
Abstract

Loop Checking and Negation

Roland N. Bol

Centre for Mathematics and Computer Science
P.0.Box 4079, 1009 AB Amsterdam, The Netherlands.

Phone: (+3i) - 20 - 592 4080. E-mail: bol@cwi.nl.

In this article we extend the concept of loop checking from positive programs (as described in [ABK]) to
locally stratified programs. Such an extension is not straightforward: the introduction of negation
requires a (re)consideration of the choice of semantics, the description of a related search space and
new soundness and completeness results handling floundering in a satisfactory way. Nevertheless an
extension is achieved that allows us to generalize the loop checking mechanisms from positive
programs to locally stratified programs, while preserving most soundness and completeness results.
The conclusion is that negative literals cannot give rise to loops, and must be simply ignored.
This research was partly supported by Esprit BRA-project 3020 Integration.

1. Introduction

In [ABK] a formal framework is given for loop checking mechanisms that operate on top-down
interpreters for positive logic programs. Such loop checks were also studied in [B], [BAK],
[BW], [Co], [vG], [KT], [PG], [SOO], [SI] and [V]. However, all these papers except [KT]
deal with positive programs only. This article extends the framework of [ABK] to interpreters
for general logic programs, i.e. logic programs allowing negative literals in clauses' bodies.
Several problems arising in the presence of negation are identified and solved.

First of all, we must choose a semantics for negation. For reasons explained in section 2.1,
we restiict our attention to locally stratified programs, for which a clear semantics, namely
perfect model semantics ([Pl]), is available.

Secondly, we need an accurate description of the search space. It appears that for our
purposes the standard SLS-trees ([P2]) do not present enough detail in the treatment of negative
literals. Therefore these SLS-trees are augmented witlijustifications, which show explicitly the
construction of a subsidiary SLS-tree of +-A, when •A is selected.

A third and major problem (not treated in [KT]) is the occurrence of floundering: when
only substitutions are used as computed answers, a non-ground negative literal cannot be
answered properly: the derivation is said to flounder. Floundering lies between success and
failure, making it hard to determine which floundering derivations may be pruned. This
problem is solved by considering floundering derivations as potentially successful, and giving a
potential answer substitution. These substitutions 'cover' the semantically correct answers

122

answers (which cannot be expressed as substitutions}, but are possibly more general. A new
completeness theorem for SLS-resolution, based on these potential answers, is proposed.

In order to keep the potential answer substitutions as specific as possible, a selection
mechanism is proposed that postpones floundering as long as possible. It appears that the
restriction to these selection rules allows us to prove a form of the 'independence of the
selection rule' property, which is well-known for positive programs.

Once these problems are solved, it is possible to define loop checks for locally stratified
programs, their soundness (no potential answer is lost) and completeness (the search space
becomes finite). This is done in section 3. In the presence of negation, soundness becomes
even more important than it was in the positive case: if a loop check prunes a (potential) success
in a subsidiary SLS-tree, then the 'parent' SLS-tree should be extended; this extension might
contain unsound answers. It is shown that a top-down SLS-interpreter remains sound and
complete when it is augmented with a sound loop check.

Finally, in section 4 it is shown how loop checks for positive programs can be turned into
loop checks for locally stratified programs. The main observation is that in locally stratified
programs negative literals cannot give rise to a loop. Thus any loop is caused by positive literals
and can be detected by a loop check for positive programs; the negative literals are simply
removed. It can be shown that this construction preserves the completeness of the loop checks.
Soundness is not preserved for every possible loop check (a counterexample using a highly
non-typical loop check is given}, but for 'reasonable' loop checks, including the ones studied in
[BAK] (briefly introduced in the appendix}, soundness is preserved.

2. Declarative and procedural semantics of negation

2.1. Motivation
Loop checks are used to prune the search space generated by a top-down interpreter. Therefore,
before loop checks can be defined, this search space needs to be described properly. The search
space must in turn agree with the intended semantics of the program. In the absence of
negation, the choice was obvious: f:Ierbrand models and SLD-trees. However, in the presence
of negation, the choice is much less clear.

In the most well-known approach, treated in [L], the intended semantics is derived from the
completion of a program; the corresponding search space consists of SLDNF-trees, obtained
when the interpreter is equipped with the negation as finite failure rule. Informally this rule
states that •A may be inferred when an attempt to prove A (again by SLDNF-resolution) fails
after a finite number of resolution steps. According to Theorem 16.5 of [L], for positive
programs the completion semantics corresponds exactly to finite failure, i.e. -, A is a logical
consequence of the completion of P if and only if Pu{ +-A} fails finitely. Due to the restriction
to finite failure, this approach is hardly compatible with the use of a loop check. Indeed, the
intention of loop checking is to turn infinite (hence failed) paths in the search space into finitely
failed paths. Thus if Pu{ f-A} fails finitely due to the use of a loop check, •A is not entailed
by the completion-semantics. So completion semantics is inappropriate for our purposes.

