheel selection procedure in action for the
synthesis-degradation process with a fixed synthesis rate (ksyn = 2.0 min~1, kjeg =102 min~!) . Corresponding
species and propensities time series data are given in panels B and C respectively.

6.2 71-leap method

Unfortunately, the direct method discussed in the previous section can be time-consuming.

Reaction sampling has time complexity O(r)—

Big O notation

The time complexity of an algorithm is often expressed with the big O notation that

excludes coefficients and lower order terms.

—and generating (and storing) a complete and detailed history of x can be a tedious process.
Developing mathematically equivalent but more efficient implementations of the SSA has
been an active research area, which led to the development of the next reaction method

(Gibson and Bruck, 2000). In contrast to the direct method, this next reaction method recal-
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culates only those propensities that alter after a specific reaction fired. The next reaction
method has time complexity O(log(r)) for reaction sampling, which can result in a signifi-
cant speed-up compared to the direct method for models with many reactions. Despite this
significant improvement (especially for sparse models), exact algorithms such as the direct
and next reaction method can be too time-consuming for biochemical models with a high
frequency of reaction events.

This means that the strength of exact SSAs—obtaining a complete and detailed history
of x by simulating every reaction event—is also its weakness; the exact SSA can be too time-
consuming. As we argue in Chapter 7, in systems biology access to a complete and detailed
history of x is often required, e.g. for the calculation of event waiting times. However, a
complete and detailed history of x is not always required, e.g. for generating a time series
plot and the moments of random variables. To accelerate the exact SSA simulation, various
software packages exploit a fixed-interval data storage approach which reduces the amount
of stored data. A fixed-interval data storage approach can be useful when a complete and
detailed history of x is not required.

However, these software packages do generate a complete and detailed history of x.
The 7-leap method developed by Gillespie (2001) goes one step further by generating a
time interval 7 after which all reactions fire simultaneously that occurred during 7. During
the time interval [t,t + 7), the propensity functions are not updated which makes this 7-
leap method an approximate SSA. Gillespie (2001), therefore, presented this method as “an
approximate procedure that in some circumstances can produce significant gains in simulation
speed with acceptable losses in accuracy.”

The most important question of the 7-leap method is: What should be the size of 7?
A too large 7 results in non-acceptable losses in accuracy. Alternatively, a too small 7 is
inefficient—t should be greater than 1/ag, the mean of the exponential random variable
used in the exact SSAs to determine the time to the next reaction event.

We want the largest 7 that satisfies the Leap Condition:

Leap Condition

7 must be small enough such that no propensity function alters substantially during

the time interval [¢,t + 7).

Different approaches have been developed to determine the largest 7 that satisfies the Leap
Condition (Gillespie, 2001; Gillespie and Petzold, 2003; Rathinam et al., 2003; Cao et al.,
2006); we refer to Gillespie (2001) for the original 7-leap method and to Cao et al. (2006) for
the optimized 7-leap method. For stiff systems, an implicit 7-leap method was developed by
Rathinam et al. (2003).
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After determining (preferably the largest) t that satisfies the Leap Condition, the r-leap

method determines how often each reaction fires in the time interval [¢,¢ + 7):
K;j(7;%,t) = the number of times reaction j fires in [t, ¢+ 1) for j=(1,2,...,7).  (6.22)

If we satisfy the Leap Condition, we can assume that the propensity functions stay approx-
imately constant during [¢,¢ + 7). Each reaction event occurs independently of each other
and we know the average rate (Eq. (6.3)), thus we can (accurately) approximate K; by a
Poisson random variable P(a;(x),7) with mean and variance a;(x)7.

We can now easily show that 7 <1/ay is inefficient: 7 =1/ag yields a mean value for K
equal to K; = a;(x)/ao which is equivalent to the probability that reaction j fires next in the
exact SSA given in Eq. (6.19). This means that, (i) if 7 =1/ag typically one of the generated
Kj’s is one and all others are zero and (ii) if 7 < 1/aq typically all of the generated K s are
zero. That is also why the 7-leap method switches (temporarily) to an exact SSA if 7 is not
sufficiently greater than 1/ay. Alternatively, if 7 >>1/ay typically multiple K;’s are nonzero
and it is beneficial to use the 7-leap approximation to update x from ¢ to ¢ + 7 as is given by

x(t+17)=x+ Zr:vj~Pj(aj(x),r), (6.23)
j=1
where v; is the state-change vector of reaction index j.

The Poisson random variable P(a;(x),7) is unbounded at the high side (bounded at
zero on the low side), which means that applying Eq. (6.23) can result in negative species
copy numbers. This usually occurs with species that act as reactant in (multiple) reaction(s)
and that are only multiple firings away of depletion. The more recent 7-leap methods check,
before updating x, if species copy numbers go negative by applying Eq. (6.23).

To illustrate the 7-leap method, we use the decaying-dimerizing model because—for the
right parameter settings—we can, for the majority of the simulation, determine a 7 >>1/ag
that satisfies the Leap Condition. This model consists of three species and four reactions
(Fig. 6.3A). All reactions are first-order reactions, except of reaction v, which is a second-
order reaction with identical reactants (dimerization of S1). Discrete stochastic simulation
algorithms use molecular numbers, so we have to take into account that this reaction re-

quires ng; > 2 to be able to occur. This gives the following propensity functions:
ai(x) = ki -ng1,
1
ax(x) =—-ky-ng - (ng1—1),
2(x) Sk2 si-(ns1—-1) (6.24)
a3(x) = k3 *Nngo,

ag(x) =ky-ngy,
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and state-change vectors:
v =(-1,0,0),

vy = (—2, 1, 0),
v3=(2, -1, 0),
V4 = (0, —1, 1).

(6.25)

For our parameter settings—k; = 1.0, k» = 0.002, k3 = 0.5, and k4 = 0.04—and initial
conditions—ng; = 10° and ng, = ng3 = 0—we performed 1000 stochastic simulations for the
direct and the optimized 7-leap method (Cao et al., 2006). Each simulation continued until

all reactants (i.e. S1 and S2) were exhausted.
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Figure 6.3. Modeling and simulation of a decaying-dimerizing process with exact and inexact stochastic
algorithms. (A) monomer S1 decays (vy) or forms a (unstable) dimer S2 (v, ) which can subsequently be (re)converted
into S1 (v3) or the stable dimer S3 (v4). (B) stochastic simulation for both the direct method and the optimized t-leap
method. Differences cannot be observed by the naked eye (i.e. the T-leap method predicts the same time series behavior
in only a fraction of the time of the direct method).

In Fig. 6.3B, we overlay output generated with the direct and the optimized 7-leap
method; no differences can be observed by the naked eye thus the 7-leap method accu-
rately approximates the exact output of the direct method. The final ng; count gives the
number of stable dimers that were created during each simulation of which we found no
significant difference between both methods (17040 + 94 vs. 17044 + 92). Similarly, for the

simulation end time there is no significant difference between both methods (46.2 + 2.5 vs.
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46.2 +2.4) In contrast, there is a significant difference between the number of time steps
used by both methods (525817 + 1779 vs. 4235 +172). The optimized 7-leap method was,
therefore, significantly faster; the exact difference depends on the implementation of both

methods (and the allowed loss in accuracy of the 7-leap method).

6.3 Illlustrating the importance of stochastic simulations in

Systems Biology

In this section, we discuss in detail four different examples to illustrate the important of
stochastic simulations in systems biology. In each example, we used the direct method
implementation from StochPy (discussed in detail in Chapter 7) to generate stochastic sim-

ulations.

Example 1: Modeling and simulation of a synthesis-degradation process

In our first example, we use an elegant example which was also used by Wilkinson (2011)
in his book “Stochastic modeling for systems biology”. That is a molecule S which catalyzes
besides its own degradation also its own synthesis (Fig. 6.4A). This means that both reactions
are dependent on ng which makes ng = 0 an absorbing state, a state that once entered,
cannot be left (Fig. 6.4B). We can solve this synthesis-degradation process analytically and
we use a relatively large number of initial molecules. You might wonder what additional
insight a stochastic simulation can provide. That is what we show in this example.
We start by writing down the mass-balance equation for the macroscopic description of
the synthesis-degradation process:
ds(

Tt) = (ksyn_kdeg)'s(t)- (6.26)

This mass-balance equation is a first-order differential equation, thus we can analytically

solve this system which gives
S(t) =8(0) - ekrnRaeg)t, (6.27)

We now know the analytical solution, so do we now understand how this model behaves
under any circumstances? You might argue that we do with one exception: There could be
stochastic fluctuations present if there are only a few S molecules present in the cell. Lets
study this system with §(0) = 1000 (volume = 1) and think about the following question: Do
you expect different behavior for the parameter sets ks, =1 min~; kdeg =2 min~}, ksyn=9
min~!; kgeg =10 min~!, and ksyn =19 min~}; kgeg =20 min~. The analytical solution given
in Eq. (6.27) shows that the behavior should be identical. This means that the simulation only
depends on the difference between both parameters (ksyn — kg.g). This yields three types
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of behavior when t — oo: ksyn > kg, causes S(t) to increase exponentially, ksyn > kgeg
causes S(t) to decrease exponentially, and ksy, = k4., causes S(t) to stay constant.

Now, we are going to use stochastic simulations to demonstrate that this allows us to
(i) do better parameter estimation and (ii) ask more questions such as time to extinction
(ng — 0) and the uncertainty of ng at a specific point in time. We started by using stochas-
tic simulations to generate three independent time trajectories for the three parameter sets
(Fig. 6.4C). While the analytical solution is identical for the three parameter sets, the stochas-

tic simulations show remarkably different behavior.

A B 2oksyn (n=1)-ksyn n-keyn
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Figure 6.4. Modeling and simulation of the synthesis-degradation process. (A) Vdeg and vsyn denote
the synthesis and degradation rates of S molecules respectively. (B) transition diagram of the Markovian synthesis-
degradation process. Transition rates are indicated at the arrows. (C) stochastic simulations (blue, red, green) of the
synthesis-death process for different parameter settings. (D) the sample means and standard deviations of ng from the
simulation runs att = 0, 0.5, 1, ..., 5. Solid black lines denote the analytical solution.

To explain this behavior, we performed another stochastic simulation where we gener-
ated 1000 independent time trajectories for the three parameter sets from which we calcu-
lated the sample mean and standard deviations att = 0, 0.5, 1, ..., 5 (Fig. 6.4D). These results
show that for all parameter sets, the sample mean corresponds to the analytical mean at
every point in time. Additionally, these results demonstrate that the sample standard de-

viation (i.e. the noise) increases with increasing parameter values. This means that our
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stochastic simulations show us that:
* ksyn —kgq determines the mean, and
* ksyn + kg, determines the noise.

Assuming that we have adequate experimental data available, stochastic simulations can
determine (i) both ksy, and kg, (ii) the uncertainty at a specific point in time for a given
set of parameters, and (iii) the time until extinction (with statistical variance); in the deter-

ministic approach, the number (or concentration) of S molecules never reaches zero.

Example 2: Modeling and simulation of bursty single-cell transcription
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Figure 6.5. Modeling and simulation of bursty single-cell transcription. (A) von, v, ffr Vsyn, and vy, <
denote the ON switching, OFF switching, synthesis, and degradation rates, respectively. (B) simulations using deter-
ministic (dashed lines) and stochastic (solid lines) simulations.

In our second example we added two possible states (the ON state and the OFF state) to
the synthesis-degradation model of mRNA shown in Fig. 6.1. The mRNA synthesis occurs
only in the ON state, whilst mRNA degradation occurs in both states (Fig. 6.5A; we discuss
this model in detail in Chapter 7). Depending on the choice of kinetic parameters, this

system can display transcription bursts that can cause significant cell-to-cell variability in
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mRNA copy numbers (Shahrezaei and Swain, 2008; Dobrzynski and Bruggeman, 2009). The
bursty nature of this model is explained by a gene that switches spontaneously between
an inactive (OFF) state and an active (ON) state. Synthesis of mRNA molecules occurs only
during the ON state whilst degradation of mRNA molecules occurs continuously.

In contrast to our previous example, we cannot analytically solve the time evolution
of this system thus we focus here on numerical simulations. In Fig. 6.5B we compare de-
terministic and stochastic simulation output for a bursty transcription mode. The results
show that the stochastic simulation (solid lines) successfully predicts the bursty behavior,
whereas the deterministic simulation (dashed lines) fail to predict the bursty behavior. The
reason is that the stochastic simulation predicts the behavior of a single cell and the deter-
ministic simulation predicts the behavior of a population of cells. In Chapter 7 we show
that transcription bursts lead to a bimodal mRNA copy number distribution and two time

scales in the distribution of event waiting times of mRNA synthesis times.
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Figure 6.6. Schlogl reaction system. (A) the Schlogl reaction system is an autocatalytic, trimolecular reaction
scheme where species B1 and B2 are considered fixed. (B) simulations of the Schlogl reaction system using deterministic
(dashed lines) and stochastic (solid lines) simulations. The left panel shows five different time trajectory simulations
and the right panel shows the distribution at t =10 after running 250000 simulations.
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Example 3: Schlogl reaction system

Our third example concerns a reaction system shown in Fig. 6.6A developed by Schlogl
(1972). We do not discuss this model in detail (we refer interested readers to Vellela and
Qian (2009)), but use it as an example to illustrate (potential) differences between output
of deterministic and stochastic simulations. In our previous example, we briefly touched
upon bistability which means that the system has two stable equilibrium states. The Schlogl
reaction system has a bistable steady-state distribution for a specific set of parameter values,
and that is also the case for the set of parameter values we use here.

We used stochastic simulations to generate five independent time trajectories that
ended-up, as expected, in one of the two stable states (left panel of Fig. 6.6B). The deter-
ministic simulation, in contrast, generates given the set of initial conditions always the
same output. This means that a deterministic simulation yields, for a given set of initial
conditions, one point from the full distribution and can, therefore, find at best one of the
stable states. By generating sufficient time steps stochastic simulations can also reveal the

full probability function (right panel of Fig. 6.6B).

Example 4: Stochastic modeling and simulation predicts active-state

locking

Our final example concerns an interesting phenomenon that we call “stochasticity-induced
active-state locking”, a new behavior—we recently predicted—of two-component signaling
systems that arises only in stochastic simulations (Wei et al., 2014). The model (Fig. 6.7A)
we propose captures the basic design of two-component systems and differs in several ways
from previous models. Upon binding a signaling ligand (L), the sensor S changes confor-
mation and autophosphorylates, yielding the phosphorylate species SP. Next, SP forms a
complex with response regulator R, after which phosphotransfer can take place to yield RP
and S. Typically, RP acts as a transcription factor inducing a gene expression response (Stock
et al.,, 2000). In our model the sensor is bifunctional: When S is neither phosphorylated nor
bound to L it can also dephosphorylate RP. Most sensor proteins have this property, includ-
ing EnvZ from the EnvZ/OmpR model system responsible for osmoregulation in Escherichia
coli (Cai and Inouye, 2002).

In our simulations L was considered fixed—equivalent to assuming a large extracellular
reservoir of the signaling molecule. Also, the intracellular concentrations of ATP and in-
organic phosphate are considered fixed and therefore not explicitly modeled. When the L
concentration is high, high levels of RP are expected to be produced and the system is in
the “active-state”. Conversely, when the signal is weak (or absent) the amount of RP is low;
we refer to this situation as the “off-state”.

We studied the response time of the system—the time that the system requires to attain
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Figure 6.7. Stochastic modeling and simulation predicts active-state locking. (A) network reaction model
where fixed species ATP, ADP, and P; are not shown. (B) the response of the system to time-varying signal strengths,
where copy numbers of R and S are fixed at 100. The concentration of L, shown in black, was increased stepwise at
200 second intervals from 1 to 100 a.u., then subsequently decreased. The deterministic prediction for the output RP
concentration is shown in red, and 10 stochastic simulations are shown in blue. The deterministic response time ranges
from 20-60 seconds, but for the stochastic simulations active-state locking is seen to occur after L reaches 100 a.u.,

when saturation occurs.

a steady-state RP concentration. To address the response time, we performed stochastic
simulations of the signaling network (Fig. 6.7A) and subjected the system to a stepwise-
varying signal strength, ranging from negligible to saturating L concentrations (Fig. 6.7B).
The deterministic simulation shows that the response time ranges from approximately 20
to 60 seconds. The stochastic simulation agrees with this timescale when the signal is in-
creasing. However, when the signal is reduced from a saturating level, some stochastic tra-
jectories show surprising behavior. The RP concentration has a tendency to stay “locked” in
the active-state for a prolonged time period—sometimes over ten minutes—after the signal
has been reduced. We call this interesting phenomenon “stochasticity-induced active-state
locking”.

The cause of stochasticity-induced active-state locking is that the number of (unbound,
unphosphorylated) S molecules can drop to zero when the system is subjected to saturat-
ing signal strengths. As the S molecules are the dominant means of dephosphorylation
of RP, their absence prevents the number of RP molecules from declining. In our model
this is achieved in the simplest way as only the free sensor state, S, can dephosphorylate
RP (reactions vg and vg). The autodephosphorylation rates are slow (reactions vy; to v;3),
and although the phosphorylation reactions are reversible, the forward rates (reactions v¢
and vJ) are overwhelmingly favored. Thus, the new lower equilibrium value of RP at the

reduced level of L can only be reached once unbound, unphosphorylated S molecules are re-
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covered by unbinding/dephosphorylation reactions (e.g. reactions v3 and vi3). Since these
reactions occur stochastically and at a low rate, the observed waiting time can be remark-
ably long; in our simulations, we have observed locking for up to ten minutes. As long as
those reactions are reversible and occur at a low enough rate, the time that it takes before
S molecules reappear can be quite variable amongst individual cells.

We emphasize that this result is not reproducible in deterministic simulations. The rea-
son is that, deterministically, the concentration of S is a continuous variable that would
take a small but non-zero value under saturating conditions and reactions which increase
S (and decrease RP) concentrations start to occur immediately (albeit at a low rate) upon
decreasing the signal strength.

If each stochastic trajectory is interpreted as an individual cell in an isogenic popula-
tion, this locking phenomenon should thus create a similarly transient bimodal distribu-
tion, which should be experimentally observable. A quantification of the variability of the
response time can be obtained by numerically determining the distribution of the time that
it takes for cells to reach a threshold % of unphosphorylated R molecules. This resembles
a hitting time and is defined in the analysis of the stochastic time series. As long as cells
do not communicate via cell-to-cell signaling, stochasticity-induced active state locking can
transient diversify populations of cells which can be advantageous in unpredictable envi-

ronments.

