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1. Introduction

In 1982 a polynomial-time algorithm for factoring polynomials in one variable
with raticnal coefficients was published [II]. This Lj—algorithm came as a
rather big surprise: hardly anybody expected that the problem allowed solution
in polynomial time. The purpose of this introductory part is to present an
informal description of the L3—algorithm.

To measure the complexity of our algorithms we have to specify the encoding
of the polynomials to be factored. Two encoding schemes for polynomials can
be distinguished, a dense encoding scheme and a sparse encoding scheme. If a
polynomial is densely encoded, all its coefficients, including the zeros, are
listed; in a sparse encoding only the non-zero coefficients are listed. Here
we use the dense encoding scheme. This implies that an algorithm to factor
polynomials runs in polynomial time if for any polynomial £ to be factored,
the running time is bounded by a fixed polynomial function of the degrees
and the size of the coefficients of £.

After the introduction of some basic tools in Section 2, we describe in
Section 3 a well-known older algorithm to factor polynomials, the Berlekamp-
Hensel algorithm, and we will indicate why this algorithm is not polyncmial-
time. Roughly speaking, the reason is that the irreducible factors we are
looking for (which will frequently be called the true factors) are determined
by a combinatorial search among other, p-adic factors.

A true factor can also be regarded as a short vector in a certain integral
lattice, a concept that was introduced in [I]. Therefore we consider the prob-
lem of computing short vectors in a lattice in Section 4, and thereafter we
explain the L3—algorithm in Section 5.

This same technique of looking for short vectors can be applied to other

polynomial factoring problems as well. Some of these generalizations of the



La—algorithm are presented in Section 6. We conclude in Section 7 with some
remarks about the relative merits of these polynomial-time algorithms for the

factorization of polynomials.

2. Preliminaries

In the subsequent sections the following three notions will play an important
role: Berlekamp's algorithm, Hensel's lemma, and Mignotte's bound. These are
the basic tools for most of the polynomial factoring algorithms. We will brief-
ly explain here what they stand for.
Berlekamp's algorithm is an algorithm to determine the irreducible fac-
tors of a polynomial in one variable with coefficients in a finite field. Let
ﬂg denote a finite field containing g elements, for some prime power q==pm,
and let £ be a polynomial in BE[X] of degree n. To factor £, the maximal
number of additions, multiplications, and divisions in Ba to be carried out
by Berlekamp's algorithm is O{pn1n3). This is the best worst-case running
time that is known for an algorithm to factor polynomials in n%[x]. There
exist probabilistic algorithms for which the expected running time is linear
in logp rather than linear in p, as is the case in Berlekamp's algorithm.
Although such methods are usually much faster in practice, no upper bound can
be given for their worst-case running time, and therefore they are irrelevant
for our purposes. For a description of Berlekamp's algorithm we refer to [1; 11].
The Hensel lemma can be formulated as follows. Let p be a prime number,
and let k be a positive integer. By zz/pkzz we will denote the ring of inte-
gers modulo pk. Suppose that a polynomial feZ[X] and a factor he
(ZZ/pkza)[x] of £mod pk in (Z/pkm)[x] are given, such that hmedp and
(fmod p) /(hmod p) are relatively prime in (Z/p%)[x] and such that h has
leading coefficient equal to one (notice that, because p is prime, Z/pZ is
a finite field containing p elements). Hensel's lemma guarantees the exis-
tence of a unique polynomial ac¢ {Z/p2)[X] of degree smaller than degree(h),
such that h+pka 13 (:ZZ/pk-"1 7Z)[x] is a factor of fmod pk+1 in (Z/pk'*—1 zZ)[x].
Furthermore, its proof gives an algorithm to construct this a, and this algo-
rithm needs a number of bit operations that is bounded by a polynomial function
of degree(f) and logp} {ef. [11: exercise 4.6.2.22; 22; 23]). Thus, Hensel's
lemma enables us to extend or l1ift a factorization of fmodp to a factorization

k
of fmodp for any k czb that we want. This computation can be done in poly-
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nomial time as long as k 1is polynomially bounded. Such a factorization of
fmodpﬁ will be called a p-adic factorization of precision p
Finally, Mignotte's bound is an upper bound for the coefficients of a

factor of a polynomial in one variable with integral coefficients. Let

f=Z::__O £, X ez[x] be a polynomial of degree n, and let g=ZT:0 9; X" e
Z[X] be a factor of degree m of £ in Z[X]. Mignotte has proved in [14]
that

m

-
(2.1) lg; 1= (OIEL,
n 2.5 .

where |[£| denotes the length (Zizofi) of the polynomial £. It follows
that

2
(2.2) Igls(mm);ilfl-

Notice that loglg|=0(n+ loglfl), so that the length of a dense encoding
of a factor is polynomially bounded by the length of a dense encoding of the
polynomial itself. Similar bounds for polynomials in more than one variable
can be found in [6].

In the next section we will see that Berlekamp's algorithm, Hensel's
lemma, and Mignotte's bound together give rise to an important algorithm to

factor polynomials in 2Z[X], the Berlekamp-Hensel algorithm.

3. The Berlekamp-Hensel algorithm

The Berlekamp-Hensel algorithm was the first practical algorithm to factor
polynomials in one variable with integral coefficients. In this section we
present one of the simplest versions of this algorithm and we discuss its
most important properties. Although many improvements of the algorithm have
been suggested by several authors, the basic ideas remained the same, and
hence we will ignore these variants. Also we will not discuss the generaliza-
tions of the Berlekamp-Hensel algorithm to polynomials in more than one
variable.

The Berlekamp-Hensel algorithm essentially works as follows. First, a

sufficiently precise p-adic factorization of the polynomial to be factored is



computed. Next, the true factors are determined by combining these p-adic
factors in the proper way. We now present a somewhat more detailed description
of the algorithm.

Let fez[%] of degree n be the polynomial to be factored. For simplic-
ity we assume that £ is monic, i.e. £ has leading coefficient one. The
first step of the Berlekamp-Hensel algorithm is to remove the multiple factors
from £. Because a factor of multiplicity k=1 in £ has multiplicity k-1
in the derivative f£' of £, this can be done by dividing £ by gcd(f,£'),
where this gecd can be computed by means of one of the subresultant algorithms
(c£. [2]). so, from now on we may assume that £ is square-free, i.e. f
does not contain multiple factors.

Next, we determine a prime number p such that the polynomial fmod p
in (Z/p=)[x] is square-free in (Z/p#)[x]. This condition on p is
equivalent to the condition that p does not divide the discriminant discr(f)
ezzto of f (notice that discr(f) =0 because £ is square-free) . This
implies that such a prime number p indeed exists, and that p can be bounded
by a polynomial function of n and logl| £1.

In the third step we apply Berlekamp's algorithm to compute the complete
factorization of fmodp in (z/p2)[X]. We may assume that the factors
of fmodp are monic. Clearly the irreducible factors of £ in zZ[X] are
also factors of fmedp, but these factors of fmodp are not necessarily
irreducible in (Z/p@)[X]. So, the set of irreducible factors of fmod p
can be partitioned into a number of subsets such that each subset corresponds
to an irreducible factor of £ in #Z[X]. That is, the product of the elements
of such a subset is just an irreducible factor of £ in Z[Xx], reduced
modulo p. Thus, these subsets will in general not be sufficient to recon-
struct the factors of f in #Z[X], because the coefficients of the resulting
product are only integers modulo p. Therefore, before we look for the proper
combinations of the p-adic factors, we first have to compute the p-adic factor-
ization of £ wup to a higher precision.

This is what we do in the next step, where we apply Hensel's lemma, which
is possible because fmodp is square-free and because we assumed that the
factors of fmodp are monic. We modify each irreducible factor h of fmodp
in (z/pZ)[x] into a factor h of fmod pk in (ZZ/pk z)[x]1, for a value

of keZ that we will specify below. The polynomials h are monic, so that

0
the factorization in (Zz/pk 2Z)[X] that we find in this way is unique.



The value of k has to be chosen in such a way that the coefficients of
the combinations that we will have to consider are not too small. Therefore,
if we represent zz/pkzz by {-[(pk—l)/Z], ee-s-1,0,1, ..., [(pk)/ﬂ}. then
k has to be chosen such that (pk—11/2 is greater than the largest possible
coefficient of any factor of £ in Z[X]. From (2.1) it follows that we can
take k minimal such that (p'-1)/2> el

Now that we have a sufficiently precise p-adic factorization of £, we
are ready for the last step of the Berlekamp-Hensel algorithm, the determination
of the true factors of f£. As explained above, this can be done by looking at
combinations of p-adic factors. So, for all subsets of our set of p-adic fac-
tors, we test whether the product of the p-adic factors in a subset is a true
factor of £ in Z[x], wuntil all irreducible factors of f in Z[X] are
found. Of course, we have to arrange the subsets in order of increasing car-
dinality, to guarantee that the factors of f that we find are irreducible.

This completes the description of the Berlekamp-Hensel algorithm. Let us
consider its running time. It is not difficult to verify that, up to the last
step, everything can be done in peolynomial time. Unfortunately, this is not
the case for the last step, the search for the true factors.

Namely, suppose that f is irreducible in #Z[X] and that the number
of irreducible factors of fmodp is r. Then we have to look at all subsets
of cardinality at most r/2, before we are sure that none of them yields a
factor of £ in Z[X]. This implies that the number of subsets to be con-
sidered is exponential in r, and because the degree n of f is the only
a priori upper bound that we can give for r, we get a bound on the running
time of the last step, that is exponential in n.

In [7] a method is given to generate infinite classes of irreducible
polynomials in Z[xX], such that, for seme ceR

>0
number p, the number of p-adic factors is at least cn. For these poly-

and for every prime

nomials the number of subsets to be considered is indeed exponential in n,
so that the exponential-time bound that we derived is the best possible.

In practice however, the situation is not so bad as it seems, and the
algorithm usually has no problems to factor high-degree polynomials with
large coefficients. Also, in [4] it is made plausible that, under certain
assumptions concerning the distribution of the degrees of the factors of £,
the expected number of subsets to be considered in the last step is at most

2 i u F . y
n . This is in accordance with the practical experience that the last step



usually takes much less time than the computation of the p-adic factorization.
Clearly, to obtain a polynomial-time algorithm to factor polynomials in
z[X], we have to invent another method to recomstruct the factors in z[x]
from the p-adic factors. In Section 5 we will see that only one sufficiently
precise p-adic factor suffices to reconstruct the corresponding irreducible
factor in #Z[x%x], so that we do not have to look for the proper combination
of p-adic factors anymore. Before we can explain this construction and show
that it gives a polynomial-time factoring algorithm, we have to present an
important result concerning integral lattices; this will be done in the next

section.

4. Short vectors in lattices

Let bl'bQ' ...,bnezfl be linearly independent. The n-dimensicnal lattice
Lﬂizn with basis bl'bz' ...,bn is defined as the set of integral linear

combinations of the vectors bl'b2' ...,bn:

L={Z" ,r. b, : x, ez},
i=1"i i i

In Section 5 we will be interested in determining short vectors in a
lattice, where we use the ordinary Euclidean norm for vectors. We will not
give any detailed algorithms here; we will only briefly sketch what is known
about computing short vectors in a lattice, and mention an important recent
result.

Until now, no pclynomial-time algorithm is known to compute a shortest
non-zero vector in a lattice (polynomial-time means here polynomial-time in
n and the size of the entries of the vectors bi}. In fact, the problem is
widely conjectured to be NP-hard, but this has not yet been proved. (If we
replace the Lz—norm by the ymrnorm, then the shortest vector problem is known
to be NP-hard (cf. [16]).) At several places more or less practical algorithms
to calculate shortest vectors are presented [5; 11; 15]. Although the running
times of these algorithms are not analyzed, they are certainly not polynomial-
time. Also, in general they perform quite poorly for high-dimensional lattices
{say n=15). If we fix the dimension n of the lattice however, then a

shortest vector can be found in polynomial time. This is a consequence of the



polynomial-time algorithm to solve integer linear programming problems with
a fixed number of variables [13].
In 1981, L. Lovdsz invented an important algorithm, the so-called
basis reduction algorithm, which made it possible to compute reasonably
short vectors in a lattice in polynomial time. More precisely, this algorithm
computes a non-zero vector b, belonging to a basis for L, such that

e L

bl £2 for every xeL, x#0, where || denotes the Euclidean

length. So, in polynomial time we can find a vector in the lattice that is no

=132 times longer than a shortest vector in the lattice. In

more than 2
fact the basis reduction algorithm does not only compute an approximation of
a shortest vector. It also computes a so-called reduced basis for the lattice,
which is, roughly speaking, a basis that is reasonably orthogonal (cf. Sec-
tion 7). A detailed description of the algorithm and a careful analysis of its
running time are given in [II].

There are special cases in which the basis reduction algorithm computes
a shortest vector. This will happen for instance if all vectors that are

,(n-1)/2

linearly independent of the shortest vector, are more than times

longer than the shortest vector. This situation will occur in Section 5.
Unfortunately, the fact that the basis reduction algorithm runs in

polynomial time does not imply that it is very fast in practice, although it

is much better than the algorithms mentioned above. If Be!Z) bounds the

0
number of bits in the coordinates of the basis bl’bz' ...,bn for L, then
a theoretical bound on the number of bit operations to be performed is
6_3 ;
O(n B”) (cf. [II]; a slightly better bound, namely O(n632‘+n533), was

derived in [9]). Experiments by A.M. Odlyzko showed that in practice the

. . . " 3 : . : :
running time is proportional to nB”. To give an impression of actual running
times, we conclude this section with some results from Odlyzko's implementation

on a Cray-1 computer:

n B average running time in minutes
31 55 0.5

31 65 0.75

41 70 122

51 88 3

51 180 18

71 140 14

81 160 23



5. The L3—algorithm

We return to the problem of factoring polynomials in Z[X]. We will show
that the basis reduction algorithm enables us to formulate a polynomial-time
algorithm to factor polynomials in Z[X]. Again, let feZ[X] of degree n
be the polynomial to be factored. We will assume that the gcd of the coef-
ficients of £ is 1 (i.e. £ is primitive), and that £ is square-free.
From Section 2 we know that it is possible to compute a p-adic factori-
zation of f up to any precision that we want, where the prime number p is
chosen in such a way that fmodp is square-free in (Z/p#)[x]. Let, for
some positive integer k, the polynomial he (Z/pk 7Z)[X] be a monic p-adic
factor of fmod pk, such that hmodp is irreducible in (Z/pZ)[X]. It
follows that there exists a unique irreducible factor h0 of £ in ®[X],
such that h divides homodpk in (ZZ./pRZZ)[X]. We will see that, if k
is chosen sufficiently large, then the p-adic factor h suffices to determine
the factor:‘1 h0 of £ (of course, if f 1is irreducible, we will find h0= £).
The L -algorithm proceeds roughly as follows. First, we construct a

lattice such that the factor h that we are looking for is contained in this

0
lattice, and such that hO is much shorter than the other vectors in the
lattice. Next, we determine hO by means of the basis reduction algorithm,
which is possible because hO is very short.

We will explain how to construct a basis for such a lattice. Denote by
L the degree of h; so 0<% £n. Let us suppose that the degree of hO
is m, with #f=m=n. To start with, we know that h divides hO mod pk
in (zz/pkzz.)[x]. This implies that ho belongs to the set L of polynomials
of degree at most m which have h as a factor, when taken modulo pk

Because h was chosen to be monic, we have that

(5.1) L={pkr +hq : r, gezZ[x], degree(r)<?, degree(q) <m-L}.

We define the polynomials bO' bl' S bmaﬂ.[x] as bi=pkxl for 0=i<§
and bi=hxl_£ for f<i<m. With (5.1) this gives

L=Zb, .+ Zb, + ...+ Zb +Zb, +Zb

0 1 -1 3 gy T BREERLE

m
so that we can rewrite (5.1) as L={Z, r.b, : r.e#Z}.
i=0"1i 1 i



Regarding the polynomials bo, bl' .

tors (where the coefficient of xl is identified with the (i+1)-th coordinate},

vt bm as (m+l)-dimensional integral vec—

we see that the wvectors bG' bl' iy l::m € szﬂ are lineafly independent, because
they form an upper-diagonal matrix. It follows that L is an (m+l)-dimensional
lattice in sz+1. So, we have constructed an (m+l)-dimensional lattice con-
taining ho. We will show that Xk can be chosen in such a way that all ele-
ments of L that are linearly independent of hO' are more than 2m/2 times
longer than h so that h can be computed by means of the basis reduction

o' 0
algorithm (cf. Section 4).

Because hO is a factor of f in Z[X], we find from (2.2) that

(5.2) Ihols(zmllﬂfl:B.
m

Suppose that k 1is chosen such that

(5.3) pr> ol

Let g be an arbitrary non-zero element of L that is linearly independent

m/2 2rn/2

of h,i we claim that lgl>2 B, so that g is more than times

longer than hO'

Because g is linearly independent of h and because h is irreduc-

ible in z[x], we have that ged(hj.g) =1 ino zz_[x]. This impl;?es that the
polynomials h0 xl for 0<£1i<degree(g) and ng for 0< j< degree (hol '
regarded as (degree(g)+degree (hO]]-—dimensional vectors, are linearly indepen-
dent. The resultant ReZ of h0 and g 4is defined as the determinant of the
matrix M having these vectors as columns. It follows that R=20; from
Hadamard's inequality and degree(g) =m, we get

™gl™

= < e
(5.4) IRl < Ih
The polynomials ho and ¢, reduced modulo pk, have h as a common divisor
k
in (Z/p Z)[X] (remember that both are elements of L). Therefore, the
k

columns of M cannot be linearly independent when regarded module p , so
that R must be zero modulo pk. Combined with R#= 0, we conclude that

m/2

ka |R|, which implies, with (5.4), (5.3), and (5.2), that |g|>2'"B. This

proves our claim.
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One prcoblem remains to be solved, namely to determine the correct value of the

degree m of h This is simply done by applying the above construction for

o
m= 2, 441, ..., n-1 in succession, where k 1is chosen such that (5.3) heolds

with m replaced by n-1:

n-1

n-1
(5:.5) pk>(2(n_1)/2(2(n_1))% 1fi) :

It follows from the above reasoning that for values of m smaller than the

degree of h the lattice does not contain any sufficiently short vectors,

so that the girst short vector that we find must be equal to tho (note that
the lattice of dimension m+l contains all elements of the lattices cf dimen-
sions <£m). If no short vector is found at all, then apparently
degree(h0)> n-1, so that h0==f. 5

Let us consider the running time of the L -algorithm. First, we observe
that the factor h modulo pk, with k such that (5.5) holds, can still be
found in polynomial time. This follows from the running time estimates for the
application of Hensel's lemma. Next, we see from (5.5) and the definition of
the lattice, that the maximal number of bits in the coordinates of the basis
for L is Of(klogp) = O(nz-frlloglfl). Combined with the running time of the
basis reduction algorithm (cf. Section 4), this implies that the applications
of this algorithm can be done in time polynomial in n and loglfl. We
conclude that ho can be determined in polynomial time, so that £ can also
be factored in polynomial time.

A more careful description of the algorithm and analysis of its running

time lead to the following theorem (cf. [II: Theorem 3.6]):

Theorem. A primitive polynomial £eZ[X] of degree n can be completely

12
factored in Ofn 4—n9(log!f])3} bit operations.

(Using the result from [9], which was mentioned in Section 4, this can be
improved to 0(n11+-n8{log|f|)3).)

If we apply Odlyzko's empirical result about the running time of the
basis reduction algorithm, we get an D(n?~rn4(log|51]3] bound for the fac-
toring algorithm. This indicates that the L3—algorithm will not be of great
practical value. This point will be further discussed in Section 7. First, we
will consider some generalizations of the L3—algorithm to other polynomial

factoring problems.
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6. Generalizations of the L3-algorithm

In the previous section we have seen that primitive univariate polynomials

with integral coefficients can be factored in polynomial time by an algorithm

that essentially works as follows:

(i) compute a sufficiently precise, irreducible p-adic factor,

(ii) construct a lattice, such that the corresponding irreducible true

factor is very short in this lattice, and

(iii) determine this true factor by means of the basis reduction algorithm.

In [IITI; V; VII; IV] we have shown that the same scheme can be used to formilate

polynomial-time algorithms for various other kinds of polynomial factoring prob-

lems:

- polynomials in one variable with coefficients in an algebraic number field
(cf. [ITI]; see [12] for an algorithm using norms, a technique due to
Kronecker) ;

- multivariate polynomials with integral coefficients (cf. [V]);

- multivariate polynomials with coefficients in an algebraic number field
(c£. [VIT]);

- mltivariate polynomials with coefficients in a finite field (cf. [IV]).

The algorithms described in these papers are polynomial-time in the length
of a dense encoding of the polynomial to be factored. That is, application of
one of our algorithms to a polynomial £ of degree n, in the wvariable Xi,
for 1£i<t, can be done in time polynomial in ﬂ;;l n, and the size of the
coefficients of f£.

It is well known that this is not a very realistic complexity measure for
multivariate polynomials. Theoretically however, our algorithms compare favorably
to the straightforward generalization of the Berlekamp-Hensel algorithm. For the
latter nothing better can be proved than a bound that is exponential in each of
the degrees n, . To get a realistic complexity measure, the length of a sparse
encoding of the input polynomial and its (output) factors has to be considered;
Von zur Gathen has shown that in this case algorithms can be given that run in
expected polynomial time [18].

This is certainly not the place to go into the numerous details of the
generalizations of the L3-algorithm; these can be found in the papers referred
to above. Instead, let us describe some of the most important points of two of

our generalizations, namely er[Xl,xz] and f€Ia[X1'X2]'
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First, we consider the case ;Ecm[xi,x2]: this case is treated in detail in
[v]. step (i) can be generalized as follows. Let p be a prime number and

let s be an integer. Denote by s the ideal generated by p and X, -s.

1 2

Because fmod 51 is a polynomial in (Z/p EZ)I:XIJ, we can find its factori-

zation in (EZ/p:E)[Xll by means of Berlekamp's algorithm. If p and s are
chosen such that some square-freeness conditicons are satisfied, then we can
apply a generalized version of Hensel's lemma to lift the factorization of

fmed s to a factorization of £ module the ideal Sk generated by pk
and (Xg—s)n2+l, for any keEZ)O that we want. In this way we compute a
sufficiently precise p-adic factor h of £. Denote by £ the degree in
x1 of h, and assume that h is monic with respect to the wvariable X

We now turn to step (ii).

1

; 3 3
As in the L -algorithm, assume that the true factor h0 of £ that

corresponds to h has degree m, 1 Xl (and of course degree at most n

in XE)' A basis for the set I of multiples of h modulo the ideal s

2
k'

having degree =m, in X and = n in X is given by the polvnomials

1 1 2 2!

k. 3.1 . .
{p K%XT:DSJSnz,OSJL-:E}
i-%

u {(hx%modsk) xl £<i<m,}.

: 0= j5n2, 1
Regarding these polynomials as ((n2+1)(m1+1))—dimensional integral vectors,
we see that they are linearly independent, and that the set L is an
((n2+1J(m1+lJ]—dimensional lattice.

As in the proof of Section 5, consider the resultant REZZ[XE:I of hD
and an arbitrary non-zerc element g of L, for which ng(hO!g)= 1 (so,
R#0). An upper bound for the length |R| of the vector R, as a function
of |h0| and |gl, can easily be derived. Using this bound and (2.2), we
see that (X2—5]n2+1 cannot divide R if s 1is chosen sufficiently large.
But Rmodsk must be zero, because h divides both h modsk and gmodsk,

(o]
+
so that the absolute value of the maximal coefficient of Rmod{x2—s}n2 1

i EZZ[XZJ
must be at least p . This yields a lower bound for the length of the wvector

g as a function of pk, and we conclude that we can get g as long as we
want by choosing k sufficiently large. This means that h0 can be deter-
mined by the basis reduction algorithm (notice that [hoi can be bounded from

above by a result from [6], cf. Section 2).
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The algorithm sketched here can easily be extended to more than two variables.

The initial substitution x2= s 1is then replaced by a substitution X2=52,

3T Sgr ey xt= Sir where t 1is the number of wvariables. The details of this

construction for a slightly more complicated case, namely with coefficients

X

in an algebraic number field, are given in [VII].

Another way of generalizing the L3—algorithm to :E[Xl, x2, ...,xt] is
described in [VI]. There we apply the idea of the L3-algorithm (i.e. a true
factor is a short vector in a lattice) to formulate a polynomial-time reduction

from factoring in zz[xl, X , Xt] to factoring in 22[)(1]. For zztxl,xzj

2" 07
this reduction follows from the above algorithm by replacing the factor moduleo

okl by a factor modulo (szs)n2+1 only.

pk and (x2—s)n2
Other polynomial-time algorithms for factoring in EZ{Xl, XZ' Sy Xt] are
given by Kaltofen in [8] and Chistov and Grigoryev in [3]. As in [VI], Kaltofen
reduced the problem of factoring in :E[XI'XZ’ ...,Xt] in polynomial time to
factoring in EZ[XIJ; his reduction is completely different from ours. Chistov
and Grigoryev applied some of Kaltofen's ideas and developed yet another reduc-

tion, this time from factoring in EZ[Xl, 5. SERP Xt] to factoring in zz[xlj

2

and (#Z/p zz)[xl, X 7 Xt] (for the latter problem see below). All these

roee
algorithms can, ijliome way or another, be extended to polynomials with coef-
ficients in an algebraic number field.

We now come to a different kind of generalization of the L3—algorithm,
an algorithm to factor polynomials in ﬂa[xl' xz,..., xt], where na is a
finite field containing g elements (cf. [IV]). We will briefly discuss
this algorithm for fena[xl'XQJ' (An algorithm very similar to the one de-
scribed here was independently discovered by Chistov and Grigoryev [3].)

In fact, the algorithm follows immediately from the L3—algorithm by
replacing the ring of integers #Z by the ring of polynomials Ba[xzj. Conse-
quently, the prime number p is replaced by an irreducible polynomial Fe¢

k
I%[Kz], and the factor modulo p by a factor modulo the ideal generated
m+1

by FK, 1Instead of a lattice in = ;, We now get an B%[ij—module
m+1
LCIaEXZJ . Of course, as norm for the elements of L, the Euclidean length
+1
does not make sense here. Therefore, for an element x of ]a[xz]m , we

define the norm as the maximal degree in X of any of the coordinates of x;

2

so, 'short' means 'small degree in X Using this norm one easily proves

'
that the true factor corresponding to a factor modulo (Fk) is the shortest

element of L if k is sufficiently large (the proof follows the lines of
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the proof in Section 5, but is much simpler).

Obviously we cannot use the basis reduction algorithm. To determine the
shortest vector in this case, we remark that the shortest vector problem in
Lcﬂa[x2]m+l can be formulated as a system of linear equations over ﬂ%. This
gives a polynomial-time solution of the shortest vector problem at hand (cf.

[Iv: 3]). This concludes our brief explanation of the algorithm for fEﬂa[xl'X2J'

Generalization to more than two variables follows in a similar way as we

k k
have seen before, namely by means of substitutions XB::X23,X4==X24,...,
k
Xt= X2t, for sufficiently large integers ki (this is quite different from

the way in which Chistov and Grigoryev extend their method to more variables
[31). In [10] another polynomial-time algorithm for ng[xl, Xz,..., Xt]—fac—
toring is given.

A more general approach to the generalizations of the LB—algorithm will

be presented in [17].

7. Practical algorithms

The algorithms from the previous sections have a worst-case running time that
is bounded by a polynomial function of the length of a dense encoding of the
input polynomial. Apart from the fact that a dense encoding gives an unrealis-
tic complexity measure, the polynomial bound on the running time also does

not imply that the algorithms are practical. Although the algorithms will
perform much better than is suggested by their running times as analyzed in
[II; V; VI; III; VII], we cannot expect them to be fast. This follows from
Odlyzko's empirical running time of the basis reduction algorithm and from

the dimension and coordinate-size of the lattices to which the basis reduction
algorithm is applied. For instance, to factor feiz[xl,xz. ...,Xt] of degree

n, in xi, the running time will be proportiocnal to

L 7 t 4 3
m'_yng + (M _ n ) (oglfh
at least (the theoretical bound from [VI] is O(nit_3fﬂzzlniz + (H:zlni)(log|f|)3])).