Numerous alternative semantics have been proposed. Here we adopt an approach of
Przymusinski, which is based on perfect model semantics ([Pl]). Furthermore, we restrict our
attention to locally stratified programs; it is shown in [Pl] that these programs have a unique

123

perfect Herbrand model (a 'perfect' model is defined as being minimal w.r.t. a certain partial
ordering on models, which is a refinement of the usual subset ordering). In [P2] a
corresponding search space, called SLS-trees, is defined for stratified programs; this definition
is generalized here to locally stratified programs. As pointed out by Przymusinski, an SLS-tree
represents the search space of a top-down interpreter, equipped with the 'negation as failure'
(not necessarily finite failure) rule.

Obviously this rule is in general not effective so, unlike SLDNF-resolution, SLS-resolution
cannot be effectively implemented, but only approximated. However, as Przymusinski
suggests, loop checks can yield such approximations: 'Suitable loop checking can be added to
SLS-resolution without destroying its completeness. For large classes of stratified programs,
SLS-resolution with subsumption check will result in finite evaluation trees and therefore can be
implemented as a complete and always terminating algorithm. This is the case, in particular, for
function-free programs.' ([P2]). One of the contributions of this paper is a substantiation of this
claim.

2.2. Basic definitions
Throughout this paper we assume familiarity with the basic concepts and notations of logic
programming as described in [L]. For two expressions E and F, we write Es; F when Fis an
instance of E. We then say that Eis more general than F.

DEFINITION 2.1 (Local Stratification).
Let P be a program. P is locally stratified if there exists a mapping stratum from the set of
ground atoms of Lp to the countable ordinals, such that for every clause

(H r A1, ... ,Am,'B1, .. .,1 Bn) e ground(P): for 1 s; is; m, stratum(Ai) S stratum(H) and
for 1 S i S n, stratum(Bi) < stratum(H). D

Obviously, stratified programs ([ABW]) and programs without negation (positive
programs) are locally stratified. From now on, only locally stratified programs shall be
considered, therefore we usually omit the qualification 'locally stratified'. Consequently, we
assume that for every considered program a mapping stratum, satisfying the above
requirements, is available.

DEFINITION 2.2.
Let P be a program. We extend the mapping stratum as follows.
1. For an atom A, not necessarily ground,

stratum(A) = sup { stratum(Ao) I Ao is a ground instance of A in Lp }.
2. For a negative literal 1 A, not necessarily ground,

stratum(' A) = stratum(A) + 1
3. For a goal G,

stratum(G) = { O .
max { stratum(Li) I 1 S 1 s; n }

if G = D,

if G = rL1, ... ,Ln. 0

A selection rule is a rule determining the order in which literals are selected in goals of a
derivation. A well-known problem concerning the 'negation as (finite) failure' rule is

124

floundering: the selection of a non-ground negative literal (cf. [Cl], [L]). We assume that such a

selection is avoided whenever possible.

DEFINITION 2.3.
A selection rule is safe if it never selects a non-ground negative literal in a goal containing

positive and/or ground negative literals. D

Following Przymusinski's presentation for stratified programs in [P2], we now define for
a given program P and goal G the SLS-tree of Pu{G}, together with some related notions. The

definition uses induction on stratum(G).

DEFJNmON 2.4 (SLS-Tree).
Let P be a program and G a goal. Let R be a fixed safe selection rule. Assume that SLS-trees
have already been defined for goals H such that stratum(H) < stratum(G). We define the SLS
tree T of Pu{G} via R. (In fact this tree is not uniquely defined, as the choice of the names of

auxiliary variables is left free.)
The root node of T is G. For any node H in T, its immediate descendents are obtained as

follows:
- if H = O, then H has no descendents and is a success leaf.
- if R selects a non-ground negative literal in H, then H has no descendents and is a flounder

leaf.
- if R selects a positive literal Lin H, then H has as immediate descendants: for every applicable

program clause C in P, a goal K that is obtained by resolving H with (a suitable variant of) C
upon the literal L using an idempotent most general unifier 0 (such a derivation step is
denoted as H =>c,e K).
If no program clauses are applicable, then H is a failure leaf.

- ifR selects a ground negative literal L =,A in H, then the SLS-tree T' of Pu{ f-A} via R has
already been defined.

(Either some ground instance By of an atom B in G depends negatively on A, therefore

stratum(G) :2: stratum(B) :2: stratum(By) > stratum(A); or ..., A is an instance of a negative
literal in G, so again stratum(G) > stratum(A).)

T' is called a side-tree of H (or, ofT). We consider three cases:
- if all leaves of T' are failed, then H has only one immediate descendant, namely the goal K

= H - {L}, i.e. the goal H with L removed (such a derivation step is denoted as
H =>c,eK).

- if T' contains a success leaf, then H has no immediate descendants and is a failure leaf.
- otherwise, H has no immediate descendants and is a flounder leaf.

If T has a success (flounder) leaf then T is successful <floundered); hence an SLS-tree may be
both successful and floundered. T is failed if all of its leaves are failed (note that a failed SLS
tree may contain infinite branches).

An SLS-derivation (of Pu{G}) is an initial segment of a branch of an SLS-tree (of
Pu{G}). An SLS-derivation ending in a success (flounder) leaf is called successful
<floundere<i). An SLS-derivation is failed if it is infinite or ends in a failure leaf.