6.4 Concluding Remarks

We described stochastic simulation algorithms and highlighted their importance for compu-
tational systems biology in general and more specifically for analyzing fluctuations in bio-
chemical models. This is of increasing interest because of the recent advances in single-cell
experiments that indicate the importance of stochastic phenomena in cell biology. Albeit
it was not the topic of this chapter, various stochastic simulation software packages have
been developed that allow the community to study these stochastic phenomena. In the next

chapter, we present one of these packages, StochPy.

6.5 Supplemental Materials

Dataset S1. Annotated scripts and input files used to generate modeling and simulation

results can be found at http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-23541.
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This chapter is based on the publication:

Maarleveld T.R., Olivier B.G., Bruggeman F.J. (2013) °“StochPy: a comprehensive,
user-friendly tool for simulating stochastic biological processes”, PLoS ONE, 8, 11:€79345.

StOChPy :’5 P

Stochastic modeling & simulation
in Python

StochPy is a comprehensive and user-friendly software package that provides stochastic simulation

algorithms in Python.
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Simulating fluctuations in

biochemical models with StochPy

Abstract

Single-cell and single-molecule measurements indicate the importance of stochastic phe-
nomena in cell biology. Stochasticity creates spontaneous differences in the copy numbers
of key macromolecules and the timing of reaction events between genetically-identical cells.
Mathematical models are indispensable for the study of phenotypic stochasticity in cellular
decision-making and cell survival. There is a demand for versatile, stochastic modeling and
simulation environments with extensive, preprogrammed statistics functions and plotting
capabilities that hide the mathematics from the novice users and offers low-level program-
ming access to the experienced user. Here we present StochPy (Stochastic modeling and
simulation in Python), which is a flexible software tool for stochastic simulation in cell bi-
ology. StochPy provides various stochastic simulation algorithms, SBML support, analyses
of the probability distributions of molecule copy numbers and event waiting times, analyses
of stochastic time series, and a range of additional statistical functions and plotting facil-
ities for stochastic simulations. We illustrate the functionality of StochPy with stochastic
models of gene expression, single-molecule enzyme kinetics, and cell division. StochPy has
been successfully tested against the SBML stochastic test suite. StochPy is a comprehen-
sive software package for stochastic simulation of the molecular control networks of living
cells. It allows novice and experienced users to study stochastic phenomena in cell biology.
The integration with other Python software makes StochPy both a user-friendly and easily
extendible simulation tool.

7.1 Introduction

XPERIMENTS at the level of single cells indicate large cell-to-cell variability in copy
Enumbers of molecules (Balazsi et al., 2011). Inevitably, this molecular noise origi-
nates from stochastic fluctuations and has a large impact on cellular dynamics (Raj
and van Oudenaarden, 2008). Traditional deterministic chemical kinetics fail to capture the
dynamics of these systems. Stochastic systems are typically mathematically described by

the chemical master equation (CME) (Kampen, 1992), which rarely has a closed form so-
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lution and therefore numerical simulation is a necessity. Stochastic simulation algorithms
(SSAs) generate time trajectories that are in agreement with the CME. Many SSAs have
been developed (Gillespie, 2007), however, in order to effectively use them in cell biology a
flexible simulation environment is required. This should include, for instance, easy access
to functionality for statistical analysis, plotting and interpretation of the raw simulation
results, all the while shielding the user from the underlying mathematics.

Stochastic simulation software is used in a variety of methodologies such as ordinary dif-
ferential equations (Kierzek, 2002; Ramsey et al., 2005; Hoops et al., 2006; Siso-Nadal et al.,
2007; Pineda-Krch, 2008; Myers et al., 2009; Sanft et al., 2011) and Petri nets (Rohr et al.,
2010), each tool having its own unique strengths and weaknesses. The recent advances in
the experimental investigation of single-cells has increased the interest in the analysis of the
statistics of event waiting times (Golding et al., 2005; English et al., 2006; Dobrzynski and
Bruggeman, 2009; Li and Xie, 2011). Most simulators cannot calculate these event waiting
times because they do not return the raw stochastic simulation output (hereafter explicit
output). In addition, stochastic simulations are not as straightforward as solving determin-
istic systems and there is a demand for a versatile stochastic simulation environment that
is easy to use and extend. Altogether, this motivated us to develop a flexible and interactive
open-source stochastic simulator StochPy: Stochastic modeling and simulation in Python.

StochPy provides various SSAs for the simulation of stochastic dynamics and supports
model definition in either plain text or the Systems Biology Markup Language (SBML)
(Hucka et al., 2003). In addition, StochPy includes statistical functions for the numeri-
cal analysis of stochastic simulations as well as plotting facilities for the visualization of

amongst other features time-correlations, propensities, and event waiting times.

7.2 Results and Discussion

Software Implementation

The StochPy software has been designed around four core principles. Functionality,
StochPy should support a variety of SSAs and allow for the intuitive description of mod-
els (i.e. reactions and species). Flexibility, StochPy should support high-level statistical and
plotting functions for interrogating both model and data as well as provide programmatic
access to low-level functions and data structures. User-friendly, StochPy should provide
high-level, user-friendly access tailored for interactive use. Open-source, StochPy should
be open-source such that the community can inspect, modify and distribute our software.
To satisfy these principles StochPy has been developed as a console application us-
ing the Python language, taking advantage of its pure object-oriented nature, portability,
extensive standard library, and ability to seamlessly glue together scientific libraries writ-

ten in compiled languages. Matplotlib (Hunter, 2007) is integrated for plotting, providing

110



publication-quality image generation. An object-oriented design allows for the simultane-
ous analysis of multiple instances of a model, using state-of-the-art stochastic simulation
capabilities either interactively or via user-defined scripts. The high-level functionalities
ensure that knowledge of the Python programming language is not required although, any
scripting knowledge enhances the modeling and simulation (M&S) experience.

Combining these functionalities with those provided by the many available Python sci-
entific libraries allows for easy extension of StochPy as well as its use as a library in other
simulation software. The StochPy software has already been incorporated as a plug-in li-
brary for the systems biology simulator software PySCeS (Olivier et al., 2005). This provides
a single interactive environment where model properties can be set interactively and sim-
ulated in both a stochastic and deterministic manner.

The following SSAs are implemented in StochPy: the direct, first reaction, next reaction,
and optimized tau-leaping methods (Gibson and Bruck, 2000; Cao et al., 2006; Gillespie,
2007). Whilst the direct method is selected by default, the next reaction, and tau-leaping
methods can be used to boost performance for models that are either sparse or have many
fast reactions and/or large molecule numbers, respectively. These SSAs assume that the
reactions inside a biological system occur instantly, but this is not always true. Common
examples are transcription and translation. Therefore, we also implemented the delayed di-
rect method (Cai, 2007) and delayed next reaction method (Anderson, 2007). These delayed
stochastic algorithms extent the SSA to a system with delays. We tested each implementa-
tion with the SBML stochastic test suite (Evans et al., 2008), the results of which are given in
Dataset S1. All 36 tests were successfully passed by StochPy, except test 3.4 where molecule
copy numbers are reset whenever the copy number threshold is reached. A similar obser-
vation was done by Erhard et al. (2008).

Model definition is by way of the human readable/writable PySCeS model description
language (MDL) (Olivier et al., 2005). A simple and intuitive approach to creating and edit-
ing models understandable to experimentalists and theoreticians. libSBML (Bornstein et al.,
2008) is used for importing stochastic models written in SBML format which are then sub-
sequently translated into PySCeS MDL. This requires maintaining one MDL that supports
features which in principle can be encoded in any SBML instance. Currently, StochPy im-
plements SBML Level 2 version 4 import and export functionalities. SBML Level 3 and
package support is now being investigated.

The StochPy software provides interfaces to other widely used simulation tools: CAIN
and StochKit2. Through these integrated interfaces, modelers are provided with a choice
of SSA implementations that differ in speed and simulation output. For example, using
StochKit2 via StochPy allows simulating models defined in SBML up to L2V4 or PySCeS
MDL by StochKit2’s fast solvers. The output can then directly by analyzed in StochPy,
without the need to install any additional software (by default StochKit2 uses MATLAB to

provide this functionality).
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Performing StochPy simulations

A typical StochPy session consists of first creating a StochPy model object from a (default)
input model. Different user-defined models (in SBML or PySCeS MDL) can be loaded into
the model object. Once a model is loaded various simulation parameters can be set such as
the number of simulation steps and the number of simulation trajectories. Subsequently,
kinetic parameter values and species copy numbers can be modified interactively. Simu-
lations can be performed by calling the available analysis methods for model objects. As
model objects are fully encapsulated, multiple models can be instantiated from the same (or

different) input files at the same time. An example of a short StochPy session is:

import stochpy

smod = stochpy.SSAQ)

smod .Model ("dsmts—-001—-01.xml")
smod.DoStochSim(end=1000,mode="steps")

smod.PlotSpeciesTimeSeries ()

where we initiate the model object smod for the default input model, load a different model
depicted in SBML into the model object smod, generate one time trajectory of the CME
(1000 steps), and plot the corresponding (discrete) species time series data.

In the following sections we discuss the potential uses of explicit output in systems bi-
ology, highlight StochPy’s capabilities by M&S of different biological systems, and bench-
mark StochPy against other widely used stochastic tools. All simulations were done with
StochPy’s implementation of the direct method and Figs. 7.1-7.6 were created with StochPy.
Only a single command, a high-level function such as PlotSpeciesTimeSeries(),
is necessary to create most of the shown (sub)-figures. Annotated scripts and input files
used to generate the presented results are available as Scripts S1. More information on in-
stalling and using StochPy can be found in the StochPy User’s Guide which together with

additional example sessions is available online at http://stochpy.sf.net.

The potential uses of explicit output in systems biology

StochPy returns explicit output rather than discretized output (hereafter fixed-interval out-
put). With fixed-interval output we mean that the state of the system (i.e. the copy num-
bers of all molecules) are reported for fixed-time intervals and not at the times in the sys-
tem when single reaction events occur. Mathematically speaking, molecular reaction sys-
tems are modeled by continuous-time discrete state Markov chains and fixed-interval data
storage approaches simulate these systems with continuous time but store the output with
fixed-time intervals. Returning fixed-interval output likely derives from stochastic simula-
tion practices in mathematical statistics. In systems biology, the requirements for stochastic

simulation are often different. Access to exact simulation times allows for the straightfor-
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ward calculation of event waiting times, species and propensity distributions, and correla-
tion times. As these quantities are in principle observable in single-cell experiments, they
should be calculable with simulation software.

Table 7.1 illustrates typical output of a StochPy stochastic simulation: n; denotes the
number of molecules of molecular species index i and a; denotes the propensity of re-
action index j at time points when reaction events occurred. This simulation output can
be analyzed using pre-defined statistical functions to plot time series, or calculate distri-
butions, moments, and time-correlations. StochPy returns explicit output and therefore
waiting times for particular reactions events or system delays can be calculated. The time
between consecutive activities of reactions is called an event waiting time. An example
of these event waiting times is shown in Table 7.1 where the times between consecutive

“firings” of reaction R4 are shown.

Time n  ny n3 ay as as a4  reaction index Atgpy
0.000 0 1 0 0 0.05 0 0 -

39976 1 0 0 0.05 0 80 0 2

40.051 1 0 1 0.05 0 80 2.5 3

40.051 1 0 2  0.05 0 80 5 3

40.074 1 0 1 0.05 0 80 2.5 4

40.092 1 0 2 0.05 0 80 5 3

40.325 1 0 1 0.05 0 80 2.5 4 0.251
40.413 1 0 2 0.05 0 80 5 3 (40.325-40.074)
40.497 1 0 1 0.05 0 80 2.5 4 0.172
40.509 1 0 2 0.05 0 80 5 3

40.548 1 0 1 0.05 0 80 2.5 4 0.051
40.584 1 0 2 0.05 0 80 5 3

40.748 1 0 3 0.05 0 80 7.5 3

40.786 1 0 4 0.05 0 80 10 3

40.888 1 0 5 0.05 0 80 12.5 3

40.915 1 0 4 0.05 0 80 10 4 0.367
40.941 1 0 5 0.05 0 80 125 3

40954 1 0 4 0.05 0 80 10 4 0.039
40.959 1 0 5 0.05 0 80 12.5 3

40.978 1 0 4 0.05 0 80 10 4 0.024

Table 7.1. StochPy simulation output. The explicit simulation output of StochPy reports the number of molecules
of each molecular species and the reaction propensities at each time point when a reaction occurs. The time differences
between consecutive rows indicate waiting times between reaction events. In the last column, the event waiting times
for reaction R4 are given. They correspond to the time period between consecutive instances of activity of R4.
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Figure 7.1. Fixed interval versus explicit simulation output. We performed 100 stochastic simulations until
£=60000 min (~ 1000000 time steps) with kon = 0.05 min™!, kopp = 0.45 min™}, ksyn =80 min~1, and kgeg=2.5
min~Y. (A) accuracy of mean and standard deviation estimates as function of the number of fixed intervals. (B)
simulation time with fixed-interval output increases with the number of fixed intervals. We used the StochPy interface
to StochKit2 to perform the fixed-interval simulations. The time to calculate the associated probability distributions is
included. The stationary mRNA distribution for 10000 (panel C) and 1000000 (panel D) fixed intervals (red error bars,
1.96 SD) vs. explicit output (blue 95% confidence interval); 1.96 SD corresponds to a 95% confidence interval.

In Fig. 7.1 we highlight several differences between fixed-interval and exact output for
a model we further discuss in case study 2: “Stochastic mRNA synthesis by a switching
gene”. We ran a stochastic simulation at a stationary state of the model with StochPy to
obtain 1000000 reaction events and obtained all the stochastic dynamics in terms of the exact
output. Next, we ran StochKit2 until the same model end time, as we obtained with StochPy,
and varied the fixed-interval size at which the state of the stochastic system is stored in the
report file of StochKit2. In Fig. 7.1A we plot the estimate of the mRNA mean copy number
and standard deviation, obtained from 100 simulations, as function of the number of fixed
intervals. This plot indicates that for this system ~ 10000 intervals are enough to accurately
estimate the mRNA mean copy number and standard deviation. Fig. 7.1B shows the ratio of
the calculation time of StochKit2 and StochPy and indicates that StochKit2 is indeed a lot
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faster as it only required to write 10000 events to file as compared to StochPy, which stored
1000000 events. StochKit2’s C++ implementation makes the simulation about a factor of
ten faster than StochPy when they store an equal amount of reaction events. Calculating
the associated stationary probability distribution required additional time which reduced
the speed difference to a factor of three.

A complication with fixed-interval storage is that the user does not know beforehand
what the relevant fixed-interval size and number should be and, for instance, data bootstrap-
ping should be applied to assess the accuracy of the calculation. For instance, 10000 fixed-
intervals are not enough to determine the stationary probability distribution with great
accuracy, as shown in Fig. 7.1C (the error bars denote the variation in the distributions be-
tween the 10 simulations done at each fixed-interval number). Using more fixed-intervals
results in determining the stationary probability distribution with a better accuracy. How-
ever, Fig. 7.1D shows that a better accuracy was obtained using 1000000 explicit reaction
events than with 1000000 fixed-intervals. Therefore, for this particular example, more fixed-
intervals than actual reactions events are necessary to obtain a stationary probability dis-
tribution with a similar accuracy.

This means that the speed of a fixed-interval algorithm is not set by the end time and the
programming language, as is the case for an exact output approach, but also by the chosen
number of fixed intervals. Deciding the right number of fixed intervals can only be done
by trail and error. Generally, more than 1000000 events should be a good starting value,

provided that the time-scale separation between reactions within the network is limited.

Case Study 1: Molecule synthesis and degradation

In this section, we re-use the “synthesis-degradation” model described in detail in Chapter 6
to model single-cell transcription. This model consists of a zero-order mRNA synthesis
reaction with rate constant k; yn and a first-order mRNA degradation reaction with rate
constant k... In our initial simulations we set ks, to 10 min~! and Kieg to 0.2 min~}, so
mean mRNA copy number per cell is 50 as is given by Eq. (6.12).

Fig. 7.2A illustrates that the number of mRNA molecules per cell fluctuates around
this steady-state value. High mRNA copy numbers correspond to high mRNA degradation
propensities (a;) and vice versa as is shown in Fig. 7.2B. In contrast, the mRNA synthesis
propensity (a;) is constant through time. Distributions can give us more insight into the size
of fluctuations. The mRNA copy number is Poisson distributed (see also Chapter 6), which
is confirmed by the stochastic simulations shown in Fig. 7.2C. Next, Fig. 7.2D shows that the
distribution of a, follows a modified Poisson distribution (Eq. (57.8)). We also performed
an auto-correlation analysis of the mRNA time series (Fig. 7.2E); the auto-correlation time

decays exponentially as ekaegt in agreement with theory (Eq. (57.9)).
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Figure 7.2. Propensities and auto-correlations. Illlustration of several plotting options in StochPy. Colored lines
represent StochPy output and black the analytical solutions. (A) species time-series data. (B) propensities time-series
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Case Study 2: Stochastic mRNA synthesis by a switching gene

In this section, we consider a model of mRNA synthesis by a gene that switches sponta-
neously between an inactive (OFF) state and an active (ON) state. The synthesis of mRNA
occurs only during the ON state whilst mRNA degradation occurs continuously. Depending
on the choice of kinetic parameters, this system can display transcription bursts that can
cause significant cell-to-cell variability in mRNA expression levels (Shahrezaei and Swain,
2008; Dobrzynski and Bruggeman, 2009).

We set the mRNA synthesis and degradation rate constants to 80 min~! and 2.5 min ™
in our simulations respectively. Switching from ON to OFF state and vice versa occurred
at a rate of 0.05 min~! during bursty transcription and at a rate of 5.0 min~! during non-
bursty transcription, respectively. Lifetimes of the ON and OFF state (1/k, 7f and 1/kon)
were, therefore, hundred times greater during bursty transcription than during non-bursty
transcription.

In Fig. 7.3 we compare the time evolution for the two kinetic parameter settings leading
to a bursty and a non-bursty mode of transcription. Long lifetimes of both the ON and OFF
state cause bursty transcription (Fig. 7.3A-B), while short lifetimes of both the ON and OFF
state cause non-bursty transcription (Fig. 7.3C-D).