Hence, even for reasonably small values of n, the running time will become

prohibitively long.
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The question arises which algorithms should be used in practice. For polyno-
mials in one variable with integral coefficients the Berlekamp-Hensel algo-
rithm usually performs very well, and if it does not, which is quite unlikely,
we can apply the L3—alg0rithm. For multivariate polynomials with integral
coefficients we have the generalizations of the Berlekamp-Hensel algorithm,

as menticned in Section 3 (cf. [19]). These algorithms apply a reduction from

the :Z[Xl,x ,xt]—factcring problem to Zixlj—factoring, for which noth-

ing better é;an an exponential-time bound can be proved. This reduction however,
appears to be very fast in practice, and the resulting factoring algorithm can
be strongly recommended.

The same is true for polynomials with coefficients in an algebraic number
field; the exponential-time generalized Berlekamp-Hensel algorithm (cf. [207)
will perform better than the polynomial-time generalized L3—a1gorithm. It locks
as though these factoring algorithms that use lattices and the basis reduction
algorithm have merely theoretical value. Fortunately, this is not the case, as
we have shown in [I], where an algorithm is described to factor polyncmials
with coefficients in an algebraic number field. The algorithm is based on the
Berlekamp-Hensel algorithm, and therefore not polynomial-time, but it is much
faster than the methods from [20; 21], which are also of the Berlekamp-Hensel
type. The reason of the speed of our algorithm is that, up to the search for
the true factors, no computations have to be performed on algebraic numbers.
Instead, all computations can be done in zz/pkzz for a suitably chosen prime
power pk. We will briefly explain this algorithm.

Suppose that the algebraic number field @(a) is given as the field of
rational numbers @ extended by a root o of a prescribed minimal polynomial
Fez[Tl, i.e. @(a) = @[T]/(F). Let fe@(a)[X] be the polynomial to be
factored. In the older algorithms (cf. [20; 21]) one tries to find a prime
number p such that Fmodp is irreducible in (2Z/p#%)[T], and such that
some other conditions are satisfied. If such a prime number can be found, then
the Berlekamp-Hensel approach can immediately be generalized by observing that
(Z/pZ)[T]/(Fmod p) is a field. Several techniques are developed for the
case that such a prime number cannot be found. In [20] the problem is reduced
to the problem of factoring a polynomial of much higher degree in Z[X] (a
technique that uses norms, as in [12]). In [21] the p-adic factorization of
the minimal polynomial is used to compute several p-adic factorizations of £;

the true factors of £ are then determined by means of the Chinese remainder
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algorithm combined with a combinatorial search. In both cases the algorithms
from [20; 21] are rather slow due to the time consuming computations in the
algebraic number field.

The algorithm from [I] proceeds as follows. First, a prime number p
is chosen such that, among other conditions, Fmodp has a linear factor
Hmoedp in (2Z/pZ)[T]. The polynomial £ reduced modulo p and Hmodp
is, due to the linearity of Hmodp, contained in (Z/pz)[x], and can
easily be factored by means of Berlekamp's algorithm. This factorization can
be lifted to a factorization of £ modulo pk and Hmod pk for a suffi-
ciently large value of k by means of Hensel's lemma, where HmodgF is
the lifted linear factor of Fmod pk in (Z‘r_?./pk z)[T].

To find the true factors of f in 0(e)[X] we look, as usual, at
combinations of the p-adic factors of £. These combinations however are
polynomials in (zz./pk #Z)[x], so we must be able to reconstruct the coef-
ficients in @(a) from their images modulo pk and Iimod_pk. Let x be
such a coefficient of a true factor, and let X% be its image modulo pk
and Hmod pk, so SI:GEZ/kaZ. For simplicity we will assume that xeZ[al=
zZ[T]/(F). We will show how x can be found given X. If we regard =x
and X as (degree(F))-dimensional integral vectors, then they are congruent

modulo the (degree(F))-dimensional integral lattice

L= {pkr + (H mod pk) q : r,qeZlal, degree(r)=0, degree(q) < degree(F)-1}.

Because x 1is a coefficient of a true factor, the vector x is of bounded
length. From the same proof as in Section 5 we conclude that we can choose
k such that all non-zero elements of L are much longer than x. This

degree (F)

implies that x is the shortest element of Z that is congruent

to % module L, so that x can be found by reducing # modulo a suffi-
ciently orthogonal basis for L. As mentioned in Section 4 such a basis for
L can be computed by the basis reduction algorithm.

We conclude that, during the search for the true factors, all algebraic
numbers can be reconstructed in a unique way by means of one application of
the basis reduction algorithm. This is the only practical application of

lattices and the basis reduction algorithm to factoring polynomials that we

know of up till now.
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Lattices and Factorization of Polynomials over Algebraic Number Fields
(Extended Abstract)

A.K. Lenstra
Mathematisch Centrum
Kruislaan 413
1098 SJ Amsterdam
The Netherlands

1. Introduction and Notation.

We present a new algorithm to factorize polynomials over an algebraic number field.
The algebraic number field is giwven as the field of rational numbers extended by a
root of a prescribed minimal polynomial. Unlike other algorithms the efficiency of
our method does not depend on the irreducibility of the minimal polynomial modulo
some prime.

A brief outline of our algorithm is as follows. First, we factorize the polyno-
mial to be factored over a large enough ring determined by a prime power pk and an
irreducible factor of the minimal polynomial modulo pk. We then construct a lattice
such that the coefficients of the factors over the algebraic number field are congru-
ent, modulo this lattice, to the coefficients of the factors over the ring. Using a
theorem stating that these coefficients in the algebraic number field are the shortest-
length vectors with this property, we are able to compute them, if a sufficiently or-
thogonal basis of the lattice can be found.

That such a basis can be effectively constructed is a result of H.W. Lenstra [4],
which is presented in Section 2, together with a number of elementary remarks about
lattices. In Section 3 we prove a theorem giving a lower bound for the length of a
polynomial having ‘modulo pk a non-trivial common divisor with an irreducible polyno-
mial. As an application of this theorem we describe the new algorithm for factorization
of polynomials over algebraic number fields in Section 4; we include some machine ex-—
amples with timings. In Section 5 we make some final remarks on our new method, and
we show that the theorem from Section 3 can also be used to formulate a new algorithm
for factoring in Z [x].

Throughout this paper we make no distinction between vectors and polynomials;
an m-dimensional vector v'=(vb,...,vm_1}T corresponds to the polynomial v(x)==r%£0 vixi,
where dv denotes the degree of the polynomial v (here dv=-1 if vi:=0 for i=0,...,m-1,

and dv=max { i |v1 #0} otherwise). Conversely a polynomial v(X) =E:= vixl corresponds

0

to an m-dimensional vector v==(vb,...,v£,0,...,0)T for all m>£. If v==(v0,...,vm_1)T
€ IRm, we denote by [v] the vector w= (wo,...,wm_llT szam, such that w, is the integer
nearest to vi for i=0,...,m-1, and where halves are rounded upwards, e.g. [0.5]=1.
Furthermore we put Hv1|=(ET;é vi)a, the length of v.



20

2. Lattices.

Let bO' e ,bm 1 € Zm be m linearly independent vectors. The lattice L with basis bo. .
m-1

'”bm—l is defined as L = E =0 ij. Putting M= (h I |b _ ), the mxm matrix w1th bj,
j=0,...,m1, as columns, we define the determ:nant of L as d(I..J Idet((b b ) )[1’

|det (M) |; the value of d(L) is independent of the choice of the basis of L. By t.he

fundamental domain of bo ..,b e we denote the set {xeR" lac el-%,%, 3 —O,...,m—l,
m-1

such that x=1.‘j 0 c b }. For all xe R™ there exists a unique element x=x-Me[M -;]

in the fundamental dcmain, such that x and x are congruent modulo L.

P o)
it Tm-1
defect OD: OD(bO,. ..,b ) -II ]Ib JI/d{L). From Hadamard's inegquality we know tha't

A measure of the orthogonality of a basis b is given by the orthogonality
oD =1, but there is no a priori upper bound for oD. In [4] an algorithm is given to
construct a basis for an arbitrary lattice such that the orthogonality defect of this

basis is bounded from above by a constant depending on the dimension of the lattice only.

Theorem 1. (Reduction Algorithm) For any choice of z e (0,11/3) we can reduce an arbitrary

. 'bm— € zam of L satis-

basis of an m-dimensional lattice L to a basis b 1

o'
4z +1)m (m—l)/d 0

fying 1SOD(b0,...,b ) = (
The running time of this algorithm is exponential in the dimension of the lattice; for
small dimensions * (i e. £10) this appears to be no serious drawback. In the sequel we

+ -
z 1}m (m ”‘/4. In practice the value for z doesn't matter too much;

put C=Clz,m) =(
all our appl:.cations of Theorem 1 resulted in bases satisfying OD <2 (which is however
certainly not always possible).

It is intuitively ¢lear that the radius of the largest sphere contained in the

fundamental domain is proportional to 1/0D. The following lemma makes this more precise.

Lemma 1. Let D <B (mino <3 <mﬂbjn' The fundamental domain of 1::0,....1’:‘“1_1 contains an
m-dimensional sphere about the origin with radius > B/(2+0D), and all vectors

# 0 in L have length > B/OD.

It follows that if all vectors # 0 in an arbitrary lattice have length > B, we can
construct a basis such that the fundamental domain of this basis contains a sphere

about the origin with radius at least B/(2-C).

3. A lower bound theorem.

Let F € Z [T] be an irreducible polynomial of degree m, and let H e (Z /pkz)[T] be a
monic factor of degree &, 1 =% <m, of F modulo pk', for some prime power pk. We define
the m-dimensional lattice Lk generated by Hk and pk as the lattice with the following

basis: bi =pk-'1‘i. i=0,...,8~1,
i-¢ . _
bi—Hk-'I‘ yi=¢8,...,m-1.
Here the polynomials hi are regarded as m-dimensional vectors. Clearly bO" seib are
linearly independent and dILk]l Hpk‘g'. Remark that Lk equals the set of polynomials of

degree < m having H as a factor modulo pk.

k
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We prove that for all B>0 we can find an index kO:kD (B), such that the fundamental

domain of the reduced basis of Lk contains a sphere with radius > B, for all k zko.

We do this by proving that the lengths of the vectors # 0 in Lk can be bounded from

below by a monotone increasing function of k.

Theorem 2. Let Vk#D be an arbitrary vector in Lk' regarded as polynomial in Z [T] of
k- n m m-1 m
degree n <m, then p= ~ <[IF(l-[lv Il <I[Fll™ v ]I

Proof. Since F is irreducible over Z and n <m, we have that ng(F,Vk) =1 over Z , and

therefore Gl-F+G2-Vk=0 if and only if G

This implies that the collection

1=G2=0, where Gl' GzezaI'T] and gGl <n, g(;zdln.

~ £ .

bi==F°'I‘ y 1=0,...,n-1,

o i-n |

bi=Vk'T , i=n,...,n+m-1,

n+m-1
constitutes a basis of an (n+m)-dimensional lattice L contained in {Z +Z+T+..+Z T }

with d(L) £||F”n-”\?k"m (Hadamard's inequality). The polynomials F and v, both have the
monic polynomial Hk as a factor modulo pk, and therefore the lattice L is a sublattice
k
of the (n+m)-dimensional lattice L].I; generated by H.k and p , so that
k-1 n m
') = < < ]|, %
a@) =p** <a@ <liA™v " 0

-(m—l)/m_P(koﬂ.)/m

Remark that up to the constant factor, the lower bound | Fl| for elements

in Lk is the best possible. This follows from Theorem 1, namely there exists a basis

1:)0,...,bm_1 of 1'..k such that H?;é Ib?l] <Clz,m) -pk'g'. Therefore there is a basisvector
bi satisfying ”bi” sc(z,m)l‘/m-p(k.m /m.

It follows from Theorem 2, and from the results of the previous section, that in
order to cbtain a sphere with radius B, we should take k such that

Hel™ 1 (2ecz,m By <p~ R (%)

We are now able to solve the following problem. Given a value B >0 and a polyno-
mial W e Z [T]/Hk where k satisfies (%), determine if possible a polynomial we Z [T]/F
such that [[#]] <B and such that w and w are congruent modulo H_ and pk. Clearly, if w
exists then w is unigue and w =\7—M-[M_l-$], where M is the matrix of the reduced basis
of Lk' Remark that if we have a number of polynomials ;_. we only have to compute M and

(the first § columns of) M_l once.

4. Factorization in (@(a))[x].

We are ready to present our new algorithm for factoring polynomials over algebraic num-
ber fields. Let @(a) be an algebraic number field, where o denotes a zero of a monic

irreducible polyncmial F of degree m over Z .

Lattice algorithm (LA).

Given a square-free monic polynomial f e {@(a)}[X] of degree n, this algorithm computes
the irreducible factors of f over @(a).
1) Determine De M, such that f and the factors of f are in (%Z Lal)[x].
2) Choose a prime p such that
-ptoD,
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- F remains square-free modulo p,

- F has a non-trivial monic irreducible factor H1 of degree L modulo p,

- f remains sguare-free modulo H1 and p.

3) Choose B such that B/D is an upper bound for the length of the coefficients (in
%?Z [2]} of the factors of £ over Q(a).

4) Take k ¢ N minimal such that (*) holds, and determine the monic irreducible factor

Hk of degree & of F modulo pk. such that Hk EHI module p.

5) Determine the complete factorization of £ modulo Hk and pk:
- k

(0! moa ) (pe£) =ML_

6) If r=1 then f is irreducible. Otherwise compute M, the matrix of the reduced basis

k
hi modulo (Hk,p Yoo

of the m-dimensional lattice Ly generated by Hk and pk. Compute the polynomial
~ k _ gﬁ

hﬁ ((D HiES hi) modulo (Hk,p 1) _Ei=
dh s[n/zj, and test whether

_E“ gh oA -1_~ i 1
R M vi])x ) € (52 [e])[X]

0 ;ixl for all subsets Sc{l,...,r} such that

is a factor of f over E?Z[“]'

The values of D and B in Steps 1) and 3) can be determined using methods from [9]. The
theoretical value for B is often much too large; it is in general advisable to use a

heuristic bound [3,7]. The factorization of f modulo H_ and pk is computed in the usual

k
way; first factorize f moduloc H1 and p using for instance the Cantor-Zassenhaus algorithm

[1] for factorization over finite fields (after Step 2), exit if r=1), next apply

Zassenhaus' quadratic lift-algorithm [10,11] to obtain the factors modulc H_ and pk.

It follows from Section 3 that the fundamental domain of the reduced basis Zf Lk con-
tains the coefficients of the factors of f over @(a) (multiplied by D). These factors
can therefore be determined as described in Step 6). Remark that all integers occurring
in the LA are in absolute wvalue < PZk_

In practice we replace C{z,m) in (*) by 2, thus obtaining a smaller value for k.
If the orthogonality defect of the reduced basis of Lk turns out to be too large (i.e.
min0£j<m Hij/IZ-OD(bO....,bm_l)) <B) we try again with a larger k, but in most cases
OD will be small enough.

As an example we factorize a polynomial from Weinberger and Rothschild [9] using
the LA. Let F(T) = T6+3T5+6T4+T3-3T2+12-r+16 (m=6), and let f=x3—3e (@) [x] (n=3),
where a denotes a zero of F.

1) Like Weinberger and Rothschild we use D=12 as the denominator of the factors of
f over @(a).

2) The prime p=7 satisfies the conditions; we find Hl =T3+T2—2T+3 and L =3.

3) We know from Weinberger and Rothschild that 40/12 is an upper bound for the length
of the coefficients of the factors of £, so we take B=40.

4) We replace C(z,6) in (*) by 2 and we take k minimal such that

(Y356) - (2:2.40)® <7%"3, s0 we £ind k=8, and HB=T3-1399040‘I‘2—1399043T—4.

5) £ = (x-23879470-2387948) « (X+2387948a+1) - (X-a+2387947) modulo (a3—1399040a2—1399043u

-4, TB).
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6) Application of Theorem 1 to L_ yields the following matrix:

8
1265 -1265 -1059 -1265 0 -103
479 -273 -547 683 2530 34
547 547 =137 -34 752 1641
-752 -2017 2359 =752 0 -171
-957 =205 -957 -1231 1265 205
-1299 -1299 -376 2051 =752 376

The orthogonality defect of this basis is (]‘li__oﬂbill)/’.r'B'3 =1.4<2, so k is large
encugh. Remark that according to Lemma 1 the radius of the sphere contained in the
1=0,...,5 IIbyll7(2-00) | > 600.

The highest power of g in the above factorization of f is one, so we have to

fundamental domain of this basis is at least |min

compute only the first two columns of the inverse of M:
-4 -4

2.5500 10_ 1.3045 10,.4 * ok ok Kk
-2.8466 1(.'!_4 -0.7112 10_‘1 * ok Kk *
-1.8977 .‘;ll}__‘1 0.2966 10_4 * ok Kk ok =M_1
-0.9489 10_ 1.8977 it]_4 * Kk ok ok -
~0.9489 1(;'!_4 3.2022 10_4 * k Kk Kk
0.3556 10 -1.6011 10 * Kk Kk ok

First we take S={1}: h= (12-(X-23879470-2387948) ) modulo (HS' ?8) = 12X+168641c
+168629=le+v0. Now reduce.these coefficients module the reduced basis of I..B:
h=%'ii=0 (;i—M-[M_l-;i])x1=x~ (u5+3a4+6a3+5u2-3a+12)/12, and indeed h is a factor
of £ over @(a). For S={2} we find the factor x+(u5+234+4a3—u2+4u+14)/6, so that the

complete factorization of £ over Q@{a) becomes f= (X- (a5+3m4+6u3+532—3u+12)/12) * (X+

(a+20 140> a2d0+14) /6) « (X- (aO+at+20-Ta2+1 1a+16) /12) .

We implemented the LA and the algorithm as described by Weinberger and Rothschild [9]

(WRA) in Algol 68 on a CDC-Cyber 170-750 computer (we didn't implement the methods

described in [5,6,7]). Below we give a number of machine examples; we denote by "new

time" and "old time" the time taken by the LA and the time taken by the WRA respectively

(in milliseconds).

1) £= %(4?X6+2 1X5+598x4+1 56 1x3+1 198X2+261x+4'ﬂ ' ﬂz-c:-i'3 =0.

2)

3)

a-1 =0 modulo 3: new time 143 msec,
irreducible moduleo 7: old time 676 msec.
factorization over @(a):

ﬁm?xe’— (121&—71)}{2— (121a+70) X-47) - (4?X3+ ( 121a—50)x2+(121u—191 )X-47).
3

f=%(16x6—11 , aT+2=0.

o +2a-1 =0 modulo 5: new time 431 msec,
irreducible modulo 7: old time 511 msec.
factorization over @(a):

artax?r20x+a?) « (4x%-20x0a%) + (2%-) + (2540 .

3 =x8—x?—x6+x4—x2+x+1, u4—u+1 =0.

rxa—:x2+a+1 =0 modulo 3: new time 1347 msec,
a+l =0 modulo 3: new time 235 msec,

irreducible modulo 7: old time 2038 msec.
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factorization over @{a):

3

2
(8- (340200 x5+ (20340 2-3) X%+ (0342024200 X (2034 2-3) %= (P raea) x-1) - (2 (@ 4a®

+a-1)X-1).

4) £=x-3, o®+30°16a 403024120416 = 0.
a2—2u—1 0 modulo 5: new time 564 msec,
two factors modulo 7: old time 814 msec.
factorization over Q{a):
gézt12x—u5—3a4—6u3—5u2+3u—12)-(6x+us+2u4+433—a2+4a+14)-(12x~a5—a4-233+?u2-11a—16).

5) £ =x2+0x8+36x +69x%+36x5-00% - 303x°- 450~ 342x-226, o -150°-87a7-125=0.

uava+2 =0 modulo 7: new time 2816 msec,
three factors modulo 7: old time 59183 msec.
factorization over @(a):

(X6+6X5+15X4+(a3+5)x3+(363—30)xz+(3u3—39)x+a6—14a3—101}-(X2+(ﬂ+2)x+az+u+1)°(X~u+1).

5. Remarks.

From the examples in the previous section we conclude that, as we expected, the use of
the LA can be recommended, as long as the degree of the minimal polynomial is not too
large. Even in the case that the minimal polynomial remains irreducible modulo some
small prime the LA is considerably faster than the WRA.

A drawback of the LA is the rather large theoretical lower bound for pk. This
causes no difficulties in an implementation using arbitrary length integers, but in

the case that fixed length integers are used (as in our implementation, where we used

single-length integers of 48 bits) we can get problems. There are several ways to lower

the value for pk if the theoretical bound on pk appears to be too large.

1) Don't care about the theoretical bound, take pk as large as the implementation al-
lows. If the reduced basis bO""'bnrl satisfies min0$j<m Hbj”/(2-OD(b0,...,bm_l])>B
then the complete factorization will be found. Otherwise just try to find factors,
but no guarantee can be given that we find them all.

2) Try to find a large degree irreducible factor of the minimal polynomial.

3) Use a combination of the WRA and the LA, i.e. combine the factorizations of f modulo
a number of irreducible factors of the minimal polynomial module pk (WRA) , and apply
the LA to these combinations. Here the lattice is generated by the product of this
number of factors of the minimal polynomial and pk. The running time of this algorithm
grows exponentially with the number of factors of the minimal polynomial used, but
unlike the WRA we do not have to use the complete factorization of the minimal polyno-
mial; just take a number of factors such that the sum of the degrees is large enough
to lower pk sufficiently.

4) Any combination of 1), 2) and 3).

Theorem 2 can also be used while factoring in % [x] [8]. Let G ez [x], and let

Hk be a monic irreducible factor of degree & of G modulo pk. We test whether Hk leads
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k
to an irreducible factor F of degree m of G (i.e. Hle modulo p and F |G over Z ) by

k
loocking at the (m+l)-dimensional lattice Lk generated by H,_ and p . A basis of this

k
k i i-2.77, :
lattice is given by: bi=p 'J{l, i=0,...,0-1, bi=Hk°X , i=2%,...,m. If F exists
k
ficiently large. This follows from a generalized version of Theorem 2, stating that if

then clearly F ELk’ but alsoc F is the shortest-length vector in L _ if k is chosen suf-

k-2 av m
v, €L, such that ged(F,V,) =1 over Z, then p SHFH—-k-HVkH . We know that there ex-
ists an effectively computable bound B >0 such that ||Fl| <B, so if we take k minimal

2. kL 2+'m av m m m W s i
such that B " <p , then B <|I¥||= k-Hka <B -HVkH . This implies HVkH > B, which

proves that indeed F is the shortest-length wector in L . Using for instance the

shortest-vector algorithm of Dieter [2] we can determin: F. It is not difficult to see
that Theorem 1 can also be used to calculate F, if we take k such that Bzom-c(z,m+1)m
< Pk-E_

A similar algorithm, using the computation of a shortest vector in a lattice, can
be applied to factorize in (@(a))}[X]. Determination of a monic factor of degree n leads
to a lattice of dimension n*m+l, where m is the degree of the minimal polynomial. As
the shortest-vector algorithms are only efficient for small-dimensional lattices this
is in general not a very practical method.

In Section 4 we have restricted ocurselves to univariate polynomials; remark that

the LA equally well applies to the multivariate case.
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Addendum.

Recently L. Lovdsz invented a polynomial time reduction algorithm. Among others, this
new reduction algorithm leads to a polynomial time algorithm for factoring polynomials
with rational coefficients (see Section 5). A report describing the new polynomial
factorization algorithm in detail is available from the Mathematisch Centrum, Amster-

dam.

A.K. Lenstra, H.W. Lenstra & L. Lovasz, Factoring Polynomials with Rational Coeffi-

cients, Mathematisch Centrum, Amsterdam.
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Factoring Polynomials with Rational Coefficients

A. K. Lenstra®, H. W. Lenstra, Jr.2, and L. Lovasz?

1 Mathematisch Centrum, Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands

2 Mathematisch Instituut, Universiteit van Amsterdam, Roetersstraat 15, NL-1018 WB Amsterdam,
The Netherlands

3 Bolyai Institute, A. Jozsef University, Aradi vértanik tere 1, H-6720 Szeged, Hungary

In this paper we present a polynomial-time algorithm to solve the following
problem: given a non-zero polynomial fe@Q[X] in one variable with rational
coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well
known that this is equivalent to factoring primitive polynomials feZ[X] into
irreducible factors in Z[X]. Here we call fe Z[X] primitive if the greatest common
divisor of its coefficients (the content of f)is 1.

Our algorithm performs well in practice, cf. [8]. Its running time, measured in
bit operations, is O(n'?+n°(log|f])?). Here feZ[X] is the polynomial to be
factored, n=deg(f) is the degree of f, and

P -3
for a polynomial ) aX’ with real coefficients «;.

An outline of the algorithm is as follows. First we find, for a suitable small
prime number p, a p-adic irreducible factor h of f, to a certain precision. This is
done with Berlekamp’s algorithm for factoring polynomials over small finite fields,
combined with Hensel’s lemma. Next we look for the irreducible factor h, of f in
Z[X] that is divisible by h. The condition that h,, is divisible by h means that h,
belongs to a certain lattice, and the condition that h, divides f implies that the
coefficients of h, are relatively small. It follows that we must look for a “small”
element in that lattice, and this is done by means of a basis reduction algorithm. It
turns out that this enables us to determine h,. The algorithm is repeated until all
irreducible factors of f have been found.

The basis reduction algorithm that we employ is new, and it is described and
analysed in Sect. 1. It improves the algorithm given in a preliminary version of [9,
Sect. 3]. At the end of Sect. 1 we briefly mention two applications of the new
algorithm to diophantine approximation.

The connection between factors of f and reduced bases of a lattice is treated in
detail in Sect. 2. The theory presented here extends .a result appearing in [8,
Theorem 2]. It should be remarked that the latter result, which is simpler to prove,
would in principle have sufficed for our purpose.

0025-5831/82/0261/0515/$04.00
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Section 3, finally, contains the description and the analysis of our algorithm for
factoring polynomials.

It may be expected that other irreducibility tests and factoring methods that
depend on diophantine approximation (Cantor [3], Ferguson and Forcade [5],
Brentjes [2, Sect. 4A], and Zassenhaus [16]) can also be made into polynomial-
time algorithms with the help of the basis reduction algorithm presented in Sect. 1.

Splitting an arbitrary non-zero polynomial feZ[X] into its content and its
primitive part, we deduce from our main result that the problem of factoring such a
polynomial is polynomial-time reducible to the problem of factoring positive
integers. The same fact was proved by Adleman and Odlyzko [1] under the
assumption of several deep and unproved hypotheses from number theory.

The generalization of our result to algebraic number fields and to polynomials
in several variables is the subject of future publications.

1. Reduced Bases for Lattices

Let n be a positive integer. A subset L of the n-dimensional real vector space R" is
called a lattice if there exists a basis b, b, ...,b, of IR" such that

=3 bez{z r,-b,.:r,.eZ(lgign)}.
i=1 1=

In this situation we say that by, b,, ..., b, form a basis for L, or that they span L. We

call n the rank of L. The determinant d(L) of L is defined by

(L.1) d(L)=|det(b,. by, ....b,),

the b, being written as column vectors. This is a positive real number that does not
depend on the choice of the basis [4, Sect. [.2].