125

A successful SLS-derivation (or SLS-refutation) of Pu{G} yields a computed answer
substitution a in the same way an SLD-refutation does: whenever in a refutation step a negative
literal is selected, such a step does not contribute to the computed answer substitution. Gcr is
called the computed answer of the derivation.

An SLS-derivation or -tree of Pu{G} is potentially successful if it is successful or
floundered. The potential answer substitution cr of a potentially successful SLS-derivation is
again the sequential composition of the mgu's of the derivation (thus the potential answer
substitution of a refutation coincides with its computed answer substitution). Its potential
answer is again Gcr. D

2.3 Soundness and completeness
We need the following soundness and completeness results, which strengthen the results of
[Ca], [KT] and [PP]. We omit the proof.

THEOREM 2.5 (Soundness and Completeness of SLS-resolution). Let P be a program and
G = ~LJ, ... ,Ln a goal. Let Mp be the unique perfect Herbrand model of Pas defined in
[P 1]. Let R be a safe selection rule and (}a substitution.
i) If GO is a computed answer for Pu{G} then 'v'((LJA. .. Al.n)8) is true in Mp.

ii) If Pu{G} has a failed SLS-tree, then -i3(LJA ... Al.n) is true in Mp.

iii) If 'v'((LJA. .. Al.n)8) is true in Mp, then there exists a potentially successful SLS-derivation
of Pu{G} via R giving a potential answer Gu~ G8.

iv) If •3(LJA ... Al,n) is true in Mp, then the SLS-treefor Pu{G} via R is not successful. D

Theorem 2.5 allows us to omit in further considerations the perfect model semantics: in
order to show that a loop check respects this semantics it is sufficient to compare pruned SLS
trees with original, unpruned trees. The following example shows why a stronger result than
the one presented in [Ca] is needed here.

EXAMPLE 2.6.
Let P = { p(l) E-. (Cl),

p(y) E- p(y),•q(y). (C2),
q(l) E- •r(x). (C3) }.

Using the leftmost selection rule yields the
SLS-tree of Pv{ E-p(x)} in Figure 2.1.
Since the tree flounders, ordinary complete
ness results like the one in [Ca] cannot be
used. However, a loop check might very
well prune the goal E-p(x),•q(x). Then the
pruned tree does not flounder, so it is
expected to be complete. Indeed this
completeness follows from Theorem 2.5
(as the only potential answer substitution
occurring in the tree is { x/l}). D

E-p(x)

p(l)E-/ \p(y)E-p(y)-;iq(y)

{x/l} I \{y/x}

D E-p(x),•q(x)

p(l)E-/ \ p(y')E-p(y');iq(y')

{x/1} I \{y'/x}

E-•q(l) E-p(x),•q(x);-iq(x)

flounders ' \

FIGURE 2.1

126

2.4. A more precise description of the search space
In the positive case, when a program P and a goal G are input to the interpreter, only an SLD

tree of Pu{G} is searched. However, in the presence of negation, not only an SLS-tree of

Pu{G} is searched, but also its side-trees, and the side-trees of its side-trees, etcetera. We call

such a construct consisting of an SLS-tree and its side-trees (to the required depth) a justified

SLS-tree. As in Definition 2.4, induction on stratum is used.

DEFINITION 2.7 (Justified SLS-Tree).
Let P be a program and Ga goal. Let R be a fixed safe selection rule. A justified SLS-tree T of

Pu{G} via R consists of an SLS-tree Ttopof Pu{G} via R, which is, for every goal Hin Ttop
in which a ground negative literal .,A is selected, augmented with a justified SLS-tree T' of

Pu{ +-A} via R. Such a tree T' is called a justification of H (or, of 1), Ttop is called the top
level of T. T is successful (potentially successful, floundered, failed) if Ttop is successful

(potentially successful, floundered, failed). The computed/potential answers of T are those of

Ttop· D

Notice the relationship between a side-tree TofH (an SLS-tree), and a justification J ofH

(a justified SLS-tree): T is the top level of J. Figure 2.2 shows a justified SLS-tree.

~ p *"'+-p

' ·p~q
D ~ q ~-~-&o +-q

failure q+-rAq~ s

+-r ~ s fi>·+-s
r+-~ flounder .1.

l' T s ~ t(x)
D

FIGURE2.2

~t(x)
flounder

In order to render potential answers as specific as possible, it is worthwhile to 'postpone'

floundering until all non-floundering literals are resolved. This is achieved by considering the

class of deeply safe justified SLS-trees defined below. The definition uses induction on stratum
again.

DEFINITION 2.8.

A justified SLS-tree is deeply safe if for every flounder leaf +-Li, ... ,Ln in it, every literal Li
(1 :Si :Sn) is a negative literal .,Ai, and either Ai is non-ground or every deeply safe justified

SLS-tree of Pu{ +-Ai} flounders unsuccessfully. D

In a deeply safe justified SLS-tree, all justifications are also deeply safe (as the definition

refers to every flounder leaf, not only those at the top level). Using a safe selection rule alone is

127

not enough to obtain deeply safe trees: a ground negative literal •A may be selected in a goal
that still contains positive literals; then the side-tree of •A may unsuccessfully flounder.