Time (seconds)

Figure 7.3. Time series of bursty and non-bursty transcription. StochPy plots of simulating stochastic gene
expression. (A) long lifetimes of both the ON and OFF state. (B) bursty transcription. (C) short lifetimes of both the ON
and OFF state. (D) non-bursty transcription.
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The mean mRNA copy number per cell and the fraction of time spent in the ON and

OFF state are given by
ksyn kon
(MmrNA) = Keg : m,
_ kon
(non) = ko + koff’ (7.1)
koss
(norr) = W

Because both switching probabilities are equal, the fraction of time spent in both states
should be equal. Therefore, the mean mRNA copy number per cell during bursty and non-
bursty transcription is equal. Based on our parameters the mean mRNA copy number per
cell should be equal to 16. The standard deviation of the mRNA copy number, however,

differs between bursty and non-bursty transcription, which can be calculated with

Ony = (ni)—(nx)z. (7.2)

StochPy simulations gave that (mRNA) was about 16.0 copy numbers per cell for bursty
and non-bursty transcription respectively. The fraction of time spent in the ON and OFF
state — (nopr) and (ngn) — for both bursty and non-bursty transcription was about 0.50.
For a single StochPy simulation of 1000000 steps, standard deviations were oy, ., ~ 16.20
and Ongss = Ongn ™ 0.50 for bursty transcription and oy, ,,, ~ 8.21 and Ongss = Onon ™ 0.50
for non-bursty transcription.

Transcription bursts lead to bimodal mRNA copy number distributions (Fig. 7.4A)
and two time scales in the distribution of event waiting times of mRNA synthesis times
(Fig. 7.4B). These event waiting times depend on both the production during a ON state
and the periods of inactivity (Dobrzynski and Bruggeman, 2009). For both bursty and non-
bursty transcription we determined the mean waiting times of mRNA synthesis at 0.25 and
the mRNA noise at 1.02 and 0.26 respectively. Each of these results are—for the parameter
values used—in agreement with the analytical solutions of the mean waiting times of mRNA
synthesis (Eq. (57.12)) and mRNA copy number noise (Eq. (S7.13))

Case Study 3: Spontaneous fluctuations in single-molecule enzyme

activity

Next, we consider a completely different model that describes single-molecule enzymology.
Michaelis-Menten kinetics have been used already for one-hundred years for modeling en-
zyme kinetics for a large ensemble of enzyme molecules. The simplest enzyme mechanism
considers an enzyme, E, which converts a single substrate S into a single product P by

first forming an enzyme-substrate complex ES. An illustration of this system is shown in
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Figure 7.4. mRNA copy number and event waiting times distributions. StochPy plots of simulating stochastic
gene expression with StochPy simulations (step, markers, colored) and analytical solutions (solid, black). (A) probability
mass function of the mRNA copy numbers. (B) probability density function of the mRNA synthesis event waiting times.
Each of these results is in agreement with the corresponding analytical solution given in Eq. (S7.10) and Eq. (S7.11).

Fig. 7.5A. Recent advances in single-molecule measurements allow the study of enzymatic
reactions at the level of single enzymes. Stochastic simulations are required to study single-
molecule enzymology. By performing single-molecule experiments the probability density,
fr(t), of event waiting times T for product P arrivals can be determined (Kou et al., 2005;
Qian, 2008).

Here, we stochastically modeled single-molecule enzyme kinetics to demonstrate the
capabilities of StochPy. Single-molecule enzyme kinetics means that, at all times, the total
enzyme copy number ng[t] + ngs[t] = 1 (Figs. 7.5B-C). Because the substrate depletion
with one enzyme copy number is negligible, the substrate S copy number was considered
constant, ng[t] = ng = c. Subsequently, we can write the rate equations of this system in
terms of time dependent probabilities (Kou et al., 2005),

Pg(t) = —k{ - Pg(t) + ky - Pes(1),
Pgg(t) = ki - Pg(t) - (ki +k3)-Pgs(1), (7.3)
Pp(t) =k3 - Pgs(1).

The probability for a single enzyme to be in the unbounded state is the fraction of time spent

in the unbounded state. Similarly, the probability for a single enzyme to be in the bounded
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state is the fraction of time spent in the bounded state. We can write these probabilities in

terms of rate constants and substrate copy numbers,

p TE kl_ + k;—

E = - 7=
TE + TES k1+k;+kf~ns,
TES k1+S

TE + TES k1_+k;+ki"l’ls

(7.4)

Pgs

These probabilities equal the analytical (E) and (ES) copy numbers in steady state. StochPy
simulations gave that (ng) ~ 0.555 and (ngg) ~ 0.445 which is in agreement with analytical
values for the parameter values used (ng - ki =2/3, k{ =1/12, and k3 =3/4).

Next, the steady-state flux of this system is given by

Vis = ki -ng-Pg—ki - Pgs = kj - Pgs. (7.5)

From this relationship we can derive the famous Michaelis-Menten relationship:

ki k+ *ns
Vio=kt . Ppg=—2 "1 5
BT T e kS 4k ng
_ k; ‘ng
Tk (7.6)
k;r +ng
_ Vmax ns
Km +ns
-+
where Vyyqx = k3 and Ky, = ky k++k2 . For large ensembles np at time t depends then on
1
P(t) = V-t (7.7)

For single-molecule enzymology experiments the product P copy number (np) fluctuates
around this analytical solution for large ensembles. In Fig. 7.5D three Monte Carlo trajecto-
ries that describe the time evolution of this model are shown to illustrate these fluctuations
for small ensembles.

The probability density of event waiting times for product P arrivals is given by

fr(t) = k3 - Pes(t), (7.8)

which we solved analytically using Mathematica (Eq. (S7.14)). Our simulations confirm
that—for single-molecule enzymology— fr(t) peaks as is shown in Fig. 7.5E. The inverse of
the classic Michaelis-Menten equation is the first raw moment of fr(¢)—the mean waiting
time (T) of product P arrivals (Eq. (57.16)). Theoretically, (T) = 3.0 and Vs =1/3 given the
set of used parameters. StochPy simulations gave that (T) was about 3.0.
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Figure 7.5. Single-molecule enzymology. (A) the classic enzyme kinetic scheme where ki, ki, and k;’ denote
rate constants. (B-C) time-series StochPy plot of the E and ES copy numbers. (D) three stochastic time trajectories
(blue) of the P copy number fluctuate around its analytical solution (black). (E) event waiting times of product P
formation peak and match the analytical solution (black).

Case Study 4: Modeling and simulation of explicit and implicit cell growth

and division

Each living cell grows, doubles its content, and subsequently divides which has an effect on
gene expression dynamics. To accurately describe gene expression dynamics, we therefore
need to take into account the effects of cell growth and division. To demonstrate the flexibil-
ity of StochPy we briefly illustrate how simple it is to extend a stochastic model of a gene
expression network with cell growth and (explicit) cell division events, even though this
was not (yet) a standard functionality of StochPy. This model is illustrated in Fig 7.6A and
consists besides mRNA and protein, also of active and inactive transcription factors (TF).
These transcription factors switch between an inactive and an active state where the active
state stimulates mRNA synthesis. Protein synthesis can occur if mRNA is present in the
cell. This results in a total of nine reactions where one reaction is not described by mass-
action kinetics, which would make this system already hard to simulate for some software

packages.
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Figure 7.6. Modeling and simulation of single-cell transcription and translation with and without ex-
plicit cell growth and division. The used stochastic model consists of transcription factors, mRNA, and protein
(panel A). Time series data of transcription factor copy numbers (panel B), mRNA copy numbers (panel C), and protein
copy numbers (panel D). Distributions of protein copy numbers (panel E). The time between two cell division events was

gamma-distributed with scale=60.0 and shape= 1.0. These settings result in a doubling time of on average 60 minutes.
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M&S of cell growth and division can be done both explicitly and implicitly. In the explicit
approach the cell content is binomially distributed at cell division between two daughter
cells after a certain generation time T,. We used a I' distribution (scale = 60, shape = 1) to
draw the generation time, but on average the cellular content was doubled after T = 60
minutes. This is in contrast with earlier work from Kierzek et al. (2001) who used a fixed
generation time and divided the molecular content into two at cell division. Commonly
used model definition formats (e.g. as encodable in SBML) do not support cell division
events, which makes a sequential simulation approach a necessity. Population averages also
depend on the age distribution in the population. We assumed a constant age distribution
(a synchronous population). This allowed us to track only one daughter cell after each cell
division rather than tracking the complete phylogenetic tree.

In such a scenario, each simulation starts with the results of the previous simulation.
For these reasons, M&S of cell explicit division is inconvenient and non-trivial, especially
for graphical user interface (GUI) based simulators. In the implicit approach the specific
growth rate is incorporated in the model as a first-order rate constant that continuously
dilutes cellular components into new cells. We used the following relationship to determine
the specific growth rate (u):

Ty =In(2)/u, (7.9)

which was thus set to approximately 0.012 min~".

We used StochPy to generate stochastic data for 5000 generations, about 10000000 time
steps, which allowed us to accurately determine the mean copy numbers of transcription
factors, mRNA, and protein (Table 7.2). Previous research showed that the average copy
numbers with a constant age distribution were about 4% greater than with an exponen-
tial age distribution (Gomez et al., 2014). The results of our StochPy simulations are in
agreement with this finding. We found that explicit cell growth and division yields greater

standard deviations, especially for protein copy numbers.

Explicit M&S 1.04 + 0.00 1.03 + 0.00 9.26 +£0.03 3.39 £ 0.01
Implicit M&S 1.01 + 0.00 1.01 + 0.00 9.01 + 0.03 3.02 + 0.01

<n”'lRNA> O‘”mRNA (”pr‘)t‘)i”) Ot protein
Explicit M&S 9.99 + 0.02 3.53 £ 0.01 508.13 + 1.62 132.96 + 0.59
Implicit M&S 9.79 £ 0.02 3.19 £ 0.01 489.35 + 0.88 70.18 + 0.47

Table 7.2. Mean and standard deviation of TF, TF*, mRNA, and protein obtained with explicit and
implicit modeling and simulation of cell growth and division. The error represents 1 SD and is based on ten

simulations.
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The differences between M&S of explicit and implicit cell growth and division are fur-
ther illustrated in Fig. 7.6. The dynamics of transcription factors, mRNA, and proteins are
different (Figs. 7.6B-D). Most apparent are the differences for the protein copy numbers
(Fig. 7.6D); in the implicit approach they quickly reached a steady state whereas in the ex-
plicit approach large variations in protein copy numbers were observed. The distribution of
mean protein copy numbers was, therefore, significantly different between the implicit and
explicit approach (Fig. 7.6E). These differences are also observable for transcription factors

(active, inactive) and mRNA (but not shown).

Benchmarking StochPy

The StochPy software features and speed performance were benchmarked against widely
used, existing stochastic software to make a fair and broad comparison of available tools for

stochastic simulations.

Feature comparison with existing stochastic tools

In an extensive search for available stochastic simulators, CAIN, COPASI, Facile-EasyStoch,
GillespieSSA, and StochKit2 were identified as those with the closest functionality to
StochPy. Here, we discuss and compare these tools against StochPy through a feature com-
parison. A comprehensive feature comparison is provided in Table 7.3.

(i) Implemented solvers. StochPy offers besides the traditional SSAs—which assume that
reaction occur instantly and in a constant volume—also SSAs with delay and a SSA with
cell growth and division. The latter is the main topic of Chapter 8.

(i) Explicit stochastic simulation output. An important distinction between StochPy and
most other stochastic simulators is in their output: Explicit rather than fixed-interval output
is used. This has several consequences. First, fixed-interval output does not allow the cal-
culation of event waiting times, a unique feature provided by StochPy. Second, handling of
fixed-interval output requires expert knowledge of the modeler (how many fixed intervals
are sufficient to do a certain type of analysis properly). And third, determining the minimal
number of fixed intervals necessary is time-consuming. In the StochPy software the mod-
eler can exploit the convergence of higher moments to determine the minimal number of
time steps necessary to accurately determine certain model properties. However, the ben-
efit of using fixed-interval output is that less data can be stored which gives this approach
a significant speed advantage. This can be useful if, for instance, only moments and time
series are of interest.

(ii) SBML support and simulating diverse stochastic models. Neither Facile-EasyStoch nor
GillespieSSA provide SBML support while CAIN and StochKit2 support only a subset of
available SBML models. As a consequence, many models (e.g. those with time and particle-

number events or complicated rate laws) cannot be simulated, which limits their general
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purpose simulation capabilities. In contrast, both COPASI and StochPy support SBML levels
1-2 (V4), but COPASI does not support (SBML) events in stochastic simulations.

CAIN COPASI  EasyStoch  GillespieSSA  StochKit2  StochPy
Implemented solvers:

- Exact SSA . ° . . ° °
- Inexact SSA . . . . .
- Delayed SSA .
- Growth & division SSA .
Simulator options:

- SBML support of . o .
- Human inter. input . ®
- Stochastic test suite .
- Extrinsic noise .

- Explicit output . . ot .
- Fixed-interval output . ° . ° °
Output analysis:

- Auto-correlations .
- Histogram distance . .

- Propensities . .
- Moments .

- Waiting times O

Software Design:

- Plotting facilities . o . o .
- Data exportation . . . . .
- GUI . .

- Flexible environment . .
- Open source . ° . ° . .

Table 7.3. Feature comparison between StochPy and existing (stochastic) software. Summary of features
offered in StochPy and other stochastic M&S software. In the fourth case study we illustrated how cell growth and
division can be added to the SSA. In Chapter 8, we present a generic SSA with growth and division of which the
outcomes are in exact agreement with theory.

o: Feature is present.

o: Feature is partially present or requires additional dependencies.

Notes:

i. Limited ability to parse kinetic laws: Complicated expressions may not parsed.

ii. Not all SBML documents can be converted into the StochKit2 model format.

iii. Provided as an add-on functionality of StochKit2, whereas with limited options compared to the default installation
of StochKit2.

iv. Only if proprietary software (MATLAB) is installed.
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(iii) Analysis of stochastic data. Besides various (unique) numerical analysis techniques
StochPy also provides preprogrammed plotting functions. Calculation of event waiting
times, propensity probability distributions, (co-)variances, and auto-correlations for one or
more generated trajectories are currently unique numerical analysis techniques of StochPy.
In addition, analysis of time series of species and propensities, probability distributions of
species copy numbers, and moments can be done within StochPy. While not shown in the
case studies, StochPy can calculate and visualize the average of multiple time trajectories
for time series, auto-correlations, and distributions.

(iv) Flexible environment for interactive modeling and simulation. Due to its flexible
design StochPy’s functionality can be extended far beyond saving data files and prepro-
grammed plotting capabilities. By integrating its functionality with industrial strength
Python scientific libraries (e.g. Matplotlib (Hunter, 2007), NumPy (Oliphant, 2006) and
SciPy (Jones et al,, 2001)) sophisticated user-defined analysis methods can be seamlessly
applied to the output of StochPy simulations.

Direct solver performance

We benchmarked the direct solver of StochPy against the direct solvers of two widely
used and high-performance stochastic tools: CAIN and StochKit2 (both implemented in
C++). The results of this benchmark are shown in Table 7.4. We specifically choose CAIN
and StochKit2, because those are the fastest solvers currently available. To fairly compare
StochPy’s performance against these other tools, we set the number of fixed-intervals equal
to number of time steps in the stochastic simulation. Determining the minimal number of
fixed-intervals necessary to perform a particular analysis requires doing multiple simula-
tions (as shown in Fig. 7.1), which makes this fixed-interval approach less efficient and more
time-consuming than Table 7.4 reports.

The first conclusion from this benchmark is that no single solver was the fastest in any
case. Second, StochPy is the only stochastic simulator that was able to correctly simulate
all stochastic models tested in this benchmark. This in contrast to the CAIN API which
can accept models consisting of only mass-action kinetics. Third, for different numbers of
simulation time steps we found significant differences in simulation time between StochPy,
CAIN, and StochKit2 simulations. For relatively short simulations, StochKit2’s performance
is reduced, as StochKit2 requires substantial time to compile models with events and non
mass-action kinetics. This effect is negligible for relatively long simulations. Both the CAIN
and StochKit2 solvers outperformed StochPy’s direct solver for most tested models if we
generated a relatively large number of time steps (except e.g. the simulation of events with
CAIN). And fourth, StochPy’s performance increased with respect to the performance of
both CAIN and StochKit2 when we considered larger models. For instance, CAIN requires

about four minutes to parse the largest model tested (parsing time was omitted from the
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CAIN CAIN(API) StochKit2  StochPy'
Small model 0.7-0.10 0.24-0.10 0.24 -0.07 1.0 -0.31
Non mass-action 0.5-0.10 N/A 96 - 0.16 1.0 - 0.45
Parallel 0.04 - 0.07 0.04-0.06 0.03-0.18 0.28-0.33
Parallel & time events 1.9 -1.9 N/A 1.7 - 0.18 1.0-0.3
Parallel & particle number events [ERFEKIA N/A 1.5-0.18 1.0 -0.3
Assignments N/A N/A N/A 1.0-1.0
Large model 0.14 0.28 0.09 0.56
XL model 0.15 0.31 0.11 0.66
XXL model 0.24 0.37 0.11 0.93

J

Table 7.4. Speed performance benchmark between StochPy and existing (stochastic) software. Results of
benchmarking the direct method of StochPy. We divided the simulation time of the respective solver by the simulation
time of the StochPy solver: StochPy’s solver is faster if the reported ratio’s are greater than one and vice versa. A
“~” indicates that we performed short and long simulations to illustrate the potential difference between them. N/A
is shown if the simulator was not able to perform the simulation. We generated 100 trajectories for the parallel sim-
ulations. In each comparison the number of fixed intervals was equal to the number of time steps in the simulation.
We performed the simulations on an Intel Core i5-2430M CPU 2.40 GHzx 4 64-bit with Ubuntu 12.04 LTS as operating
system. Stochastic models and a script to simulate these models within StochPy are available in Scripts S2.

Notes:

i. StochPy with interfaces to CAIN and StochKit2. Simulation time includes time to parse results into StochPy.

ii. Cain cannot parse events, so the user most specify them in the GUL

benchmark), while both StochKit2 and StochPy are able to parse this model within seconds.
For relatively long simulations of models with many species, StochKit2’s solvers are about
ten times faster than those of StochPy, which is expected because our software is written
in Python rather than C++.

Since, we also offer access to CAIN and StochKit2 solvers directly from StochPy, we also
tested the performance of CAIN and StochKit2 for this mode of operation. While exploiting
these solvers in StochPy appears slower than the native application, this time only includes
parsing of the simulation output for post-simulation analysis. This can take a significant
amount of time for big data sets.