Let b,.b,,....b,eR" be linearly independent. We recall the Gram-Schmidt
orthogonalization process. The vectors b¥ (1 <i<n) and the real numbers y; (1=

<i<n) are inductively defined by
i—1

(1.2) bf=b— > mpbt.
i=1

(1.3) ;= (b, bE)/(DE, b),

where (,) denotes the ordinary inner product on R". Notice that b is the
= i—1

projection of b, on the orthogonal complement of ) Rbj, and that Y. Rb,
=1

J i=1
i—1

= Z Rb7, for 1 <i<n. It follows that b¥, b%,....b¥ is an orthogonal basis of R",
ji=1
In this paper, we call a basis b,,b,,...,b, for a lattice L reduced if

(1.4) lplS1/2 for 1=j<isn
and
(1.5) |b?‘+ﬂff—1b?‘—1122%|b;&—1|2 for I<izZ=n,
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where || denotes the ordinary Euclidean length. Notice that the vectors b¥
+p;;_,b¥ | and b} | appearing in (1.5) are the projections of b; and b;_, on the
i—2

orthogonal complement of Z Rb;. The constant 2 in (1.5) is arbitrarily chosen,
j=1
and may be replaced by any fixed real number y with j<y<1.

(1.6) Proposition. Let b, b,,....,b, be a reduced basis for a lattice L in IR", and let
b¥,b%, ..., b¥ be defined as above. Then we have

(1.7) b <271 b¥* for 1<j<iZn,

(1.8) dL)E [] b2~ V. q(L),
i=1

(19) by 20~ 4. g(L)tin,

Remark. If 3 in (1.5) is replaced by y, with ;< y< 1, then the powers of 2 appearing
n (1.7), (1.8) and (1.9) must be replaced by the same powers of 4/(4y—1).

Remark. From (1.8) we see that a reduced basis is also reduced in the sense of [9,

(M3

Proof of (1.6). From (1.5) and (1.4) we sce that
bF1> =G —ufio ) b 122516, 2

for 1 <i=n, so by induction

[b¥? <270 b¥* for 1Zj<i

1A

n.

From (1.2) and (1.4) we now obtain

i-1
bil*=1bF*+ ) wilb}l*
i=1

=l
<IbHP+ 3, 42 1bH?

Ji=1
=(1+3(2'-2)- b}
gzi— 1 'b:kll

It follows that
b2 <2 1 p¥> <21 b2

for 1=j<i=n. This proves (1.7).
From (1.1), (1.2) it follows that

d(L)=|det(b}, b%, ....b})|

and therefore, since the b} are pairwise orthogonal

"

d(L)=TT Ibf1.

i=1

From |b¥| <|b;| and |b| <29~ 1/2.|b¥| we now obtain (1.8). Putting j=1in (1.7) and
taking the product over i=1,2,...,n we find (1.9). This proves (1.6).
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Remark. Notice that the proof of the inequality
(1.10) d(L)< T Ibi
i=1

did not require the basis to be reduced. This is Hadamard's inequality.
(1.11) Proposition. Let LCIR" be a lattice with reduced basis by, by, ..., b,. Then
b2 =21 Ix|?

for every xe L, x 0.

Proof. Write x= Y rb;= Y ribf with r,eZ, rieR (1=i<n). If i is the largest
i=1 i=1

index with r;#0 then ri=r so
x| 212 b2 2 b7 2.
By (1.7), we have |b,[2<27 ! |p#[2<2""*-|b¥|*. This proves (1.11).

(1.12) Proposition. Let L CIR" be a lattice with reduced basis b, by, ....b,. Let xy,
X, - X,€ L be linearly independent. Then we have

b2 <27~ t-max{lx, % x, /% .y x|}

for j=1,2,...,t.
n
Proof. Write x,= ¥, ryb, with r;eZ (1=i=n) for 1=jst. For fixed j, let i(j)

ij-i
i=1

denote the largest i_for which r;;#0. Then we have, by the proof of (1.11)
(L.13) xRz bER

for 1 <j<t. Renumber the x; such that (D<i2)=... £i(t). We claim that j=i())
for | <j<t. If not, then x, x,, ..., x; would all belong toRb, +Rb,+...+Rb;_,.a
contradiction with the linear independence of x,, x,, ..., x,. From j=i(j) and (1.7)
we obtain, using (1.13):

b2 <201 |2 < 2" L b2 <2 Ix

for j=1,2,...,t. This proves (1.12).

Remark. Let 4,,2,,...,4, denote the successive minima of [|? on L, see [4, Chap.
VIII], and let b, b,,....b, be a reduced basis for L. Then (1.7) and (1.12) easily
imply that

L= ThP2 Y, for 12isu,
so |b)? is a reasonable approximation of 4,

(1.14) Remark. Notice that the number 2""' may in (1.11) be replaced by
max{|b,|2/|b¥?:1<i<n} and in (1.12) by max{[b*/|b}|*: 1 S jSiZn}.

(1.15) We shall now describe an algorithm that transforms a given basis
b,.by, ....b, for a lattice L into a reduced one. The algorithm improves the
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algorithm given in a preliminary version of [9, Sect. 3]. Our description
incorporates an additional improvement due to J. J. M. Cuppen, reducing our
running time estimates by a factor n.

To initialize the algorithm we compute b} (1 £i<n)and #;; (1= j<i=n) using
(1.2) and (1.3). In the course of the algorithm the vectors b,,b,,...,b, will be
changed several times, but always in such a way that they form a basis for L. After
every change of the b; we shall update the bf and y;; in such a way that (1.2) and
(1.3) remain valid.

At each step of the algorithm we shall have a current subscript
ke{1,2,....,n+1}. We begin with k=2.

We shall now iterate a sequence of steps that starts from, and returns to, a
situation in which the following conditions are satisfied:

(1.16) <L for 1Zj<i<k,

(1.17) b¥ 4y, B P 22bE 12 for l<i<k.

These conditions are trivially satisfied if k=2.

In the above situation one proceeds as follows. If k=n+1 then the basis is
reduced, and the algorithm terminates. Suppose now that k<n. Then we first
achieve that

(1.18) J#kk—].'é% il k>1.

If this does not hold, let r be the integer nearest to g, _,, and replace b, by b,
—rb,_,. The numbers p,; with j<k—1 are then replaced by g,;—ry,_, ;. and
My x— 1 bY gy — 1. The other #;;and all b} are unchanged. After this change (1.18)
holds.

Next we distinguish two cases.

Case . Suppose that k=2 and
(1.19) B + s 1 b 1 <3IBE_ 12

Then we interchange b,_, and b,, and we leave the other b; unchanged. The
vectors by_, and b and the numbers 4\ _y, f_y j» s iy~ 1 My fOT j<k—1 and
for i >k, have now to be replaced. This is done by formulae that we give below. The
most important one of these changes is that bf_, is replaced by b} +p, . _,b¥_ ;50
the new value of [b}_,|* is less than $ times the old one. These changes being made,
we replace k by k— 1. Then we are in the situation described by (1.16) and (1.17),
and we proceed with the algorithm from there.

Case 2. Suppose that k=1 or

(1.20) IbF -+t 1 bE- 12 Z2BE .
In this case we first achieve that

(1.21) ;=3 for 1ZjZk—1.

[Forj:k—l this is already true, by (1.18).] If (1.21) does not hold, let I be the
largest index <k with || >3, let r be the integer nearest to j,,, and replace b, by
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b,— rb,. The numbers p,; with j <l are then replaced by p;—rp;, and gy, by gy, —r;
the other 1;; and all bff are unchanged. This is repeated until (1.21) holds.

Next we repiace k by k+ 1. Then we are in the situation described by (1.16) and
(1.17), and we proceed with the algorithm from there.

Notice that in the case k=1 we have done no more than replacing k by 2.

This finishes the description of the algorithm. Below we shall prove that the
algorithm terminates.

(1.22) For the sake of completeness we now give the formulae that are needed in
case 1. Let b, b,, ..., b, be the current basis and b, y;; as in (1.2) and (1.3). Let k be
the current subscript for which (1.16), (1.17), (1.18), and (1.19) hold. By ¢;, ¢}, and v;;

we denote the vectors and numbers that will replace b, b, and g, reSpcctwely
The new basis ¢,,c,,....C, 1S given by

CG_y=b,, c=b_y, c¢=b for i¥k—1k.
k-2
Since ¢*_, is the projection of b, on the orthogonal complement of > Rb; we
j=1

have, as announced :
® ¥ *
o1 =b§ + i1 bEy

[cf. the remark after (1.5)]. To obtain ¢jf we must project bf_, on the orthogonal
complement of Re¢f_ . That leads to

Ver—1 =bF_ e - -y
=ﬂkk—1|bf—|i2/|cf—1|2s
=bf = Vi

For i+k—1, k we have ¢*=b¥. Let now i>k. To find v;, _, and v, we substitute
b1 =Ver- 11tk
b =(1— - 1Viek— -1~ Mik—1 C§

=Ubf|2/|c;f—1|2]'cf—L—FH—IC;’?
i-1
in b,=b*+ ‘Zl ;b7 That yields
i

"ik—1=1”ik—1"’n—1+Pik!bf|2/icf—1lz
Vie=Hig— 1 il —1-
Finally, we have

Vo1 T8k VT M-

for 1ISj<k—1,and v ;=p; if 1=j<i=sn, {i,j}n{k—1, k}=0.

We remark that after the initialization stage of the algorithm it is not necessary
to keep track of the vectors b¥. It suffices to keep track of the numbers |b¥|?, in
addition to p; and the vectors b, Notice that |cf [Z=|b¥. |?: Ib*l 2/|lc¥_,|* in the
above, and that the left hand 31de of (1.19), (1.20) equals Ib*l +u2, _IbE_ A

The entire algorithm is represented in Flg. 1, in which B;=|b¥|%
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b¥:=b;:
,u;_j:=(bn b_?).l'llBj;
br=bf b’
B :=(b},bf)
k:=2;

perform (%) for i=k—1;

} for j=1,2,..,i—1;} for i=12...n;

(1

if B<(—pi,_)B._,. goto(2);
perform () for I=k—2, k—3,...,1;
il k=n, terminate;
ki=k+1;
go to (1);
(2) =ty s Bi=By+ By 5 -y i=pBy_y/B;
B,:=B,_ ,B,/B: B, ,:=B:

(b}';l) = (bff 1)‘

(‘”’““’):=( m,-) for j=1,2,...k=2;

Hyj Hi—1j

i 1 _,4 (0 1 -
(‘u"‘ 1):=( Hua ’)( )(ﬂ“‘ ') for i=k+1,k+2,...n;
Hiy 0 1 L=\ py

il k>2, then k:=k-—1;
go to (1).
(*) If || >4, then:
r:=integer nearest to u,; bi=b,—rb;;
My =Ry — riy for j=1,2,..,1—1;

Mgt =My —r.

Fig. 1. The reduction algorithm

(1.23) To prove that the algorithm terminates we introduce the quantities

(1.24) d;=det((b; b)), <<
for 0=i=n. It is easily checked that
(1.25) di= [ Ib}P?

i=1

for 0<i=n. Hence the d; are positive real numbers. Notice that d,=1 and d
=d(L)>. Put

n

n=1
D= 1] d;.
i=1

By (1.25), the number D only changes if some b¥is changed, which only occurs in
case . In case 1, the number d, _, is reduced by a factor <2, by (1.25), whereas the
other d; are unchanged, by (1.24); hence D is reduced by a factor <%. Below we
prove that there is a positive lower bound for 4, that only depends on L. It follows
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that there is also a positive lower bound for D, and hence an upper bound for the
number of times that we pass through case 1.

In case 1, the value of k is decreased by 1, and in case 2 it is increased by 1.
Initially we have k=2, and k<n+1 throughout the algorithm. Therefore the
number of times that we pass through case 2 is at most n— 1 more than the number
of times that we pass through case 1, and consequently it is bounded. This implies
that the algorithm terminates.

To prove that d; has a lower bound we put

m(L)=min{|x|?:xe L.x=+0}. _

This is a positive real number. For i>0, we can interpret d; as the square of the
determinant of the lattice of rank i spanned by b,.b,,....b; in the vector space

Y Rb;. By [4, Chap. 1, Lemma 4 and Chap. I, Theorem I]. this lattice contains a
=1

;mn-zero vector x with |x|><(4/3)"~ V241 Therefore d;=(3/4)~ V" 2m(L), as
required.

We shall now analyse the running time of the algorithm under the added
hypothesis that b,eZ" for | Zi=<n. By an arithmetic operation we mean an
addition, subtraction, multiplication or division of two integers. Let the binary
length of an integer a be the number of binary digits of |al.

(1.26) Proposition. Let LCZ" be a lattice with basis by, b,,....b,, and let BER,
B=2, be such that |b)* < B for 1 Si=n. Then the number of arithmetic operations
needed by the basis reduction algorithm described in (1.15) is O(n*logB), and the

integers on which these operations are performed each have binary length O(nlog B).

Remark. Using the classical algorithms for the arithmetic operations we find that
the number of bit operations needed by the basis reduction algorithm is
0(n®(log B)*). This can be reduced to O(n® ““(log B)* '), for every £ >0, if we employ
fast multiplication techniques.

Proof of (1.26). We first estimate the number of times that we pass through cases 1
and 2. In the beginning of the algorithm we have d; < B', by (1.25), so D< B""~ V2,
Throughout the algorithm we have D> 1, since d;eZ by (1.24) and d,>0 by (1.25).
So by the argument in (1.23) the number of times that we pass through case 1 is
O(n*logB), and the same applies to case 2.

The initialization of the algorithm takes O(n?) arithmetic operations with
rational numbers ; below we shall see how they can be replaced by operations with
integers.

For (1.18) we need O(n) arithmetic operations, and this is also true for case 1. In
case 2 we have to deal with O(n) values of I, that each require O(n) arithmetic
operations. Since we pass through these cases O(n* log B) times we arrive at a total
of O(n*log B) arithmetic operations.

In order to represent all numbers that appear in the course of the algorithm by
means of integers we also keep track of the numbers d; defined by (1.24). In the
initialization stage these can be calculated by (1.25). After that, they are only
changed in case 1. In that case, d,_, is replaced by d,_,-lci_,|*/IbF_ > =d\_,
‘le¥_ ,|* [in the notation of (1.22)] whereas the other d; are unchanged. By (1.24),
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the d; are integers, and we shall now see that they can be used as denominators for
all numbers that appear:

(1.27) bH2=djd_, (1<i<n),
(1.28) d_breLcZ' (1Sisn),
(1.29) di€Z (15j<iZn).

i—1

The first of these follows from (1.25). For the second, we write bf=b,— Z Aiib;
with 2;;€IR. Solving 4;,...,4;;_, from the system 1=

{ S|

(bub)= Y Zi{bpb) (1=I1i—1)

j=1
and using (1.24) we find that d;_,4;;€Z, whence (1.28). Notice that the same
argument yields

( Zpub*)eZ" for i<k;

this is useful for the calculation of b at the beginning of the algorithm. To prove
(1.29) we use (1.3), (1.27), and (1.28):

=d b, bIbE. T =d;_ (b, b} =(b,d;_ BNET.

To finish the proof of (1.26) we estimate all integers that appear. Since no d, is
ever increased we have d,<B' throughout the algorithm. This estimates the
denominators. To estimate the numerators it suffices to find upper bounds for
IbF2, 102 and ;).

At the beginning we have [bf|><|b,><B, and max{|b¥/*:1<i<n} is non-
increasing; to see this, use that |cf_,|> <3|bf_,|* and |cf|* = |bf_,|* in (1.22), the
latter inequality because ¢f is a projection of bf_,. Hence we have |b¥|*<B
throughout the algorithm.

To deal with [b|* and g;; we first prove that every time we arrive at the
situation described by (1.16) and (1.17) the following inequalities are satisfied:

(1.30) |b,|*<nB for ik,

(1.31) |b,|* =n*(4B)" if  k#n+l,

(1.32) 1 =5 for 1<j<i, i<k,

(1.33) ;| £(nB)'2 for 1gj<i, i>k,

(1.34) 277 mB " )2 for 1Zj<k, if k#n+l1.

Here (1.30), for i <k, is trivial from (1.32), and (1.31) follows from (1.34). Using that
(1.35) uG = bi?/IbF1? =d;_ |b]*/d; < B~ b ?

we see that (1.33) follows from (1.30), and (1.32) is the same as (1.16). It remains to
prove (1.30) for i >k and to prove (1.34). At the beginning of the algorithm we even
have |b,>< B and p? < B/, by (1.35), so it suffices to consider the situation at the

ij=
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end of cases 1 and 2. Taking into account that k changes in these cases, we see that
in case 1 the set of vectors {b;:i#k} is unchanged, and that in case 2 the set
{b,:i>k} is replaced by a subset. Hence the inequalities (1.30) are preserved. At
the end of case 2, the new values for g ; (if k#n+ 1) are the old values of y, ;. ; , so
here (1.34) follows from the inequality (1.33) at the previous stage. To prove (1.34)
at the end of case 1 we assume that it is valid at the previous stage, and we follow
what happens to ;. To achieve (1.18) it is, for j<k—1, replaced by py;—rpy_ ;
with |r| <2, - | and |, |23, s0

(1.36) it = 1ty | S il + - o
gzu—k+1{”Bn—i)l.’2 by (134}_

In the notation of (1.22) we therefore have
vy J220 ¢ @B ™ H)Y2 for j<k—1

and since k— 1 is the new value for k this is exactly the inequality (1.34) to be
proved.

Finally, we have to estimate |b|* and ; at the other points in the algorithm.
~ For this it suffices to remark that the maximum of |, |, [, ... [ - ;| Is at most
doubled when (1.18) is achieved, by (1.36), and that the same thing happens in
case 2 for at most k—2 values of . Combining this with (1.34) and (1.33) we
conclude that throughout the course of the algorithm we have

| £2" " 'nB"~ )2 for 1<Sj<isn
and therefore
|b|><n*(4B)" for 1=iZn.

This finishes the proof of (1.26).

(1.37) Remark. Let 1 <n'=n. If k, in the situation described by (1.16) and (1.17), is
for the first time equal to n’ + 1, then the first 0" vectors b, b,, ..., b, form a reduced
basis for the lattice of rank n’ spanned by the first n’ vectors of the initially given
basis. This will be useful in Sect. 3.

(1.38) Remark. It is easily verified that, apart from some minor changes, the
analysis of our algorithm remains valid if the condition L CZ" is replaced by the
condition that (x, y)e Z for all x, ye L; or, equivalently, that (b, b)e Z for 1 =i, j=n.
The weaker condition that (b, b)e @, for 1=i, j=n, is also sufficient, but in this
case we should clear denominators before applying (1.26).

We close this section with two applications of our reduction algorithm. The
first is to simultaneous diophantine approximation. Let n be a positive integer,
Oy, 0lp, ...y 0, Teal numbers, and eeR, 0<e<1.Itisa classical theorem [4, Sect.V.10]

that there exist integers p,,p,, ..., Py, ¢ satisfying
lp;—qu]<e for 1=Zi=n,
1=g=e™".

We show that there exists a polynomial-time algorithm to find integers that satisfy
a slightly weaker condition.
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(1.39) Proposition. There exists a polynomial-time algorithm that, given a positive
integer n and rational numbers o, o, ..., a,, & satisfying 0<e <1, finds integers p,,
Das s P @ for which
lpi—gqolSe for 1=Zi=Zn,
1 £ g2 21 NIt

Proof. Let L be the lattice of rank n+1 spanned by the columns of the
(n+1) x (n+ 1)-matrix

/1 0 ... 0 —a, \
61 & O —a,
G O o -
00 ... 0 2""("“"‘l.'}."‘l'an'%qIIIII

The inner product of any two columns is rational, so by (1.38) there is a
polynomial-time algorithm to find a reduced basis b,, b,, ...,b,, , for L. By (1.9)
we then have

Ib] | é 2:1,“4 ,d(L]lH:H 1) =z,
Since b, € L, we can write

bl ={P1 — oy, Py — Gy, .”,pn_qamq,z—n(n+ 1}.1’48r:+ 1]T

with p,,p,.....p,, g€ Z. It follows that
Ipi—qu|<e for 1=Zisn,
|q|§2r|{n+l},‘4£—n.

From e<1 and b, 0 we see that g=+0. Replacing b, by —b,, il necessary, we can
achieve that ¢>0.

This proves (1.39).

Another application of our reduction algorithm is to the problem of finding
O-linear relations among given real numbers «,, o,,...,x,. For this we take the
lattice L to be Z", embedded in R"*! by

n
(my,my, ...om )~ (ml,mz, camye Y ma);
i=1
here c is a large constant and o is a good rational approximation to o, The first
basis vector of a reduced basis of L will give rise to integers m,, m,, ..., m, that are

not too large such that ) mo; is very small.
i=1

Applying this to o;=o' "' we see that our algorithm can be used to test a given
real number « for algebraicity, and to determine its irreducible polynomial. Taking
for o a zero of a polynomial feZ[X], =0, and generalizing the algorithm to
complex «, one finds in this way an irreducible factor of f in Z[X]. It is likely that
this yields actually a polynomial-time algorithm to factor f in Q[X], an algorithm
that is different from the p-adic method described in Sect. 3.

In a similar way we can test given real numbers o, f, y, ... for algebraic
dependence, taking the o; to be the monomials in o, f8, 7, ... up to a given degree.
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2. Factors and Lattices

In this section we denote by p a prime number and by k a positive integer.
We write Z/p*Z for the ring of integers modulo p* and T, for the field
Z/pZ. For g= Z(:,.X‘EZ[X} we denote by (gmodp*) the polynomial

Z (a;modp")X'e (Z}p“Z)[X].

We fix a polynomial feZ[X] of degree n, with n>0, and a polynomial he Z[X]
that has the following properties:

(2.1) h has leading coefficient 1,

(2.2) (hmodp*) divides (f modp*) in (Z/p*Z)[X],
(2.3) (hmodp) is irreducible in IF [X],

(2.4) (hmodp)? does not divide (f modp) in IF [X].

We put I=deg(h); so 0<iZn.

(2.5) Proposition. The polynomial f has an irreducible factor hy in Z[X ] for which
(hmodp) divides (hymodp), and this factor is uniquely determined up to sign.
Further, if g divides f in Z[X], then the following three assertions are equivalent :
(i) (hmodp) divides (g modp) in IF [X],
(ii) (hmodp*) divides (gmodp®) in (Z/p*Z)[X],
(iii) h, divides g in Z[X].
In particular (hmod p*) divides (hymod p*) in (Z/p*Z)[X].

Proof. The existence of h, follows from (2.2) and (2.3), and the unigqueness, up to
+1, from (2.4). The implications (ii) = (i) and (iii) = (i) are obvious. Now
assume (i); we prove (iii) and (ii). From (i) and (2.4) it follows that (h modp) does
not divide (f/gmodp) in F [X]. Therefore h, does not divide f/g in Z[X], so it
must divide g. This proves (iii). By (2.3) the polynomials (h modp) and (f/g modp)
are relatively prime in IF [X], so in IF [X] we have

(2, mod p)-(hmod p)+ (s, modp)-(f/g mod p)=1

for certain A,,u,€Z[X]. Therefore A;h+y, flg=1—pv, for some v,eZ[X].
Multiplying this by 1 +pv, +p*v?+...+p*~1¥{~T and by g we obtain

Aoh+p, f= gmod p*Z[X ]

for certain 4,, u,€ Z[X]. Since the left hand side, when taken modulo p*, is divisible
by (hmodp®), the same is true for the right hand side. This proves (ii).
The final assertion of (2.5) follows if we take g =h,. This proves (2.5).

(2.6) In the remainder of this section we fix an integer m with m= [, and we let L be
the collection of all polynomials in Z[X] of degree <m that, when taken modulo P
are divisible by (hmod p*) in (Z/p*Z)[X]. This is a subsct of the (m + 1)-dimensional
real vector space R+R-X +...+IR-X™ This vector space is identified with R™*1

m

by identifying Y aX’ with (ag,d,, ....a,). Notice that the length | ) aX’

i=0 =0

of a
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polynomial, as defined in the introduction, is equal to the ordinary Euclidean
length of (ay, a,, ..., a,,). It is easy to see that L is a lattice in R™*! and, using (2.1),
that a basis of L is given by

{(PX:0Zi<Bbu{hX/:0<j<m—1}.

From (1.1) it follows that d(L)=p".
In the following proposition h,, is as in (2.5).

(2.7) Proposition. Let be L satisfy
(2.8) M >\ f1™bl".
Then b is divisible by h, in Z[X ], and in particular ged(f,b)=+ 1.

Remark. A weaker version of (2.7), which could also be used to obtain a
polynomial-time factoring algorithm for polynomials, asserts that ged(f,b)=+1
under the same conditions. The proof of this version is less complicated than the
proof given below, see [8, Theorem 2].

Proof of (2.7). We may assume that b+0. Let g=gcd(f, b). By (2.5) it suffices to
show that (hmodp) divides (g mod p). Suppose that this is not the case. Then by
(2.3) we have

(2.9) Ash+psg=1—pvy
for certain A, pt5, v4€Z[X]. We shall derive a contradiction from this.
Put e=deg(g) and m'=deg(bh). Clearly 0Se=<m'=m. We define
M={Af+ub: i ucZ[X],deg(d)<m’ —e,deg(p)<n—e}
CZ+Z-X+.. . +Z-X"m "L,
Let M’ be the projection of M on
X+ Z- X XL
Suppose that 1f + ub projects to 0 in M’, with 4,  as in the definition of M. Then
deg(Zf +ub)<e, but g divides Af+ub, so Af+ub=0. From 2-(f/g)=—u-(b/g)
and gecd(f/g,b/g)=1 it follows that f/g divides p. But deg(u) <n—e=deg(f/g), so

=0, and therefore also A=0.
" This proves that the projections of

Xif:0<i<m' —e}uiXbh:0<j<n—e}
on M’ are linearly independent. Since these projections span M, it follows that M’

is a lattice of rank n+m'—2e. From Hadamard’s inequality (1.10) and (2.8) we
obtain

(2.10) dM)S|fI" e bl | S bl < pM.

Below we deduce from (2.9) that
(2.11) {(veM :deg(v)<e+I} Cp*Z[X].
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Hence, if we choose a basis b, b, ;s ..sbysm—oe—y Of M' with deg(b))=j, see [4,
Chap. I, Theorem 1.AJ, then the leading coefficients of b, b, s ...;b,4— are
divisible by p*. [Notice that e+I—1=n+m'—e—1 because g divides b and
(hmod p) divides (f/g mod p).] Since d(M') equals the absolute value of the product
of the leading coefficients of by, b,y s --bysm—e—; We find that d(M’)zp*.

" ¥h+m’

Combined with (2.10) this is the desired contradiction.
To prove (2.11), let ve M, deg(v)<e+1. Then g divides v. Multiplying (2.9) by
v/g and by 14+ pv,+p*vi+...+p* W' we obtain

(2.12) Ah+pv=v/gmod p*Z[X]

with A,, t,eZ[X]. From ve M and beL it follows that (v mod p*) is divisible by
(hmod p"). So by (2.12) also (v/g mod p*) is divisible by (h modp*). But (h modp¥) is
of degree | with leading coefficient 1, while (v/g modp*) has degree <e+I—e=I.
Therefore v/g=0modp*Z[X], so also v=0modp*Z[X]. This proves (2.11).

This concludes the proof of (2.7).

(2.13) Proposition. Let p, k, f, n, h, | be as at the beginning of this section, hy as in
(2.5), and m, L as in (2.6). Suppose that b, b,, ....b,,. , is a reduced basis for L (see
(1.4) and (1.5)), and that

[z 2”] oA m+n
(2.14) p“>2'""-~(m) gl

Then we have deg(h,)<m if and only if

(2.15) Iyl < (/A1)

Proof. The “if-part is immediate from (2.7), since deg(b;)=m. To proveﬂthe “only
if*-part, assume that deg(h,) <m. Then hye L by (2.5), and |ho| = (2’::1)1“‘”' by a
result of Mignotte [10; cf. 7, Exercise 4.6.2.20]. Applying (1.11) to x=h, we find
that IbllgZ”’"'z-ih0|§2"’"2-(2}:1)”2-]f|. By (2.14) this implies (2.15). This proves
(2.13).