At first, it seems that checking whether 'every deeply safe justified SLS-tree of Pu{ f-Ai}
flounders' requires the construction of deeply safe trees of Pu{ f-Ai} via every possible
selection rule. The following lemma shows that this is not the case, as for deeply safe trees the
independence of the selection rule holds.

LEMMA 2.9 (Independence of the selection rule for deeply safe trees). Let P be a program and

Ga goal. Let Tz and T2 be deeply safe justified SLS-trees of Pu{G}. Then there exists a

bijection <p from the potentially successful branches in T1 to the potentially successful

branches in T2 such that /Bf= /<p(B)/ and the potential answers of Band <p(B) are variants.

Moreover, Bis successful if and only if <p(B) is. D

Therefore a valid method for creating deeply safe justified SLS-trees is to create only one

(again deeply safe) justification for a selected negative literal. If this justification flounders

unsuccessfully, then the literal is marked as 'floundering' and the interpreter 'backtracks' over
this selection (that is, this selection is 'undone', and another literal is selected). Only if all
literals in a goal are marked as 'floundering', the goal is a flounder leaf.

The final lemma of this section shows that in deeply safe trees the occurrence of
floundering is indeed reduced to a minimum.

LEMMA 2.10. Let P be a program and Ga goal. Let Tz and T2 be justified SLS-trees of Pu{G}

and let Tz be deeply safe.
i) For every computed answer in T2, Tz contains a variant of it.

ii) For every potential answer in T1, T2 contains a more general potential answer. D

3. Loop checks for locally stratified programs

3.1. Motivation
In this section we give a formal definition of loop checks for locally stratified programs (based
on SLS-derivations), following the presentation of loop checks for positive programs in

[ABK]. The purpose of augmenting an interpreter with a loop check is to prune the generated
search space while retaining soundness and completeness. We define and study those properties
of loop checks that are needed to achieve this goal.

Since loop checks can be used to prune every part of a justified SLS-tree, one might define
a loop check as a function from justified SLS-trees to justified SLS-trees, directly showing
where the trees are changed. However, this would be a very general definition, allowing

practically everything. A first restriction we make is that a loop check acts only within an SLS
tree, disregarding its justifications and the possibility that this SLS-tree itself may be part of a

justification in another SLS-tree. We shall formally call such loop checks for locally stratified
programs one level loop checks. Nevertheless, we usually omit the qualification 'one level',

unless confusion with positive loop checks (loop checks for positive programs, as defined in

[ABK]) can arise. This restriction leaves the possibility open that loop checks are used to prune

more than one tree in a justified SLS-tree.

128

We restrict the scope of loop checks even more, namely from SLS-trees to SLS
derivations. This in contrast to [KT] and [V], where the complete tree (as far as it is constructed
already) is taken into account Consequently, their methods are more powerful, but also highly
dependent on the selection rule used.

As in [ABK] we define for a program P:
- a node in an SLS-tree of Pu{G} (for some goal G) is pruned if all its descendants are

removed. (Note the terminology: the pruned node itself remains in the tree.)
- by pruning some of its nodes we obtain a pruned version of an SLS-tree.
- whether a node of an SLS-tree is pruned depends only upon its ancestors in the tree, that is on

the SLS-derivation from the root to this node.
Therefore, a loop check can be defined as a set of finite SLS-derivations (possibly

depending on the program): the derivations that are pruned exactly at their last node. Such a
loop check L can be extended in a canonical way to a function fL 1 from SLS-trees to SLS-trees:
fL I prunes in an SLS-tree of Pu{ G} the nodes in { H I the SLS-derivation from G to H is in
L(P) }. Extending L to a function fL *from justified SLS-trees to justified SLS-trees is less
straightforward. This subject is discussed in the next section.

In a still more restricted form of a loop check, called simple loop check, the set of pruned
derivations is also independent of the program P. This leads us to the following definitions.

3.2. Definitions

DEFlNITION 3.1.
Let L be a set of SLS-derivations. RemSub(L) = {DE LI L does not contain a proper initial
subderivation of D } . L is subderivation free if L = RemSub(L). D

In order to render the intuitive meaning of a simple loop check L: 'every derivation DE Lis
pruned exactly at its last node', we need that Lis subderivation free.

In the following definition, by a variant of a derivation D we mean a derivation D' in
which in every derivation step, literals in the same positions are selected and the same program
clause respectively side-tree is used. D' may differ from Din the renaming that is applied to the
program clauses for reasons of standardizing apart and in the mgu used. Thus any variant of an
SLS-derivation is also an SLS-derivation.

DEFINITION 3.2.
A simple one level loop check is a computable set L of finite SLS-derivations such that Lis
closed under variants and subderivation free. D

The first condition here ensures that the choice of variables in the input clauses and mgu's
in an SLS-derivation does not influence its pruning. This is a reasonable demand since we are
not interested in the choice of the names of the variables in the derivations.

DEFJNITION 3.3.
A one level loop check is a computable function L from programs to sets of SLS-derivations
such that for every program P, L(P) is a simple one level loop check. D

129

In [ABK], (simple) positive loop checks have been defined in the same way, using SLD
derivations instead of SLS-derivations.