As StochPy provides access to multiple SSAs, SSA implementations, and simulation
tools and as discussed above, there is no ‘one size fits all’ approach, we provide a decision
tree to help guide prospective modelers in how best to select a method that suits their model
(see Fig. 7.7). Here, decisions are made depending on the simulation time and the output
of the solver. Insights into time series or moments can be easily obtained with solvers that
provide fixed-interval output, whereas solvers that provide explicit output are, in principle,
better suited for determining probability distributions of molecule copy numbers and event

waiting times.
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Short

Explicit output

Simulation(s)
Stochastic . .
g ] 1. Time Series Fixed-interval
Simulation
2. Moments output
Long
Simulation(s)
1. PDFs ..
Explicit output

2. PMFs

Figure 7.7. Stochastic modeling and simulation decision tree. Both fixed-interval and explicit output have
their advantages and disadvantages. The decision whether to use fixed-interval or explicit output depends on the type

of analysis.

7.3 Conclusions

Stochastic modeling and simulation in systems biology demands a certain level of flexibil-
ity in simulation, management of stochastic models and the handling of simulation data.
Depending on the size of the system of interest and its degrees of time-scale separation,
the different SSAs each have their particular (dis-)advantages. The differences in simulation
time between stochastic simulation packages are often due to the fixed-interval reporting of
simulation data versus the use of explicit output. To achieve the accuracy of explicit solvers
the differences in simulation time greatly reduce, and ultimately boil down to, differences
in the programming languages. In systems biology applications, often the pure simulation
data rather than the fixed-interval simulation data is of interest. The pure simulation data
allows for the accurate determination of various time and copy number associated proba-
bility measures.

We presented StochPy as a versatile modeling and simulation package for stochastic
simulation of molecular control networks inside living cells that provides solvers which
return explicit stochastic simulation output. Its integration with Python’s scientific libraries
and PySCeS makes it an easily extendible and a user-friendly stochastic simulator package.
We highlighted this by implementing both the solvers of CAIN and StochKit2 that return
only fixed-interval output, which can be useful for obtaining insight into time series and
moments. The high-level statistical and plotting functions of StochPy allow for quick and
interactive model interrogation at the command-line. Python’s scripting capabilities allow
for more complicated and in-depth analysis of stochastic models and meets many of the

demands for systems biology.

128



7.4 Supplemental Information

The following materials are available at http://persistent-identifier.org/?identifier=urn:nbn:

nl:ui:18-23542 and in the online version of this article on which this chapter is based on.

Dataset S1. The results of testing StochPy against the SBML stochastic test suite
(doi:10.1371/journal.pone.0079345.s001).

Scripts S1. Annotated scripts and input files used to the generate M&S results
(doi:10.1371/journal.pone.0079345.s002).

Scripts S2. Stochastic models and a script to simulate the models used for benchmarking
StochPy (doi:10.1371/journal.pone.0079345.5003).

This supplemental information further contains an explanation of analyzing stochastic
simulation output and additional analytical results. We set for convenience in each model
the cell volume to 1 (cell volume of Escherichia coliis about 1 fl). Within StochPy simulations

were done with 2000000 time steps unless stated otherwise.

Analyzing stochastic simulation output

The stochastic simulation output is not discretized and, as a consequence, StochPy cannot
calculate the mean of a particular species by taking the average over the vector of species
copy numbers. We first have to calculate the species state probability—the probability of
species with index i in a given state n. StochPy does this by determining the fraction of

time spent in this particular state,

S
Z(Ts|ni = n)

P(n;j=n) ="t (57.1)

Tsim
Here T; is a time period that species n; spent in state n, and T;,, is the total simulation
time. For the species 7n; shown in Table 7.1, as first sight, one might think that P(n; =0) <<
P(ny =1) because n; =1 during 19 of the 20 simulated time steps. In stochastic simulations,
reaction events are irregular due to their stochastic nature. In this particular example, the
first reaction event took 39.976 time units, while the next 19 reaction events together took
only 1.002 time units. Therefore, the probabilities of being in state zero and one are P(n; =
0) =39.976/40.978 ~ 0.975 and P(n; =1) =1.002/40.978 ~ 0.025 and therefore P(n; =0) >>
P(n;=1).

Subsequently, StochPy determines the mean copy number of this species by taking the
sum of the product of species state probabilities and species state values for each #,

(ni)= > P(nij=n)-n. (S7.2)

neN
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Since we already calculated the species state probabilities of species n;, we can simply de-
termine its mean for the done simulation, (n;) = P(n;=0)-0+ P(n; =1)-1~0.025.

Both Egs. (S7.1) and (S7.2) can also be exploited for calculating propensity probabilities
and means. Then, a; is the propensity of reaction index j and P(a; = n) is the propensity
probability of reaction index j for state n. For instance, P(a; = 0) = 39.976/40.978 ~ 0.975
and P(a; = 0.05) ~0.025 and therefore (a;) = P(a; =0) -0+ P(a; =0.05)-0.05~1.25-1073.

Returning explicit output allows StochPy to provide the unique feature of the calculation
and analysis of event waiting times. The event waiting times for a particular reaction is a
vector of inter-event times of that particular reaction. For a given reaction with index j

these waiting times can be calculated by determining all its inter-event times,

w(j) =V e: (ten]j) = (tel)- (57.3)

Here w(j) are the event waiting times of reaction index j and t, is an event time.

StochPy also provides the unique feature of auto-covariance and auto-correlation anal-
ysis of species and propensities. Covariance is a measure of two random variables of their
joint variability. Therefore, auto-covariance is the covariance of a variable against a time-
shifted version of itself. We can subsequently determine the auto-correlation by dividing the
auto-covariance by the variance of the signal. The (auto-)correlation is thus a dimension-
less property. This makes the (auto-)correlation often a more useful measure of correlation
than (auto-)covariance. For our explicit stochastic output (of which an example is shown in
Table 7.1), the upper limit of the number of time lags is given by

L!

T 0.5L-(L-1), (S7.4)
where L is the number of simulation time points. That is, the upper limit is the number
of 2-combinations when we ignore the order. To calculate both auto-covariances and auto-
correlations we thus transfer the explicit output to a regular grid with sample interval §t.

We can now calculate both the (sample) auto-covariance and the auto-correlation by
determining the signal difference for any arbitrary time lag 7. This 7 equals 16t where [ is
an integer between 0, 1, ..., L. We illustrate this for species n; (the same method can be
used for propensities). The auto-covariance of species n; for time lag T cam be determined
with

L-1
acov(f):%- 5 () =) (m(1+7) =), (57.5)

where n1(t) is the species state at sample time t and 7, is the sample mean. Accordingly,
the auto-correlation of 1 for a given time lag 7 can be determined by dividing acov(7) with
the signal sample variance,

acov(t)

LS (e - i)

t=0

acor(t) = (S7.6)
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Analytical solutions: Molecule synthesis and degradation

The mRNA copy number is Poisson distributed (Chapter 6): By multiplying the mean and
variance with a constant (k4. ¢) and the squared of this constant, we can calculate the mean

and variance of a, as

E(az) =kgeq E(MRNA),

(S7.7)
Var(ay) = k?ieg -Var(mRNA).

Hence, the mean and variance of a, are ten and two respectively. The simulation results of
StochPy are in agreement with these analytical results.

Within StochPy, we can also determine the probability of a certain propensity. The
probability mass function of propensity a; is given by

P(az :}’) :P(mRNA'kdeg :y) = P(mRNA = ky ),
deg

Ay/kdeg,e_/\ v y
(y/kdeg)!

and otherwise zero. This is, in fact, a modified Poisson distribution obtained by distorting

(S7.8)

=f(»A) =

€n,
kdeg

the x-axis.

For this model the auto-correlation function is also analytically known (Gardiner, 1997),

acor(r) = e Kaer'™, (57.9)

which shows that the auto-correlation of mRNA copy numbers does not depend on its syn-
thesis rate.

Analytical solutions: Stochastic mRNA synthesis by a switching gene

The exact probability of having # mRNA copy numbers at steady state was determined by
Shahrezaei and Swain (2008) and is given by

_nte™ TG+ mI(Go+d)
Pu(n) == T({o+G+n)+T(4)

where T denotes the gamma function, ng = ksy,,/kdeg, G = ko,,/koff, G = koff/kdeg’ and

1Fy (G15Go + Gy + m5 1), (S7.10)

1F;(a, b;z) is the Kummer confluent hyper-geometric function of the first kind.
Dobrzynski and Bruggeman (2009) determined the waiting time probability density

function, which is given by

f(t)=P[Xe(t,t+dr)]/dt= wirre M+ wors,

r,2 = (K:t \/Kz —4ksy,,k0n),r1 > 17,

(S7.11)
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where wy = 1-wy = (ksyn —12)/(r1 = 12) € (0,1), K = korf + kon + ksyn, and stochastic
variable X as the waiting time with value t. The analytical mean waiting time for the mRNA

synthesis is given by

-1
o w w T
<tmRNA):f0 t'f(t)dt:rll+r22:75yn(on) (57.12)

Ton + Toff
and the noise in the mRNA copy number is equal to

2 2
UnmRNA 1 To

5 = + N (S7.13)
(nmrna)®  (MmRNA)  To+TmrNA (non)

(o}

where 7, =1/ (ko7 +kon). Tmrna =1/(Kgeg). and 02, [ {non)? =kosf/Kon.

Analytical solutions: Spontaneous fluctuations in single-molecule enzyme
activity
The rate equations given in Eq. (7.3) represent a system of linear first-order differential

equations which can be solved analytically for Pg(t), Pgs(t), and Pp(t). Therefore, using

Mathematica we can analytically determine fr(t) as

. e~ 0-5(k-S+hky +h5 +V/A)-t | (-1+ e\/z't) k-

t)=k, - > (57.14)
fT( ) 2 \/Z
where A depends on the rate constants and the substrate copy number S as
A=—4-kf +k3-S+ (ki -S+ki +k3). (57.15)

Rearrangement shows that this analytical result is identical to those obtained by Kou et al.
(2005). The first raw moment of fr(¢)—the mean waiting time (T of product P arrivals—is
the inverse of the classic Michaelis-Menten equation (Eq. (7.6)),

() = ki+ky 1 k{-S+ky+ky 1

= — = =—. S7.16
Koki-S ki kK-S Vi (57.16)
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Stochastic simulation algorithms (as discussed in Chapters 6 and 7) assume a constant system
volume. The effects of cell growth and division can have a significant impact on the system
behavior, especially when the timescale over which the system settles to a steady state exceeds the

systems generation time.
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Cell growth and division in stochastic

simulation algorithms

Abstract

Cell-to-cell variability arises from the inherent stochasticity of biochemical reactions and
of cell growth and division. Fluctuations in metabolic proteins cause fluctuations in cell-
volume growth, which in turn affects activities of biochemical processes. Noise in molecule
concentrations have a biochemical component and another associated with molecule par-
titioning during cell division. Theoretical approaches for disentangling those different
noise components are limited when dealing with realistic, complicated molecular circuits.
Stochastic simulation is therefore an attractive alternative. However, a generic stochastic
simulation algorithm, which combines the stochasticity of single-cell growth and molec-
ular processes, is not available. Here we present such an algorithm. Our algorithm is in
exact agreement with analytically solvable examples, and in good agreement with time-
lapse microscopy data of growing Escherichia coli and Bacilus subtilis cells, each harboring

a fluorescent gene-activity reporter.

8.1 Introduction

INGLE-CELL experiments show that isogenic cells differ notably in their molecular

composition (Eldar and Elowitz, 2010; Balazsi et al., 2011; Kempe et al., 2015). This

cell-to-cell variability arises from different stochastic phenomena such as the inher-
ent stochasticity of biochemical reactions (Raj and van Oudenaarden, 2008), transcriptional
bursting (Golding et al., 2005), and molecule partitioning during cell division (Huh and
Paulsson, 2011).

Gillespie’s exact stochastic simulation algorithm (SSA) (Gillespie, 1977) has been widely
used to simulate the stochastic dynamics of (bio-)chemical systems (Arkin et al., 1998;
Zwicker et al., 2010; Wei et al., 2014), as also illustrated in Chapters 6 and 7. These SSAs take
into account the stochastic effects of molecule synthesis and degradation (i.e. the inherent
stochasticity of biochemical reactions) but assume that these reactions occur instantly and
in a constant volume. Biochemical reactions take place in constantly growing and dividing

cells, which gives rise to additional sources of non-genetic variability. We can discriminate,
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amongst others, between sources of stochasticity of (i) biochemical reactions and (ii) cell
growth and division (Schwabe and Bruggeman, 2014).

We distinguish the following sources of non-genetic cellular heterogeneity:
(i) stochasticity of net molecule synthesis,

(if) imprecise partitioning of molecules at cell division,

(iii) heterogeneity in the mother cell volume at cell division, and

(iv) imprecise volume division from mother to daughter cells.

Each of these can have a significant impact on the outcome of stochastic simulations and
single-cell experiments, especially when the timescale over which the system settles to a
steady state exceeds the cellular generation time.

As discussed in the previous chapter, several different stochastic simulators exist, but
none of them incorporates the stochastic contributions of cell growth and division into
their algorithms. An initial attempt to model stochastic gene expression in growing cells
was done by Gomez et al. (2014), but they simulated an artificial lineage from which no
information about the statistical properties of either the whole lineage tree or a sample of
extant cells can be obtained. Additionally, they did not include heterogeneity in the mother
cell volume at cell division and imprecise volume division from mother to daughter cells.

We present a time-efficient stochastic simulation algorithm with cell growth and di-
vision. Although we also simulate a single lineage (and are therefore time-efficient), we
can—under certain conditions—obtain statistical properties of either the whole lineage tree
or of a sample of extant cells from a single lineage simulation. Our algorithm is imple-
mented in our stochastic simulator StochPy (presented in Chapter 7). The algorithm can
be used in combination with exact SSAs, exact SSAs with delay, and inexact SSAs. We il-
lustrate the functionality of our SSA with cell growth and division by comparing stochastic
simulations with cell growth and division to theory and time-lapse microscopy data of Es-
cherichia coli (E. coli) and Bacillus subtilis (B. subtilis) for which we found an excellent and

good agreement, respectively.

8.2 Implementation

The stochastic simulation algorithm

Before we explain in detail how we extended stochastic simulation algorithms (SSAs) with
cell growth and division, we first briefly explain the SSA. In Chapter 6 we introduced the
SSA as a Monte Carlo method that numerically generates stochastic dynamics that are in

agreement with the chemical master equation.
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While various SSAs exist (e.g. the direct method (Gillespie, 1976, 1977)), we use a general
description that holds for all exact SSAs. We consider a system of m molecular species and

r reactions. The state of the system is described by the state vector x(t),

2(8) = (m (D, m(£)s. 1 (1)), (5.1)

which contains the (copy) number of each molecular species per cell (denoted by n; for

species index 7) at a given point in time. The SSA uses the propensity function,

aj(x)dt = the probability that reaction with index j occurs once in V in the time interval
[t,t+dt) given that the system is currently in state x,
(8.2)
and the state-change vector,

v=(v,v2,...,¥), (8.3)

to explicitly simulate every single reactive reaction in the system. In short, the SSA executes

the following steps:
(i) initialize x(to),
(if) use a Monte Carlo method to determine when and which reaction fires next,
(iii) update the system by adjusting ¢ and x, and
(iv) return to step (ii), or else end the simulation.

We refer to Chapter 6 for more details about SSAs.

Adding cell growth and division to the SSA

The SSA with cell growth and division we describe here is implemented in StochPy (Chap-
ter 7) and available for download from http://stochpy.sf.net. Fig. 8.1 gives an overview of
how we extended the SSA with cell growth and cell division. We discuss the steps outlined
in Fig. 8.1 step-by-step. Notations are explained in Table 8.1.

(i) Initialize simulation. In the extended SSA, containing cell growth and division, we
simulate a single lineage, so the simulation starts with a single cell. Before performing a
simulation we have to initialize the simulation by setting various parameters (Table 8.1).
For instance, we have to set the cell volume of the initial cell, V(0). While a cell can be in
any cell-cycle stage (0 < a < T) where a is the cell age and T the interdivision time—the time
period between two consecutive cell divisions—the initial cell is by default parameterized to
start at the beginning of the cell-cycle stage (i.e. a = 0). During the simulation, the cell grows
deterministically at a specified specific volume-growth rate (4) and according to a particular

type of growth—our algorithm supports both exponential and linear volume growth rates.
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Notation
ng

v

T

f

a

U
k

Dy (V)
K

¥y (V)

Ae(V)

Explanation

(copy) number of species with index i
Cell volume

Interdivision time

Interdivision time PDF

Cell-cycle stage (0 <a< T)

Specific growth rate of cell volume

Specific growth rate of the population

Volume distribution at division for a sample of mother cells °

Volume partitioning distribution

Volume distribution at birth for a sample of baby cells

Volume distribution at present size for a sample of extant cells

StochPy Input
e (att=0)
e (att=0)

Table 8.1. Notations. The specific growth rate of cell volume and the population are identical for exponential growth;

they also have the same units (1/time).

for the stochastic simulation
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V(0) = 0.9, volume at cell birth (a=0).

n(a) = 3, # of molecules at age a.
V(a) = 1.3, volume at age a.

n(T) = 7, # of molecules at division (a=T).
V(T) = 2.05, volume at division (a=T).

Volume partitioning from K(p).
Molecule partitioning.