(2.16) Proposition. Let the notation and the hypotheses be the same as in (2.13), and
assume in addition that there exists an index je{1,2,...,m+1} for which

(2.17) bl < /11"
Let t be the largest such j. Then we have
deg(hg)=m+1—t,
ho=ged(b,.b,,....b),
and (2.17) holds for all j with 1 £j =t

Proof. Let J={je{l,2,...,m+1}: (2.17) holds}. From (2.7) we know that h,
divides b; for every jeJ. Hence if we put

h,=gcd({b;:je]})
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then h, divides h,. Each b, je J, is divisible by h, and has degree =m, so belongs to
Z-h+Z-hX+.. . +Z-h X" et

Since the b; are linearly independent this implies that

(2.18) #J<m+1—deg(h,).

By the result of Mignotte used in the proof of (2.13) we have [hoX'|=|h,|

“\m
(1.12) we obtain

1/2
< (2’”) -If] for all i20. For i=0, 1, ...,m—deg(h,) we have hoX‘eL, so from

o 2m\V/?
|bj|gzm-2-( ) "

m
for 1 £j=m+ 1 —deg(h,). By (2.14), this implies that
(2.19) {1,2,...,m+1—deg(hy)}CJ.
From (2.18), (2.19) and the fact that h, divides h; we now sce that equality must
hold in (2.18) and (2.19), and that
deg(hy)=deg(h)=m+1—t, J={1,2,...,1}.

It remains to prove that h is equal to h,, up to sign, and for this it suffices to check
that h, is primitive. Choose jeJ, and let d; be the content of b, Then b/d, is
divisible by hy, and hoe L, so b/d;e L. But b; belongs to a basis for L,so d;=1and
b; is primitive, and the same is true for the factor h, of b, This finishes the proof of
(2.16).

Remark. If t=1 then we see from (2.16) that b, is an irreducible factor of f, and
that no ged computation is necessary.

Remark. From the proofs of (2.13) and (2.16) we see that (2.14) may be replaced by
pe =By,

where f=max {|b;|/|bf| :1=j<i<m+1} [cf. (1.14)] and where y is such that |g| <y
for every factor g of f in Z[X] with deg(g)=m.

3. Description of the Algorithm

Denote by f a primitive polynomial in Z[X] of degree n, with n>0. In this section
we describe an algorithm that factors f into irreducible factors in Z[X]. We begin
with two auxiliary algorithms.

(3.1) Suppose that, in addition to f and », a prime number p, a positive integer k
and a polynomial he Z[X] are given satisfying (2.1), (2.2), (2.3), and (2.4). Assume
that the coefficients of h are reduced modulo p*, so

IAl? <1 +1p*,
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where I=deg(h). Let further an integer m=1 be given, and assume that inequality
(2.14) is satisfied:
2 ni2 _
pki > 2rrm.-’2 ( m) .U‘l"""’" .
m

We describe an algorithm that decides whether deg(ho) <m, with h, as in (2.5), and
determines h,, if indeed deg(hy)=m.
Let L be the lattice defined in (2.6), with basis

{(PX 0Zi<FulhX/:0ZjSm—1}.

Applying algorithm (1.15) we find a reduced basis by, b,,....b, ., for L. If |b,|
> (/1 fI™'" then by (2.13) we have deg(h,)>m, and the algorithm stops. If |b,|
<(p*/|fI™"™ then by (2.13) and (2.16) we have deg(hy) =m and

ho=ged(by, by, ... b)

with ¢ as in (2.16). This gcd can be calculated by repeated application of the
subresultant algorithm described in [7, Sect. 4.6.17. This finishes the description of
algorithm (3.1).

(3.2) Proposition. The number of arithmetic operations needed by algorithm (3.1) is
O(m*klogp), and the integers on which these operations are performed each have
binary length O(mklogp).

Proof. We apply (1.26) with m+ 1 in the role of n and with B=1 +Ip*. From I<n
and (2.14) we see that m=0(klogp), so logl <!<m implies that logB=0(klogp).
This leads to the estimates in (3.2). It is straightforward to verify that the ged
computation at the end satisfies the same estimates. This proves (3.2).

(3.3) Next suppose that, in addition to f and n, a prime number p and a
polynomial he Z[X] are given such that (2.1), (2.2), (2.3), and (2.4) are satisfied with
k replaced by 1. Assume that the coefficients of h are reduced modulo p. We
describe an algorithm that determines h, the irreducible factor of f for which
(hmodp) divides (h, modp), cf. (2.5).

Write {=deg(h). If I=n then hy=f, and the algorithm stops. Let now [ <n. We
first calculate the least positive integer k for which (2.14) holds with m replaced by

n—1: nf
pki > 2U|— 1n/2 ‘(2(”— l)) 2 g | HZM— 1
n—1 : |

Next we modify h, without changing (hmodp), in such a way that (2.2) holds for
the value of k just calculated, in addition to (2.1), (2.3), and (2.4). This can be
accomplished by the use of Hensel's lemma, see [7, Exercise 4.6.2.22; 14;15; 13].
We may assume that the coefficients of i are reduced modulo rk.

Let u be the greatest integer for which I <(n— 1)/2". We perform algorithm (3.1)
for each of the values m=[(n—1)/2*], [(n—1)/2*"'], ...[(h—1)2], n—1 in
succession, with [x] denoting the greatest integer <x; but we stop as soon as for
one of these values of m algorithm (3.1) succeeds in determining h,,. If this does not
occur for any m in the sequence then deg(ho)>n— 1, so hy=f and we stop. This
finishes the description of algorithm (3.3).
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(3.4) Proposition. Denote by m, =deg(h,) the degree of the irreducible factor hy of
S that is found by algorithm (3.3). Then the number of arithmetic operations
needed by algorithm (3.3) is O(my(n®+n*log|f|+n>logp)), and the integers on
which these operations are performed each have binary length O(n®+n?log|f]
+nlogp).

Proof. From

= = n—1)n, 2{?’!_1) e In—
pk Iép{k 1}!52{ 1) IZ( e ) |f|- 1

it follows that
klogp=(k—1)logp+logp=0(n*+nlog|f|+logp).

Let ni, be the largest value of m for which algorithm (3.1) is performed. From the
choice of values for m it follows that m, <2m,, and that every other value for m
that is tried is of the form [m, /2], with i=1. Therefore we have Y m*=0(m¢).
Using (3.2) we conclude that the total number of arithmetic operations needed by
the applications of algorithm (3.1) is O(mgk logp), which is

O(mg(n*+nlog|f]+logp)),

and that the integers involved each have binary length O(m klogp), which is

O(my(n* +nlog|f|+logp)).

With some care it can be shown that the same estimates are valid for a suitable
version of Hensel’s lemma. But it is simpler, and sufficient for our purpose, to
replace the above estimates by the estimates stated in (3.4), using that m, <n; then
a very crude estimate for Hensel’'s lemma will do. The straightforward verification
is left to the reader. This proves (3.4).

(3.5) We now describe an algorithm that factors a given primitive polynomial
feZ[X] of degree n>0 into irreducible factors in Z[X].

The first step is to calculate the resultant R(f, /') of f and its derivative f*, using
the subresultant algorithm [7, Sect. 4.6.1]. If R(f, /')=0 then f and f’ have a
greatest common divisor g in Z[X] of positive degree, and g is also calculated by
the subresultant algorithm. This case will be discussed at the end of the algorithm.
Assume now that R(f, /') +0.

In the second step we determine the smallest prime number p not dividing
R(f. /'), and we decompose (f mod p) into irreducible factors in IF,[X] by means of
Berlekamp’s algorithm [7, Sect. 4.6.2]. Notice that R(f, ) is, up to sign, equal to
the product of the leading coefficient of f and the discriminant of f. So
R(f, f1£0modp implies that (fmodp) still has degree n, and that it has no
multiple factors in IF [X]. Therefore (2.4) is valid for every irreducible factor
(hmodp) of (f modp) in F,[X].

In the third step we assume that we know a decomposition f=f, f, in Z[X]
such that the complete factorizations of f; in Z[X] and (f, modp) in IF,[X] are
known. At the start we can take f; =1, f,=4. In this situation we proceed as
follows. If f,= 41 then =+ f] is completely factored in Z[X], and the algorithm
stops. Suppose now that f, has positive degree, and choose an irreducible factor
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(hmodp) of (f, modp) in IF,[X]. We may assume that the coefficients of h are
reduced modulo p and that & has leading coefficient 1. Then we are in the situation
described at the start of algorithm (3.3), with f, in the role of £, and we use that
algorithm to find the irreducible factor h, of f in Z[X] for which (h mod p) divides
(h, mod p). We now replace f, and f, by f,h, and f,/h,, respectively, and from the
list of irreducible factors of (f, mod p) we delete those that divide (h, modp). After
this we return to the beginning of the third step.

This finishes the description of the algorithm in the case that R(f, f')=0.
Suppose now that R(f, ) =0, let g be the ged of f and (" in Z[X], and put f, = f/g.
Then f, has no multiple factors in Z[X], s0 R(fq, fg)#0,and we can factor f, using
the main part of the algorithm. Since each irreducible factor of g in Z[X] divides f,
we can now complete the factorization of f= fyg by a few trial divisions. This
finishes the description of algorithm (3.5).

(3.6) Theorem. The above algorithm factors any primitive polynomial feZ[X] of
positive degree n into irreducible factors in Z[X]. The number of arithmetic
operations needed by the algorithm is O(n®+n®log|fl), and the integers on which
these operations are performed each have binary length O(n® +n*log|f]). Here |f] is
as defined in the introduction.

Using the classical algorithms for the arithmetic operations we now arrive at
the bound O(n'2 + n°(log|f])*) for the number of bit operations that was announ-
ced in the introduction. This can be reduced to O(n®**+n” **(log|f])***), for every
£>0, if we employ fast multiplication techniques.

Proof of (3.6). The correctness of the algorithm is clear from its description. To
prove the estimates we first assume that R(f, ') +0. We begin by deriving an upper
bound for p. Since p is the least prime not dividing R(f, f') we have

(3.7) [T 4a=IRULSN

q<p,gprime
It is not difficult to prove that there is a positive constant 4 such that
(3.8) [T g>e*

4=<p,qprime

for all p>2, see [6, Sect. 22.2]; by [12] we can take 4=0.84 for p>10l. From
Hadamard’s inequality (1.10) we easily obtain

IR(LSNER"|f1P T
Combining this with (3.7) and (3.8) we conclude that
(3.9) p<(nlogn+(2n—1)log|f)/A

or p=2. Therefore the terms involving logp in proposition (3.4) are absorbed by
the other terms.

The call of algorithm (3.3) in the third step requires O(mg-(n® +n*loglf,))
arithmetic operations, by (3.4), where m,, is the degree of the factor h, that is found.
Since f, divides f, Mignotte’s theorem [10; cf. 7, Exercise 4.6.2.20] that was used in
the proof of (2.13) implies that log|f,| = O(n+log|f|). Further the sum E’"o of the
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degrees of the irreducible factors of f is clearly equal to n. We conclude that the
total number of arithmetic operations needed by the applications of (3.3) is O(n°®
+n°loglf]). By (3.4), the integers involved in (3.3) each have binary length O(n®
+n*log|f]).

We must now show that the other parts of the algorithm satisfy the same
estimates. For the subresultant algorithm in the first step and the remainder of the
third step this is entirely straightforward and left to the reader. We consider the
second step.

Write P for the right hand side of (3.9). Then p can be found with O(P)
arithmetic operations on integers of binary length O(P); here one can apply [11]
to generate a table of prime numbers < P, or alternatively use a table of squarefree
numbers, which is easier to generate. From p < P it also follows that Berlekamp’s
algorithm satisfies the estimates stated in the theorem, see [7, Sect. 4.6.2].

Finally, let R(f, f")=0,and f, = f/ged(f, /') as in the algorithm. Since f, divides
f. Mignotte’s theorem again implies that log|f,| =O0(n+log|f]). The theorem now
follows easily by applying the preceding case to fj,.

This finishes the proof of (3.6).

(3.10) For the algorithms described in this section the precise choice of the basis
reduction algorithm is irrelevant, as long as it satisfies the estimates of proposition
(1.26). A few simplifications are possible if the algorithm explained in Sect. 1 is
used. Specifically, the ged computation at the end of algorithm (3.1) can be
avoided. To see this, assume that m,=deg(h,) is indeed <m. We claim that h,
occurs as b, in the course of the basis reduction algorithm. Namely, by (1.37) it will
happen at a certain moment that by, b,,...,b, ., form a reduced basis for the
lattice of rank m,+1 spanned by {p*X":0<i<l}u{hX/:0<j<m,—I}. At that
moment, we have hy=b,, by (2.13) and (2.16), applied with m, in the role of m. A
similar argument shows that in algorithm (3.3) one can simply try the values m=1,
I+1,...,n—1 in succession, until h,is found.

Acknowledgements are due to J. J. M. Cuppen for permission to include his improvement of our basis
reduction algorithm in Sect. 1.
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ABSTRACT

This paper describes a polynomial-time algorithm for the factorization of
polynomials in one variable with coefficients in an algebraic number field.
The algorithm generalizes the polynomial-time algorithm for the factorization

of polynomials in cne variable with rational coefficients.
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Factoring polynomials over algebraic number fields.

in [8] a polynomial-time algorithm was given to factorize polynomials in
one variable with rational coefficients. In this paper we generalize this
result to polynomials in one variable with cocefficients in an algebraic
number field.

The existence of a polynomial-time algorithm for this problem is not
surprising in view of [8]. According to Trager [12] the problem is reducible
to the factorization of univariate polynomials with integral ccefficients,
and in [6] it is shown that this reduction is polynomial-time. Here we
pursue a direct approach to the factorization of polynomials over algebraic
number fields. As suggested in [7: Section 5] we regard the irreducible
factor we are looking for as an element of a certain integral lattice, and
we prove that it is the 'smallest' element in this lattice. As we have seen
in F8] this enables us to effectively compute this factor by means of a
basis reduction algorithm for lattices.

Section 1 contains some notation and definitions; furthermore we
recall there some results from [8: Section 1]. Section 2 deals with the
connection between factors and lattices. It generalizes the first part of
[8: Section 2]. In Section 3 we give a global descripticn of the factoring
algorithm and we analyze its running time.

For a polynomial f we denote by 6f the degree of £, by &c(f)

the leading coefficient of £, and £ is said to be monic if fc(f) = 1.
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1. Preliminaries.

Let the algebraic number field @(a) be given as the field of rational
numbers @ extended by a root o of a prescribed monic irreducible poly-
nomial F e Z[T], i.e. @(a) = @[T]/(F). This implies that the elements
of @(a) can be represented as polynomials in « over @ of degree < &F.
We may assume that the degree of the minimal ;olgnomial F is at least 2.

Similarly, we define Z[a] = Z[T]/(F) as the ring of polynomials in
a over Z of degree < §F, where multiplication is done 'modulec F'.

Let f be a monic polynomial in @{«)[X]. In Section 3 we will de-

scribe how to choose a positive integer D such that
(1.1) £ and all monic factors of f in @(a)[X] are in %4z[a][x].

The algorithm to determine the irreducible factors of f in @(a)[x]
that we will present, is very similar teo the algorithm for factorization
in #Z[X] as described in [8]: first determine the factorization of £
over some finite field (Z/pZ in [8]), next extend this factorization
to a factorization over a large enough ring (zz/pkzz in [8]), and finally
use a lattice reduction algorithm to determine the factors over @ (a).
Therefore, we first describe how to choose this finite field and this ring.

Let p be a prime number such that
(1.2) p does not divide D,

and let k be a positive integer. For G = Ei aiTl € Z[T] and some inte-
ger & we denote by G£ or (G mod p£] the polynomial Zi(aimod pE')Tl €

(za/p?' Z)[T]. 1In Section 3 we will see that we are able to determine p
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in such a way that we can compute a polynomial H e Z[T] such that

(1.3) H is meonic,

(1.4) Hk divides Fk in {ZZ./kaZ)[T]:

(1.5) H is irreducible in (Z/pz)[T],

(1.6) (Hl)2 does not divide Py in (Z/pz)IT].

It follows that H divides F; in (Z/p#z)[T], and that 0 < §H = 6F.
This polynomial H, together with the prime number p and the inte-
ger k, gives us the possibility to construct the finite field and the

§
ring we were looking for. We denote by g the prime-power p H and by

I‘q the finite field containing g elements. From (1.5) we derive that

SH-1 i
¥ = (zZ/pz)[T]/(H,). Remark that F_ = {I, a.ay : a, € Z/p7&}
aq 1 q i=0 bl o i
where a, = (T mod(Hl)) is a zero of Hl' This enables us to represent

the elements of Fq as polynomials in o, over Z/pZ of degree < §H.

The finite field Fq corresponds to Z/pZ in [8]; we now define the
k

ring which will play the role of Z/p Z in [8]. Let Wk(in) =

k .
(ZzZ/p E)[T]/(Hk) be a ring containing qk elements. We have that Wk{}?q}

éu-1 i k .
= {Ei=0 aja :a; € Z/p Z} where @, = (T mod(H )) is a zero of H_.
So elements of Wk(]?q) can be represented as polynomials in o  over

Z/pkzz of degree < §H, and Wk(Fq) can be mapped onto Fq by reduc-
ing the coefficients of these polynomials modulo p. For a ¢ wk(Fq 1[x]
we denote by (a mod p) € :E‘q [X] the result of applying this mapping

coefficient-wise to a. Remark that W1(]F‘q) = I‘q =

3 1 ; :
We now show how we map polynomials in EE[&][X] to polynomials in

Fq [X] and Wk(Fq )[X] respectively. Clearly, the canonical mapping from
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zlT]l/(F) to Hz/p?' ZE)[T]/(HE) defines a mapping from Zlal to WE(Fq),
for & = 1,k. (Informally, this mapping works by reducing the polynomial

in a modulo pR and Hi(a).) For a € Zlal we denote by (a mod(pE,HEH

as s
€ Wy(F ) the result of this mapping. Finally, for g = I, Fl xt e
%ﬂz[a][xj we denote by (g mod(pﬂ,HR)) the polynomial

Ei(((D_lmod pE}ai)mod{pE,HE))Xl € WE(]E‘q)[Xl Notice that D ‘mod pR ex—

ists due to (1.2).

(1.7} We conclude this section with some results from [8: gsection 1]. Let

n be a positive integer, and let b1,b .,bn e R" be linearly indepen-

oree

dent. The lattice L ¢ R of rank n spanned by bl'b2""’bn is defined
as
L=t  Zb ={3_ rb, :r ez (1<1iz<n)}.
i=1 i i=1 "i7i i

We assume that the n*n matrix having b,,b .,bn as columns is upper-

2 E T

triangular, i.e. the (j+1)-th up to the n-th coordinate of bj is zero,
for 1 = j £ n. This implies that we can regard the lattice Lj of rank
j spanned by bl'bz""'bj as a lattice contained in E{J, for 1 £ j £ n;

notice that L = Ln. Furthermore we assume that bl’bz""’bn € (é—%)n.

so that L, < (E-Z)J.
3 D
2
Let B €z, be chosen in such a way that 1Dbi| £B for 1 <1i <n,
where || denotes the ordinary Euclidean length.
In [8: (1.15)] a basis reduction algorithm is given that transforms a

basis b b of a lattice L into a reduced basis B,,B B

grPyre ey 5 grByreee By
for Lj' We won't recall the definition of a reduced basis here [8: (1.4},

(1.5)], it suffices to say that the first vector 51 in such a reduced

basis satisfies
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(1.8) 5,1% < 23715 12
|

for every xj € Lj' xj =0 [8: (1.11)]. The number of arithmetic operations
needed by the basis reduction algorithm is O(j4log B), and the integers

on which these operations are performed each have binary length 0(j log B)
[8: (1.26)1.

The first time that the vector bj is considered during the computation
of a reduced basis for Lj, is at the moment that a reduced basis for Lj-l
is obtained already; i.e. the computation of a reduced basis for ijl con-
stitutes the first part of the computation of a reduced basis for Lj [8:
£1.37),

It follows that we can find an approximation of the shortest vector in
Ln in 0(n4log B) operations on integers having binary length 0©Of(n log B),
and as a byproduct of the computation we get approximations of the shortest
vectors in the lattices Lj without any time loss. If the approximation
of the shortest vector in Lj, for some j, satisfies our needs already,
then we break off the computation as soon as we have found this approxima-

4 . .
tion, and the computation then takes ©(j log B) operations on integers

having binary length 0(j log B).

2. Factors and lattices.

This section is similar to the first part of [8: Section 2]. We formulate
the generalizations of [8: (2.5),(2.6),(2.7),(2.13)] to polynomials over
algebraic number fields. Let £, D, p, k, F, and H be as in Section 1.
We put n = §f; we may assume that n > 0.

Suppose that we are given a polynomial h € Z[ellX] such that
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{2.1) h is monic,
k 5 o k ;
(2.2) (h mod(p ,H,_)) divides (f mod(p ,H )) in W (F )[x],
k k k'"g
(2.3) (h mod(p,Hl)) is irreducible in ]Fq [x],
(2.4) (h mod(p,Hl))z does not divide (£ mod{p,Hl)) in Fq[xf].

We put £ = 6h; so 0 < £ < n., In Section 3 we will see which extra con-
ditions have to be imposed on p so that such a polynomial h can be de-

termined.

(2.5) Proposition. The polynomial £ has a unique monic irreducible factor

hy in %za[a][xl for which (h mod(p,H,)) divides (hymod(p,H,)) in

Fq [X]. Further, if a monic polynomial g € DLZZ[a][X] divides f in

@(a)[X], then the following assertions are equivalent:

(i) (h mod(p,Hl)) divides (g mod (p,H,)) in IE‘q [x],

5 k T k i

{ii) (h mod (p ,Hk)) divides (g mod(p ,Hk)) in Wk(]Fq)[X],
(iii) ho divides g in @(a)[x].

k k
. o . r
In particular (h mod(p ,Hk)) divides (homod(p ,Hk)) in wk(IE'q)_XJ.
Proof. Use (1.1) and the proof of [8: (2.5)]. O

(2.6) In the remainder of this section we fix an integer m with m 2 £.

1 . . 1 &
We define L to be the collection of polynomials g & EZ[C(‘I[X] such that:

(1) 6g = m,
(ii) if &g =m, then Zfc(g) e Z,
(140)  (homod(p,H)) divides (g mod(e,m)) in W (F_)X].
; 3 2 _ om-1 _§F-1 j i m
We identify such a polynomial g = Ei=0 zij aijo: X o+ amOX (where aij

Z F ; .
€ TD_) with the (mSF+1)-dimensional wvector '[a{:'t..),ao1 PR ,ao §F-1" alO' I
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a1 GF_lfamo)- Using this identification between vectors and polynomials,

+
it is not difficult to see that L is a lattice in 5 MOFHL,

from the
fact that both H and h are monic ((1.3) and (2.1)) it follows that a

basis for L 1is given by

{%—pkujxl :0<j<8H 0<i=<a}l v

{% aj_aHH(a)Xl : BH< 4§ <é6F, 0<i<2i}l u

{%~a3hx : 0<j<6F, 2<i<m} u

Notice that the matrix having these vectors as columns is upper-triangular.

We define the length |g| of g as the ordinary Euclidean length of

T By 12)5:

m-1 GF—IIa
i=0 “4=0 Tij

the vector identified with g, so Ig|l = (E la

m0
the height g . of g is defined as max{laijl}. Similarly we define

the length and the height of polynomials in Z[T].

(2.7) Proposition. Let b € L satisfy

k
(2.8) v 268/ 6F %

m
> (Df ((n+1) 8F (14F )6F'1)%) .
max it

n
(Db ( (m+1) 6F (14F )GF‘l)L’) .
max max

Then b is divisible by hO in @(a0)[x], where h0 is as in (2.5).

In particular gcd(f,b) = 1.

The proof of this proposition is very similar to the proof of [8: (2.7)1;

we therefore omit the details.
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Proof. Put g = gecd(f,b), and e = dg. We may assume.that g 1s monic.

Identify the polynomials

1A

(2.9) {ujxif : 03 <68F, O i < db-e} wu

{ajxib : 0<j<48F, 0<ic<n-e}

1A

with (6F (n+(b-e))-dimensional vectors. The projections of these vectors
1 e 1 e 1 §F-1_e 1 e+l 1 §F-1 _n+db-e-1
=t = . = X Foaew e

on DZEX +DZOLX + DEZC( X +DZ +DZ.OL X

 form a basis for a (6F (n+6b-2e))-dimensional lattice M'. Using induction

on j one proves that

Ix6) = (elf) = £ (14F__ )7,
max max max max

so that, for 0 £ j < 8f and 0 £ i < 8b-e,

ladx*s| < £ /(n#1)6F (148 I,
max max

With Hadamard's inequality, and a similar bound on |aX'b| we get

m
am) /O < (t‘ ((n+1) 8F (14F JGF“l)L‘) :
max max
n
(b ((m+1) 6F (14F )GF'I)}’) ,
max max
where d(M') denotes the determinant of M'. With (2.8) this gives
PkiéH
(2.10) d{M") < ;—Glm .

Assume that (h mod(p,Hl)) does not divide (g mod(p,Hl)) in Eq[x].
By Proposition (2.5) it is sufficient to derive a contradiction from this.
Let v € %qz[alfx] be some integral linear combination of the polynomials
in (2.9) such that 6v < e+f. As in the proof of [B: (2.7)] it follows

k
from our assumption that (v mod(p ,Hk}) =0 in Wk(Fq)[X]. Therefore,
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if we regard %c(v) as a polynomial in «, we have
(2.11) tc(le(v)) = 0 modulo pk if &fci{v) < 6H.

! T i Feey e
ow choose a basis beo’bel beaF—l'be+1 o' bn+5b—e—1§F—1

such that ébij =i and Gﬁc(bij) =3 for e £ i < n+tdb-e and 0 £ j < 6F,

for M'

where Ec(bij} is regarded as a polynomial in «. From (2.11) we derive

that
= k ; .
EC(EC{bij)) = 0 modulo p. for 0 < 3 < 8H and e = i < etl.

since fc(fc(b,.)) € gi. we obtain
ij D
k
l2c e (v, )] = B_ for 0<j<6H and e =i <ed

and

for 6H £ j < 8F or e+l £ i < n+bb-e.

1
lac(zc(bijJ)12 =

The determinant of M' equals the product of 1£c(£c(bij))|, so that

kSH kLSH
P

1 p
ae = o (m+8b-2e) oF = S (aEm oF

Combined with (2.10) this is the desired contradiction. [
(2.12) To be able to formulate the generalization of [8: (2.13)] we need
an upper bound on the length of monic factors of £ in %&E[a][x]. In

Section 4 (4.8) we prove that a monic factor of degree =m has length

at most
3 sF-1 2m \?, . 2 (§F-1) 5
£ (2(n+1)5F (6F-1) { )) |F| laiscx ()| °,
max m

where discr(F) dencotes the discriminant of F (sop discr(F) = 0, since

F is an irreducible polynomial in Z[T]).



57

(2.13) Proposition. Suppose that 51,52... is a reduced basis for

E '5m6F+1

L (see (1.7)), and that

n.2m n F4n+m n(8F-1)

(n+1) ™ (1) (7 (6F-1)

(2.14) PkEGH/GF N (2n (mSF+1)

-n\* %
y (am) (SP=1) ) 00y | n) L yIHI o 20 (8F-1)

{1+F
m. X

ax
Then we have ého < m if and only if (2.8) is satisfied with b replaced

B,.
by 1

Proof. Use (2.12), (1.8), and the proof of [8: (2.13)]. O

3. Description of the algorithm.

Let £ be a polynomial in @(a)[X] of degree n, with n > 0. We describe
an algorithm to compute the irreducible factors of £ in Q(a)[x].

For the moment we assume that f is monic. If D, p, H, and h are
chosen in such a way that the conditions in Sections 1 and 2 are satisfied,
then we can determine the factor h0 of f by means of Propositions (2.7)
and (2.13); this is described in more detail in Algorithm (3.1). After that,

we explain in (3.4) how we choose D, p, H, and h, and we analyze the

running time of the resulting factorization algorithm.