DEFINITION 3.4.
Let L be a loop check. An SLS-derivation D of Pu{G} is pruned by L ifL(P) contains a initial
subderivation D' of D. D

We now formalize how a justified SLS-tree is pruned. To simplify the definition, we
assume that only one loop check Lis used to prune a justified SLS-tree T: both the top level of
T and (recursively) all justifications of Tare pruned by L.

A problem arises when L prunes the justification of a goal G to such an extent that
(potential) success in it is lost: instead of being a failure (flounder) leaf, G should now obtain a
descendant, i.e. the search space of an interpreter with such a loop check extends the original
search space beyond G. Modelling this additional search space is problematic, as there is no
original tree to follow. We avoid this problem temporarily by turning such a leaf G into an
extension leaf In this way the pruned tree remains a subtree of the original one. This property
can be well exploited in the proof of the soundness and completeness of SLS-resolution with
loop checking, where pruned trees are compared with original ones, and Theorem 2.5 is used.

DEFINITION 3.5 (Pruning justified SLS-trees).
Let P be a program and G a goal. Let L be a loop check and let T be a justified SLS-tree of
Pu{G}. Then the tree Tp = fL *(T), the pruned version of T, is defined as follows.

The root node of T p is G. For any node H in the top level of T p, the same literal as in T is
selected; the immediate descendants of H in T p are:
- if the SLS-deri vation from G to H is pruned by L, then H has no descendants and is a pruned

leaf.
- otherwise:

- if a ground negative literal is selected in H, then H has a justification T' in T. The pruned
version of T', Tp' = fL *(T'), is already defined by induction. Tp' is the (pruned)
justification of H in T p· We consider the top level of T p':
- if it contains a success leaf, then H has no immediate descendants and is a failure leaf.
- otherwise, if it contains a flounder leaf, then H has no immediate descendants and is a

flounder leaf.
- otherwise, if it contains an extension leaf or ifH has no descendants in T, then H has no

immediate descendants in T p and is an extension leaf
- otherwise, H has in T p the same immediate descendant as in T.

- otherwise H has in Tp the same descendants (or the same leaf-type) as in T.
A pruned justified SLS-tree is successful (etc.) if one of its top level leaves is successful (etc.).
It is failed if all its top level leaves are either failed or pruned. D

130

EXAMPLE 3.6.
When a loop check pruning the goal +-r is applied to the SLS-tree in Figure 2.2, the tree
depicted in Figure 3.1 is obtained. When the goal +-s is also pruned, then the tree of Figure 3.2
is obtained. D

~p~+-p

flounder f p +-=1 q

+-=1q
flounder

---4"'P f-q

q+-rAq~s
+-r +-=1 S ~+-S

pruned flounder J_
T s +-=1 t(x)

FIGURE 3.1

+-=1 t(x)
flounder

+-=1p ~+-p
extension f p ~ q

~q ----•-+-q
extension . A , ., q+-rJf 1'q+- s

+-r ~s~+-s
pruned extension pruned

FIGURE3.2

3.3. Soundness and completeness
In this section a number a properties of one level loop checks is defined. The definitions are
only concerned with the effect of applying a loop check on the top level of a justified SLS-tree.
In section 3.4 the influence of applying loop checks (satisfying these definitions) on all levels of
a justified SLS-tree is studied.

As was pointed out before, using a loop check should not result in losing potential success.
In order to retain completeness, an even stronger condition is needed: we may not lose any
individual solution. Since Theorem 2.5(iii) involves potential answers, pruning the tree should
preserve those successful and floundering branches that indicate (the possibility of) solutions
not otherwise found. That is, if the original SLS-tree contains a potentially successful branch
(giving some answer), then the pruned tree should contain a potentially successful branch
giving a more general answer.

In order to consider only those potential answers that are as specific as possible, only
deeply safe justified SLS-trees are taken into account. (Otherwise we would not be allowed to
prune a floundering derivation like '+-p ~p, •r +-p,.:!J.: flounder'.)

131

DEFINITION 3.7 (Soundness).
Let R be a safe selection rule and let L be a loop check.
i) L is weakly sound if for every program P and goal G, and potentially successful deeply safe

justified SLS-tree T of Pv{G}, fLlCTtop) is potentially successful.
ii) L is sound if for every program P and goal G, and deeply safe justified SLS-tree T of

Pu{G}: if T contains a potentially successful branch giving a potential answer Ga, then
fL l(T top) contains a potentially successful branch giving a potential answer Ga'~ Ga. D

Thus every sound loop check is weakly sound. Moreover, if the initial goal G is ground
(which is always the case for side-trees), then the notions of weakly sound and sound coincide.

The purpose of a loop check is to reduce the search space for top-down interpreters.
Although impossible in general, we would like to end up with a finite search space. This is the
case when every infinite derivation is pruned.

DEFINITION 3.8 (Completeness).
A loop check L is complete w.r.t. a selection rule R for a class of programs 8, if for every

program P e r5 and goal Gin Lp, every infinite SLS-derivation of Pv{G} via R is pruned by

L. D

We must point out here that in these definitions we have overloaded the terms 'soundness'
and 'completeness'. These terms now refer both to loop checks and to interpreters (with or
without a loop check). In the next section we study how the soundness and completeness of a
loop check affects the soundness and completeness of the interpreter augmented with it.