Select daughter for next generation.
Draw V(T) from &,

Figure 8.1. The SSA with cell growth and division as incorporated in StochPy. The simulation starts with

one daughter cell of which a single lineage is tracked through time. The stochastic simulation continues until the

interdivision time T is reached. Then, the mother volume is partitioned between both daughter cells. Molecules are

subsequently partitioned (volume dependent) between both daughter cells. Faded red molecules are inherited from the

mother cell. This procedure is repeated until the number of generations is reached, the desired end time is reached, the

desired number of time steps is reached, or all reactions are exhausted.
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Next, we have to determine when the tracked cell divides. We do this by drawing a
volume, V(T), at which the mature mother cell divides into two daughter cells. The volume
at which the mother cell divides is drawn from a probability density function (PDF) @,.
This PDF is independent from the volume at birth, which makes the volume at division
independent from the volume at birth as was hypothesized by Koch and Schaechter (1962).
Given values for V(0), V(T), p, and the type of growth, the interdivision time T can be

calculated. We illustrate this here for an exponential growth rate:

V(T)::V(o).eﬂT_é7~:!E£XXZQZX1922' (8.4)
[

(ii) SSA with cell growth. Knowing T allows us to start the SSA until the division event at

a = T. We explicitly write start, because we cannot just run the SSA until the next division
event at t = T. Modeling cell growth implies that V increases during the simulation from
birth (a = 0) to division (a = T). In a growing cell, reacting molecules require more time
to find each other, thus the reaction waiting times for these kind of reactions increases.
This means that the propensity functions of diffusion limited reactions (i.e. second and
higher-order reactions) depend on V. We therefore inserted V as a variable in the respective

propensity function,
a;(t)

ajv(e) = W with order > 2. (8.5)

The propensity functions of zero and first-order reactions are unaffected by V. While we
simulate V' deterministically we only update V at each stochastic event in the simulation.
This means that we calculate the time until the next reaction fires based on the V at the time
of firing of the previous reaction; V is larger at the moment of reaction execution which
results in a underestimation of the reaction time of second and higher-order reactions. This
effect is negligible if the volume difference between the two consecutive firings, AV, is
small. An alternative method could be to add an additional stochastic reaction for V' that
fires frequently as was by done Gomez et al. (2014), but this slows down the simulation.
(iii) Cell division. The SSA continues until the interdivision time T is reached (and
V = V(T)). Both the volume and the molecular copy numbers for each species are then par-
titioned between the two daughter cells. The partitioning ratio is drawn from the PDF K(p).
Daughter one and two receive a volume of V;;(0) = p- V(T) and V4,(0) = (1-p) - V(T)
respectively. The K distribution should be symmetrically distributed around a mean of
0.5, otherwise a bias for one daughter is created. Theoretically, this also works for micro-
organisms that divide asymmetrically like Saccharomyces cerevisiae (then a bimodal but
symmetrical distribution of K should be used). The partitioning of molecules between both
daughter cells—which is done next—is also a stochastic process and depends on the cell
volumes of both daughters. This partitioning of molecules is, therefore, modeled with a

volume-dependent binomial distribution. More specifically, the probability that a specific
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molecule is inherited by daughter one is modeled as V;;(0)/V(T). This means that the
number of molecules, with copy number 7, inherited by daughter one can be drawn as a
random sample from a binomial distribution with # number of trials and success probability
V41(0)/V(T). The process is repeated for each species. Not all cellular constituents should
be binomially distributed between both daughter cells. DNA is an example of this; each
daughter cells receives one copy of the chromosome in a normal cell division event. These
kind of cellular constituents divide exact. Stochastic simulations also allow the definition
of fixed species—species that do not change their copy number over time—which are not
divided during a cell division event.

(iv) Cell selection. Starting the SSA with a single cell and simulating the entire popu-
lation tree (Fig. 8.2) is computationally difficult or impossible. Tracking a single cell lin-
eage (Fig. 8.2) through time allows us to incorporate cell growth and division in stochastic
simulation algorithms in an efficient manner. While simulating a single lineage was also
done by Gomez et al. (2014), we are also able to get the statistical properties of either the
whole tree or a sample of extant cells from a single lineage over time. This novel theory is

explained in the next section.

From a single lineage simulation to extant-cell population distributions

In order to relate the statistical properties of a single lineage over time to the statistical
properties of either the whole tree or a sample of extant cells, the lineage that is chosen
must reflect a well defined cell sample. During balanced growth three different types of
samples can be distinguished for which the statistics of cell age, interdivision time, and cell
volume are interrelated: These are samples of extant, mother, and baby cells (Painter and
Marr, 1968). Briefly, extant cells are all cells that exist at a specific moment in time, a sample
of mother cells consists of all cells that divide within a defined time interval, and a sample of
baby cells consists of all cells that are born within a defined time interval. The interdivision

times for these three types of samples are different but interrelated (Painter and Marr, 1968):

fe(t)=2(1=e7M) fy (1) = (¥ ~1) fn(0)- (36)

Here k denotes the specific growth rate of the population and f, the PDF of interdivision
times for the different types of samples (with s as either e: extant, b: baby, or m: mother).
For our simulations we select at each division the daughter cell to be followed in such a
way that the resulting simulated lineage corresponds to a sample of mother cells. This is
possible under the following two conditions:

(i) The volume at which cells divide is independent of the volume at birth and any other
cell-specific properties like concentrations of certain molecules. To ensure that volumes at
division are independent of volumes at birth, the distribution of division ratios (K) and the

distribution of volumes at division (®,,) should be chosen such that the largest possible
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Daughter cell ! O ........
Mother cell O .
O e

Extant Cell
Population

Figure 8.2. Cell lineage and a cell population. A cell lineage (purple) follows one cell through time, choosing at
each cell division event—with a certain probability—one of the daughters to follow. Simulation of the complete lineage
tree results in following all daughters after each cell division event, which requires simulation of 2"+ cells where n is
the number of generations. The extant cell population (blue) are the cells in a population at a given moment in time.
Faded red molecules are inherited from the mother cell.

volume at birth is smaller than the smallest possible volume at division (i.e. there is no
overlap between the two volume distributions). By default we use beta distributions for
both the division ratio as well as the volume at division. Beta distributions are bounded and
symmetric if its two positive shape parameters are identical.

(ii) The growth law for a single cell is deterministic and independent of concentrations.
The current implementation allows exponential and linear growth laws for single cells. For
an exponential growth law the volume specific growth rate (¢) is equal to the specific growth
rate of the population (k). Otherwise, the specific growth rate of the population needs to

be calculated. We do this by using the known relations between the volume at division,
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volume at birth, the growth law, the volume distribution of extant cells (Eq. (8.7) (Painter
and Marr, 1968)), and the fact that this volume distribution has to integrate to one:

Vinax Vinax v k- R(V) oy _
_ o~ R( ). € [2¥(V)-Dw (V)] - _
[ Ae(V)dV_[ R(V (fo o) dV+C)dV—1

(8.7)

R(V) = fvm” (& fg‘(/‘)/;k)dv. (8.8)

Here, V is the cell volume, C an integration constant (which can be calculated from bound-

where

ary conditions of the volume distribution), A, (V') the volume distribution of a sample of
extant cells, ¥}, (V') the volume distribution at birth for a sample of baby cells, ®,, (V) the
volume distribution of a sample of mother cells, and g’(V) the differential of the formula
of cell volume growth—g(V) = p- V for exponential growth and g(V) = y for linear vol-
ume growth, with g as the volume specific growth rate. We know @,,(V), g(V), g'(V),
and C from the model parameters. ¥}, (V) can be calculated from ®,, (V) and the partition
distribution K(V') using

W, (V) = f '"(8) K(~ )d@ (8.9)

A solution for Eq. (8.7) is approximated by using the secant or Newton-Raphson method.
To generate a lineage that is representative for a sample of mother cells, at each division
the daughter to be followed by the simulation is chosen with a probability according to the
fraction of descendants it can be expected to contribute to the population. Mathematically,
if daughter one is expected to have n;, descendants at a later time point ¢, and daughter

two ng4, descendants, the probability p to choose daughter one is given by

"4

=—4 (8.10)
ng1+ gy

Let T; and T5 be the interdivision times of daughters one and two respectively. In balanced

growth the number of expected descendants at time ¢, is then given by ny; = ek (t=Th)

k(t<=T2) This is possible because the growth law does not depend on molecule

andng, =e
concentrations or previous history. Inserting these relationships for n,4; and 1,4, in Eq. (8.10)

yields
ek-(tx—[l) ek'(TZ_Tl) ek'AT

P= ki (6mT) 1 ok (-T2) 11 gk (To-Th) 14 gk AT

where AT = T, — T;. In short, the larger daughter cell is more probable to be chosen, because

(8.11)

this cell will reach the next division volume faster and is therefore likely to have more
descendants in the population at a later time point. Another way to derive this probability

is given in Eq.(S8.25).
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With as simulation result a lineage that represents a sample of mother cells, statistical
properties of other defined samples can be calculated based on the known relationships of
interdivision time and cell age between these samples. For example, we can calculate the
copy number distributions for a sample of extant cells (corresponding to any experiment
that records molecule copy numbers at a fixed moment in time as smFISH) from the simu-

lation of a single lineage by using

Tmax Amax I(n a, T)
= a, T dadT. 8.12
Here, % is the relative frequency of copy number equal to 7, in the simulated lin-

eage at age a for a cell with interdivision time T approximating p(ny = nla, T) and g(a, T)

is the joint PDF of cell age and interdivision time,
g(a,T) = kfpu(T)- kT, (8.13)

The derivation of g(a, T) is given in Eq. (58.26) and (S8.27). Using Eq. (8.13) we can rewrite
Eq. (8.12) to

p(ny=n)= fo e /;u’"“ Fn(T) k- k(T m “dadT,  (8.14)
where I(n,a, T) is an indicator function equal to the number of occurrences of copy number
ny = n at cell age a in a cell with interdivision time T. Obtaining the statistics for an
extant cell population consists of two main steps. First, in order to work with the indicator
functions, the simulation time series needs to be binned. The binning needs to be performed
at regular intervals for cell age. And second, a double integral has to be taken which is a
slow procedure for infinitesimal small steps of a and T. We approximate this double integral
by using the Riemann sum (or the 2D trapezoidal rule).

Additionally, the statistics for a sample of extant cell volumes can be calculated from the
simulation of a single lineage by re-using Eq. (8.14) and replacing copy numbers with volume
data. Calculating the statistics for sample of extant cell volumes requires one additional
step—the continuous volume data must be binned to make the distribution discrete.

With deterministic interdivision times, the samples of baby, mother, and extant cells are
identical. However, we have to correct for the fact that all cell divisions in the simulation
(of alineage or the complete three) are synchronized, which can be done by correcting both
copy number and volume distributions for the cell age distribution (which is theoretically
known for this specific condition (Eq. (58.23)).
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8.3 Results and Discussion

Performing StochPy simulations with cell growth and division

A typical StochPy session consists of first creating a StochPy cell division model object.
Once a model (written in SBML or PySCeS MDL) is loaded various simulation parameters
that are specific for the SSA with cell growth and division can be set (e.g. 4, @, and K; see
also Tabel 8.1). Similar as described in Chapter 7, kinetic parameter values and molecule
copy numbers can be modified interactively, and simulations can be performed by calling
the available analysis methods for model objects. As model objects are fully encapsulated,
multiple models can be instantiated from the same (or different) input files at the same time.

An example of a short StochPy session within Python is the following:

import stochpy

cmod = stochpy.CellDivision(model_file = "ImmigrationDeath.psc")

cmod.ChangeParameter ("Ksyn",2)

cmod.ChangeParameter ("Kdeg",0.1)

cmod.ChangeInitialSpeciesCopyNumber ("mRNA",10)

cmod.SetGrowthFunction(growth_rate=0.1,growth_type="exponential")

cmod.SetVolumeDistributions(Phi = ("beta",5,5), K = ("fixed",0.5),
Phi_beta_mean=2)

cmod.DoCellDivisionStochSim(end=10,mode="generations")

cmod.PlotSpeciesVolumeTimeSeries ()

where we start by initiating the model object cmod for the immigration-death model de-
picted in PySCeS MDL, and modifying the kinetics parameters and mRNA copy number
at t = 0 interactively. Next, we set volume specific growth rate characteristics and volume
distributions. Then, we generate one time trajectory with cell growth and division (ten
generations) and plot the corresponding (discrete) molecule copy number and volume time
series data.

More generations are necessary to get an accurate prediction of species and volume

distributions:

cmod.DoCellDivisionStochSim(end=1000,mode="generations")
cmod.PlotVolumeOverview ()

cmod.PlotSpeciesOverview()

There is interdivision time heterogeneity, so the three different samples (mother, baby, and
extant) can be distinguished. The simulated lineage corresponds to a sample of mother cells
and StochPy pre-calculates the statistical properties of a sample of extant cells. By default,
the statistical properties of a sample of extant cells are plotted. The high-level functions

PlotVolumeOverview() and PlotSpeciesOverview () generate figures such
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as Figs. 8.3 and 8.4. For each “panel”, a unique high-level function can be used to plot the
respective data. In this example we used the default number of bins for both age and in-
terdivision time. StochPy generates a warning if the numerical integration was not accu-
rate enough. Using the high-level function AnalyzeExtantCells () with a different
number of bins for both age and interdivision time typically solves this issue.

In the following sections, we compare StochPy simulations first to theory and then to
single-cell experimental data that was obtained with time-lapse microscopy experiments
(see Material and Methods for more details). In each comparison, we highlight the included
contributions of cell growth and division to non-genetic cell variability. The analytical solu-
tions for the first three case studies are given in the Supplemental Information. We re-used
the immigration-death model (i.e.“synthesis-degradation model”) to study single-cell tran-
scription with cell growth and division, because this is the only model for which we know
analytical solutions. This model consists of a zero-order mRNA synthesis reaction with
rate constant ks, and a first-order mRNA degradation reaction with rate constant k..
We refer to Chapter 6 where this model is discussed in detail. We used the settings given
in Table 8.2 to—for molecule copy numbers and cell volume—compare time series, distribu-

tions at birth (a = 0) and division (a = T), and distributions for a sample of extant cells.

Parameter (unit) Case study 1  Case study 2 Casestudy 3 Casestudy 4 Case study 5

(theory) (theory) (theory) (E. coli) (B. subtilis)
ksyn (min~") 2.0 2.0 2.0 2.0 0.12
kgeg (min~") 0.1 0 0.1 0.1 0.0
u (min~?) 0.1 0.1 0.1 0.01 0.01
V(0) (um®) 1.0 1.0 1.0 161 2.28'1
Om (um’)  Beta(5,5)’ 2 2 N(2.98,0.35)"F  N(4.73,0.58)"
K 0.5 0.5 0.5 Beta(157,157) Beta(108,108)

Table 8.2. Parameters used in the different case studies. We simulated each SSA with cell growth and division
for 10000 generations. The time-lapse microscopy data obtained for E. coli and B. subtilis was used to fit the input for
the stochastic simulation (Material and Methods).

i. We used a beta distribution—defined at interval [0,1]—and scaled it to a mean of 2.0. The two positive shape
parameters, o and f3 of the beta distribution must be identical (« = ) to get a symmetric distribution defined at
interval [0,1] with a mean of 0.5.

ii. Time-lapse microscopy experiments were done in 2D so we measured length (um) rather than volume.
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Comparing StochPy simulations with cell growth and division to

analytical solutions

Case Study 1: Volume statistics are independent of the model

We first analyzed the volume statistics generated by StochPy simulations. While we used
the synthesis-degradation model we could have used any model because the volume statis-
tics are completely independent of the model used. Using a different model and/or param-
eter settings has only an effect on the run time of the simulation. The settings that we used

to generate the results are given in the second column of Table 8.2.
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Figure 8.3. Volume statistics obtained via the SSA with cell growth and division match analytical solu-
tions (black). (A) volume distributions at a = 0 and a = T of a sample of baby cells and mother cells respectively.
(B) three stochastic time trajectories of cell volume fluctuate around its analytical solution with V(0) = 1. Each of the
time trajectories has a interdivision time that is distributed (see panel D) around its mean, (T) (dashed line). (C) the

extant volume distribution. (D) the interdivision time distribution of a sample of extant cells.

Comparison of the volume statistics generated by StochPy to analytical solutions shows
an excellent overall agreement (Fig. 8.3). In our stochastic simulation we took into account
the following contributions of cell growth and division to non-genetic cellular heterogene-
ity: imprecise, binomial, partitioning of molecules at cell division and heterogeneity in the
mother cell volume at cell division. The latter was modeled by drawing division volumes

from a beta distribution (Eq. (S2)). Imprecise volume division from mother to daughter cells
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was not taken into account because we partitioned the cellular volume exactly between
both daughter cells (K = 0.5). Heterogeneity in the cell volume at division has several con-
sequences. First, the cellular volume at a given age is variable as is illustrated in Fig. 8.3A
for cells at division (a = T) and at birth (a = 0). As expected, the cell volumes at birth and
division do not overlap, so they are independent of each other. This allowed us to calcu-
late the volume distribution of a sample of extant cells (Fig. 8.3C) which is in agreement
with theory. And second, the interdivision time T is not deterministic as is illustrated in
Fig. 8.3B and D. In the latter, we compare the interdivision time distribution of a sample of
extant cells (f¢) obtained by simulation with theory and found an excellent agreement.

In Fig. 8.3B we simulated three distinct generations that each started with a different
V(0) drawn from ¥, (V). We selected the parameter values in our model such that the
number of firings (reactions that occur) per generation are limited. This allows us to illus-
trate that StochPy updates V only when a reaction fires (Fig. 8.3B). Our model does not
contain any second or higher-order reactions, so this has no effect on the accuracy of the
simulation. As explained, this can have an effect if second-order reactions are included and

when the rate of firing is slow (then the volume difference becomes significant).

Case Study 2: mRNA synthesis

In addition to predicting accurate volume statistics, we also aimed at predicting accurate
molecule copy number statistics when we include the stochastic contributions of cell growth
and division to non-genetic cell variability. Unfortunately, we do not know (yet) the analyti-
cal solutions if we include all sources of stochasticity of cell growth and division. Hence, we
used a deterministic T and simplified the model by using no active degradation (k4. ¢ = 0).
Using a deterministic T was done by using a fixed @, and K—the specific settings are given
in the third column of Table 8.2. Or in other words, we did not take into account the stochas-
tic contributions of the mother cell volume at division and of the imprecise volume division
from mother to daughter cells. This means that the only contribution of cell growth and
division to non-genetic cell variability that we took into account was the imprecise parti-
tioning of molecules at cell division.

The results given in Fig. 8.4 show that predictions made with the stochastic simulation
are consistent with analytical solutions, which can be found in the Supplemental Informa-
tion. More specifically, the mRNA copy number distributions at birth and division obtained
with stochastic simulations overlap with the theoretical distributions (Fig. 8.4A) and the
time series output of stochastic simulations fluctuate, as expected, around the theoretical
time series (Fig. 8.4B). The deviation shown in Fig. 8.4B is explained by inherent stochasticity
in net molecule synthesis in stochastic simulations. We also found an excellent agreement
between the simulated and theoretical mRNA copy number distribution of a sample of ex-

tant cells (Fig. 8.4C). This result demonstrates that we can simulate a single lineage and
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accurately predict statistical properties of well defined samples (by in this case correcting

for the cell age distribution).
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Figure 8.4. Molecule copy number statistics obtained for the mRNA synthesis model via the SSA with

cell growth and division match analytical solutions (black). (A) n,,gna distributions ata =0 anda =T
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Figure 8.5. Molecule copy number statistics obtained for the mRNA synthesis and degradation model
via the SSA with cell growth and division match analytical solutions (black). (A) n,,gna distributions at

a =0 and a =T (identical for all three samples). (B) three stochastic time trajectories of n,, gy a fluctuate around its

analytical solution. (C) the extant n,,gNa distribution.
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Case Study 3: mRNA synthesis and degradation

Proteins are actively degraded into the cell, so we decided to extent our simple model with
active degradation. Except for the degradation rate, we used exactly the same settings
(fourth column of Table 8.2) as in the example without active degradation. The imprecise
partitioning of molecules at cell division was, therefore, again the only contribution of cell
growth and division to non-genetic variability that was taken into account.