(3.1) Suppose that a positive integer D, a prime number p, and polyno-
mials H ¢ Z[T] and h e ZlallX] are given such that (1.1), (1.2), (1.3),
(1.5), (1.6), (2.1), (2.3), and (2.4), and (1.4) and (2.2) with k replaced

by 1, are satisfied. We describe an algorithm that determines h the

Oi'

monic irreducible factor of f for which (h mod(p,HlJ) divides (homod

(p,Hl)), c¢f.. (2.5).
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put £ = &h; we may assume that £ < n. We calculate the least positive

integer k for which (2.14) holds with m replaced by n-1:

n, 2(n=-1).n

(n+1)2n—1 a0 i ) §F5n_1(6F—1)n(§F_1)

(3.2 szan/aF S (2n((n—l)5F+l)

(1+F
m

“n\A s x
) (2r=1) (6F=1) 0y | n) cpe  )20"1p 2R (6F-1)
ax max

Next we modify H in such a way that (1.4) holds for the value of k just
calculated. The factor Hk = (H mod pk) of (F mod pk) gives us the possi-
bility to compute in wk(Fq}. Therefore we now modify h, without changing
(h mod(p,Hll), in such a way that (2.2) holds for the above value of k.

The computations of the new H and h can both be done by means of Hensel's
lemma [5: exercise 4.6.22; 14; 13]; notice that Hensel's lemma can be applied
because of (1.6) and (2.4).

Now apply the basis reduction algorithm [8: (1.15)] to the (mdF+1)-
dimensional lattice L as defined in (2.6), for each of the values m = L,
2+1,...,n-1 in succession; but we stop as soon as for one of these values
of m we find a basis 51,52,.. b for L such that (2.8) is satis-

" méF+1

fied with b replaced by b If such a basis is found for a certain value

1

m of m, then we know from (2.13) that 6h0 < My Since we try the wvalues
m= %,8+1,...,n-1 in succession we also know from (2.13) that 6h0 > mo—l,
s0 5h0 = my- By (2.7) the polynomial h, divides B, in @(a)[x] which
implies, together with 6B, < m,, that 651 = my. From (2.6) (ii) and from

the fact that hO is monic we find that 51 = cho, for some constant c

€ Z., Using that h_ € L and that 51 belongs to a basis for L, we con-

9}
clude that ¢ = +1, so that Bl = iho.
If on the other hand we did not find such a basis for L, then we know

from (2.13) that Gho > n-1. This implies that hO = f. This finishes the
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description of Algorithm (3.1).

(3.3) Proposition. Denote by my = 6h0 the degree of the irreducible factor
h0 of £ that is found by Algorithm (3.1). Then the number of arithmetic

5 6
operations needed by Algorithm (3.1) is O(motn GFG + n4§F log (S§F|F]) +

n46FSlog(Dfmax) + n36F4log P)) and the integers on which these operations

2
are performed each have binary length 0(n35F3 +n 5F310g{6FfFI) +

2.2
n 4F 1og(Dfmax) + ndéF log p).

Proof. Let m, be the largest value of m for which the basis reduction
algorithm is performed, so m =my or m = mo—l. From (1.7) it follows
that during the computation of the reduced basis for the (m16F+1)~dimen—
sional lattice, also reduced bases were obtained for the (mSF+1)-dimension-

al lattices, for £ <m<m Therefore the number of arithmetic operations

1
needed for the applications of the basis reduction algorithm is

O((mlﬁF)4log B), and the integers on which these operations are performed
each have binary length O(mléF‘log B), where B bounds the length of the
vectors in the initial basis for L (cf. (2.6)). Assuming that the coeffi-

cients of the initial basis are reduced modulo pk, we derive from (3.2),

|discr(F)! =1, 68 21, and % = 1 that
2.2 2
log B = 0(n"8F  + néF log(SF|F|) + ndF lOg(Dfmax) + log p).

Combined with m = O(mo) this yields the estimates given in (3.3).

It is straightforward to verify that the same estimates are valid for

both applications of Hensel's lemma and for the computation of disecr (F).

O
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(3.4) We now describe how to choocse D, p, H, and h in such a way that
Algorithm (3.1) can be applied. The algorithm to factor £ into its monic
irreducible factors in @(a)[X] then easily follows.

First we choose a positive integer D such that (1.1) heolds, i.e. £
and all monic factors of £ in @(c)[X] are in %&E[a][x]. From [14] it
follows that we can take D = dc, where d is such that £ € éﬁz[u][x],
and ¢ is the largest integer such that c2 divides discr(F). This
integer ¢ however might be difficult to compute; therefore we take
D = d |discr(F)| as denominator, which clearly also suffices.

We may assume that the resultant R(f,f') € @(a) of £ and its deriv-
ative f£' is unequal to zero, i.e. f has no multiple factors in @(a)[Xx].
We apply the algorithm from [10] to determine p as the smallest prime
number not dividing D-discr(F)}+R(f,f'); so (1.2) is satisfied.

Using Berlekamp's algorithm [5: Section 4.6.2] we compute the irreduc-
ible factorization (F mod p) = szl (Gimod p) of (Fmod p) in (Z/pz)[T].
This factorization does not contain multiple factors because discr(F) Z 0
modulo p. Combined with R(f,f') Z 0 modulo p this implies that there

exists an integer i, € {1,2,...,t} such that

0

(R(f,f')mod(p,(GiOmod p))) = 0;

Let H be such a polynomial Gio. We may assume that H is monic, so that
(1.3), (1.5), (1.6), and (1.4) with k replaced by 1 are satisfied.

Next we determine the irreducible factorization of (f mod(p,Hl)) in
Eq[X] by means of Berlekamp's algorithm [2: Section 5], where g = pﬁH
and ZIFq = (Z/p2)[T]/(H mod p). (Notice that we use a modified version

of Berlekamp's algorithm here, one that is polynomial-time in p and &H

rather than polynomial-time in the number of elements of the finite field.)
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Since £ 1is monic the resultant R(£,f') is, up to sign, equal to the
discriminant of £, so that it follows from the construction of H that
the discriminant of £ 1is unequal to zero in F& . Therefore (2.4) holds
for all irreducible factors (h mod(p,H;)) of (f mod(p,Hl)) in Fq [x]1;
we may assume that these factors are monic.

The algorithm to factorize f now follows by repeated application

of Algorithm (3.1).

(3.5) Proposition. The algorithm sketched above computes the irreducible

: : ; 2 1
factorization of any monic polynomial £ € E&Z[a][xj of degree n > 0.
The number of arithmetic operations needed by the algorithm is

O(n66F6 + n56F6109(6F|F|) + nsﬁFElog(dfmax)l, and the integers on which

these operations are performed each have binary length C.’r(n3 5F3 +

P 5 2. B
[ [ + i
n" 6F log(SF|F|) + n"6F log(dfmax))

Proof. It follows from [3] that the calculations of R(f,f') and discr(F)

satisfy the above estimates. From Hadamard's inequality we obtain

|discx(F)| =< 6F6FIF]25F_1;

it follows that
log D = O(log 4 + 6F log(SF|F|)}).

Let A be a matrix having entries A, . = EéFnl a, . T£ ezZ[T], for
ij 2=0 ije

1 £i,j =m, and some positive integer m. The determinant d(A) of &a
is a polynomial of degree < m(8F-1) in Z[T]. According to [4] the length,
and therefore the height, of d{(a) is bounded from above by

5
m m §F-1 2
(Hj=1 Zj-1(Zpg 2445, 1) ) :
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Using this bound it is easily proven that the height of d(a) modulo F 1is

bounded by

S§F-

.
m m 1 2 {m-1) (SF-1)
(“j=1 %31 Fga0 124501 ) (4 ) '

It follows that

(R(E,£")) < /orisee )" N(/msens )" (1+F y (20-2) (6F=1)
max max max max

where R(f,f') is regarded as a polynomial in o. We find from the defi-

nitions of D and p that

= =Adi . v
M. orime, g <p 3 58 discr (F)+ (R(AF,d£'))

and this yields in a similar way as in [8] that

p = O(log d + néF log(8F|F|) + nlogn + n log(dfmax}).

This implies that the computation of the prime number p, and the computa-
tion of the factorizations of (F mod p) in (Z/pZ)[T] and (£ mod(p,ﬁl))
in Iﬁ [¥] satisfy the estimates in (3.5). Proposition (3.5) now easily
follows from the bounds on log D and p, and from the observation that

a monic factor g of £ in Q@(a)[X] satisfies log(gmax] = 0(6F log(sF|F])

+n + log(fmax)) (see (4.7)). O

(3.6) We now drop the assumption that £ is monic, so let f be a polyno-

mial of degree n > 0 in Z[ael[X]. We show that there exists a monic poly-

1

nomial £ = Rc(f) £ « é&z[u][xj, such that lOg(dfmax} = 0(SF log(8F|F|) +

§F log(fmax)), for some non-zero integer d.

Denote by Cf(a) = Efial Cial e Z[la]l the leading coefficient of f.

The resultant R(C,F) eZ of C and F is defined as the determinant of
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the following matrix:

& oms % & @ B
CD 0 0] FO 0
. . 0
: "
§F-1 0 e '
. . . %, .
¢ oaas @ B
L0 C6F—1 0 0 FSF
«—08F—> «—4§F-1 >
where F(T) = Efﬁo FiTl. We add, for 2 < i £ 28F-1, the i-th row

times 'I‘l&1 to the first row, so that the first row of the matrix becomes

= =2
TGF 1 SF

(C{T), TC(T)sru-" c(t), F{(T), TF(T),..., T F(T)). Expanding the

determinant of the resulting matrix with respect to the first row gives

§F-1 §F-2
R(C,F) = C(T) - (Rg T +.. 4R THR,) + F(T)* (Sg, T +o.. 48, THS ),

where Ri’ Sj €Z for 0 =1 < 6F and 0 = j < 6F-1.
The values Ri and Sj are determinants of (28F-2)x(26F-2) subma-
trices of the above matrix, and therefore, using Hadamard's inequality,

IRi] and ISjI are both bounded from above by
WeFIrle ) %F.
max

The evaluation of these determinants can be done by means of the methods

described in [1]. Putting R(T) = ngal RiTl and d = R(C,F) we find
1
RSI) € EZ[G.:[ is the inverse of

that C(T)R(T) = d moed F(T), so that

C(a). Now use Hadamard's inequality to derive an upper bound for d, and

R{a)
d

we find that the monic polynomial £ = fe éﬂz[u][x] satisfies the

estimates given above.
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(3.7) Theorem. Let f be a polynomial of degree n > 0 in Z[allX]l. The
irreducible factorization of £ in p(a)[X] can be computed in

6, 6 5 5 . ; i ;
O(S8F (n_ + n log(SFIF|) + n 1cg(fmax))) arithmetic operations on integers

having binary length 0(5F3(n3 + nzlog(éFlF]) + nzlog(fmax))).

pProof. The proof follows from (3.6) and (3:5): 0

4. Coefficient bound for factors.

We use the method sketched in [14] to derive an explicit upper bound for
the height and the length of a monic divisor of a monic polynomial in

@ () [x].
For polynomials in @(a)[X] the height and the length are defined

as in (2.6); for a polynomial g = L, ¢.x" e elx], where € denotes

i7i
2
the complex numbers, the length |g| is defined as {Ei]cil }B.

Let al,uz,...,u denote the conjugates of o, i.e. ui'a2""'a6F

SF
e C are the roots of the minimal polynomial F. For an element £ =

SF-1 i . ; SF-1 i
Ei=0 bia e @(a) the conjugates of B are defined as Zi=0 biaj for

1 <3 < 8F. We define {[8lle R as the largest absolute value of any
of the conjugates of B; so |lall is the largest absolute value of any
of the roots of F.
For any choice of a € {al,az,...,aSF} a polynomial g e @(a)[X] can
be regarded as a polynomial 2230 cjiXi e C[X]; we define |lgl as

8g i
PEEE ATl
Now let f£ ¢ @(a)[X] be a monic polynomial of degree n, and let

g = E?zo gixl ¢ @(a)[X] be a monic factor of degree m of f. Since

both £ and g are monic, we obtain from [9] that
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(4.1) llg,ll < (TJuf11, for 0 <i <m.

From (4.1) we will derive bounds on the height and the length of g.

Let § = {s..)§FTI be the &Fx8F matrix with s,., = a% . Since
ij i,j=0 ij j+1

S5 1is a Vandermonde matrix and because the roots of F are distinct, it

follows that S is invertible, and that the absoclute value of the deter-

; ’ ! 6F-1
minant of S egquals Idlscr(F)lE. We denote by T = (tij)i 520 the
3=
matrix S_l, and by |T| = maxfszalftij] : 0 £j < &F} (this is the Bym

norm for matrices).

: SF-1 k
Let rj € © be the conjugates of gi::2k=0 gt € o{a), for 1 =

j = éF, then we have

(giofgiif---rgiéF_l)'S = (rlfrzl’"'fr ) 1

oF
and therefore
b 23 WgorTypr-r=e¥y gpog) = WEprTprrmnifi) T

for 0 £ i =m. From (4.1) we have that
1rjl < {T)Hfl] for 1 £ 3j < 6F
and this gives, combined with (4.2),
lggl < COITI £ for 1<k < 6F and 0 <i <m,
This implies that
@.3) g s CualTl HEl,

and
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L
I 6F-1 2 % mom, 2)
(4.4) bl = 48, 0 Biup ) = (Sinzoti) ) Il Nell
2m B
= (se ™) it nen.
n
It remains to give upper bounds for |T| and |[l£f]l.

The entries of T are determinants of (dF-1)x%({8F-1) submatrices of
1
S, divided by [discr(F)Ii. Using Hadamard's inequality we get the upper

bound

8F-1, 6F-1
3=t g 19

for the determinant of such a (6F-1)x(&F-1) submatrix of S. This easily

vields the bound

5 5 SF-1
”1aJ o1 (6F-1) “lm.[ 5 1 (6F-1) 1aj1

J 3

(6F-1)/2 §F-1

= (8F-1) (H]ﬂj! > qlayh)

Since F is monic we know from [9: Theorem 2] that nlu | > lfmjf < |IF],
J

so that we arrive at the bound

(6F—1)(GF_l)/2|F|6F_11discr(F]I*%

for the absolute values of the entries of T. It follows that

1)(6F~1)/2 SF-1

(4.5) IT| < 6F(F- 1715 Y aiser ;) | 7E.

A straightforward computation yields the bound

el soman (zn 2 SF—I]ujIZk)%

1 £ 3j £ 6F i=0 "max k=0

M

§F-1 2k, &
< ¢n+1(zk:0 Nall ™) fmax'
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There are several easily calculated upper bounds for |lall, for instance
lall =1 + Foax and |lall = |F| (cf. [11]). For simplicity we take
lall < |F|, so that we obtain
26F &
s s oy
(4.6) el = /n+1(EGF 1]F]zk)lif = vn+1 Bl t
k=0 max \1rl2-1 max
26F\%
< /n+1(l§l———) £ = /n+1J51F]5F'1f .
5]F12 max max

Combining (4.3), (4.4), (4.5), and (4.6) we finally get

Y
(8F-1 2(8F-1) m ; -5

(4.7) Inax = fmax(Z(n+1)(6Ful) ) |F| GF(m/z)fdlscr(F)]
and

3 sF-1 2m \* _ 2(6F-1) e
(4.8) lgl = £ (2(n+1)5F (6F-1) ( )) |F| ldiscr(F)| ~.

max m
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Factoring multivariate polynomials over finite fields
by

A.K. Lenstra

ABSTRACT

This paper describes an algorithm for the factorization of multivariate
polynomials with coefficients in a finite field that is polynomial-time
in the degrees of the polynomial to be factored. The algorithm makes use

of a new basis reduction algorithm for lattices over IE{Y].

KEY WORDS & PHRASES: polynomial algorithm, polynomial factorization
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Factoring multivariate polynomials over finite fields.

We present an algorithm for the factorization of multivariate polynomials
with coefficients in a finite field. Let f be a polynomial in ﬂa[xl, Xz,
...,Xt] of degree n, in Xi, where E& denotes a finite field con-
taining g elements, for some prime power q::pm. To factor £, our
algorithm needs a number of arithmetic operations in Ha that is bounded
by a polynomial function of ﬂ§=1 n, and pm.

If the number of variables t equals two, then our algorithm is sim-
ilar to the polynomial-time algorithm for the factorization of polynomials
in one variable with rational coefficients [7]. An outline of the algorithm
to factor feﬂg[X,Y] is as follows. For a suitably chosen irreducible
polynomial E‘EI&[YJ, and a large enough positive integer k, we determine
a factor h of f modulo the ideal (Fk). The irreducible factor h

0

of f for which h divides h0 modulo (Fk) can be regarded as an ele-

ment of a certain lattice over ]%[Y]. We prove that h, is, in a certain
sense, the shortest element in this lattice, and we show that this enables
us to determine hO by means of a new basis reduction algorithm for lat-

tices over ﬂa[Y].

For feIE;l[xl, X - xt] with t>2, we first substitute high

2"
enough powers of xz for x3 up to xt. We then proceed in a similar way
as above with the resulting polynomial in na[xl,le.

The basis reduction algorithm for lattices over ﬂa[Y] is described
in Section 1. If we define the norm of a vector over I%[Y] as its degree

in Y, then this algorithm enables us to determine the successive minima

of a lattice over I%[Y].
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The algorithm to factor polynomials in ]&[x, Y] is presented in Section 2;
the results are similar to Section 2 and 3 of [7]. In Section 3 the algo-
rithm for polynomials in more than two variables over a finite field is
explained.

Other recent publications on this subject are [5] and [6]. For two
variables the algorithm from [5] is similar to ours; it only differs in
the determination of short vectors in a lattice over g&[Y]. Also the
generalization to more than two variables is distinct from ours. Another

approach is given in [6].
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1. The reduction algorithm.

Let n be a positive integer, and let IE(‘l denote the finite field containing
g elements, for some prime power g. For a rational function ge:lEc‘l(Y)
we denote by |gl its degree in Y (i.e. the degree of the numerator
minus the degree of the denominator); we put |0| = -». The norm |a| of
an n-dimensicnal wvector a-= (ai, Bor -s-t an)e%(!{)n is defined as
max{|ai|: 1<i<n}.

Let bl, b2, P bne]Eél[Y]n C]Ec‘l(Y)n be linearly independent over ]Fq[Y];
we denote by bij eIE‘q[Y] the 9j-th coordinate of bi. The lattice L&

]1-;1[?]“ of rank n spanned by b, b,, ..., b 1is defined as

F[ylb, = {5
q

. : <
i i=1ribi' rie]l'c‘l[Y] (l<i<n)}.

The determinant d(L) eIEc'l[Y] of 1. is defined as the determinant of the

n¥n matrix B having the vectors b,,b bn as rows. It is well-

1! 2!"'!

known that, up to units in IFq, the wvalue of d{L) does not depend on

the choice of basis for L. The orthogonality defect OD (b1’b2' vy bn)

of a basis b,,b., ...,b_ for a lattice L is defined as 2 bl - ldawy .
1272 n i=1""1i

Clearly OD(bl, b2' SR bn) =0.

(1.1) Proposition. Let x= fit:i r, bi ¢ L. Then

Iribi1SIXI+OD(b r-ees b))

i+ By

-1
Proof. The norm of the i-th column of B is bounded from above by
erlzl 1bj| - ibil - la) | =OD(b1, bysenns bn) - 1bil by Cramer's rule. Since

ri is the inner product of x and the i-th column of B_l, we have
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that Iriis le*—OD(bl,bz. ...,bn) _lbi]' which proves (1.1). [

For 1=j=n a j-th successive minimum |mj| of L 1is recursively

defined as the norm of a vector of smallest norm in L that is linearly

independent of ml,mz,..

i mj over Ba[Y]. It is well-known that |mj!

-1

is independent of the particular choice of m,m (cf. [8]).

el

s,
J

(1.2) Proposition. Let b

+ Py --.+, b be a basis for a lattice L
1772 n

satisfying OD(bl,b ..,bn) =0, ordered in such a way that |bils 1bji

27"
for 1£i<j<n. Then ijl is a j-th successive minimum of L for

1<ji<n, and in particular iblli Ikl for every xeL, x=0.

Proof. Let |x| be a j-th successive minimum of I, for some T RIS

n

It is sufficient to prove that |x| 2|bj]. Suppose that x==Zi=1 r, b,.

Clearly there must be an index io e{j,j+1, ..., n} such that r. 20.
0

Proposition (1.1) vields that

|XI = |r10b10

= . =
| _Iblol _ijl,
which proves (1.2). [

We say that the basis bl'bZ' ...,bn is reduced if the columns

of B (i.e. the coordinates of the vectors bl'bZ' ...,bn) can be per-
muted in such a way that the rows El'Bé' ...,E% of the resulting matrix
satisfy

(1.3) IEi[sliz'jI for 1<i<j<n,

1.4 b..|2b,. 1 L

(1.4) | ii| |b1]] for i<j<n,

; b b <j<i<n.
(1.5) ]bii]> Ibij[ for 1<j<i<n
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Conditions (1.4) and (1.5) are illustrated in Figure 1; observe that

Ib,l=1b,I-

1 1
r_' A
—|b1| s|b1| sib1| G A slbll
<lbyl =10, <lbyl . . . =Ib,l
<lb31 <1b3| =!b3| e e . s|b3]
<l | <Ib | <lb | . . . =lb_|

n n n n

Figure 1. The j-th position in the 1i-th row gives the condition that

b .., b 1is a reduced basis.

holds for Ibij] if bl, o - 2
(1.6) Remark. It follows from (1.4) and (1.5) that a reduced basis bl'bE’

.,bn for a lattice L satisfies OD(bi,b .,bn) =0. Combined with

2
{(1.3) and (1.2) this implies that |bji is a Jj-th successive minimum

of L, for 1<j=n, and b1 is a shortest vector in L.

(1.7) We now describe an algorithm that transforms a basis bl’bz’ ...,brl
for a lattice L into a reduced basis for L. In the course of this
algorithm the coordinates of bl' b2, ...,bn will be permuted in such a
way that at the end of the algorithm (1.3), (1.4), and (1.5) hold with
EI,EQ, ...,Eil replaced by bl'b2’ ...,bn; the original ordering of the
coordinates can then be restored by applying the appropriate inverse

permutation of the coordinates. For simplicity we take |b0|::—w.

Suppose that an integer ke {0,1, ...,n} is given such that
(1.8) lbilﬁlbjl for 1£i<j<k,

(1.9) |bk|£|bj| for k<j=n,
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(1.10) Ib,.lzlb,,| for 1<i<k and i<js<n,
ii ij
<9 i<
(1.11) [bii|>|bij| for 1=<j<ic<k.
(Initially these conditions are satisfied for k=0.}) 1In this situation

we proceed as follows. If k=n, then the basis is reduced, and the algo-

rithm terminates. Suppose that k <n. Renumber {bk-i-l i bk+2’ ey bn} in

such a way that |b | =min{|b,|: k+l=i=n}. Let a,,eF be the coef-
k+1 i 1] q

ficient of Yibi[ in bij for 1=i<k+1 and l1=<j<k. It follows

from (1.10) and (1.11) that aiizO for 1=<i<k, and that aij=0 for
1<j<i=k., This implies that a solution (rl $Eor eeey rk) , with . cIE‘q,
of the following triangular system of equations over :Fq exists:

k

(1.12) Eizl aij ri:ak+1j

We put

* _k Ibr+1l = Ibjl
) Pt TPy TR Ty By Y i

* i *
then |b_,l=lb_ |, and, with (1.8) and (1.9), By i EIE:‘I[YJH. Further-

. - *
more, (1.12) implies that |b, | for 1<ic<k. We distinguish

ket 1! €120

two cases.

*
If |b

e ! = |

we permute the

*
th
en we replace b by bk-!»l'

bk+l L k+1

coordinates of bi' bz, cey bn in such a way that |b | =]b

k+1 k+1 k+1

(this does not affect the first k coordinates), and finally we replace
k by k+1.

*
If, on the other hand, Ibk+1[ < [bk+ll, then we replace b by

k+1

*
b ., and we replace k by the largest index 2¢ {0, 1, ...,k} such that
.

<
lbf,l - |bk+l
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We are now in the situation as described in (1.8), (1.9), (1.10), and (l.11),
and we proceed with the algorithm from there. This finishes the description

of Algorithm (1.7).

We shall now analyze the running time of Algorithm (1.7). By an arith-
metic operation in Eé we mean an addition, subtraction, multiplication or

division of two elements of ]a.

(1.14) Proposition. Algorithm (1.7) takes O(nBB (OD(bl'bz’ ...,bn) +1))

arithmetic operations in I% to transform a basis bl’bz’ ""bn for a

lattice L into a reduced basis for L, where Btﬁz>2 is chosen in such

a way that lbi|SB for 1<i=<n.

Proof. To prove that Algorithm (1.7) terminates, consider Szzizzllbil.
During one pass through the main loop of the algorithm either S remains
unaltered (first case), or S decreases by at least one (second case).
Since the value of k is increased by one in the first case, it follows
that a particular value of § can occur for at most (n+1) different
values for k. But S can have at most OD(bl'bz' ...,bn) +1 different
values, so that the number of passes through the main loop is O(n(OD(bl,

by wiiy bn) +1} ).

2!’
The result now follows by observing that (1.12) takes O(kz) and

that (1.13) takes ©O(nk B) operations in E&. O

(1.15) Remark. With OD(bl,b ..,bn) <nB it follows that Algorithm (1.7)

2"

takes 0(n432) arithmetic operations in ﬂa.

(1.16) Remark. Most of the results above can be generalized to the case

that L is a lattice in ]a[!]n of rank smaller than n. Let m be a
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positive integer <n, let bl = b2, SR bme IFC‘II:Y]n be linearly independent

over IEC‘I[Y], and let L be the lattice in IF‘q[Y]n of rank m spanned by

bl'b2' ...,bm:

L=  ®[Ylb,.
i=1"g i

By B we denote the m*n matrix having bl' bZ' S bm as rows. We define
the norm |L| of L as the maximum of the norms of the determinants of
the mxm submatrices of B; notice that |L|l=[d4(L)] if m=n. This

enables us to define the orthogonality defect OD (bl, b .t bm) as

g

Zriu_l Ibii -|L|. The basis b,,b i bm is reduced if the coordinates

P rgt =

of bl' b ...,bm can be permuted in such a way that (1.8), (1.10), and

2!’
(1.11) hold with k replaced by m. For xeL we denote by J"ce]Fc‘I[Y]m
the vector consisting of the first m coordinates of x after application

of the above permutation.

If the basis b.,,b

i ) bm is reduced, then [bjl is a j-th succes-—

ZhE
sive minimum of L. Namely, suppose that |[x| is a j=th successive mini-
mum of L, for some xe L. As in (1.2) we prove that |x|=|b.|, so
that, combined with |x| 2 |%| and IBjI = iji, we find |[x| =z ]bjl.
It is easily verified (cf. (1.14)) that it takes O(m2r1 (OD(bl, b2, e

e b ) +1) (max, . b, | +1) ) operations in ¥ to transform a basis b,,
m 1€ism i q 1

B bm into a reduced one by means of Algorithm (1.7).

2!
(1.17) Remark. We have given an algorithm to find successive minima in a

lattice LC]E"EI:Y]H, and in particular the algorithm finds a shortest vector
in L. In the sequel we will use this algorithm to decide whether L con-

tains a non-zero element x satisfying |x| =22, for a certain small value

of &=0. This problem, however, can also be solved in a more direct way .
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Suppose that a basis bj’bz’ ...,bn for L is given, and that OD(bl,b

2!
...,bn) is known. If an element x in L exists with |x| <&, then

I

x=2Z b, for certain polynomials rieﬂg[fj, with Irils 2+-OD{b1,b2,

i=1%1 "i
...,bn) _Ibil {cf. (1.1)). Regarding the coefficients of r, for l=ic<
n as unknowns, we can see this as a system of ncm(bl, bz,..., bn)

equations in 22_1 ({ril +1) unknowns over B& (namely, for 1<j<n, the

j-th coordinate of x equals Z? r.b..e¥[Y], so that the (L+ 1)-th
i=17"1i7ij g

up to the (£1-0D(b1,b2,.