3.4. Interpreters and loop checks
We now present the conditions ensuring that an SLS-interpreter augmented with a loop check
remains sound and complete (in the sense of Theorem 2.5). We need one more definition.

DEFINITION 3.9.
A loop check L is selection-independent if for every program P and for every D e L(P),
{ D' I D' differs from D only in the selection of the literal in its last goal } ~ L(P). D

The restriction to selection-independent loop checks is not a severe one. Intuitively, after
the creation of a new goal the loop check is performed first. Only when no loop is detected a
further resolution step is attempted; to this end a literal is selected. All loop checks in [BAK]
(see the appendix) are selection-independent.

Due to the introduction of extension leaves, a pruned justified SLS-tree does generally not
cover the entire search space for the SLS-interpreter augmented with a loop check. For, whether
a node is an extension leaf depends (partly) on the unpruned SLS-tree. This tree is not available
for the loop-checked interpreter, so it cannot decide to stop at an extension leaf. Beyond an
extension leaf, it might find incorrect answers. Therefore we must first of all ensure the absence
of extension leaves in soundness results. The other items correspond to Theorem 2.5.

132

THEOREM 3.10 (Soundness and Completeness of SLS-resolution with loop checking).
Let P be a program and G a goal. Let R be a safe selection rule and (Ja substitution. Let T be a
justified SLS-tree of Pu{G} via R. Let L be a weakly sound selection-independent loop
check. Then there exists a justified SLS-tree T' of Pu{G} such that:
-) Tp' = fL *(T') represents the search space for Pu{G} of a top-down SLS-interpreter using

R, augmented with the loop check L (i.e. Tp' has no extension leaves and makes all
selections according to R, except for the selections in pruned leaves).

i) If G(J is a computed answer in Tp' then G(J is a computed answer in T'.
ii) If Tp' is failed, then T' is failed.
iii) If Lis sound and T' contains a potential answer G6, then Tp' contains a potential answer

Ga :5G8.
iv) lfT' is not successful, then Tp' is not successful.

PROOF. We omit the full proof; we only outline the construction ofT':
1. Replace all justifications J by J' (by induction on stratum, J' is derived from J as T' from T).
2. It can be proved that if J is successful/failed, then so is J'. If a floundering justification is re

placed by a failed one, then the tree is extended via R (still using these 'new' justifications).
3. The goals in this tree that would be pruned by L are marked.
4. The selections made at and beyond these marked goals are replaced by deeply safe ones.

Note that this part of the tree is never really constructed by the loop-checked interpreter. D

Thus combining Theorem 3.10(-) and (i)-(iv) with Theorem 2.5(i)-(iv) (applied on T')
gives the final soundness and completeness results. However, the (loop-checked) interpreter
need not be effective: in general traversing infinite justifications is required. Any real interpreter
can only traverse a finite part of a Uustified) SLS-tree, and is therefore incomplete.

THEOREM 3.11. Let P be a program and G a goal in Lp. Let L be a loop check. Let R be a safe
selection rule, let T be a justified SLS-tree of Pu{G} via Rand let Tp = fL *(T).
i) If Lis complete w.r.t. Rf or a class of programs t: containing P, then Tp is finite.
ii) If a flounder leaf occurs in Tp, then a flounder leaf occurs in T. D

Applying Theorem 3.ll(i) on the tree T' as constructed in Theorem 3.10 shows that using
a complete loop check (on all levels) ensures that the pruned justified SLS-tree is finite. If also
the conditions of Theorem 3.10 are met, then it follows that indeed the search space of the
interpreter is finite. In this case the interpreter is really sound and complete.

Finally, Theorem 3.1 l(ii) indicates that the pruned tree can only flounder if somewhere in
the original tree (but not necessarily at the top level) floundering occurs. Example 4.10 shows
that a stronger result can hardly be expected: if the tree in Figure 4.2 is the side-tree of the goal
f-•p, then most loop checks applied there tum f-•p from a failure leaf into a flounder leaf.

4. Deriving one level loop checks from positive loop checks

4.1. Definitions
In this section we show how one level loop checks can be derived from positive loop checks.
Since a successfully resolved negative literal is simply removed from a goal, negative literals

133

cannot give rise to loops. (Thanks to the fact that we consider only locally stratified programs,
looping 'through negation' cannot occur.) Therefore the basic idea is to remove all negative
literals in a derivation. Then an SLD-derivation remains, to which a positive loop check is
applied.

NOTATION 4.1.
For every (goal- and program-) clause, program, SLS-derivation and -tree X, X+ denotes the
object obtained from X by removing all negative literals. Thus if X is an SLS-derivation or
-tree, then in X+ every derivation step G =>Hin which a negative literal is selected in G is
deleted, since in this case G+ = H+. D

Notice that for every SLS-derivation D of Pu{G}, D+ is an SLD-derivation of P+u{G+}.
For an SLS-tree T of Pu{G}, T+ is an 'initial segment' of an SLD-tree of P+u{G+} (due to
failure or floundering of a negative selected literal in T, T+ is not necessarily completed).