The results given in Fig. 8.5 show again an almost perfect agreement between stochas-
tic simulation and analytical solutions (the mRNA copy number distribution of a sample of
extant cells was numerically solved). The analytical solutions can be found in the Supple-
mental Information. Comparison of Figs. 8.4 and 8.5 shows that, as expected, adding active
degradation results in lower mRNA copy numbers at different ages in the lineage and also

in the extant cell population.

Comparing the SSA with cell growth and division to experimental data

In the previous sections we demonstrated that the predictions of the SSA with cell growth
and division are consistent with theory. Here, we compare the outcome of the SSA with
cell growth and division to time-lapse microscopy measurements (Material and Methods)
of E. coli and B. subtilis. All sources of stochasticity defined in the introductory section
of this chapter—net molecule synthesis, imprecise partitioning of molecules at cell division,
heterogeneity in the mother cell volume at cell division, and imprecise volume division from
mother to daughter cells—were taken into account in the stochastic simulations. For both
organisms, we used the time-lapse microscopy measurement data to fit the required input of
our algorithm: @, K, y, and “V(0)” (Table 8.2). More details about this fitting procedure
can be found in Material and Methods. The time-lapse microscopy measurements were
done in 2D which made it difficult to get an accurate measure of cell volume. Hence, our
analysis are limited to measurements of cell length (L) which increased exponentially in the

population (data not shown).

Case Study 4: E. coli length measurements

We first focus on the time-lapse microscopy data obtained with E. coli (Fig. 8.6). Since we
fitted the length distribution at division ®,, and the length partitioning ratio K, we can ex-
pect an excellent agreement between the length distribution at birth and division (Fig. 8.6A).
While both @, and K were drawn from a (beta) distribution, K is in comparison to @, a
narrow beta distribution, with a mean of 0.5 and a standard deviation of ~0.03. This sug-
gests that, in E. coli, the stochastic contribution of the mother cell volume at cell division is

greater in comparison to the imprecise volume division from mother to daughter cells.
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The results displayed in Fig. 8.6A and B also show that the time-lapse microscopy data
obeys the two requirements, which were specified earlier, for the simulated lineage to corre-
spond to a sample of mother cells. That is, the experimental distributions in Fig. 8.6A show
that there is practically no overlap between the length distributions at birth and division.
Additionally, the time series data shown in Fig. 8.6B illustrates that assuming a determin-
istic growth rate is a valid assumption. While close inspection shows that there is some
variability in the instantaneous growth rate, this variability is negligible to the variability
in length at birth and at division as illustrated in Fig. 8.6A. We note that for some, more

recent, studies it is this variability though that is of most interest (Kiviet et al., 2014).
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Figure 8.6. E. coli cell length statistics obtained via the SSA with cell growth and division match a time-
lapse microscopy measurement (grey). (A) length distributions at a = 0 and a = T of a sample of extant cells. (B)
stochastic time trajectories (lines) and time-lapse microscopy measurements (dots) of E. coli cell length. We measured
a mean interdivision time, (T), of about 69 minutes, which corresponds to a growth rate of about 0.01 min~1. (C) the
extant length distribution. (D) the interdivision time distribution of a sample of extant cells.

The detected heterogeneity in the mother-cell length at division, and to a lesser ex-
tent also the imprecise length division of mother cells gives variable interdivision times
(Fig. 8.6D)—since we assume deterministic cell-volume growth rate. Although our simula-
tions predicted a broader and slightly shifted distribution of interdivision times, the coeffi-
cient of variation of the simulated interdivision times distribution is with 0.25 in agreement

with measurements—coeflicients of variation between 0.23-0.32 were found for E. coli inter-
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division time distributions (Harvey et al., 1967; Reshes et al., 2008; Tsukanov et al., 2011). A
first candidate explanation for a broader and slightly shifted predicted distribution of inter-
division times is that the ratio of cell length at division and birth is on average greater in the
simulation than in the experiment (see Fig. 8.6A). A greater ratio results in a greater inter-
division time (Eq. (8.4)). A second possible explanation for this difference could be that we
measured, and therefore simulated, cell length in stead of cell volume; the interdivision time
is based on the growth rate and the volumes at birth and division. A less broad distribution
of volume than that of length would result in a less broad distribution of interdivision times.
This reasoning is further supported by data since we found a good agreement between sim-
ulation and measurement for the length distribution of a sample of extant cells, which again
demonstrates that tracking a single lineage is sufficient to get information about the extant

cell population.

Case Study 5: B. subtilis length and fluorescence measurements

Finally, we focus on the time-lapse microscopy data obtained with B. subtilis. Also, this
data is consistent with stochastic simulations (Fig. 8.7). In addition to length data we also
measured fluorescence of a GFP protein (Material and Methods), which we simulated as a
zero-order synthesis reaction. The contributions of heterogeneity in the mother cell length
at division, and to a lesser extent also of the imprecise length division from mother cells are
again visible in Fig. 8.7A-D. The analysis of B. subtilis cell length data is highly comparable
to the E. coli cell length data. In short, we found again that the stochastic contribution of
the mother cell length at cell division is greater in comparison to the imprecision of the
length division of mother cells. We found a coefficient of variation of 0.26 for the simulated
interdivision times. To our knowledge, no coefficients for variation of B. subtilis are known,
but recent measurements have shown that they are (highly) variable (Gregory et al., 2008).

To describe the fluorescence data we found, surprisingly, a better agreement between
experiment and simulation with exact partitioning of molecules at cell division (Fig. 8.7E-G).
The greatest discrepancy between experiment and simulation is for the fluorescent-signal
distribution at birth (Fig. 8.7E). Here, we see that the stochastic simulation predicts a broader
distribution of the fluorescent signal at birth. More specifically, the stochastic simulation
predicts more cells with a lower fluorescent signal at birth than was experimentally mea-
sured. We attribute this difference to the fact that the fluorescent signal was measured only
every ten minutes and therefore typically not at cell birth (a = 0) and cell division (a = T).
Our current data set was not sufficiently large to extract only the cells where we measured
fluorescence at birth and cell division, thus we included all 346 cells and used the first and
last fluorescence measurement as a = 0 and a = T, respectively. This gives a five minute de-
viation at a = 0 and a = T, which is significant given that the interdivision time was about

69 minutes. The fluorescent signal increases (on average) with a factor of two during the
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cell cycle (Fig. 8.7F). Measuring the fluorescent signal at a = 5 rather than at a = 0 results
therefore in an overestimation of the fluorescent signal in the experiment (and an underes-
timation for a = T -5 rather than at a = T). This hypothesis is further supported by data
because we found a good agreement between experiment and simulation for the fluorescent

signal in a sample of extant cells (Fig. 8.7G).

8.4 Conclusions

We presented an efficient stochastic simulation algorithm with cell growth and division that
takes into account net molecule synthesis, imprecise partitioning of molecules at cell divi-
sion, heterogeneity in the mother cell volume at cell division, and imprecise volume division
from mother to daughter cells as sources of stochasticity. Our algorithm is efficient because
we generate a single lineage that is representative for a sample of mother cells, which al-
lows us to get the statistics of other samples such as a sample of baby and extant cells.
We demonstrated this by comparing stochastic simulations to both theory and time-lapse
microscopy data. We implemented our stochastic simulation algorithm with cell growth
and division into our comprehensive and user-friendly stochastic simulator StochPy. This
allows the systems biology community to profit from our stochastic simulation algorithm
with cell growth and division.

Even though this algorithm is, in its current version, already remarkably capable of
simulating experimental data, it does have a number of limitations. First, we model the
growth of a cell during a single generation as a deterministic process. This is not of major
consequence because the variability in the growth behavior of single cells is mostly due to
heterogeneity of birth and division volumes than due to noise in the instantaneous volume
growth rate; as evident from the experimental data reported in this chapter. Noise in the
instantaneous volume growth rate is, however, an interesting quantity since it a readout of
net, propagated noise of all the metabolic activities of a cell. Second, the two-way coupling
between biochemical and growth noise, which may in some cases reinforce each other, is
not taken into account. The biochemical circuitry is, in the current version of the algorithm,
implemented in a growing cell environment, with its own stochasticity that is insensitive to
the simulated biochemical circuitry; the circuitry does however respond to the stochasticity
associated with cell growth. Third, the noise in the molecule copy numbers of a biochemi-
cal circuit generally has an extrinsic noise contribution that originates from stochastic pro-
cesses that are external to the circuit (the exact origins are not completely clear). We did not
add such a noise source to the simulation algorithm. This is however not complicated and
should be an extension of the next version. And fourth, since we simulate a single lineage
and rely on the balanced growth assumption to arrive at the statistics of the whole lineage
tree, we cannot simulate the probability distributions associated with shifts in growth rate

from one balanced growth condition to the next. This is also of great experimental interest
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Figure 8.7. B. subtilis cell length and molecule copy number statistics obtained via the SSA with cell
growth and division match a a time-lapse microscopy measurement (grey). (A) length distributions at a = 0
and a = T of a sample of extant cells. (B) stochastic time trajectories (solid) and time-lapse microscopy measurements
(dots) of B. subtilis cell length. We measured a mean interdivision time, (T), of about 69 minutes, which corresponds
to a growth rate of about 0.01 min~'. (C) the extant length distribution. (D) the interdivision time distribution of a
sample of extant cells. (E) GFP fluorescence distributions at a = 0 and a = T of a sample of extant cells. (F) three
stochastic time trajectories (lines) and time-lapse microscopy measurements (dots) of GFP fluorescence. (G) the extant
GFP fluorescence distribution.
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at the moment. Unfortunately, simulating such growth-transition dynamics is not trivial;
mostly because the associated theory is missing such that the entire tree needs to be sim-
ulated, unless stringent assumptions are made or the algorithm is partially parameterized
by experimental data on the growth rate dynamics of single cells. The latter is possible but
computationally challenging. So even though we have made great progress in this chapter,

several open problems remain that are of interest for future research.

8.5 Material and Methods

Stochastic simulations

All stochastic simulations were done with the direct method algorithm (Gillespie, 1976,
1977) extended with cell growth and division, as implemented in the CellDivision module of
the stochastic simulation software package StochPy (version 2.3), as presented in Chapter 7.
Each stochastic simulation was continued for 10000 generations.

Annotated scripts and input files used to generate modeling and simulation results are
available as Scripts S1. More information on installing and using StochPy can be found in
the StochPy User’s Guide which together with additional example sessions is available online

at http://stochpy.sf.net.

Microscopy experiment
Strain, medium and culturing

Escherichia coli strain AB460 (kindly provided by D. Kiviet) was revived from glycerol stock
by inoculating directly into M9 minimal medium (42.2 mM Na;HPOy, 22 mM KH,POy, 8.5
mM NaCl, 11.3 mM (NHy4),SOy4, 2.0 mM MgSO4, 0.1 mM CaCl,), supplemented with trace
elements (63 M ZnSOy, 70 uM CuCl,, 71 uM MnSOy, 76 uM CoCl,, 0.6 uM FeCl3), 0.2
mM uracil (all chemicals from Sigma) and 20 mM glucose (Boom B.V., NL) as carbon source
(M9-Glu). At intervals of 3 hours, the pre-culture was transferred twice to fresh M9-Glu
before inoculating an overnight culture to a final optical density (OD, 600 nm) of 2.5 x 10~
in M9-Glu. After 16 hours, the culture was again diluted to an OD600 of 0.0025. When
the culture reached an OD600 of 0.01, 2uL was transferred to a 1.5% agarose pad freshly
prepared with M9-Glu.

Bacillus subtilis strain B1115 (amyE::Phyper-spank-sfGFP, Spcr) was constructed from
parental strain BSB1 168 trp+ using pDR111 (kindly provided by D. Rudner). B1115 was re-
vived from glycerol stocks by directly inoculating into MM minimal medium (40 mM MOPS,
1.23 mM K;HPOy, 0.77 mM KH,POy, 15 mM (NHy4)2SOy4, 0.8 mM MgSOy), supplemented
with 5 mM glucose, 1 mM IPTG and trace elements (80 nM MnCl,, 5 yM FeCls, 10 nM
ZnCl,, 30 nM CoCl,, 10 nM CuSOy) to a final OD600 of 4.5 x 1077, After incubation for
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16 hours, when the culture reached an OD600 of about 0.1, the culture was diluted in TSS
minimal medium (37.4 mM NH4Cl, 1.5 mM K;HPOy, 49.5 mM TRIS, ImM MgSQOy, 0.004%
FeCl3 / 0.004% Nasz-citrate x 2H,0), supplemented with 5 mM glucose, 1 mM IPTG and trace
elements to a final OD600 of 0.001. When the culture reached an OD600 of 0.02, 2 uL was
transferred to a 1.5% agarose pad freshly prepared with TSS.

All cultures were incubated at 37 °C, shaking at 200 rpm. The agarose pad was inverted
onto a glass bottom microwell dish (35 mm dish, 14 mm microwell, No. 1.5 coverglass)

(Matek, USA), which was sealed with parafilm and taken to the microscope for imaging.

Microscopy and data analysis

Imaging was performed with a Nikon Ti-E inverted microscope (Nikon, Japan) equipped
with 100X oil objective (Nikon, CFI Plan Apo A NA 1.45 WD 0.13), Zyla 5.5 sCmos camera
(Andor, UK), brightfield LED light source (CoolLED pE-100), fluorescence LED light source
(Lumencor, SOLA light engine), GFP filter set (Nikon Epi-FlI Filter Cube GFP-B), computer
controlled shutters, automated stage and incubation chamber for temperature control. Tem-
perature was set to 37 °C three hours prior to starting an experiment. Nikon NIS-Elements
AR software was used to control the microscope.

Brightfield images (80 ms exposure time at 3.2% power) were acquired every minute for
7.5 hours to 10 hours. GFP fluorescence images (1s exposure at 25% power) were acquired
every 10 min. Time-lapse data was processed with custom MATLAB functions developed
within our group. Briefly, an automated pipeline segmented every image, identifying indi-
vidual cells and calculating their spatial properties. Cells were assigned unique identifiers
and were tracked in time, allowing for the calculation of time-dependent properties includ-
ing cell ages, elongation rates, and interdivision times.

All measurements presented here originate from the exponential growth phase of the
population. We fitted the length distribution at division for a sample of mother cells (®,)
from experimental data with a normal distribution (N (u,0)), and the length partitioning
distribution (K) with a symmetric beta distribution. Note that we measured @, rather than
®,,. If sufficient data is available, the interdivision time distribution can be used to relate the
experimentally measured @, to ®,,, but we corrected for this by subtracting a small value
from ®@,,. The growth rate was obtained from the average interdivision time (Eq. (8.4)). For
cells expressing a fluorescent construct, the fluorescence at birth and division were taken
as the first an last measurement during the single cell time trace. Because we measured
the GFP fluorescence once every ten minutes, an average deviation of five minutes from
a=0and a = T is therefore present. We stochastically modeled the GFP fluorescence as a
zero-order reaction. The parameters of the stochastic model (1(0) and k;y,) were derived
by linear fitting the mean fluorescence at a given age (n|a) and assuming doubling of the

fluorescence during a average cell cycle (Eq. (S8.13)).
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8.6 Supplemental Information

Scripts S1. Annotated scripts and input files used to generate modeling and simulation

results can be found at http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-23543.

This supporting information contains analytical results that we used to demonstrate the
functionality of cell growth and division in stochastic simulation algorithms (SSAs) as im-
plemented in StochPy. In all examples, we used exponential cell volume growth which

follows the exponential growth function,
V(a)=V(0)-e"?, (S8.1)

where 0<a<T.

Analytical solutions: Case Study 1 Volume distributions

We drew the cell volume at division (®,) from the following scaled beta distribution:

(V-15)%"1(1-(V -15))~1
B(a,p)

with V as the cell volume and B as the Beta function that normalizes the distribution. Since

Vaivision ~ (Dm(v) =

,  Ve[l525], (S8.2)

the beta distribution is defined on the interval [0,1], we scaled this distribution to the in-
terval [1.5,2.5]. When the division volume was reached, we divided the mature mother cell
volume equally between both daughter cells (volume partitioning distribution K = 0.5). The
distribution of the volume at birth was obtained by calculating the distribution of the prod-
uct of two random variables, using @, and the partitioning distribution K. With K as the
Dirac delta distribution such that K(0.5) = 1. The cell volume distribution at cell birth is
then given by

2%(V -0.75)*1(2.5-2V)F1
B(a,p) ’

The relationship between the mean of both distributions is given by

Viiren ~ ¥p(V) =20, (2V) = V e[0.75,1.5]. (S8.3)

(Vdivision>:<Vbirth)'eH(T)’ (S8.4)
with T =1n(2)/p thus
Viivisi 1
(Vbirtn) = (:1/7:132”)") = 2 (Vdivision) - (S8.5)

The volume distribution of a sample of extant cells can be calculated as function of ¥}, and
®,, following the equations deduced by Collins and Richmond (1962) as shown in Painter
and Marr (1968):

g (V)Ae(V)+ A (V)g(V) = k[2¥, (V) = @ (V) = Ae (V)] (S8.6)
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with g(x) as the growth rate of cells with size V, A, (V') as volume distribution of a sample
of extant cells, ¥}, as the volume distribution of a sample of baby cells at birth, ®,, as the
volume distribution at division of a sample of mother cells, and k as the specific growth rate

of the population. Assuming g( V) = k- V, this function can be simplified to
(V)= [Z‘I’h(V) D, (V)=22.(V)] (58.7)

which can be solved to give the Volume distribution of a sample of extant cells.
Since Vjiyision and Vpi.sn are independent, the distribution of the ratio r =
Vaivision/ Voirtn can be calculated from (Curtiss, 1941)
Vd1v1ston
~1(r) = |V|‘I’h V) @, (V)dx (S8.8)
Vbtrth
By using the change-of-variable technique we can transform [ (r) and obtain the distribution

of the interdivision time:

ro= et (S8.9)
f(T) = aaT(e”T)‘l(e”T) (58.10)

Analytical solutions: Case Study 2 mRNA synthesis

In the second case study, we used a zero-order mRNA synthesis model in exponentially
growing cells. With a deterministic interdivision time, the theoretical mRNA copy number

distributions of this model are known (Schwabe and Bruggeman (2014)).