..,b ) )-th coefficient of I. . r,
n i=1"1

b.. must
1]
be zero). Clearly, such an element x exists if and only if this system
of equations over ]a has a solution. This results in an algorithm that
6
takes Of(n B3) arithmetic operations in ]E. An advantage of this method
over Algorithm (1.7) is that, if we replace Eé by, for instance, the set
of integers ZZ, the coefficient growth during the Gaussian elimination

can easily be bounded using methods from [2]. If we restrict ourselves to

E& however, then Algorithm (1.7) yields a better running time.

2. Factorization of polynomials in ]%[X,Y}.

In this section we present an algorithm for the factorization of polynomials
in two variables over a finite field that is polynomial-time in the degrees
of the polynomial to be factored. The propositions and algorithms here are
very similar to their counterparts in [7: Section 2, Section 3]. we there-
fore omit most of the details.

Let feﬂa[x, Y] be the polynomial to be factored. Suppose that a
positive integer u, and an irreducible polynomial Fe]a[Y] of degree u
are given. In the sequel we will describe how u and F are chosen. We

may assume that F has leading coefficient one.
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k o
Let k be some positive integer. By (F ) we denote the ideal generated

uk-1 i

k 2 K. .
by F . S8ince I‘q[Y]/(F )—{Ei=O a; o :

a; EIE‘q}, where o= (Y mod {Fk)}
k ; k
is a zero of F , we can represent the elements of the ring ]Eél[Y]/(F }

as polynomials in «a over ZIFq of degree <uk. Notice that ]Fq[Y}/(F)z

I&u'

the finite field containing qu elements.

i k
For a polynomial g=Zi bi X" c]Fq[X, ¥], we denote by (gmodF ) e
(]Fq[Y]/(Fk))[X] the polynomial Zi (bi mod (Fk]} xl, and by dxg and GYg

the degrees of g in X and Y respectively.

Suppose that a polynomial hsJFq[X, Y] is given such that:

(213 The leading coefficient with respect to X of h equals one,
(2.2) (h mod Fk) divides (fmed Fk) in (IFq[YJ/(FkH[X],

(2.3) (hmeod F}) is irreducible in IE‘qu[K] %

(2.4) (h mod F)Z does not divide (fmodF) in ]Fqu[}{].

Clearly O0< 6Xh < éxf. In the sequel we will see how such a polynomial h
can be determined. The following proposition and its proof are similar to

[7: (2.9)1.

(2.5) Proposition. The polynomial £ has an irreducible factor h0 c]EEI[X, Y]

for which (hmodF) divides (hO mod F) in ]Fqu[X], and this factor is
unigque up to units in Fq' Further, if g divides f in IE‘q[X, Y], then
the following three assertions are eguivalent:

(i) (hmod F) divides (gmodF) in IFqu[X};

i k = k . k

(ii) (hmod F') divides (gmedF ) in (ZIFq[Y]/(F 110x7;

(1ii) h0 divides g in IE:I[X' Yl.

In particular (h mod Fk) divides (ho mod Fk) in (I‘G[Y]/(Fk))[}(]. O
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(2.6) Let m be an integer zéxh. pefine L as the collection of poly-
k -

nomials gE]E(‘l[X, Y] with 6Xg£m and such that (hmodF ) divides
(gmodFk) in (IE[Y]/(Fk))[X]. This is a subset of the (m+ 1)-dimensional
vector space IF‘q (Y) +JFq(Y] Yot ZIFq(Y) X", We identify this wvector space
with F (1™ by identifying I _a, X" e¢F (V)[X] with (a,, a a)

q YRRSIESENG "N q 0 %1
As in Section 1 the norm |g| of the vector identified with the polynomial
geﬂ%[X,Y] is defined as 5yg- The collection L is a lattice in IE[Y]m+1

CEEl{Y}nH—l and, because of (2.1), a basis for L is given by

ki

{(F'x": 0<i<éh}u (nxt S0,

GXhSiSm}.

{2.7) Proposition. Let beL satisfy

(2.8) Gyf éxb+ Gyb fofuk th.

Then b is divisible by hO in ]Eél[)(, Y], where h0 is as in (2.5),

and in particular gcd(f,b)=1.

Proof. We give only a sketch of the proof; for the details we refer to the

proof of [7: (2.7)].

Put g=gcd(f, b), and e=cSXg. The projections of the polynomials

(2.9) {x" £: 0<i<8b-e}u (X" b: 0<i<s f-e)

1 OxPrlub-e=l  cniw busis Fora

on T [¥]x® -l-ZIF[Y]XE+ + ... +F[YIX
q = q

+ i
(ﬁxf+ be— 2 e)-dimensicnal lattice M' contained in IE‘q[Y]axf Sxb 26.
Define the determinant d(M') e:IFq[Y] of M' as the determinant of the

matrix having these projections as rows, then we have

ﬁYd(M') < ﬁyf (be -e) + GYb (6Xf -e).
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Combined with (2.8) we get
L]
(2.10) Sﬁﬂﬁ)dukégn

Let \:ena[x, Y] be some linear combination over I%[Y] of the poly-
nomials in (2.9) such that 6Xu <e-+6xh. Assuming that (hmodF)} does

not divide (gmodF) in B%u[X], it is not difficult to prove that
k
(2.11) {vmodF ) =0.

Now choose a basis be'b for M' such that

¢ wevi b
e+l Sy f+éyb-e-1
. i 4. _ 3 ; ;
éxbi i for ecx<i 6xf be e (which is clearly possible because I%[Y]
is euclidean). The degree with respect to Y of the leading coefficient
with respect to X of the first th of these wvectors bi is, according

to (2.11), at least uk. Since d(M') equals the product of the leading

coefficients, we find that
o>
6Yd(M }zuk (‘lxh;

which is a contradiction with (2.10). We conclude that (hmodF) divides
(gmod F) in g&u[x], which, combined with Proposition (2.5), proves

Proposition (2.7). [

(2.12) Proposition. Suppose that bl'b2' ...,bm+1 is a reduced basis for

L (see (1.3), (1.4), (1.5)), and that
(2.13) 8, fm+ 8, £8,£<uk 8.

Let h, be as in (2.5). Then the following three assertions are equivalent:
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(iii) b, =dh_. for some deTF[x].
1 0 a

Proof. Use (1.6), (2.7), and dyhoﬁ éyf. I

Now that we have formulated the counterparts of [7: (2.5), (2.6), (2.7),
(2.13)] in (2.5), (2.6), (2.7), and (2.12) respectively, we are ready to
present the algorithm for factorization in BE[X,Y].

We may assume that f=§%_§ixisﬂa[X,Y] is primitive, i.e. échd(fo,

£ }=0 in I&[Y], and that fo:’O and GYf> 0. 1In the sequel

{7 B e

we show that F of degree wu can be chosen in such a way that
E €
(2.14) u::O(ﬁxf 6Yf ) for every e£>0

(where the constant factor invelved in the O does only depend on g, and
not on qJ.

First we sketch an algorithm to determine the factor of f that has a
prescribed factor (hmodF) in qiu[X] {(c£. (2.5)); this is done in the

proof of the following proposition.

(2.15) Proposition. Let he]%[X,Y] be given such that (2.1), (2.3), (2.4),
and (2.2) with k replaced by 1, are satisfied. The polynomial ho, as

defined in (2.5), can be found in O(th fo56yf2) arithmetic operations

0
in F.
q

Proof. If th=éxf, then h0=f. Suppose that 6xh<6xf. We take k€?Z>

minimal such that (2.13) holds with m replaced by 6xf— 13

0

(2.16) u(k-1) 5xh£5Yf (2 fo—l) <uk th-

We modify h in such a way that (2.2) also holds for h and this value
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of k. This can be done by means of a suitable version of Hensel's lemma
as described for instance in [9: p79-81] (remark that Hensel's lemma can
be applied because of (2.4)). It can easily be verified that the number of

arithmetic operations in Ia needed for this modification of h is
2 3 2 2
+ —
O(udxfﬂyf u Sxf +ku th(dxf 6xh)),

where we use the fact that arithmetic operations in Iau can be done in

O(uz) operations in E&. Combined with (2.14) and (2.16) this becomes

2 3 3 2
(2.17) O(u 6Xf 4—§Xf éyf )

For each of the wvalues of m:=6xh, thi—l,..., Sxf— 1 in succession we
apply Algorithm (1.7) to the (m+ 1)-dimensional lattice L as defined
in (2.6). But we stop as socon as for one of the values of m we succeed

in determining h_ using Proposition (2.12). If this does not occur for

0

any m, then th0>6Xf—l, S0 h0=f.

The norms of the initial vectors in the bases of the lattices are

bounded by 1+ 6Yf(25xf-1)/ﬁxh (cf. (2.16)). If bl’bz’ ...,bm is a
|. Combining these

reduced basis then OD(bl,b2, ""bm'b )] slbm+

1

observations with (1.14) and (1.15), we find that the total cost of the

lattice reductions is

4, 2, 2 _Oxho 3
O(8.h) 8, £ 8 £ +Ei=6xh+1 Syhg 8y E 8, £ Ib, 1)

X X

arithmetic operations in la. This proves (2.15). []

(2.18) Theorem. Let f be a polynomial in qﬁ[x, Y]. Then the factorization

of f into irreducible factors in IEEX,Y] can be determined in

6
O(ﬁxf GYf2+-GXf3prn+6yf3puﬂ arithmetic operations in 3&, where q::pm.
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Proof. The factorization of the gcd of the coefficients of £ with
respect to X can be computed in 0(6Yf3p m) arithmetic operations in ]Ec‘I
according to [3: Section 5]. Because the computation of this gcd also
satisfies the estimates in (2.18), we may assume that f is primitive. We
give an outline of the algorithm to factor £, and we analyze its running
time.

First we calculate the resultant R(f, £') EJE(‘;[[Y] of f and its
derivative f' with respect to X, using the algorithm from [4]. This
computation takes O(Gst(‘Syfz) arithmetic operations in JFq. We assume
that R(f, £') #0; it is well-known how to deal with the case R(f, £') =0
(cf. [7: (3.5)]). Notice that, if both g—i and % are zero, then f(X,Y)
= g(XP, vP) = (h(x, )P, for polynomials g, h in ]E(‘lfx, ¥].

Next we determine a positive integer wu and an irreducible polynomial
FEJFC‘I[Y:I of degree u in such a way that R(f, £') #0modulo F. This can
be done as follows. If g> GyR= 6yR(f, £'), then we choose an element
=] el-;l such that (Y-s) does not divide R(f, £'), and we put F=Y-s
and u=1. This can be done in O(GYRQJ operations in ZIFq,- if we use the
parallel evaluation scheme as described in [1: Corollary 2, p294] this can

£

+
be improved to O(SYRI ) for every e>0.

Otherwise, if g= uSyR, we take U € EZ>O minimal such that qu> SyR,
so c;[u_1 =0(6YR) . We determine an irreducible polynomial Gc]EC‘I[Y] of
degree U with leading coefficient one. Since we can restrict ourselves

during this search for G to polynomials having 0 or 1 as coefficient

for Yuwl, and because an irreducibility test for a polynomial of degree

e = =3 - ; ;
u in 3}5('1[!{] takes 0(uzlogq+u) operations in ]E‘q, the determination

u-1 —2 — 1+
of G can be done in D(qu ltu logq+u3)}, that is O(6YR ) operations
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in F . (Namely, G of degree U without multiple factors is irreducible

J'q—){l)mc:tc':tu].oc for O<i<u as

if and only if the uxu matrix with (X
columns, has co-rank one.) We put ]Ec‘lg =IE<‘1[Y]/(G) . Since qu:- GYR, there
is an element B E]EC‘IU such that R(f, £') #0modulo (Y- £). Such an element

£ can be found in 0(5YR1+€1)

operations in Fqﬁ by evaluating R(f, £')
in dyR-i-l distinct points of Fqi by means of the parallel evaluation
scheme from [1]. Arithmetic operations in ]P(‘Iﬁ take O(_t;z) =0{6YREZ)
arithmetic operations in ]E(‘;[, so the determination of £ can be done in
O(Gle+€) operations in ]E(‘l, for every e3>0. Finally, we compute Fe]E(‘q[Y]
of degree us<u as the minimal polynomial of B, by looking for a linear
dependence relation among BO, Bl, SR BE; this takes O(-\f u) operations

in ]E;l. Clearly, F satisfies R(f, f') moduloF=0.

E

We conclude that in both cases F and u can be found in O{éYR1+ )
arithmetic operations in ]Fq, for every £3>0. Since cSyRS 6Yf (2 6Xf— 1)
this satisfies the estimates in (2.18). Notice that (2.14) is satisfied.
We now apply Berlekamp's algorithm [3: Section 5] to compute the
irreducible factorization of (fmodF} in ]Fqu[X]- We may assume that the
factors have leading coefficient one. This computation takes O{cSXfBPmu)
; ; ; 4 ; 4+e 1+e :
arithmetic operations in IEE1 This becomes 0{6Xf éYf ) if u=1l,
because this only occurs in the case that pms 6YR(f, f'), so that pmu-=
14¢ 1+e ; : i e F ;
O(fo SYf ). Since (2.4) is satisfied for all irreducible factors
(hmodF) of (fmodF) in Jl?('z{u[}(], due to the cheoice of F and u, the
complete factorization of f can be found by repeated application of
2
Proposition (2.15). This takes O(ﬁ){f6 éYf ) operations in IE‘q. This

proves (2.18). [J
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3. Factorization of polynomials in :IFq[Xl, X, 5 sozyX. Je
LA, 28y =

In this section we describe an algorithm to factor polynomials in more than
two variables with coefficients in a finite field. The algorithm that we
will present here makes use of the algorithm from the previous section. At
the end of this section we briefly explain an alternative version of our
algorithm that does not depend on the algorithm from Secticn 2.

g Xt] be the multivariate polynomial to be fac-

U

tored, with the number of variables t=3. By 6if=ni we denote the

Let feF[X,, X
g 1

degree of f in Xi; for simplicity we often use n instead of n, - We

may assume that niSnj for 1=i<j=<t, and that n, z 2. We put Nj =
szj (ni+ 1). We say that £ is primitive if the gecd of the coefficients

of f with respect to Xl equals one (i.e. is a unit in :qu) 2

Let k3, k4, ...,kt be a (t- 2)-tuple of integers. For gcJE(‘I[Xl, x2,

P Xt] we denote by gj e]Ec‘lD(l, )(2, X,

5417 Xj+2, s Xt] the polynomial

a k3 _ kq _ k-
g medulo ((X3 2 ), (X X2 TR (Xj X2J)),

4

k.
for 2<js£t; i.e. ‘gj is g with le substituted for Xi, for 3<i

< j. Notice that =§2=g. We put g=§t.
Suppose that an irreducible factor ﬁe]f‘c[xl, Xz] of f is given such

that
{3.1) 2 does not divide F in ]Eé;[xl'x?.] and 61ﬁ>0.

As in (2.5) we define h. as the irreducible factor of f in IE‘q[xl, x2,

0

]; the polynomial h_ is

.,Xt] for which h divides h &

o in n;ltxl,x2

unique up to units in ]Fq.
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(3.2) Let m be an integer with § h<m<n. We define L as the collec-
tion of polynomials g in ]E(‘I[xl, D xt] such that:

(i) élgSm and GigSni for 3=ic=t,

(ii) h divides § in IFc‘i[Xl, X2].

This is a subset of the (m+ 1)N3—dimensional vector space JEC‘I(XZ} +]5;1(x2))(t

m_n3 np _ . . ;

+ ...+ r&;[XZ)Xl X3 Xt . We put M= (m+ 1)N3. We identify this vector
; M ; o m  _nj ne ij K
space with IFC‘I(XZ) by identifying Zi=0 Zj=0 v )%(20 aij kX X3 e X

erq(xzjrxl,x3,...,xt] with (aOO...O’aGO...l'""amn3...nt)' As in

Section 1 the norm |g| of the vector associated with the polynomial ge
]F[Xl, X2, s Xt] is defined as 52g. The collection L is a lattice

in F[x ]M e A% )M of rank M-8 R (cf. (1.16)), and a basis for L
q 2 q 2 1

over ]Ft‘:][XQ] is given by

it ks is
BN . % -2 10 68dEn, % dn: Bor Feber; amd
173=3""3 "2 i~ g .
(13,14.--..11:): (0,0, ..., 00
u {ﬁxt“élﬁz §,isis<m}.

(3.3) Proposition. Suppose that £ does not contain multiple factors. If

1

3= ”
(3.4) kjbzi:ZRi (2 nn, ni)

for 3=£j=<t, where k2= 1, and if b is a non-zero element of L with

|b|5n2, then hy divides b in lel[xl,x ..,Xt], and in particular

20z

ged(f, b) =1,

Proof. First we prove that gcd(f, b) # 1. Suppose that gecd(f,b) =1. This
implies that the resultant R=R(f,b) e IE(‘:I[X2, X3, G Xt] of £ and b

(with respect to the variable Xl) is unequal to zero. Since h divides
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both E and B ((3.2)(ii)), and because R&=R(%, B), we also have R=0.

This implies that there is an index Jj with 3<j<t such that
(3.5) R, =0.

Because of (3.2) (i) and lb1$n2, we have that Gjbsnj for 2=sjst.

Therefore & R<mn.+nn.<2nn.,-n,, and also 0§.R. <2nn,-n., for
] ] B 1 3-1 7
- ~ k - - ~

3<94<t. Because R.=R. ,mod (X 6 -X_.J we get &6.R, <6 R. ,+k.&.R. , <

. ol ¢ i T2 ) ¢ 2757 72751 363 i-1
§.R. +k.(Znn,-n.), so that, with k,=1 and R =R,

25-1 73 s Jl 2 2

e J
< et

(3.6) 62Rj "Zi=2 ki (21’11’1i ni)

for 2<j<t. BAccording to (3.5) there must be an index j with 3<j<st

k. -
such that (Xj— ij) divides Rj—l' which implies that

<6 R, ,.
LT

Combined with (3.4) and (3.6) this is a contradiction, so that gecd(f,b) = 1.
Suppose that h0 does not divide b in Jla[xl, Xor weer Xt]. Then h,

does not divide r=gcd(f,b), so that h divides £/r in IE;q[Xl’XZJ'

Because éi(§/§) < ni for 1<is<t, the same reasoning as above yields

that gecd(f/r,b) #1. This is a contradiction with r=gcd(£f, b) because

f does not contain multiple factors. []

{3.7) Suppose that f does not contain multiple factors and that £ is

primitive. Let
(3.8) k.=m ! 2nn, -1
J i=2 i

for 3<j=<t, and let h be chosen such that (3.1) is satisfied. Notice

that (3.8) implies that (3.4) holds. The divisor hO of f can be deter-

mined in the following way.
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For each of the values of m= 611-1, 61ﬂ+ l, ..., n-1 in succession we apply
Algorithm (1.7) to the lattice L as defined in (3.2) (cf. (1.16)). But
we stop as soon as for one of the values of m we succeed in finding a
vector b, in L with ]bli £n, (cf. (1.6)). Then b1=ChO for some

CeIF‘quB, X4, Salviy Xt] (cf. (3.3)), which enables us to compute ho. {Notice

that we can even get c:s_]F(‘J if we increase the rank of L by one at each
step.)
If we didn't find a short enough vector in any of the lattices, then

61h0>n—1, so that h0=f.
(3.9) Proposition. Assume that the conditions in (3.7) are satisfied. The

2t-4 2t-1 2 4
n N2N3

polynomial hD can be computed in 0(61h02 )}  arithmetic

operations in IIl.ijl i

Proof. We derive an upper bound B for the norm of the vectors in the

initial basis for L. From (3.8) we have

-t 3-1
62f = Zj=2 nj I'Ii=2 (Z2n ni 1)
so that
= t-2 _t
(3.10) 62fs (2n) T'l:,L=2 n, .

Because h divides f in ]E(‘Z[Xl,x2], this bound also holds for 62ﬁ-

With (3.2) it follows that

B=O((2n}t_2 N,) .

From (1.16) we now find that the applications of Algorithm (1.7) together

4.2 _8ihg

; 3 ; .
can be done in O{(Glho N3) B +Zi=515+1(61h0 N3) B(NBB)) arithmetic

operations in }Fq
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The final gcd computations in Fq[XB’ 34, ey xt] can be performed in

5 i v .
0(61h0 n, N3) operations in ]EC'I, according to [4]. O

(3.11) We describe an algorithm to compute the irreducible factorization
of a primitive polynomial £ in Fq[}{l, Rpr weny Xt].

We assume that f does not contain multiple factors. This implies
that the resultant R=R(f, £') ¢ ]Fq[x2' x3, A Xt] of f and its deriva-
tive f£' with respect to Xl is unequal to zero. We take k3, kq, o kt
as in (3.8). It follows from the reasoning in the proof of (3.3) that R=0
for this choice of k3, k4, ——— kt' so that f does not contain mltiple
factors. By means of the algorithm from Section 2 we compute the irreducible

factors h of ¥ of degree >0 in X Because (3.1) holds for all fac-

1
tors h of f thus found, we can compute the irreducible factors of f
by repeated application of the algorithm described in (3.7).

It is well-known how to deal with the case that £ contains multiple

factors; notice that special attention has to be paid to the case that

]

Ta_f' =0 for 1=ist.

Xi

{3.12) Theorem. Let f be a polynomial in JFq[Xl,Xz, S xt], with

6if=ni and n, < nj for 1=i<j<t. The factorization of f into

irreducible factors in ]E(‘II:XI, X Xt] can be determined in

2
2 4 3t- 2 i ¢ &
of (2n1) 2 Ng N3 + (2n1) 6 N; pm) arithmetic operations in :IEC‘I, where

m Lok
g=p , and Nj_”izj (ni-!-l).

Proof. First assume that £ is primitive. We apply (3.11). From (3.10)

and (2.18) it follows that the factors of f of degree >0 in Xl can

; 2t-4 t-6 3 . .
be found in O(n? (2n1) t Ngd- (2n1}3 szm) operations in ]Fq. Repeated
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2tiQ2N4

application of (3.7) takes O{(an) o Ny

)} operations in Eﬁ according
to (3.9). If f contains multiple factors, the ged g of f and f£f°'

. 3t-1_2 . .
can be computed in 0(n1 N2) operations in I% (cf. [4]), and the same
estimates as above are valid for the factorization of f£/g because
di(f/g)s ﬁif. It follows that a primitive polynomial can be factored in

2t

2 4 3t-6 3
O{(an) N2 N3

+-(2n1) Nzg)m) arithmetic operations in Ia.
Now consider the case that f is not primitive. The computation of
the gcd cont(f) of the coefficients in Ia{XQ, X3,..., xt] of £ takes
3t-4

O(n, n NZ) operations in IF . Because &,f=¢, (cont(f)) +6&, (f/cont(f)),
172 3 q i i i

the proof follows by repeated application of the above reasoning. [J

(3.13) Remark. It is possible to replace the factor i of f in the above
algorithm by a factor dimodFk) of (fmodEk), for a suitably chosen
irreducible polynomial Fgﬂa[xz] and a positive integer k. The presenta-
tion of the resulting algorithm becomes somewhat more complicated in that
case, but the ideas remain basically the same. An advantage of the alterna-
tive formulation is that the algorithm doesn't depend on Theorem (2.18),
and that the algorithm can be regarded as a direct generalization of the

algorithm from Section 2.
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Factoring multivariate integral polynomials

A.K. Lenstra
Mathematisch Centrum
Kruislaan 413
1098 5J Amsterdam
The MNetherlands

Abstract.

We present an algorithm to factor polynomials in several variables with integral coef-
ficients that is polynomial-time in the degrees of the polynomial to be factored. Cur

algorithm generalizes the algorithm presented in [7] to factor integral polynomials in

one variable.

1. Intreduction.
The problem of factoring polynomials with integral coefficients remained open for a
long time, i.e. no polynomial-time factoring algorithm was known, The best known algo-
rithms took exponential-time in the worst case; these algorithms had to consider a pos-
sibly exponential number of combinations of p-adic factors before the true factors
could be found or irreducibility could be decided. In [1] it was proven that the prob-
lem of factorization in Z[X] belongs to NP nco-NP, which made its membership of P
quite likely [2]. That this was indeed the case, was proven in [7] where a polynomial-
time algorithm for factoring in Z[X] was given. This algorithm is based on the fol-
lowing three observations:
(1.1) The multiples of degree <m of a p-adic factor together form a lattice in Zm;
(1.2) If this p-adic factor is computed up to a high enough precision, then the factor
we are locking for is the shortest vector in this lattice;
(1.3) An approximation of the shortest vector in such a lattice can be found in poly-
nomial-time by means of the so-called basis reduction algorithm.

In this paper we show that (1.1) and (1.2) can be generalized to polynomials in
%[xi, xz,..., xt] in an elementary way, for any t= 2. Combined with the same basis
reduction algorithm as in (1.3), this leads to a polynomial-time algorithm for fac-
toring in z:'.[xl, xz, Y xt]. In [8, 9, 10] we show that the above three points can be

applied to various other kinds of polynomial factoring problems as well (like multi-
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variate polynomials over finite fields or over algebraic numher fields). Another ap-
proach to multivariate integral polynomial facterization is given in [5]. There the
multivariate case is first reduced in polynomial-time to the bivariate case, next
bivariate is reduced to univariate.

For practical purposes we do not recommend any of these polynomial-time algorithms;
their running time will be dominated by the rather slow basis reduction algorithm. For
polynomials in ZZ[XI, Kor wves xt] the algorithm from [lé] for instance is very useful,
although it is exponential-time in the worst case.

We restrict ourselves in this paper to integral polynomials in two variables; the
multivariate case follows immediately from this. In Section Z we present an important
result from [7: Section 1] concerning the basis reduction algorithm mentioned in (1.3).
The generalizations of (1.1) and (1.2) to polyncmials in #Z[X,Y] are described in
Section 3, and in Section 4 we give an outline of the factoring algorithm, and we ana-

lyze its running time,

2. The basis reduction algorithm.

' The basis reduction algorithm from [7: Section 1] makes it possible to determine in
polynomial-time a reasonable approximation of the shortest vector in a lattice. We
will not give a description of the algorithm here. It will suffice to summarize those
results from [7: Section 1] that we will need here.

n . .
Let bl'b ' ...,bnc Z be linearly independent. For our purposes we may assume

2

that the nxn matrix having bl,b?, ...,bn as columns is upper-triangular. The

i ; . ;
i-dimensional lattice LiCZ(. with basis b,.,b_, ...,bi is defined as Li=E, Zb

i
12 j=1 3
=1

= {X b.: r.eZ}. We put L=L .

3=17373° 55

(2.1) Proposition. (cf. [7: (1.11), (1.28), (1.37)]) Let BEEZ}Z be such that

|bj|25 B for 1<3<n, where || denotes the ordinary Euclidean length. The basis
reduction algorithm as described in [7: (1.15)] determines a vector be L such that

b belongs to a basis for L, and such that IBI2$ 2n_1|xI2 for every =xe¢ L, x=0;
the algorithm takes O(n4logB} elementary operations on integers having binary length

Of{n log B} . Furthermore, during the first O(i4logB) operations (on integers having

binary length 0f(i logB)), vectors Eic Li' belonging to a basis for Li' are deter-
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-~ 2 i-1 2
mined such that lbil <2 |xi| for every x.e¢L,, x #0, for 1<i=n. []
i i i

S0, we can find a reasonable approximation of the shortest vector in L in polynomial-
time. But also we find, during this computation, approximations of the shortest vec-

tors of the lattices Li without any time loss.

3. Factors and lattices.

We describe how to generalize (1.1} and (1.2) to polynomials in Z[X,Y]. Let fez[x,Y]
be the pelynomial to be factored; we may assume that £ has no multiple factors, i.e.
f is sguare-free. Furthermore we assume that f is primitive with respect to X, i.e.
the greatest common divisor of the coefficients in #[¥] of f equals one. We denote
by fo and {Syf the degrees of f in X and Y respectively, and by fc(f) the
leading coefficient of f with respect to X. We put n, = éxf and nyzék_f.