In fact the above definition is not completely precise: suppose that in the last goal G of an
SLS-derivation D, a negative literal is selected. Then it is not clear which atom is selected in G+
in D+. Nevertheless, as the loop checks we are interested in are all selection-independent
(Definition 3.9 does also apply to positive loop checks) we do not need to be more precise.

DEFINITION 4.2.

Let L be a positive loop check. The one level loop check derived from L,
OL = A.P.RemSub({ D I D is an SLS-derivation and D+ E L(P+) }). D

The following lemma's establish the required relationships between a positive loop check
and the one level loop check derived from it.

LEMMA 4.3. For every positive loop check L, OL is a one level loop check.
Moreover, OL is simple if.f Lis simple. D

LEMMA 4.4. Let L be a positive loop check, D an SLS-derivation and Pa program.
Dis pruned by OL(P) if.f D+ is pruned by L(P+).

PROOF. D is pruned by Q(P) iff some initial part of D, Din E OL(P), iff some initial part of D+,
Din+ E L(P+), iff D+ is pruned by L(P+). D

4.2. Soundness
Unfortunately, as is shown in the following counterexample, it is not the case that a one level
loop check derived from a (weakly) sound positive loop check (as defined in [ABK]) is again
(weakly) sound.

COUNTEREXAMPLE 4.5.
Let P = { p f- q(l),q(2). (Cl),

q(x) f- •r(x). (C2),
q(2) f- q(l). (C3),
r(2) f-. (C4) },

134

and let G = f-p. P is (locally) stratified and Figure 4.1 shows an
SLS-tree T of Pu{G} via the leftmost selection rule (a failure
leaf is marked by a box around it).

Let D denote the successful branch in T. Then D+ is the
SLD-derivation f-p =>(Cl) f-q(l),q(2) ==>q(x)~ f-q(2) ==>(C3)

f-q(l) ==>q(x)~ D. Even a simple sound loop check L might
prune the goal f-q (1) in D+: it is visible in the second step of D+
that the clause q(x)f- is present in P+; this clause allows for a
shorter way to refute f-q(2) than via (C3) and f-q(l).

Unfortunately, this shortcut fails in the SLS-tree because it
introduces the literal -ir(2) instead of •r(l), and •r(2) fails. So
Or, prunes D, hence Or, is not weakly sound (note that the tree is
the top level of a deeply safe justified tree). D

Although the loop check used in the counterexample
formally satisfies the definitions, it is highly non-typical. It
appears that more usual (weakly) sound positive loop checks,
notably the ones defined in [BAK], derive again (weakly) sound
one level loop checks. We omit the proof, which is similar to the
soundness proofs for positive loop checks in [BAK]. The loop
checks mentioned below are described in the appendix.

THEOREM 4.6 (Soundness of Conversion).

f-p

+(Cl)
f-q(l),q(2)

+ (C2)

f-1(1),q(2)

f-q(2)

\(C3)

f-•r(2) f-q(l)

+ (C2)

f-•r(l)

+ 0

FIGURE 4.1

i) The one level loop checks derived from the equality, subsumption and context checks
based on goals are weakly sound.

ii) The one level loop checks derived from the equality, subsumption and context checks
based on resultants are sound. 0

4.3. Completeness
Since some completeness properties of positive loop checks depend on the selection rule used,
these selection rules are adapted to the presence of negation.

DEFINITION4.7.
Let R be a selection rule for SLD-derivations.
An extension of Risa selection rule R' for SLS-derivations such that for every SLS-derivation
D via R', D+ is an SLD-derivation via R. D

Unlike soundness, completeness carries over from positive to one level loop checks
without much difficulty.

THEOREM 4.8 (Completeness of Conversion). If L is complete w.r.t. a selection rule R for a
class of programs <'%, then OL is complete w.r.t. any safe extension of R for the class of
programs { P / P+ E <'% andLp = Lp+ }. 0

135

Notice that the requirement Lp = Lp+ is just a technicality which can be met easily by
adding some non-relevant clauses to P. For example, the result presented in Theorem 5.3(i) is
transferred to one level loop checks as follows.

COROLLARY 4.9. The one level loop checks derived from the equality, subsumption and
context checks are complete w.r.t. any safe extension of the leftmost selection rule for
locally stratified function-free programs in which in every clause only the rightmost
positive literal (if present) may depend on the head of that clause. O

4.4. Conduding remarks
The Soundness of Conversion Theorem 4.6 and the Completeness of Conversion Theorem 4.8
allow the immediate conversion of all positive loop checks described in [BAK] (see the
appendix) and their soundness and completeness results (see [BAK] and [Boll) to one level
loop checks. The following example presents the application of several one level loop checks
derived from these positive loop checks .

+-p

i(Cl)

{y;;lC~xJ
f--r(x),q(x)-;1s(x) f--.., s(x) flounders

i(C4)
pruned by subsumption checks

{x/1}
and by context checks

f--q(1)';1 s(l)

(C3)/ \ (C2)'

{y'/l~ ~y'/l} based on instances

pruned by equality checks

f--..., s(l) f--r(l),q(l)-;1 s(l)

i i(C4)

D f--q(l)";"' s(l)
based on variants

pruned by equality checks

FIGURE 4.2

EXAMPLE 4.10.
Let P = { p +- q(x), -is(x). (Cl),

q(y) +- r(y),q(y). (C2),
q(y) +-. (C3),
r(l) +-. (C4) },

136

and let G = +-p. In Figure 4.2 an SLS-tree T of Pu{G} via (a safe extension of) the leftmost
selection rule is depicted. It is shown where T is pruned by various loop checks.