Average molecule copy numbers at birth and division
The mRNA copy number in a cell at a certain age (a) is given by
n(a)=n(0)+N(a), (88.11)

where n(a) is the mRNA copy number at cell age a, n(0) as the mRNA copy number ob-
tained at cell division, and N(a) as the mRNA molecules synthesized since the last cell

division at age a. The following relationship holds for the averages:

(n(a)) = (n(0)) +(N(a)). (58.12)

When symmetric partitioning at the end of a cell cycle (¢ = T') is assumed, the average mRNA

copy number at birth is half the average of mRNA copy number at division,

(n(T)) =2(n(0)). (58.13)

This means that cells double their average number of molecules during one cell cycle (a =0
to a = T). The average amount of molecules produced at t = T equals the average number

molecules obtained at ¢ = 0.
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Poisson distributed molecule copy numbers at a specific age

The waiting time distribution of a first-order synthesis process is exponentially distributed,

the time between consecutive events is then given by
= _tsks
ts~g(ts)=ks-e . (S8.14)

The time to make N molecules follows a gamma distribution and can be derived from the

N-th convolution of g(¢) using the generating function, which is the Laplace transform (Z)
G(x=Nlt) =271 (Z(g()™),
e_kstkg\]t"_l (S8.15)
I(N)

with I[-] as the incomplete gamma function. The probability to produce more than N

molecules in time t equals

t
h(X2N|t)=f G(x=NJt)dt. (S8.16)
0
The probability mass function for the production of N molecules at time ¢ is given by
h(x=NIt) = h(x> Nty = h(x> N+1z),
B e—kst(kst)N (S8.17)
- N!

>

which is a Poisson distribution with mean kgt. Of course, time can be interchanged by age,

t=a.

mRNA copy number distribution of a sample of extant cells

The molecule copy number distribution of a sample of extant cells was earlier determined

by Schwabe and Bruggeman (2014) and is given by

p(n) = /OTu(a) -p(n|a)da,

T —ks(a+T) n
:—/0 u(a)~e (:'S(LH—T)) da,

_ 4k T)"(T[1+ m, ks T+ In(2)] - T[1+ 1,2k, T + In(4)]) In(2) (ke T +In(2)) ™"

>

n!
(S8.18)

with I'[-] as the incomplete gamma function, u(a) as the cell age distribution for a popula-

tion of cells with a deterministic interdivision time T, and k; as the synthesis rate constant.
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Analytical solutions: Case Study 3 mRNA synthesis and degradation

In the third case study, we considered a model consisting of a zero-order mRNA synthesis
reaction and first order mRNA degradation reaction, in exponentially growing cells. When
we assume a deterministic interdivision time, the theoretical molecule copy number distri-

butions at a given age of this model are known (Schwabe and Bruggeman (2014)).

Poisson distributed molecule copy numbers at a specific age

With a synthesis and degradation reaction, the average mRNA copy number in a cell of a
given age a depends on the mRNA copy number at t = 0 and the net synthesis until time
a. For a linear model with an constant production and degradation rate the average copy

number can be written as

Jy! (n(@)y ek 4 f (1= k0t ) da

(n(a))= T , (S8.19)
where T is the (deterministic) interdivision time (T =1n(2)/y) and (n(0)) as
kyT
(n(0)) = LDk (s8.20

C(2eksT -1k’
The copy number distribution at age a is given by a Poisson distribution (see Schwabe and
Bruggeman (2014) for derivation),

n(a)~ Poisson[;c(a) +

WP(T)], (S8.21)

o=

with the number of molecules produced during a cell cycle as up until age a as x(a) =

]’:—;(1 —e~*a) and the survival probability of molecules as p(a) = eXd?,

Molecule copy-number distribution of a sample of extant cells

The molecule copy-number distribution of the sample of extant cells was determined by

numerically solving
T
n~[ p(nla)-u(a)da, (S8.22)
0

with the p(n|a) determined by Eq. (58.21) and the age distribution, u(a), taken from Painter
and Marr (1968) in combination with a deterministic interdivision time, which then for u(a)
gives

In(2
u(a)=2p-e ", aclo, n(2)

1. (S8.23)
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From a single lineage simulation to extant-cell population distributions

In Eq. (8.11) we derived the probability to choose daughter one such that the simulated
lineage is representative for a sample of mother cells. Another way to derive this probability
is via the following route: The two interdivision times that are calculated each generation
are from the distribution f}, (¢). As we want to simulate a lineage representative of a sample
of mother cells, the probability of choosing T or T3, and correspondingly of daughter cell
one or daughter cell two should be biased in order to reflect f,(t) instead of f},(¢). This
can be done in the following way:

T T
p(Tl) — lim szz_efb(t)dt . [T]l—efm(t)dt _ eile _ ekAT' (8824)
p(T2) 0 [ f(t)dt [ fu(t)dr e

The the probability p of choosing daughter one is then given by

be P(Tl) ek-AT

= (1) p(T3) T4 kAT (58.25)

which is the same result as Eq. (8.11).

The joint distribution of cell age and interdivision time

In order to obtain the copy number distributions for a sample of extant cells the joint distri-
bution of cell age and interdivision time for extant cells is required which can be calculated
from the specific growth rate of the population and the interdivision time distribution. The
derivation presented here is analogous to the one for the distribution of extant cell interdi-
vision times in (Painter and Marr, 1968) (p. 528). With a population size of n(0) at ¢ = 0 the
rate of formation of new cells equals 2k-7(0)-e**. The fraction of these cells with interdivi-
sion time less than T which survive at least until time ¢ is given by f_Tt fp(t)dt. Therefore,

the total number of cells at time t with interdivision time < T and age < a equals

n(O)/OT[Oag(t,x)dtdx = [:Zk-n(O)-ek[ [tbe(x)dx dt,

# cells at t = 0 with age< a # cells with age< a. Fraction of cells

and interdivision time< T. with  interdivi- (88.26)
sion time< T.
T
=2n(0) f fp(x) (ekx - e_“k) dx.
0
Differentiation yields
g(a,T) =2k fy (T)e™ = k fu (T) X (T, (S8.27)

the joint PDF of cell age and interdivision time.
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Calculating copy number distributions at defined cell ages for samples of

extant, mother, and baby cells

From the simulations (representative of a sample of mother cells) the copy number dis-
tributions at defined cell ages for samples of extant and baby cells can also be calculated
(extracting the distribution for a sample of mother cells follows immediately from the tra-

jectory):
I(n,a,T)

YiI(j,a,T)

where s denotes the type of sample (extant, baby cells) and f; the corresponding interdivi-

ps(ny=nla) = f AT =g, (58.28)

sion time distribution (Eq. (8.6)).
Division is not a defined cell age (as interdivision times are distributed), but nevertheless
the distribution at division for a sample of baby or extant cells can be calculated in a similar

manner:
I(n,a=T,T)

Z]-I(j,a= T,T)

For both calculations interdivision times need to be binned in order to work with the indi-

Tmax
pe(mx=nla=1)= [ (1) (58.29

cator function.
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Discussion and prospects

9.1 Using the four key players in systems biology

E have seen that there is use for the four key players of this Ph.D. dissertation—

models, simulation, algorithms, and software—within systems biology to study

fluxes and fluctuations in biochemical models. This Ph.D. dissertation started
with the notion that all models (as defined in Chapter 1) are wrong, but some are useful.
We explained that these models are by definition a simplified description of reality and,
therefore, always wrong. Realism is thus not the most desired property of any model. Useful
models successfully capture the thin line between realism and simplicity.

To study fluxes and fluctuations in biochemical models, we used (genome-scale) stoi-
chiometric models and stochastic models, respectively. These models are, as we showed
in the preceding chapters, in many ways each other’s opposite. While genome-scale sto-
ichiometric models (GSSMs) consist generally of many reactions and species, stochastic
models generally consists of only a few reactions and species. The predictions made by
GSSMs are deterministic, whereas stochastic models possess inherent randomness. Kinetic
parameters are not used in GSSMs, but they are a necessity for our stochastic models. Be-
ing each other’s opposite means that, for simulation, they also rely on completely different
algorithms (and require therefore typically different software tools).

Despite that both stoichiometric and stochastic models are a simplified description of
the underlying process, they led to many valuable insights for a wide variety of biologi-
cal questions. To study fluxes in biochemical models, we used stoichiometric models.
These models have proven useful for metabolic engineering, biological discovery, and net-
work property analysis (Feist and Palsson, 2008; O’Brien et al., 2015). Its proven usefulness
and the relative ease of making these models led to a rapid increase in the reconstruction
of these GSSMs of, among others, Escherichia coli (Feist et al., 2007), Saccharomyces cere-
visiae (Heavner et al., 2013) and Homo sapiens metabolism (Thiele et al., 2013). We presented
a state-of-the-art GSSM of the cyanobacterium Synechocystis metabolism in Chapter 3 and
a corresponding interactive metabolic map. We subsequently used (also in Chapter 3) this
GSSM to study (i) the physiological adaptation of Synechocystis to light and dark condi-
tions, (ii) the properties of Synechocystis photosynthesis, and (iii) the production of the bulk
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chemical 2,3-butanediol. We greatly simplified this study by the development of a graphical
and interactive map of Synechocystis metabolism. To study flux distributions, we can now
just look at the graphical representation rather than the tedious process of studying a long
list of difficult to understand identifiers and corresponding flux values. The availability of
these graphical maps greatly simplifies the data analysis and integration challenge that we
are currently facing with the increasing amount of genomic, metabolomic, proteomic, and
flux data.

We have studied the possible flux distributions that give rise to production of 2,3-
butanediol and its consequences (e.g. enhanced activity of the RuBisCO enzyme). We
did not find any promising metabolic engineering strategies that predict obligatory cou-
pling of growth and product synthesis under autotrophic growth conditions. These results
are in agreement with a recent study (Erdrich et al., 2014) which indicates that achiev-
ing an obligatory coupling of growth and biofuel product synthesis in cyanobacteria re-
quires more difficult and fundamentally different metabolic engineering strategies com-
pared to heterotrophic micro-organisms (Klamt and Mahadevan, 2015). Perhaps that this
is the reason why a heterologous xylose assimilation pathway was recently introduced into
the cyanobacterium Synechocystis (Lee et al., 2015).

In Chapters 4 and 5 we showed that GSSMs typically have enormous (optimal) solu-
tion spaces. Kelk et al. (2012) proposed a method, CoPE-FBA, that offers the premise of
a simplified biological understanding of the optimal solution space of metabolic models.
In Chapters 4 and 5 we further developed this method and present its successor, CoPE-
FBA 2.0, which allows for fast and efficient characterization of the optimal solution space.
Our method is a great asset to the systems biology community, because it provides much
more information about the optimal solution space than can be obtained with other pop-
ular methods such as Flux Variability Analysis (FVA) (Mahadevan and Schilling, 2003) and
Monte Carlo sampling of the optimal solution space (Wiback et al., 2004; Bordel et al., 2010).
It should be noted, however, that CoPE-FBA cannot be used on the solution space without
optimization, while FVA and Monte Carlo sampling can be used on both the solution space
and the optimal solution space. In the solution space, FVA can be used to predict the flux
variability given a set of experimentally measured fluxes. Also, we have to keep in mind
that the optimal solution space is a result of the underdetermined nature of the problem
which raises an important question: Are these multiple solutions an artifact of the problem
formulation or a biological property of the network? We can safely say that the enormous
size of GSSM optimal solution spaces is an artifact of the problem formulation. Despite the
popular proverb “all roads lead to Rome” which means that there exist many routes to the
same goal, we expect that if we had all the details (e.g. kinetics, regulation) there would be
only one optimal solution. The secondary objectives analysis done in Chapter 4 supports
this expectation by showing that the optimal solution space shrinks enormously when ad-

ditional objectives—e.g. those related to pathway expression costs—are introduced.
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To study fluctuations in biochemical models, we used stochastic models—models that
were until recently often overlooked. This is also why we created StochPy: A comprehen-
sive and user-friendly tool for simulating stochastic biological processes. We subsequently

used StochPy to study:

« stochastic simulation of a prokaryotic two-component signaling system (Wei et al.,
2014);

« the spontaneous fluctuating activity of single enzyme molecules (Schwabe et al.,
2013); and

« the histone modification pattern formation (Anink-Groenen et al., 2014).

In Chapters 6 and 7, we briefly discussed the work described in (Wei et al., 2014) and
(Schwabe et al., 2013) to demonstrate the usefulness of discrete stochastic simulations and
to illustrate our package StochPy, respectively. In Chapter 7 we already touched upon the
potential effect of cell growth and division during stochastic simulations. We further im-
proved the stochastic simulation algorithms with cell growth and division in Chapter 8.
Taking cell growth and division into account is very time consuming if we simulate the
complete lineage tree. We presented an algorithm which tracks only a single cell lineage
and can, under certain realistic conditions, provide information about different samples of
cells such as all cells in the lineage tree at a given point in time. The predictions of our algo-
rithms are in agreement with theory and experimental measurements. This means that we
can use our software now to make predictions of single-cell behavior in (rapidly) growing
and dividing cells, especially in cases where the timescale to reach a steady state exceeds
the organisms’ generation time.

In conclusion, we succeeded in our aim: Use the four key players of this Ph.D.
dissertation—models, simulation, algorithms, and software—to study fluxes and fluctuations
in biochemical models. Of course, there are still many open questions in systems biology
that remain to be solved. The models, simulations, algorithms, and software we present
here form another important piece that can aid in solving some of these open questions in
the future. For example, our stochastic simulator StochPy—that contains stochastic simula-
tion algorithms with delay and with cell growth and division—can aid studying the largely
unexplored effects of stochasticity at the level of single-cells and at the population level.
Since this project was carried out within the BioSolarCells fundamental research program:
“Expanding society’s toolbox to harvest solar energy”, we are particularly interested in the
production of biofuels for which the cyanobacterium Synechocystis is an important candi-
date. Here, an important open question is: does Synechocystis have an optimal metabolic
backbone for the production of biofuels? The production of biofuels could be mainly depen-
dent on metabolic co-factors such as NADPH, NADH, and/or ATP. This would mean that

rather than one metabolic backbone different intervention strategies are necessary. Our
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metabolic model and corresponding interactive map can directly aid in studying metabolic

engineering strategies for different biofuels.

9.2 The future of the four key players in systems biology

I expect that the four key players of this Ph.D. dissertation—models, simulation, algorithms,
and software—become increasingly important in the future of systems biology, but also in
many other (scientific) communities. While I call them key players, they are merely the
key players of this Ph.D. dissertation. I do not expect that they become the key players in
systems biology, but they are going to be a core research component. In an ideal systems
biology research world, both experimental and computational methods are used in an inte-
grated approach, just as Kitano described systems biology in 2002 (Kitano, 2002a). Below, I
discuss the future of each key player individually.

Currently, there exist two main modeling philosophies. On the one hand, models get
updated, refined, and extended step-by-step with the ultimate goal of getting a whole-cell
computational model as was recently done for the first time for the human pathogen My-
coplasma genitalium (Karr et al., 2012). This step-by-step procedure is probably best illus-
trated by the advancement of current genome-scale models that are extended reaction-by-
reaction. These models have, however, also various shortcomings which is why scientists
all over the world are developing the next generation of genome-scale models (King et al.,
2015). A first shortcoming is that costs for growth and maintenance are largely ignored. En-
zymes are for instance free, which means that two distinct pathways with the same input-
output relationship, but with a different number of reactions (e.g. ten versus five reactions)
have an identical enzyme production cost. A few years ago, the first genome-scale models
of metabolism and gene expression (ME-models) were created (Lerman et al., 2012; Thiele
et al., 2012). These ME-models require that all metabolic enzymes are synthesized by the
gene expression network. Although this idea is promising, the process of enzyme synthesis
was included in agonizing detail (transcription, translation, protein folding, protein complex
formation etc. were included) which makes these models not transparent and (computation-
ally) difficult to create, refine, use, and analyze. Another important shortcoming is that the
kinetic limitations of enzymes are not or only poorly represented in current genome-scale
models. The availability of high-throughput fluxomic and metabolic data paves the way to
incorporate kinetics into genome-scale models. This also opens the door for specific growth
rate optimization as was recently developed by Wortel et al. (2014) for genome-scale models.

On the other hand, there is a renewed interest in making models—used to study the often
emergent properties of biological systems—as simple as possible (i.e. coarse-grained mod-
els). This reductionists approach is in accordance with George E. P. Box saying: “the ability
to devise simple but evocative models is the signature of the great scientist so overelaboration

and overparameterization is often the mark of mediocrity” (see Chapter 1). Coarse-grained
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models are especially popular in the field of molecular dynamics, because of molecular
dynamics’ computational challenges. These coarse-grained kinetic models have also been
proven useful to study specific aspects of cell’s physiology (Molenaar et al., 2009; Scott et al.,
2014; Bosdriesz et al., 2015). Also, the stochastic models that we used are coarse-grained (e.g.
by assuming that mRNA is synthesized instantly by one specific zero-order reaction).

I believe that both philosophies (very detailed and coarse-grained models) will continue
to be used in the future of systems biology. Each model has its own advantages and dis-
advantages. The type of model used should depend on the type of research question and
not the other way around. An important difference is that the development and refinement
of these very detailed models is labor intensive and requires more and more a community
effort as was recently illustrated for the human genome-scale model (Thiele et al., 2013).

While novel algorithms are continuously developed for existing models, the next gen-
eration of models to study biological systems also requires novel algorithms. This imposes
new challenges. For example, various genome-scale modeling and simulation (M&S) ap-
proaches exist to study single species, but genome-scale M&S approaches to study commu-
nities of species is still in its infancy. It is therefore an open question of how to use predictive
M&S in microbial communities. The development of these algorithms subsequently will re-
quire the development of new software or the extension of existing software.

Without useful software packages, the majority of the scientific community cannot
profit from the developed computational models and algorithms. Or in other words, soft-
ware packages can form the bridge between experimental and computational research. This,
and the fact that software is also required to use the fancy experimental methods that exist
these days and to analyze the data that is generated by these experimental methods, makes
software indispensable in systems biology research. Strangely, those that develop software
are still undervalued in the systems biology community. Creating useful software that can
be used by the community is an art; useful software is not something that you create during
a coffee break. Many software packages that are intended to be used by the community do
contain bugs, but software is never a finished product. Instead of not using this software
anymore (and perhaps make a quick and dirty “in-house” alternative), bugs should be re-
ported such that the developers can fix these bugs and present a new and improved version
of the software package.