Suppose that we are given a prime number p, an integer s and a positive integer
k. By {511 we denote the ideal generated by p and (Y-s), and by (sk) we denote

k n,+1
the ideal generated by p and (Y-s) ¥ . 1In Section 4 we will see how to find a

polynomial hezZ[X,Y] such that:

(3.1) te(h) =1,

(3.2) (hmod (s, )) divides (fmod (s,)) in z[X,¥1/(s)),

(3.3) (hmod (s,)) ¢ (Z/p2)[X] is irreducible in (z/pz)[x]1,
(3.4) (h mod {51))2 does not divide (f mod (51)) in (Z/pz)[x].

We put £:6xh; so 0< RSnX.
Let h0€.ZZ[K,Y] be the irreducible factor of f for which (hmod (51)) divides
(homod (51)) in (Z/pZ)[x] (or equivalently (hmod {sk)) divides [homod (sk)J

in Zﬁ[x,!(]/{sk), cf. [7: (2.5)]); notice that hD is unique up to sign.

(3.5) Let mx and mY be two integers with 9.Srnxc n and OﬁmYﬁ éyﬂ_c{f). We de-
fine L as the collection of polynomials geZ[X,Y] such that

{i) Gngmx,

i <

(ii) Gyg_ .

(iii) 6yﬁC{91$ oy,

(iv) (h mod (sk)) divides (gmed (sk}) in zz[x.&r]/(sk)-
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Putting r-:=mxfny4'1)+in1 it is not dAifficult to see that L is an M-dimensional

; < ; M ; :
lattice contained in Z , where we identify polynomials in L and M-dimensional

my-1 n i 5 m ; ;
vectors in the usual way (i.e. Ziio Ejzoaij xty? +Ej:0amxj X™ vyl is identified
with (aoof agqr meee agnyf L L rimx_l ny' Elmxo; e amx ‘T'Y”' Because of (3.1) a

basis for 1L is given by

{pkijl: 0<j<n,, 0i< g} U

. i
{(hYJmod{sk))xl : (0<j<n, and f<i<m) or (0Sj<m, and i=m)).

This generalizes (1.1) (cf. [7: (2.6)]). We now come to (1.2). The height 9oax OF
a polynomial g is defined as the maximal absolute value of any of its integral cocf-

ficients. We prove that, if k and s are suitably chosen, then a vector of small

height in L must lead to a factorization of £.

(3.6) Proposition. Suppose that g¢L satisfies

nY+l Ny Ny BT T my, e Ty
(3.7 |s] > (e flnax (nx+1) (ny+1)) (qmax‘ {mx+1) {ny+1)}
and
k Ny +ny — My e ny ny+l Ny (ny+m,-1)
(3.8) p > (e fmax/(nx+1)(ny+l}) (g ," (m+1) (ny+1)) (1+(1+ls]) ) 2

Then h, divides g in 2[x,¥], and in particular gecd(f,g)=1.

Proof. Suppose that ged(f,g)=1. This implies that the resultant ReZ[Y] of f and

g is uneqgual to zero. Using the result from [4] one proves that
3 mx / ........ i it l'lx

= < +
(3.9) IRl < (£ _ Y(n +1)(n,+1)) “Hg  Vim +1) (n +1)) =,

where |R| denotes the ordinary Euclidean length of the vector identified with R.

Since (hmod (sk)) divides both (f mod{sk)) and (gmod (sk)), the polynomials f

and g have a non-trivial common divisor in Zﬂx,Y]/tsk), so that R must be zero
k ny+l ny+l1

modulo the ideal generated by p and (Y-s) . The polynomial (Y¥-s) cannot

n
divide R, because this would imply, according te [11: Theorem 1], that |[s| ¥ <R[,

n,+1
which is, combined with (3.9), a contradiction with (3.7). Therefore (Rmod (Y-s) ¥y

k . i 5 v 5
has to be zero module p . Using induction on nY+i it is easy to prove that
n,+1 n,+1l n.,i{n,+m,-1}
(Rmod (Y-s) ¥ ) €R  (14+(1+lsly ¥ ) ¥ XX
max max

n,+1
so that, with R < IRl and (3.8), it follows that (Rmod (¥-s) © ) cannot be zero
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k
modulo p . We conclude that ged(f,g) 21,

Suppose that hO does not divide g. So hD does not divide r=gcdif,qg), so

{h mod [Sk]) divides ((f/r) mod (sk]). Because f/r divides f, we find from [3]
n,+n

that (f/r}maxg e X Yfmax' This implies that the above reasoning applies to f/r

and the same polynomial g in L, so that ged(f/r,g)# 1. This is a contradiction

with r=gcd(f,g), because f is square-free. []

(3.10) Proposition. Suppose that s and k are chosen in such a way that (3.7) and
n,,+n

M-1}/2 -
2( )/ Me X Yg . Let b be as in

(3.8B) are satisfied with 9 ax replaced by e

(2.1) the result of an application of the basis reduction algorithm to the M-dimensional
latiice L as defined in (3.5). Then hor L if and only if (3.7} and (3.8) are

satisfied with g replaced by b.

Proof. To prove the "if"-part, assume that (3.7) and (3.8) hold with Y replaced

by Buuw' hccording to (3.6) this implies that ‘hD divides g, so that hoc L.
12 z

To prove the "only if"-part, assume that hoc L. Because hO divides £, we
n, +n
) se X ¥g

find from [ 3] that (F e
max max

Io . So there exists a non-zero vector in L

with Euclidean length bounded by VM e X Yfma . Application of (2.1) yields that

.._ M-11/2 n,tn
By s bl = 2! )/ Moe X Yfmax. Combined with the above choices of s and k,

this implies that (3.7) and (3.8) hold with g replaced by 5. 0

4. Description of the algorithm.

In this section we present the polynomial-time algorithm to factor £. First we give
an algorithm to determine the factor hO’ given p, s and h. After that, we will

see how p and s have to be chosen.

(4.1} Let p, s and h be as in Section 3, such that (3.1}, (3.3), (3.4) and (3.2}
with k replaced by 1 are satisfied. Assume that s satisfies the condition in

(3.10) with o and m, replaced by nx—l and Gylc(f) respectively:

ny+l Ny+ny P ey ne=1_ (M-1)/2 nytny Ny
(4.2) Isl > (e £ o () (n +) ¢ Me fmaxq(ny-ﬂ))

where M= (n -1} (n +1)+8 fc(f)+1. We describe an algorithm that determines h the

0!
irreducible factor of £ such that (hmod (s,)) divides (h;mod (51” in (zZ/pz)[x].
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We may assume that £= 5xh< ny. Take k minimal such that the condition from (3.10)

is satisfied with m, and my replaced by nx—l and GYEC(E} respectively:

k n,+n N e porm n, -1 M-1}/2 n,+n n
(4.3) pr (e X Ye /i dT () X W2 X e ) X

me

n,+1 Zn,(n,-1)
(1+(1+]s|) ¥ )T ¥ X

Next modify h in such a way that (3.2) also holds for this value of k; because of
{3.4) this can be done by means of Hensel's lemma [13].

Apply Proposition (2.1) to the M-dimensional lattice L as defined in (3.5) for
each of the values of M= E.(ny+1)+1, E.(ny+1J+2, s E(nY+1)+6Y£c(f)+1, (2+1) {ny+1)+1'
ey (nx—l) (ny+1)+éyﬁc(f)+1 in succession (so, for mx= L, 841, ..., nx—l in succession
and for every value of m:’< the value_s my= 0 L s 6Y£C(f) in succession). But stop

as soon as a vector b is found satisfying (3.7) and (3.8) with g replaced by b.

1f such a vector b is found for a certain value of M (m._=m and m_=m__),
X X0 b4 YO
then we know from (3.10) that hoe L. Since we try the values of M in succession
this implies that th0= me and Gylc(h0)==myo. By (3.6) hD divides b, so that
"z b =t ” =t ...= b
6xb L and Gyic(b) m o b ch0 for some ceZ, but hoe L and b belongs

to a basis for L, so }3=ih0.

If no such vector b was found, then (3.10) implies that ﬁthD nx—l, s0
that h0= f, because f is primitive.

This finishes the description of Algorithm (4.1).

(4.4) Proposition. Denote by mx0= tho the degree in X of the irreducible factor

hO of f that is found by Algorithm (4.1). Then the number of arithmetic operations

5.5 4 4 4 6 34

i i + +n_n_lo d

needed by Algorithm (4.1) is O(mxo(nxnyd-nxnylog(fmax) nxnylog(]5|) XMy gp}) an

the integers on which these operations have to be performed each have binary length
32 2

O(nxn + nanlOg(fm

¥

2 3
ax) + nxnylog (Is|) + nxnylog P).

Procf. Let M be the largest value of M for which (2.1} is applied; so M1= Ofm ).

1 xo"y
It follows from (2.1) that the number of operations needed for the applications of the
basis reduction algorithm for E(ny+1)+1£ M= Ml is egual to the number of operations
needed for M::M1 only. Assuming that the coefficients of the initial basis for L

k
are reduced module p , we find, using (4.3), that the following holds for the bound
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B on the length of these vectors:

2 2
=% +n 1 £ +
log B=0(nyn,+n og ( max) nanlogf[sl)+-logp).
With M1= O(menY’ and (2.1) this gives the estimates in (4.4).

The verification that the same estimates are valid for the application of Hensel's

lemma is straightforward [13]. O

We now describe how = and p have to be chosen. First, s must be chosen such
that (fmod (Y-s)) = £f(X,s) remains square-free, and such that (4.2) holds. The resul-
tant R of f and its derivative f' with respect to X is a non-zero polynomial
in Z[Y] of degree Sny(an—l). Therefore we can find in O(nxny) trials the minimal
integer s such that s 1is not a zero of R, and such that (4.2) holds. It is easily
verified that log(ls|)= O(ni-tnxlog(fmax)).

Next we choose p as the smallest prime number not dividing the resultant of

2
f(%x,s) and f'(X,s). Since log(f(X,s) }=0(n_n_+n_n log(f 1}, it follows as
max X XY max

Y

2
+—nxnylog(fm Y1

3
in the proof of [7: (3.6)] that p==0{nxn ax

¥

The complete factorization of (fmod (51)} can be determined by means of
Berlekamp's algorithm [6: section 4.6.2]; notice that (3.4) holds for every factor
(h mod (sl)) of (fmed {51)), because of the choice of p, and that this factoriza-
tion can be found in polynomial-time, because of the bound on p. The algorithm to
factor £ completely now follows by repeated application of Algorithm (4.1). The
above bounds on 1log(lsl) and p, combined with (4.4) and the fact that a factor g
of f satisfies log(g . )=0(n +n +1og(f 1) (cf. [3]), yields the following

theorem.

(4.5) Theorem. The number of arithmetic operations needed to factor £ completely is

7 6

6 6
O(nxny1~nxnylog(fmax)). and the integerson which these operations have to be performed

4 3 33
each have binary length O(n_n_ + .
¥ heng (nygny +nynylogte 1) 1)
5. Conclusion.
We have shown that basically the same ideas that were used for the polynomial-time
algorithm for factoring in Z[X] lead to a polynomial-time factoring algorithm in

#[x,Y] (Theorem (4.5)). Our method can be generalized to polynomials in Z[X,., X,
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..., % J]. The evaluation (¥=3s) is ti = = saak, =s )

P R hen replaced by {X2 Sy X3 53, venr Xy Sl
where the integers Si have to satisfy conditions similar to (4.2). It will not be
surprising that in this case the estimates become rather complicated.

A somewhat simpler algorithm results if we use the algorithm from [7]; the details

of this algorithm, which is similar to the one described in this paper, can be found

in [10].
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Factoring multivariate integral polynomials, II

by

A.K. Lenstra

ABSTRACT

We show that the problem of factoring multivariate integral polynomials can
be reduced in polynomial-time to the univariate case. Our reduction makes

use of lattice techniques as introduced in [3].

KEY WORDS & PHRASES: polynomial algorithm, polynomial Factorization
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1. Introducticn.

In [5] we presented a polynomial-time algorithm to factor polynomials in

Z[X,Y¥], and we pointed out how to generalize the algorithm to Z[Xl' Xy e

Sy Xt] for t=3. A nice feature of this algorithm is that it does not
depend on the polynomial-time algorithm to factor in Z[x] (cf. [3]).
Instead of working out the details of this direct approach for t=3 (this

will be done for Q(u)[xl, X & Xt] in a forthcoming paper [6]), we here

PR

simplify the method from [5] somewhat, which results in a polynomial-time

reduction from factoring in ZZ.[Xl, X sy Xt] to factoring in Z[X]. This

ot v

reduction is similar to the reduction from IFéI[xl' X = xt] to ]Fq[x, Y]

PR

that was given in [4].
An outline of our reduction is as follows. First we evaluate the poly-

nomial f.:.zz[xl, X = xt] in a suitably chosen integer point (X2= s

ot tue ot

x3=s3, L Xt=st), to obtain a polynomial er&[xlj- Using the algorithm

from [3] we then compute an irreducible factor HEZZ[XIJ of I. HNext we
construct an integral lattice ceontaining the factor hO of f that corre-

sponds to R, and we prove that hg is the shortest vector in this lattice.
As usual, this enables us to compute hO by means of the so-called basis
reduction algorithm (cf. [3: Section 1]; in the sequel we will assume the

reader to be familiar with this basis reduction algorithm and its properties).

2. Factoring multivariate integral polynomials.

Let fezz[xl, Kot wnns xt] be the polynomial to be factored, with the number

2
of variables t=z= 2. By 6if=ni we denote the degree of £ in xi. We



103

t
i . = +1 =N,. T
often use n instead of nl We put Ni nk=i(nk ), and N 1 he

content cont(f) eEZ[X2, X .y Xt] of £ 1is defined as the greatest common

37 e

divisor of the coefficients of £ with respect to X we say that £ is

17
primitive if cont(f) =1.

Without loss of generality we may assume that 22 n, < n; .y for 1=<i<t,

and that the ged of the integer coefficients of f equals one.
We present an algorithm to factor £ into its irreducible factors in

za[){l,x vnir xt] that is polynomial-time in N and the size of the integer

2"

coefficients of £.

Let SyrSyr ceerS € ZZ>0 be a (t-1)-tuple of integers. For qeza[xl,
)(2, wsnnH xt] we denote by gj the polynomial g modulo((XZ—SE) ’ (x3—s3) g
(Xj-Sj)) €Z[X . Xj+1; Xipor o Xt]: i.e. §; is g with s, substituted

for Xi for i=2,3, ..., j. Notice that t§1=g, and that gj=§j_1modulo
(X.-s.). We put §=4g_.
7% B g gt
Suppose that an irreducible, primitive factor ﬁszz.[xl] of E is given

such that

(2.1) 5% dopmmokodiviie £ 4 z[x,1, and &> 0.

This condition implies that there exists an irreducible factor h0 ez[xl, }(2,
.,Xt] of f such that B divides EO in Za[xl}, and that this polyno-

mial hO is unique up to sign.

(2.2) Let m be an integer with Giﬁ£m< n. We define L as the collection

of polynomials g in Z[Xl, X, b sesi Xt] such that

2'
(i) {Slgs m, and GigSni for 2<ic<t,
(ii) B divides § in zz[xlj‘

This is a subset of the (m+1)N2-—dimensional real vector space IR+IRX.t+ -
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mn n
mxlxzz...xtt. We put M= (m+1)N2. This wvector space can be identified
v g2 "

XlXJ...X

n Il
2 t
20 k=0 2i5...x51%2 t

with ZIRM by identifying the polynomial ETEO Zj

€ IR[)(I, XE' LR Xt] with the M-dimensional wvector (aOO. .0’ aOO. g

2mn n ). The collection L 1is a lattice in EZM of rank M-6,H, and
gurelie 1

a basis for L is given by

{Xiﬂi.; (X.—s_)ij: 0<i<m, 0<i ., <n, for 2<j<t, and
1. 3=2 75 Z J J
(12,13,...,it)rto,o,...,O)}
u{ﬁx;‘alﬁ: §i<is<n}

(c£. [4: (3.2)]).
We define the length |gl| of the vector associated with the polynomial
g as the ordinary Euclidean length of this vector. The height Do is

defined as the largest absolute value of any of the integer coefficients

of g.

(2.3) Proposition. Suppose that b 1is a non-zero element of L such that

<1 n,
(2.4) & 5d B  pmwErenead e R
j max max 2 i=271
. F o *)
for 2<j<t. Then gcd(f,b) =1 in Z[Xi,xz, S Xt].

Proof. Suppose on the contrary that ged(f,b) =1. This implies that the

resultant R=R(f,b) €EZ[X2, W iy Xt] of £ and b (with respect to the

3

variable Xl) is unequal to zero.

We derive an upper bound for (ﬁj}max' Because ﬁj is the resultant

of fj and 5j we have

= m n n+m-2
2.5 R, < 1
( ) (R])max fj}ma_x(Ej)max(n"'m} Nj+1
*) m m

Here, and in the sequel, £ denotes (f i
max max
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as is easily wverified. Because Bj=}5 modulotxj—sjl, we have

3-1

n.
J
(Bj)maxS (5j_1}max(nj+1) sj ¥

so that

§| n,
(2.6) (Bj)max < bma.xni=2(ni+” s; s

and similarly

] nj
{2.7) (£.) <f m; . (n,+l)s *.
jmax max i=2 i i

Combining (2.5), (2.6), and (2.7), we obtain

n+m

r

ot n 1 J ni
(2.8) ‘Rj)max < filnlax bmax (n+m! I[N2 ni=2 5i )

for 1=j<t.
Because H divides both ¥ and 5 ((2.2)(ii)), we have that R=0.
But alsoc R=#0, so there must be an index j with 2<j=t such that Sj

is a zero of f{._ This implies that

for some j with 2<j<t, which yields, combined with (2.4) and (2.8),

a contradiction. We conclude that ged(f,b) =z1. []

(2.9) Proposition. Let bl' b2, Wy, bM be a reduced basis for L (cf.

[3: Section 1]), where L and M are defined as in (2.2). Suppose that

t nm
m M-1,% n o Fi=iPi g 731 ni)
(2.10) sj = fmax[(M 2 )] fmax) (n+m)! (e N2 T'li:2 si )

for 2<3j<£t, and that f does not contain multiple factors. Then
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- T qny
(2.11) (bl}maxs (M2 )T e fl’llax

and h divides b

3 i <
0 1 if and only if 61h0_m.

Proof. If hO divides b then Glhosélblsm; this proves the

1 r
"only if"-part.

We prove the "if"-part. Suppose that GlhOSm. The polynomial hO is

a divisor of £, so that
Zt

& n.
(h) <ei=liig
0" max max

according to [2]. With 61h0£m and ﬁihiSni for 2<i<t we get

t

Lo _ali:
Ih |su? e i=1Mig |
0 max

so that [3: (1.11)] combined with h0 €L (this follows from (Slho £m) vyields

M-1.% Zti:—ini
. “
Ibll s M2 ) e £

This proves (2.11) because (bl)maxg Ibli. with (2.10) and (2.3) we now

have that gcd(f,bl) = 1. Suppose that h_ does not divide r=gcd(f,b1).

0
Then K divides /¥, so that, with

Zleni
(£/x) et £ ¥
max max

and (2.10), (2.11), and (2.3), we get that gcd(f/r,bl) #z1., This is a
contradiction with r=gcd(f,b1), because f does not contain multiple

factors. [

{2.12) Suppose that f does not contain multiple factors and that £ is

..., 5, and H be chosen such that (2.10) with m

primitive. Let s,,5 t

2" 73!

replaced by n-1 and (2.1) are satisfied. The divisor hO of £ can be
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determined in the following way.
For the values m= Glﬁ, Glﬁﬂ, .+.;,0n-1 in succession we apply the
basis reduction algorithm (cf. [3: Section 1]) to the lattice L as defined

in (2.2). We stop as soon as a vector b is found satisfying (2.11). It

1

is not difficult to see that the first vector b satisfying (2.11) that we

1
encountexr, also satisfies bl =:th0 (here we apply [3: (1.37)] and (2.9)).
If no vector satisfying (2.11) is found, then 61h0>n-1, so that h0=f;

this follows from (2.9).

(2.13) Proposition. Assume that the conditions in (2.12) are satisfied. The

; 4 ; g .
polynomial ho can be computed in 0O (Glh0 N2) logB) arithmetic operations

on integers having binary length O(NlogB), where
T
= + +

logB=0(log fmax n+ log N2 Ei=2 n, log si) .

Proof. Combining
2n, %
=
IRl < ()7 ||

{cf. [7]) and (2.7), we find that

2n, & _t n;
IRl < £ (DTN (n+1)s 1

The proof follows now immediately from (2.2), [3: (1.26)] and [3: (1.37)]. [J

(2.14) We describe an algorithm to compute the irreducible factors of f
in Z[Xl, Xor eens Xt]. Assume that £ is primitive.

First we compute the resultant R=R(f,f') ez[X i Xt] of f

2,X3,

and its derivative f' with respect to xl' using the subresultant algo-

rithm from [1]. We may assume that R#0, i.e. f does not contain multiple
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factors. (In the case that R=0, the greatest common divisor g of £
and f' is alsc computed by the subresultant algorithm, and the factoring
algorithm can be applied to £/g.)

Next we determine s_,, S € Z such that R= 0 and such that

g8 ARy

(2.10) is satisfied with m replaced by n-1:

t

T am y
2n-1)! (e =lige n 1)
max 2 i=

nN2—1)n/2 ( nl) 2n-1

1
(2.15) sjz (nN, 2 255

2

for 2<j<t. It follows from the reasoning in the proof of (2.3) that if
we take Sj EEZ>O minimal such that (2.15) is satisfied, then R=0.

By means of the algorithm from [3] we compute the irreducible and
primitive factors of f of degree >0 in Xl' The condition R=0
implies that (2.1) holds for every irreducible factor A of I thus
found.

Finally, the factorization of £ 1is determined by repeated application

of the algorithm described in (2.12}.

(2.16) Theorem. Let £ be a polynomial in za[xl, Xpr wens xt] with t=2,

aif =n,, and 2=n= n, < n, Kivng & n, . The irreducible factorization of £
p t-2_ 6 5 ; ; . "

can be found in O(n (N"+N log fmax 1) arithmetic operations on Integers

; : E=Pled ool -
having binary length Of(n (N" +N log fmax 1), where N —ﬂi=1 (ni-t-l) 3

Remark. Because nt=O(N), Theorem (2.16) implies that £ can be factored

in time polynomial in N and log fmax'

Proof of (2.16). Firstassume that f is primitive. The resultant R can be

-1.2
computed in (:.'r(n3t 1N2)

¥)  tefs L1k

arithmetic operations on integers having binary

2
1 £ N
ength O(n log( -
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The cost of applying (2.12) therefore dominates the costs of the computation
of R and the factorization of E.
The same estimates are valid in the case that R=0. In this case we

have that

t
.

174
=
(f/q)n;lax"e

‘e

max

(cf. [2]), so that the same estimates as above are valid for the computation
of the factorization of £/g.

Finally, we consider the case that the content of f is unequal to one.

¢ 2 3t-4 2 i 1
The computation of cont(f) can be done in 0(nn2 N3) arithmetic oper-
2

ations on integers having binary length O(nzlog(fmaxN3)) {(cf. [1]). Because
Gif= 5icont(f)+ ﬁi(f/cont(f)} for 2=£ist, the proof follows by repeated

application of the above reasoning. [J

(2.19) Remark. As menticned in the introduction, a somewhat more complicated
but similar approach leads to an algorithm that does not depend on the poly-
nomial-time algorithm for factoring in ZZ[X]. Instead, it can be seen as a
direct generalization of the Z[X]-algorithm. We will not give a detailed
description of this alternative method here, we only indicate the main
differences.

The divisor ﬁczz[xlj of f is replaced by a divisor (fimod pk) €
(EZ/ka)[le of (Emod pk), for some suitably chosen prime power pk.
Condition (2.2)(ii) is therefore replaced by the condition that (ﬁmod;ﬁ%
divides (§mod pk} in (Z/pk ZZ)[XIJ. The lattice L<Z' now has rank

M, and a basis for L is given by

{pkx;: 0<i< 8 R}
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From the choice of- Sj (cf. (2.15)) we derive
logs, = O(n2N +nlogf +Z::|-1nn log s,)
] 2 max i=2 i i
for 2=<j<t, so that
logs. = O((n2N +nlogf )ﬂj_1{1+nn 1)
%%y 2 T *max’ i=2 g
This yields
t t-2, .2
3 = +
(2:.17) z, n:_L log Sl o(n (N N log fmax”'

i=2

which gives, combined with (2.7},
ax

t-2, 2
(2.18) logfmax— O(n (N +Nlogfm 1.

6ol
The polynomial I can be factored in O(n +n log fmax) arithmetic operations
3 2
on integers having binary length O(n” +n log fmax] , according to [3: (3.6)].

with (2.18) this becomes
t+3 2
o(n (N” + Nlog fma.xn
arithmetic operations on integers having binary length
t, 2
O(n (N +Nlogf )).
max

According to (2.13) and (2.17), repeated application of the algorithm

described in (2.12) takes
t-2, 6 5
o(n (N +N log £ ))
max
arithmetic operations on integers having binary lergth

-2 3 2
ot 2 + Nlog £ ).
max
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i-§
U{(I"lmodpk)xi' 1E: GlﬁSiSm}
it i, ’ : :
u{xITI,_ _(X.-s.) J: 0<is<m, 0<i,<n, for 2<j<t, and
1 s i d
(12113.-..,it)=(0.0,..-.0J}.
Again, it can be proven that, if s_,s., ...,s.  and pk are sufficiently

2574 t

large, then the irreducible factor of £ that correspends to (Hnmd];S
is the shortest vector in L. This factor can therefore be found by means
of the basis reduction algorithm, and the resulting algorithm appears to be
polynomial-time. For fe¢Z[X,Y] the details are given in [5], and for

fe@la)lx,, X --.,xt] in [6].

2)‘
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Factoring multivariate polynomials over algebraic number fields

by

A.K. Lenstra

ABSTRACT

We present an algorithm to factor multivariate polynomials over algebraic
number fields that is polynomial-time in the degrees of the polynomial to
be factored. The algorithm is an immediate generalization of the polynomial-

time algorithm to factor univariate polynomials with rational coefficients.

KEY WORDS & PHRASES: polynomial algorithm, polynomial factorization
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1. Introduction.

We show that the algorithm from [7] to factor univariate polynomials with
rational coefficients can be generalized to multivariate polynomials with
coefficients in an algebraic number field. As a result we get an algorithm
that is polynomial-time in the degrees and the coefficient-size of the
polynomial to be factored.

An outline of the algorithm is as follows. First the polynomial

£ Q(a][xl,x ; ...,xt] is evaluated in a suitably chosen integer point

2

(X2==52,X3 =Sy ...,xt==st). Next, for some prime number p, a p-adic
irreducible factor B of the resulting polynomial Ec Q(u][Xl] is deter-
mined up to a certain precision. We then show that the irreducible factor
h0 of f for which R is a p-adic factor of ﬁo, belongs to a certain

integral lattice, and that h, is relatively short in this lattice. This

0

enables us to compute this factor h. by means of the so-called basis

(o}
reduction algorithm (cf. [7: Section 1]).

As [7] is easily available, we do not consider it to be necessary to
recall the basis reduction algorithm here; we will assume the reader to be
familiar with this algorithm and its properties.

Although the algorithm presented in this paper is polynomial-time, we
do not think it is a useful method for practical purposes. Like the other
generalizations of the algorithm from [7], which can be found in [8;9;10;
11], the algorithm will be slow, because the basis reduction algorithm
has to be applied to huge dimensional lattices with large entries. In

practice, a combination of the methods from [6], [14], and [15] can be

recommended (cf. [6]).
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2. Preliminaries.

In this section we introduce some notation, and we derive an upper bound
for the coefficients of factors of multivariate polynomials over algebraic
number fields.

Let the algebraic number field ®@(a) be given as the field of rational
numbers @ extended by a root @ of a prescribed minimal polynomial
FeZ[T] with leading coefficient equal to one; i.e. @(a)=~@g[T]/(F).
Similarly, we define Z[al=®[T]/(F) as a ring of polynomials in o over
Z of degree <I, where I denotes the degree &F of F.

Let fe qg(a}[xl, Xyr weny xt] be the polynomial to be factored, with the
number of variables t=2. By ﬁif=ni we denote the degree of £ in X,
for 1=i<t. We often use n instead of n,. We put Ni==ﬂ;=i(nk+l), and

1

= = =i= i s X. S
N Nl' Let ﬁco(f) f. For 1=<i<t we define E.ci(f} € @O(a) [Xi+l Xl+2,
xt] as the leading coefficient with respect to Xi of Eci_ltf) , and we put

.,xt]

ici{f) = E.ct(f) . Finally, we define the content cont(f) e Q(a)[xz, X3, FE

of f as the greatest common divisor of the coefficients of f with respect
to Xl. Without loss of generality we may assume that 2£rg_5ni+1 for
1=i<t, that f is monic (i.e. fc(f)=1), and that Gicont(f)= 0 for
2=i=st.

Let d€23>0 be such that fe éﬂ[a][xl, XZ, — Xt], and let discr(F)
denote the discriminant of F. It is well-known (cf. [15]) that if we take

D=d|discr(F)|, then all monic factors of f are in %Ez[a][xl, X 55 xt]

2" 7

(in fact it is sufficient to take D=ds, where s is the largest integer
2 .

such that s divides discr(F), but this integer s might be too dAiffi-

cult to compute).
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We now introduce some notation, similar to [8: Section 1]. Suppose that we

are given a prime number p such that
(2.1) p does not divide D.

For G= Zi ai T ¢Z[T] we denote by G or Gmod pﬁ the polynomial

1A
4 3
Zi(ai mod p )T € (Z./p'q' #z)[1Tl], for any positive integer &. Suppose fur-

thermore that we are given some positive integer k, and that p is chosen

in such a way that a polynomial HeZ[T] exists such that

(2.2) H has leading coefficient equal to one,
(2.3) Hk divides Fk in (Z/ka}[T].

(2.4) H, is irreducible in (Z/pZ)[T],

{2.5) (Hi)2 does not divide F, in (#@/pz)T].

Clearly H, divides Fl in (Z/pZ)[T], and 0<8H=<I. In the sequel
we will assume that conditions (2.1), (2.2), (2.3), (2.4), and (2.5) are

satisfied.

H
By IEC'1 we denote the finite field containing q=p5 elements. From

SH-1 i
-9 o - 1
{2.4) we have Zl:l:_:1 (ZZ/pzz)[T]/(Hl) {Ei=0 a; ay: a; €Z/p7Z}, where oy
= Tmod (Hl) is a zero of H, . Furthermore we put Wk( Ef:ll = (ZZ/pk Z)[T]/(Hk)

SH-1 i k . y
{ 1=0 ai ak. aieZZ/p #Z}, where uk—Tmod (Hk) is a zero of EH(. Notice

G k
that Wk( ]Fé) is a ring containing g elements, and that Wl(]Eé!] H]EC‘I.

I}
For acZlal] we denote by amod (p ’HL) EWR( IE‘q) the result of the canon-

ical mapping from Z[ol= Z[T]/(F) to WR( :IEC‘I) = (Z/ptzzl[T]/(Hﬂ) applied

o a;, i 1 L
= - 1 - &t
to a, for A&=1,k. For ngi = X € Dzz[u][xlj we denote by dgmod (p .H£>

. -1 L [ i ;
the polynomial Zi(((D modp ) ai)mod(p 'HE.)) x1 € WE( IEc'l}[ X1:[ (notice that

D_lmod p'Q' exists due to (2.1)).



We derive an upper bound for the height of a monic factor g of £. As

R 1 T )
gt

it ;
£ = e Sk Pt b, ' .
VEREL) LoE: g §1§2 Etg'alllz...ltju 1 32 Xe € @(a)Lxl Ko
th i ght is defined
e heigh Upax 1S defined as maxlailiz...itj]' and the length |g| as
2
(Za, |, . .)%. Similarly, for a polynomial h with complex coefficients,
ig1ig...i¢3
we define its height hmax as the maximum of the absolute values of its
complex coefficients.
For any choice of we {al,uz, ...,aI}, where Qs Oy -oey0p  are the

conjugates of o, we can regard g as a polynomial 9, with complex

coefficients. We define |lg|l as max (g ) . From [3] we have
1=i<T "0i max

EF_ln.
llgll<e ™" *El.

In [8: Section 4] we have shown that this leads to

t n
=1" (1-1) /2

- 1
(2.6) g Ze £l (z-1) 1F[I 1Idiscr{F)l i

max

From [13] we know that the length |[F| of F is an upper bound for the

absolute value of the conjugates of o, so that

I-1,.i
Nell<g 2 olFlT

which yields, combined with (2.6),

t

g . r
o P g gy (T2 -1 I
max

; =k _I-1 i
|discr(F) | ZizolFl ;

I

(2.7) g

max [FI

The upper bound for the height of monic factors of £, as given by the

right hand side of (2.7), will be denoted by B Because |disecr(F)| =1,

£

we find

t
(2.8) long— O(Zi=lni+log fmax+Ilog(IlF[) ).

‘!xtTI
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3. Factoring multivariate polynomials over algebraic number fields.

We describe an algorithm to compute the irreducible factorization of £ in

X 'x r ---,X -
pla) 1%, t]

Let 52,53, ...,stezz:_o be a (t-1)-tuple of integers. For ge¢
Q(u)[xl,xz, P Xt] we denote by éjj the polynomial gmodulo ((Xz—sz).
[XB"SB), . (Xj—sj)) € Q(a}[xl, Xj+1' xj+2, U Xt]; i.e. gj is g with

s substituted for Xi, for 2<i=<j. Notice that §1=g and that

g.=§. ,modulo (X.-s.). We put g=g, .
95=95, 5755 put §=g,

Suppose that a polynomial ﬁeEZ[a][xlj is given such that

(3.1) i is monie,

3.2) ﬁd(kH)div'd £ d(kH) in W (F)X, ]
(3. mo: p,k ides mo! P'k lnkql'
(3.3) H mod (P'Hl) is irreducible in ]EC‘I[X:L],

(3.4) (A mod (p,Hl))2 does not divide fmod (P"Hl) in ]Eé[[xl:i.

We put & = Glﬁ, so 0<f&<n. By h e%zz[u][xl,x z ...,xt] we denote

0 2

k
the unique, monic, irreducible factor of f such that FHmod (p ,Hk)

. k d
divides ﬁomod (p ,Hk) in Wk(IE;;)[Xl:I {cf. (3.2), (3.3), (3.4}).

(3.5) Let m=m,,m,,m , m be a t-tuple of integers satisfying

i A - A
g<m<n and O<m, <8 8%, ,(f) for 2<i<t, and let M=1+IX . . m_ N,
i i"7i-1 i=1"1 i+l
(where of course Nt+1: 1). We define Lc< (%}M as the lattice of rank

M, consisting of the polynomials ge %Ez[a][}{l, X S Xt] for which

A

i < < <i<t:
(i) 61g_m and Gig_ni for 2=ist;
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(ii) If 5j£cj_1(g)=mj for 1<3<1i, then Gi-t-lf'ci{g) Smi+1 for 1=i<¢t;
(iii) 1If \‘Siﬂ.ci_l (g) = m, for 1<i<t, then fcl(gleZ;
(iv) A mod (pk,H ) divides gmod (pk,H ) in w (F)[x, ].
k k k g 1
Here M-dimensional vectors and polynomials satisfying conditions (i), (ii),

and (iii), are identified in the usual way (ef. [8: (2.6); 11: (2.2)]). For
notational convenience we only give a basis for L in the case that m, =n,

for 2=i=+t; the general case can easily be derived from this:

{%—pka]}(;: 0<j<68H, 0=si<y}
i 3 ;
u{EaJGHHM)x? SE<j<I, 0<i<®}
3 i
v {zadmxt ™ 0<j<1, t<ism)
D 1
u{laijﬂt (x—s)ir- 0<j<I, 0=<i,=m, 0<i_<=n
D 1 r=2 "r "x ) - ! A B T TrT r
< . )
for 2=<r=<¢t, (12,13,...,J.t)#(O,O,...,c-),
and (ilfiz,iy .,it)#(m,nz.n3,...,nt)}
m_t n
X, 1 - 5
u { 102 (Xr sr] }

(c£. [8: (2.6); 11: (2.19)1, (2.2), and (3.1)).

(3.8) Proposition. Let b be a non-zero element of L and let

.. g s n, \tm
(3.7 § o v (mmrfon, (ue &t S
j max = max \" 72 max i=2 71

m

for 1<4j=<t, where £ denotes (f__ )
max max

Suppose that

N,
(3.8) S_j = ((n-f-m)nj«!—l) Bj—l



for 2<j<t, and

(3.9) kaHE 1F|I_1(Il:]§t)]:.

P X, 1.

Then gcd(f,b) #1 in Q(u)fxl.xz. Seen Xy

Proof. Denote by R=R(Df,Db) ezz.[u][x2. X i Xt] the resultant of Df

-

and Db (with respect te the variable Xl). Bn outline of the proof is

as follows. First we prove that an upper bound for (ﬁj)max is given by
E’j' Combining this with (3.8), we then see that Xj = Sj cannot be a zero
of ﬁj—l if ﬁj—lz 0, for 2<j=<t. This implies that the assumption

that R=0 (i.e. gecd(f,b)=1) leads to B# 0. We then apply a result
from [6], and we find with (3.9) that Rmod (pk,Hk} # 0. But this is a
contradiction, because FHmod (pk,Hk) divides both Emod (pk,Hk) and

b mod (pk,Hk} in Wk( IE“E)[}{l]. We conclude that R=0, so that ged(f,b)=1

in Q(ct)[xl,)( ..,xt].

i

If a and b are two polynomials in any number of variables over

Q(a), having f.a and &  terms respectively, then

b

(3.10)  (ab)___<a___b___min(f ,2) (1+F )L
max max max a b max

From (3.10) we easily derive an upper bound for (ﬁj)max' because

Rj szz.[a][xj+1 S xt] is the resultant of ij and DBj:

¢ Xj+2' E

(I-1) (n+m-1)

_1(1+F )
max

~ m n Ly i1}
(3.11) (Rj)maxs (ij)mx(nﬁj)m(nﬂ:) .Nj+1

n<
modulo (X.-s.), that (E,) __ s (E, ) _ (n,+1)s.J,
3 73 3 j

It follows from E.=£E. X
j -1 j max j=1"max
so that
j ny
(3.12) (E.) =f 1T, (n,+1)s, *.
j'max~ max i=2 i i
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Combining (3.11), (3.12), and a similar bound for (Sijax, we obtain
= n ' j By ndm (I-1) (n+m-1)
(3.13) (R < £ b (mm) N, s )T (1+F ) .

for 1=£j<t. (Remark that (3.13) with "<" replaced by "<" holds for
j=t.)

Now assume, for some Jj with 2=j<t, that ﬁ._ is unequal to

j=-1
zero. We prove that iij # 0. Because ftj = ﬁj—l modulo (xj—sj) , the condition
I-ij=0 would imply that all polynomials in ZZ[Xj] that result from f{j-—l

by grouping together all terms with identical exponents in o and Xj+1
up to Xt, have (Xj—sj) as a factor. These polynomials have degree (in

Xj) at most (n+m)nj, so that we get, with the result from [12], that

L.
]Sjl < [(n+m)nj+1) (Rj-l)max°

Combined with (3.13) and (3.7) this is a contradiction with (3.8). We con-

clude that iij:o if R, ,#0 for any j with 2<jst, so that the

j-1
assumption gecd(f,b)=1 (i.e. R#0) leads to R=#O0.
Assume that Hk(T) divides RI(T) eZ[T] in (Z/pk z)[T]l, 1i.e.
Rmod (pk,Hk] =0. The polynomial Hk(T) is also a divisor of F(T) in

(ZZ/pkzzJ[T:[, so that gcd(F(T),R(T))=1 and [6: Theorem 2] lead to

kSH -1, 4.
p o <IFIT TR )

With the remark after (3.13) and (3.7) this is a contradiction with (3.9),

so that Rmod {pk,Hk) # 0. This concludes the proof of (3.6). [

(3.14) Proposition. Let b

1;b2; “"bM be a reduced basis for L (cf.

[7: section 1]), where L and M are as in (3.5), and let
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n-+m
I-1_73j ny
B DN2(1+Fm ) I ) ¥

_ . M-1.n/2
(3.15) Bj = (n+m) ! (M2 )] ( £ Fo 1=2 Si

for 2=j=t, where Bf is as in Section 2. Suppose that

(3.16) s,z ((n+m)n,+1)lza.
] J j-1

for 2=j=t, that

k6H2 |F[I_1(Ilz

T
(3.17) P B.),

and that f does not contain multiple factors. Then

M-1.%
(3.18) (bl)maxs (M2 ) B,

if and only if h_e¢ L.

and hO divides b 0

1r

Proof. If hO divides bl' then h.e¢ L, because bleL; this proves the

0
"if"-part.
To prove the "only if"-part, suppose that hoe L. Because hO is a
monic factor of £, we have from (2.7) that (hO)ma_x'ng' with [7: (1.11)]

M-1.%
)Bf

(bllmaxs Ibll' Because of (3.18), (3.16), (3.17), (3.15), and the definition

and h.e L this gives |b1| < (M2 so that (3.18) holds, because

0

of Bf, we can apply (3.6}, which yields gcd(f,bi) 21

Now suppose that ho does not divide bl' This implies that hO also
does not divide «r= gcd(f,bl) , where r can be assumed to be monic. But
then Hhmod (pk,Hk) divides (I/F) mod (pk,Hk) , so that Proposition (3.6)
can be applied with f replaced by £/r. Conditions (3.8) and (3.9) are
satisfied because (f/r)maxﬁBf (cf. (2.7)) and because of (3.16), (3.17},

and (3.15). It follows that gcd(f/r,bl) #1, which contradicts r= gcd(f,bi)

because f does not contain multiple factors. [
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(3.19) We describe how to compute the irreducible factor h0 of £f£. Suppose
that f does not contain multiple factors, and that the polynomial H#, the
EL ....st. and the prime power pk are chosen such that

(3.1), (3.2), (3.3), (3.4), (3.16), and (3.17) are satisfied with, for (3.186)

(t=1)-tuple 52,3

and (3.17), m replaced by n-1. Remember that we alsoc have to take care
that conditions (2.1), (2.2), (2.3), (2.4), and (2.5) on p and H are
satisfied.

We apply the basis reduction algorithm (cf. [7: Section 1]) to a se-

o
quence of M.-dimensional lattices as in (3.5), where the M,=1+IZXZ, m N,
j J i=1"1i i+l

, M (cf. (3.5)),

run through the range of admissible values for m, , m €

ot te

in such a way that Mj< M,

e (Se, for m=4%, 4+1, ..., n-1, and mi::O,l,

.,6iﬂci_1(f) for i=+t, t-1, ..., 2 1in succession.} According to (3.14),

the first vector b1 that we find that satisfies (3.18) equals iho

(remember that b belongs to a basis for the lattice), so that we can stop

1

if such a vector is found. If for none of the lattices a vector satisfying

(3.18) is found, then h0 is not contained in any of these lattices according

to (3.14), so that h0= £.

(3.20) Proposition. Assume that the conditions in (3.19) are satisfied.

4
The polynomial hO can be computed in 0((51h01 NZ) k logp) arithmetic

operations on integers having binary length O(INklogp).

Proof. Observing that log(IhIpzk)= O(klogp) (cf. (3.17), (3.15), and
(2.8)), the proof immediately follows from (3.19), (3.5), and [7: (1.26),

(1.37)1. 0O

{3.21) We now show how SorSyr eear Sy and p can be chosen in such a way

that the conditions in (3.19} can be satisfied. The algorithm to factor f

then easily follows by repeated application of (3.19).
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We assume that f does not contain multiple factors, so that the resultant

R=R(df,df') of df and its derivative df' with respect teo xl is

€z minimal such that

unequal to zero. First we choose s, 5 0

gt Byr neanBp

{3.16) is satisfied with m replaced by n-1. It follows from (3.16},

(3.15), (2.8), and logD=0(logd+Ilog(IlF|)) (because D=dl|discr(F)|),

that

1 . =0{log((n+ .) +1leg B,
czqs:l {log ((n: m)nj) og J_1)

1

- 1+
=0(InN+n(log Bf+ logD+I log(1+Fmax) +Ei=1

1

ni og Si)]
j'_l

=0(n(I N+ log(df ) +Ilog(IlF]) +Zi=1 nilogsi))

for 2= 3j=£t, so that

- 2!
log Ej =0(n(IN+ log(dfmax) +Ilog(I|F|)) I'Ii=2(1+nni)]

and
(3.22) % n logs. =0T AN(IN+log(df ) +Ilog(I|FI}))
* j=3 M ~998; Og AL ax 9 ¥
From the proof of (3.6) it follows that, for this choice of L URERY S

the resultant ReZ[a] of d4f and d4E' is unequal to zero.
Next we choose p minimal such that p does not divide D or discr (F),

and such that R# Omodulop. Clearly

g< ddiscr(F) R
ma

n .
g prime, g<p b4

which yields, together with

Ap
>
l'[q prime, g<p &E
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for all p>2 and some constant A>0 (cf. [4: Section 22.2]), that
.23 = + R .
(3.23) p=0(logd Ilcg(IIFI)-!-longax)

Similar to (3.13) we obtain

& % f2n— 1 .y

2n-1 (I-1) (2n-2)
max = max !

{1 t Py
(2n 1).(dN2 I'li:2 s; ) (1+Fmax)

so that we get, using (3.22)
logR =0 ! N(IN+1log(af ) +1 log(zlFl)))
9 Rnax IO ax °g )
Combining this with (3.23) we conclude that
t-1
(3.24) p=0(n N(IN+log(dfmax]+Ilog(I|F|JJJ.

Notice that (2.1) is now satisfied. In order to compute a polynomial

HezZ[T] satisfying (2.2), (2.4), (2.5), and (2.3) with k replaced by 1,
we factor Fmod p by means of Berlekamp's algorithm [5: Section 4.6.2]

and we choose H as an irreducible factor of Fmodp for which

Rmod (p,Hl) #0; such a polynomial H exists because ﬁmodp?‘- 0. Conditions
(2.4) and (2.3) with k replaced by 1 are clear from the construction of
H, and because we may assume that H has leading coefficient equal to one,
(2.2) also holds. The condition that discr(F)mod p# 0, finally, guarantees
that Fmod p does not contain multiple factors, so that (2.5) is satisfied.

We choose k minimal such that (3.17) holds, so that
1
klogp—O(I(InN+nlog(dfmax) +Inlog(I|F|) +n£i=2ni logsi) + log p)
(c£. (3.15) and (2.8)), which gives, with (3.22) and (3.24)

(3.25) klogp=0(I nt-l N(IN +log(dfmax) +Ilog(IlF]))).
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Now we apply Hensel's lemma [5: Exercise 4.6.22] to modify H in such a
way that (2.3) holds for this wvalue of k (this is possible because (2.3)
already holds for k=1), and finally we apply Berlekamp's algorithm as
described in [1: Section 5] and Hensel's lemma as in [14] to compute the
irreducible factorization of fmod(pk,Hk) in wk(na)[xlj. Condition
(3.4) is satisfied for each irreducible factor ﬁmod(pk,Hk} of %mod(pﬁ,Hk)
because Rmod (p,H1)¢ 0, and (3.1), (3.2), and (3.3) are clear from the
construction of H.

P

We have shown how to choose s, 5., ...,st and p, and how to satisfy

the conditions in (3.19). We are now ready for our theorem.

1
{3.26) Theorem. Let £ be a monic polynomial in Ezz[a][xl,xz, ...,Xt]
1 EF = 7 < = = Lo .. = .
with t=z 2, of degree ni in Xi, and 25<n nl_.nz_ nt
The irreducible factorization of £ can be found in
w1 .
O(nt (IN)S(IN-+1og{dfmax)+IIlog(I|F|))) arithmetic operations on integers

. t-1
having binary length Of(n (IN)2(1N4—log(d£max}4-Ilog(I|F|)}) , where

N=ﬂ1_; (n,+1).
i=1""i

EEEEE' If f does not contain multiple factors, then £ can be factored
by repeated application of (3.19). In that case (3.26) follows from (3.21).
(3.20), (3.25), and the well-known estimates for the applications of
Berlekamp's algorithm and Hensel's lemma (cf£.[5;1] and [16]).

If f contains multiple factors, then we first have to compute the
monic gcd g of f and its derivative with respect to xl, and the
factoring algorithm is then applied to £/g. The cost of factoring £/g
satisfies the same estimates as above, because (f/g}max:SBf (cE. (2.7)).
and this dominates the costs of the computation of g, which can be done

by means of the subresultant algorithm (cf. [2]). O



127

References.

10.

E.R. Berlekamp, Factoring polynomials over large finite fields,

Math. Comp. 24 (1970), 713-735.

W.S. Brown, The subresultant PRS algorithm, ACM Transactions on
mathematical software 4 (1978), 237-249,

A.O. Gel'fond, Transcendental and algebraic numbers, Dover Publ.,

New York 1960.

G.H. Hardy, E.M. Wright, An introduction to the theory of numbers,
Oxford University Press 1979.

D.E. Knuth, The art of computer programming, vol. 2, Seminumerical
algorithms, Addison-Wesley, Reading, second edition 1981.

A.K. Lenstra, Lattices and factorization of polynomials over algebraic
number fields, Proceedings Eurocam 82, LNCS 144, 32-39.

A.K. Lenstra, H.W. Lenstra, Jr., L. Lovdsz, Factoring polynomials with
rational coefficients, Math. Ann. 261 (1982), 515-534.

A.K. Lenstra, Factoring polynomials over algebraic number fields,
Report IW 213/82, Mathematisch Centrum, Amsterdam 1982 (also Proceedings
Eurocal 83).

A.K. Lenstra, Factoring multivariate polynomials over finite fields,
Report IW 221/83, Mathematisch Centrum, Amsterdam 1983 (also Proceedings
15th sToC, 189-192).

A.K. Lenstra, Factoring multivariate integral polynomials, Report IW
229/83, Mathematisch Centrum, Amsterdam 1983 (also Proceedings 10th

ICALP, LNCS 154, 458-465).



128

11.

12.

3.

14.

15.

16.

A.K. Lenstra, Factoring multivariate integral polynomials, II, Report
230/83, Mathematisch Centrum, Amsterdam 1983.

M. Mignotte, An inequality about factors of polynomials, Math. Comp. 28
(1974), 1153-1157.

J. Stoer, Einfihrung in die numerische Mathematik I, Springer, Berlin
1972.

P.S. Wang, Factoring multivariate polynomials over algebraic number
fields, Math. Comp. 30 (1976), 324-336.

P.J. Weinberger, L.P. Rothschild, Factoring polynomials over algebraic
number fields, ACM Transactions on mathematical software 2 (1976),
335-350.

D.¥.Y. Yun, The Hensel lemma in algebraic manipulation, MIT, Cambridge

1974; reprint: Garland Publ. Co., New York 1980.









129

Samenvatting

Factorisatie van polynomen in polynomiaal begrensde tijd

Een bekende methode om polynomen met geheeltallige coé&fficidnten te factori—
seren is de Berlekamp-Hensel algoritme. Deze methode, die in het begin van
de zeventiger jaren werd ontwikkeld, werkt in de praktijk doorgaans zeer be-
vredigend. Vanuit theoretisch ocogpunt is de Berlekamp-Hensel algoritme even-
wel minder geslaagd. Er bestaan namelijk betrekkelijk eenvoudige polynomen
waarvoor het onevenredig veel tijd zou kosten de factoren met behulp van de
Berlekamp-Hensel methode te bepalen. Gebruik makend van de in de complexiteits-—
theorie gebezigde terminologie, zeggen we dat de Berlekamp-Hensel algoritme
niet in polynomiaal begrensde tijd werkt.

In dit proefschrift wordt een methode voor de factorisatie wan polynomen
beschreven die wel in polynomiaal begrensde tijd werkt. Dat wil zeggen dat de
voor deze zogenaamde L3—algoritme benodigde rekentijd begrensd wordt door een
vaste polynomiale functie van de grootte van het te factoriseren polynoom.

De L3—algoritme berust voornamelijk op de volgende twee chservaties:

- voor ieder polynoom kan een geheeltallig rooster worden geconstrueerd,
zodanig dat de korte vectoren in dit rooster aanleiding geven tot de
irreducibele factoren van het polynocom;

- benaderingen van de kortste vectoren in een geheeltallig rooster kunnen
worden gevonden in polynomiaal begrensde tijd.

De tweede observatie, die afkomstig is van L. Lovdsz, blijkt ook buiten het

terrein van de factorisatie van polynomen van groot belang te zijn.

De L3—algoritme wordt in dit proefschrift vooraf gegaan door een artikel
waarin factoren van polynomen en korte vectoren in roosters woor het eerst
met elkaar in verband worden gebracht. De latere artikelen bevatten generali-

saties van de L3—algoritme.
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Stellingen

ls

Het kleinste positieve gehele getal n met zes verschillende delers die

3 ¢
congruent zijn modulo een gehele s> nl/ met ggd(n, s) =1, is 245784.
Lit.: H.W. Lenstra, Jr., Divisors in residue classes, Math. Comp.,

42 (1984), 331-340.

SEE_Sem(v,p):
sub s: sem
v (v; s.v)*, (p; s.pj*
moc.
Deze recursief gedefinieerde semafoor levert symboolrijen af waarin het
aantal v's ten minste het aantal p's is.
Lit.: J.L.A. van de Snepscheut, Trace theory and VLSI design, proefschrift,
Eindhoven 1983.

Een zogenaamde dense encoding is in het algemeen onbruikbaar als

complexiteitsmaat voor polynomen in meer dan &én veranderlijke.

Lit.: J. Von zur Gathen, Factoring sparse multivariate polynomials,
Proceedings 24-th annual symposium on foundations of computer

science (1983), 172-179.

Laten b en m positieve gehele getallen zijn en laat Ge @(i) een

complex rationaal getal zijn dat kan worden gerepresenteerd met s binaire

bits, voor een zeker positief geheel getal 5:=O(m21-mlogb). De vraag of

er een algebraisch getal we T bestaat met |o-dl < B en zodanig dat

het minimum polynoom heZ[X] wvan o L2—norm ten hoogste b en graad

ten hoogste m heeft, kan worden beantwoord in tijd polynomiaal in leogb

en m.

Lit.: R. Kannan, A.K. Lenstra, L. Lovasz, Predicting bits of algebraic
numbers and factorization of polynomials, Proceedings 16-th annual

ACM symposium on theory of computing (1984).
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5. Zowel het vrijelijk gebruiken als het gedwongen niet gebruiken van
sprongopdrachten kan leiden tot onoverzichtelijke programmatuur.
Lit.: D.E. Knuth, Structured computing with go to statements,

ACM computing surveys 6 (1974), 261-301.

6. Bij een informatica conferentie zijn artikelen waarvan de naam van de

2k
TS Yk
deel van de proceedings te verwachten, aannemende dat de bijdragen

eerste auteur met de k-de letter van het alfabet begint, op (

alfabetisch geordend zijn.

7. Lang zal Fortran leven.

8. Prima la musica, dopo le parole.
Lit.: C. Krauss, R. Strauss, Capriccio, Ein Konversationsstiick fiir Musik

in einem Aufzug.

9. 19201518202706126283527151627010214271805110514091407142113130518275482423212
72201142701281128271205141920180127200527011319200518040113270514270409140727
130505271401011827040527061244284527060505192016180905131618091019 is priem.