Currently, the majority of the scientific software is not developed to be used by a com-
munity. This is true in the systems biology community but also in various other commu-
nities. Software is often developed and used within a research group to produce and/or
analyze data. To make it even worse, many software projects are developed during a Ph.D.
project and are not or poorly maintained afterwards. An important reason is that there are
currently no good incentives for contributing to and improving existing software projects.
Sharing software projects on GitHub could help. Alternatively, someone within the research

facility should stay responsible for the developed software. Strangely, many research facil-
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ities have several wet-lab technicians, while dry-lab technicians are a rarity. These dry-lab
technicians could be involved during the development of the project and could be respon-
sible for the project after the main developer(s) leave the research facility.

To solve these issues with scientific software, we should come up with some guide lines
about how to develop and how to use software packages. In the final section of this dis-
cussion, I present my view on how to develop useful (scientific) software that can form the

bridge between experimental and computational research.

9.3 Most software works correctly, but some are useful

I started this Ph.D. dissertation with a famous quote of George E.P. Box who wrote: “Es-
sentially, all models are wrong, but some are useful.” We now reach the end of this Ph.D.

dissertation and I want to end this discussion with a similar statement about software:

Most software works correctly, but some are useful. ]

This statement can in my opinion can be made about the (scientific) software that is
around these days. If you ever used scientific software, you probably remember the painful
installation procedure that was required before being able to profit from the software pack-
age. Let alone those software packages where you did not manage to successfully complete
the painful installation procedure at all. This is only one of the many examples of why
scientific software, while working correctly, is not useful for the majority of the scientific
community.

That is why I develop scientific software around four core principles:
(i) functionality,

(ii) user-friendliness,

(iii) flexibility, and

(iv) open source

which I discuss in detail here. For me the first prerequisite of scientific software is (of course)
functionality. Scientific software can satisfy all the other core principles, but software can-
not be useful if it does not function properly. This is not as easy as it may sound, because
developing scientific software requires a complete understanding of the generally novel task
that should be carried out by the software.

Second, I believe that scientific software should be user-friendly. Or in other words, soft-
ware that functions correctly should also be easy-to-use. I define software as user-friendly
if its installation procedure is simple, the software is well documented, contains simple-to-

use and illustrative examples that work “out of the box”. A graphical user interface (GUI)
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is not a prerequisite for user-friendly software. Admittedly, GUIs can be intuitive to use if
they are properly designed, but scientific software packages with a properly designed GUI
are a rarity.

Third, I propose that flexibility should be a requirement of scientific software. For soft-
ware to be flexible, I argue that scientific software should (also) have a command-line in-
terface (CLI). Compared to GUIs, CLIs have a steep learning curve but they allow for more
flexibility, efficiency, and productivity. Not every programming language allows for a flex-
ible CLI. I favor high-level programming languages that can be used interactively. Exam-
ples of high-level programming languages that can be used interactively are Python, MAT-
LAB, Mathematica, Perl, and R. A disadvantage of (interactive) high-level programming
languages is the lower speed at which simulations are done but this is—at least in compu-
tational systems biology—often not the most important feature of a programing language.

Additionally, software with (also) a CLI makes it generally simpler to reproduce the
computational scientific findings presented in a scientific article. In contrast to “click-and-
run” software (i.e. GUI only software), CLIs allow for preprogrammed scripts that contain
a set of instructions that can—after installation—be used to directly reproduce the scien-
tific findings presented in the scientific article. Publicly funded scientific research should
be reproducible. The Nature Publishing Group, for instance, states: “An inherent principle
of publication is that others should be able to replicate and build upon the authors’ published
claims. A condition of publication in a Nature journal is that authors are required to make
materials, data, code, and associated protocols promptly available to readers without undue
qualifications.” However, this is generally not true for used software (and in-house devel-
oped computational methods). For example, many scientific findings obtained via M&S are
still presented without the corresponding model. If the model is part of the publication, a
set of instructions that is required to reproduce the results is typically lacking or incom-
plete. I advocate that scientific findings obtained via a computational method should also
be reproducible, as is also argued by others (Peng, 2011; Ince et al., 2012; Morin et al., 2012;
Bergmann et al.,, 2014; Hucka et al., 2015).

And fourth, I argue that scientific software should be open source. Closed-source soft-
ware is used as “black boxes” whereas open-source software allows the community to in-
spect, modify and distribute the developed software for any purpose. We can therefore get
a look under the hood. Open-source software also improves the chances of reproducibil-
ity (of which I discussed the importance above). Ideally, the programming language is also
open-source and not proprietary such as MATLAB or Mathematica.

Even though I regularly used, among others, both MATLAB and Mathematica, I am a big
fan of the programming language Python because it is simply awesome for most scientific
software packages. Python is open source, indentation is obligatory which in combination
with a proper syntax results in highly readable code; this in contrast to Perl and Mathemat-

ica. Many (scientific) libraries are available such as Numerical Python (NumPy), Scientific
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Python (SciPy), MatPlotLib for plotting, Cython for low-level optimization, and Sphinx for
automatic documentation of your software project. We can make use of IPython for inter-
active programming and since recently also IPython notebook which is a great asset for
teaching duties and code sharing. For these reasons, we developed VoNDA, CoPE-FBA 2.0,
and StochPy in Python—the three tools we developed to study fluxes and fluctuations in
biochemical models.

Unquestionably, Python is—just as the software packages we developed—of course not
perfect. The programming language C outperforms Python at both speed and memory
usage, as demonstrated by Fourment and Gillings (2008) where they used both programming
languages to execute various tasks that are common in systems biology and bioinformatics.
If run time speed is key, C could be a better choice than Python, whereas we can also use the
Cython library which gives you the combined power of Python and C. I end the discussion
of my Ph.D. dissertation with the notion that no software is perfect, but that this is also not
required:

Remember that all software is imperfect; the practical question is how imperfect do
they have to be to not be useful.
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Summary

I0LOGY, computer science, and mathematics, as independent sciences, deal with

completely different aspects. Biology studies living organisms. Computer science

deals with the construction, programming, operation, and use of computers. Math-
ematics is the study of number, quantity, and space which can be applied to different dis-
ciplines. Computational systems biology is a fast growing interdisciplinary discipline that
uses computer science and (applied) mathematics to study complex biological systems.

Building a mathematical model is an attractive and effective way of using computa-

tional systems biology to study the emergent properties of a complex biological system. A

computer simulation uses such a mathematical model to predict its behavior in a specific

condition. These kind of simulations require following a set of mathematical operations—an
algorithm. The used models and algorithms are often so complex that appropriate software
is required for this purpose.

I underlined mathematical model, computer simulation, algorithm, and software for a
reason. In Chapter 11 explained that they are the key players I used to study fluxes and fluc-
tuations in biochemical models (the title of this dissertation). More specifically, I used two
distinct simulation approaches to study fluxes and fluctuations in biochemical models: sto-
ichiometric simulations to study fluxes (Chapters 2—5) and stochastic simulations to study
fluctuations (Chapters 6-8). Briefly, stoichiometric simulations are deterministic (the out-
come is precisely determined without any room of variation). They are called stoichiometric
simulations because kinetic information is ignored. In contrast, stochastic simulations take
into account this kinetic information and they posses inherent randomness (the outcome of
each simulation is different). This means that both simulation approaches are completely
different; both approaches require also different models. This dissertation is therefore logi-
cally divided into different parts, a part about stoichiometric models and simulations and a
part about stochastic models and simulations.

The part about fluxes in biochemical models starts with Chapter 2. Here we gave an
overview of the state-of-the-art stoichiometric modeling and simulation approaches. We
additionally discussed the biological implications of these approaches. Stoichiometric mod-
eling and simulation is mainly used to study metabolism. This requires genome-scale stoi-
chiometric models that cover the total metabolic potential encoded in the genome. We de-
veloped such a genome-scale stoichiometric metabolic model of the cyanobacterium Syne-

chocystis (Chapter 3). There is a lot of interest in these cyanobacteria because they have
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the potential to be used as a“cellular factory for the conversion of solar energy and carbon
dioxide into various industrial products such as biofuels.

Simulating these genome-scale models often results in big data sets. The interpretation
of these big data sets a challenge. To be of any biological value, interpretation of these big
data sets is required in terms of biological routes; these routes can be compared with high-
ways. Road maps and navigation systems are widely used to travel from starting point to
destination. To simplify the interpretation of the data sets generated by simulating genome-
scale models, we developed a hand-drawn metabolic map (Chapter 3). Our metabolic map
can be read and modified by machines and interpreted by researchers. Therefore, this
metabolic map can be used, for example, for the direct visualization and analysis of the
(big) data sets that are generated with stoichiometric simulations.

Genome-scale stoichiometric models are often used to determine the optimal biomass
yield. Perhaps surprisingly, there are typically multiple biological routes (and combina-
tions thereof) with an optimal biomass yield. This gives rise to the optimal solution space.
In Chapter 4 we extensively studied the characteristics of this space. We are the first
that uniquely characterized the entire optimal solution space in terms of a specific set of
metabolic flux routes. We can quickly characterize this set of metabolic flux routes with
the TimoTimo (this name is derived from the navigation systems manufacturer TomTom).
The TimoTimo uses a divide-and-conquer approach (Chapter 5) to quickly characterize the
optimal solution space in terms of this specific set of metabolic flux routes.

Stoichiometric simulations are, as mentioned earlier, deterministic. They ignore that
biological systems are inherently stochastic. While this stochasticity is often negligible in
the macroscopic world because of the law of large numbers, experimental evidence indicates
that significant stochastic fluctuations are present and essential. This is especially true when
molecules (e.g. mRNA or transcription factors) are present at low copy numbers. There exist
mathematical methods that capture these stochastic fluctuations, which are called stochastic
simulation algorithms.

The application and development of these algorithms to study fluctuations in biochemi-
cal models is the topic of the second part of my dissertation. This part starts with Chapter 6
where we provided an overview of the state-of-the-art stochastic simulation algorithms. We
also used several illustrative examples to demonstrate the advantage of stochastic simula-
tions compared to deterministic simulations. For instance, stochastic simulations allow for
better estimation of the kinetic model parameters.

To study fluctuations in biochemical models we developed StochPy (Chapter 7). StochPy
is a comprehensive and user-friendly software package for stochastic simulations. In Chap-
ter 7 we used various case studies to demonstrate the power of StochPy. The current state-
of-the-art stochastic simulation algorithms ignore the, often important, stochastic contri-
butions of both cell growth and division. In Chapter 8 we developed a generic stochastic

simulation algorithm that takes into account the stochastic contributions of net molecule
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synthesis as the stochastic contributions of cell growth and division. This novel algorithm is
now implemented in StochPy and is in exact agreement with theory, and in good agreement
with time-lapse microscopy data of growing micro-organisms.

In a concluding discussion (Chapter 9), I looked critically at the use and future of the
key players (model, simulation, algorithm, and software) in systems biology. I expect that
they are going to be a core research component to study complex biological systems. This

discussion ends with my philosophy about the requirements for useful scientific software.
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Samenvatting

IOLOGIE, informatica en wiskunde zijn wetenschappen die gaan over compleet ver-
schillende aspecten. Biologie bestudeert levende organismen. Informatica is het
vakgebied van de digitale informatieverwerking. Wiskunde is de studie van onder
andere getallen, hoeveelheden en ruimtes die je kunt toepassen in andere wetenschappen.
Computationele systeembiologie is een snel groeiende interdisciplinaire wetenschap die in-
formatica en (toegepaste) wiskunde gebruikt voor het onderzoeken van complexe biologi-
sche systemen.
Het ontwikkelen van een wiskundig model is een attractieve en effectieve methode
voor het onderzoeken van een complex biologisch systeem. Met behulp van een

computersimulatie kun je zo’n model vervolgens gebruiken om het gedrag van een bio-

logisch systeem—in een specifieke situatie—te voorspellen. Dit soort simulaties voeren een
set van wiskundige instructies uit, oftewel een algoritme. De gebruikte modellen en algo-
ritmes zijn vaak zo complex, zodat geschikte software noodzakelijk is.

Het is geen willekeur dat ik zowel wiskundig model, computersimulatie, algoritme en
software onderstreept heb. In hoofdstuk 1 heb ik uitgelegd dat dit de belangrijkste spelers
zijn in mijn proefschrift voor het onderzoeken van fluxen en fluctuaties in biochemische mo-
dellen (de titel van mijn proefschrift). Ik heb twee verschillende soorten simulaties gebruikt
voor het onderzoeken van fluxen en fluctuaties in biochemische modellen: stoichiometri-
sche simulaties voor het onderzoeken van fluxen (hoofdstukken 2-5) en stochastische si-
mulaties voor het onderzoeken van fluctuaties (hoofdstukken 6-8). Een stoichiometrische
simulatie is deterministisch (een simulatie zonder random variabelen; de uitkomst van de
simulatie is iedere keer hetzelfde). Het wordt een stoichiometrische simulatie genoemd,
omdat de kinetiek wordt weglaten. Stochastische simulaties daarentegen nemen deze ki-
netiek mee en laten een vorm van willekeur toe (een simulatie met random variabelen; de
uitkomst van de simulatie is telkens anders). Dit betekent dat beide soorten simulaties com-
pleet verschillend zijn; je hebt daarom verschillende modellen nodig voor stoichiometrische
en stochastische simulaties. Dit proefschrift is daarom logischerwijs onderverdeeld in ver-
schillende delen: een deel over stoichiometrische modellen en simulaties en een deel over
stochastische modellen en simulaties.

Het deel over fluxen in biochemische modellen start met hoofdstuk 2. Hierin hebben
we de huidige stand van zaken voor stoichiometrische modellen en simulatiemethodes be-

sproken. In dit hoofdstuk hebben we ook de biologische implicaties van deze modellen en
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simulatiemethodes besproken. Stoichiometrische modellen en simulatiemethodes worden
met name gebruikt voor het onderzoeken van het metabolisme (stofwisseling). Hiervoor
worden stoichiometrische modellen van het metabolisme op genoom-schaal gebruikt; dit
betekent dat er rekening gehouden wordt met het totale metabole potentieel dat is geco-
deerd in het genoom. Wij hebben zo’n genoom-schaal stoichiometrisch model ontwikkeld
over het metabolisme van de cyanobacterie Synechocystis (hoofdstuk 3). Er is veel interesse
in deze cyanobacterién, omdat ze de potentie hebben om gebruikt te worden als “cellulaire
fabriek” voor het omzetten van zonlicht en koolstofdioxide in diverse industriéle producten,
zoals biobrandstoffen.

De simulatie van deze genoom-schaal modellen resulteert vaak in grote datasets. Het
interpreteren van deze grote datasets is een uitdaging. Om van biologische waarde te zijn,
is het belangrijk om deze grote datasets te kunnen interpreteren in de vorm van biologische
routes; deze routes kun je vergelijken met snelwegen. Routekaarten en navigatiesystemen
worden veel gebruikt om van A naar B te komen. Om het interpreteren van deze datasets
te vereenvoudigen hebben we een handgemaakte metabole routekaart ontwikkeld (hoofd-
stuk 3). Deze metabole routekaart is zowel door de computer te lezen en te bewerken als
door wetenschappers te interpreteren. Deze metabole routekaart kan gebruikt worden voor
bijvoorbeeld het automatisch visualiseren van (grote) datasets die gegenereerd worden met
stoichiometrische simulaties.

Genoom-schaal stoichiometrische modellen worden vaak gebruikt om de optimale bi-
omassa opbrengst uit voedingsstoffen uit te rekenen. Misschien verrassend, maar er zijn
doorgaans meerdere biologische routes (en combinaties daarvan) die de biomassa opbrengst
optimaliseren; dit geeft de optimale oplossingsruimte. In hoofdstuk 4 hebben we de eigen-
schappen van deze oplossingsruimte onderzocht. We hebben als eerste de complete oplos-
singsruimte op een unieke manier omschreven met een specifieke collectie van biologische
routes. Deze collectie van biologische routes kunnen we efficiént uitrekenen met de Ti-
moTimo (de naam is afgeleid van de navigatiesystemenfabrikant TomTom). De TimoTimo
gebruikt een verdeel en heers strategie (hoofdstuk 5) om deze specifieke collectie van bio-
logische routes in het optimum efficiént uit te rekenen.

Stoichiometrische simulaties zijn, zoals eerder gezegd, deterministisch. Ze negeren dat
biologische systemen van nature stochastisch zijn. Indien de stochastische fluctuaties ver-
waarloosbaar zijn, kunnen we deterministische simulaties gebruiken. Dit is niet altijd het
geval. Voor complex biologische systemen spelen stochastische fluctuaties met name een rol
wanneer specifieke moleculen (bijvoorbeeld mRNA of transcriptiefactoren) aanwezig zijn
in lage aantallen. Er bestaan wiskundige methodes die kunnen omgaan met stochastische
fluctuaties. Deze methodes worden stochastische simulatie algoritmes genoemd.

Over de toepassing en het ontwikkelen van deze algoritmes voor het onderzoeken van
fluctuaties in biochemische modellen gaat het tweede deel van mijn proefschrift. Dit deel

begint in hoofdstuk 6 waar we een overzicht hebben gegeven van de huidige stand van zaken
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over stochastische simulatie algoritmes. Met een aantal illustratieve voorbeelden hebben we
ook de voordelen van stochastische simulaties laten zien ten opzichte van deterministische
simulaties. Stochastische simulatie algoritmes zijn bijvoorbeeld uitermate geschikt om de
parameters van een (kinetisch) model te schatten.

Voor het onderzoeken van fluctuaties in biochemische modellen hebben we StochPy
ontwikkeld (hoofdstuk 7). StochPy is een uitgebreid en gebruiksvriendelijk softwarepak-
ket voor stochastische simulaties. De kracht van StochPy hebben we in hoofdstuk 7 geillu-
streerd door middel van een aantal voorbeelden. De vaak niet te verwaarlozen stochastische
contributies van celgroei en celdeling worden niet meegenomen in de tot nu toe ontwikkelde
stochastische simulatie algoritmes. Wij hebben in hoofdstuk 8 een generiek stochastisch si-
mulatie algoritme ontwikkeld dat rekening houdt met zowel de stochastische contributies
van netto molecuul synthese als de stochastische contributies van celgroei en celdeling. Dit
nieuwe algoritme is toegevoegd aan StochPy en de voorspellingen komen exact overeen met
theorie en goed overeen met time-lapse microscoop data van groeiende micro-organismen.

In een afsluitende discussie (hoofdstuk 9) heb ik kritisch gekeken naar het gebruik en de
toekomst van de vier hoofdrolspelers (model, simulatie, algoritme en software) in systeem-
biologie. Ik verwacht dat ze een onmisbaar onderdeel gaan worden van onderzoek naar
complex biologische systemen. De discussie eindigt met mijn filosofie over de eisen voor

nuttige software in de wetenschap.
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