For every loop check used, potential success is retained in the pruned tree as expected.
However, it appears that only the equality checks based on variants retain a successful branch.
Obviously the extra instantiation in this branch, which was superfluous in the positive case,
serves here to prevent floundering.

Notice that it is not always the case that the equality checks based on variants retain at least
one successful branch. Consider the goal +..-r and the program {p(x)+-; p(l)+-p(x);
r+-p(x),-, q(x) }: applying the second clause instantiates only the negative literal, so the
successful derivation is pruned. D

5. Appendix.

Here we recall the three groups of simple loop checks that are introduced in [BAK], together
with their respective soundness and completeness results.

5.1 Definitions and soundness results
First we present the weakly sound loop checks of each group.

The first group consists of the equality checks. They check whether the current goal Gk is
an instance of a previous goal Gio i.e. if for some substitution 't: Gic = Gj't. Small variations on
this criterion give rise to various loop checks within this group. These variations are notably the
two interpretations of'=' that are considered (goals can be treated as lists or as multisets) and
the possible addition of the requirement 't is a renaming' (in other words: 'Gk is a variant of
Gi'). Such variations are also possible in the other groups of loop checks, but as they have not
much effect on soundness and completeness, we shall not mention them any more.

The second group consists of the subsumption checks. Their loop checking criterion has
the fonn 'for some substitution t: Gk s;;;;; Gi't' (or in words: 'Ok is subsumed by an instance of
Gi'). Although the replacement of= bys;;;;; seems to be yet another small variation, it appears
that subsumption checks are really more powerful than equality checks.

The third group consists of the context checks, introduced by Besnard [B]. Their loop
checking condition is more complicated: 'For some atom A in Gi, A0i+l·· .0j is selected in Gj to
be resolved. As the (direct orindirect) result of resolving A0i+l· .. 0j, an instance kc of A occurs
in Gic (0 S: i S: j < k). Finally, for every variable x that occurs both inside and outside of A in
Gi, xei+ 1 ... ek = xt.'

For all these weakly sound loop checks, a sound counterpart is obtained by adding the
condition 'Go01 ... ek = Go01 ... 0it' to the loop checking criterion. For reasons explained in
[BAK], the loop checks thus obtained are called 'based on resultants' as opposed to the weakly
sound ones, which are 'based on goals'.

Thus the following results were proved in [BAK].

137

THEOREM 5.1.
i) The equality, subsumption and context checks based on goals are weakly sound.
ii) The equality, subsumption and context checks based on resultants are sound. D

5.2 Completeness results
Due to the undecidability of the halting problem, a weakly sound loop check cannot be complete
for all programs. In [BAK] it was shown that a weakly sound simple loop check cannot even be
complete for allfunctionjree programs. Three classes of function-free programs were isolated
for which the completeness of (some of) the loop checks mentioned above could be proved. We
now present those classes of programs and completeness results.

DEFINITION 5.2.
A program P is restricted if for every clause H+-A1, ... ,An in P, the definitions of the predicates
in Ai, ... ,An-1 do not depend on the the predicate ofH in P. (So recursion is allowed, namely
through An, but double recursion is not.)
A program P is non-variable introducing (nvi) if for every clause H+-A1, ... ,An in P, every
variable that occurs in Ai, ... ,An occurs also in H.
A program P has the single variable occurrence property (is svo) if for every clause
H+-A1, ... ,An in P, no variable occurs more than once in Ai, ... ,An. D

THEOREM 5.3.
i) All equality, subsumption and context checks are complete w.r.t. the leftmost selection

rule for function-free restricted programs.
ii) All subsumption and context checks are complete for function-free nvi programs and

for functionjree svo programs. D

References

[ABK] K.R. APT, R.N. BOL and J.W. KLOP, On the Safe Termination of PROLOG
Pro grams, in: Proceedings of the Sixth International Conference on Logic
Programming, (G. Levi and M. Martelli eds.), MIT Press, Cambridge Massachusetts,
1989, 353-368.

[ABW] K.R. APT, H. BLAIR and A.WALKER, Towards a Theory of Declarative Knowledge,
in: Foundations of Deductive Databases and Logic Programming (J. Minker ed.),
Morgan Kaufmann Publishers, Los Altos, 1987, 89-148.

[B] Ph. BESNARD, On Infinite Loops in Logic Programming, Internal Report 488, IRISA,
Rennes, 1989.

[BAK] R.N. BOL, K.R. APT and J.W. KLOP, An Analysis of Loop Checking Mechanisms
for Logic Programs, Technical Report CS-R8942, Centre for Mathematics and
Computer Science, Amsterdam; Technical Report TR-89-32, University of Texas at
Austin, 1989. To appear in Theoretical Computer Science.

[Bol] R.N. BOL, Generalizing Completeness Results for Loop Checks, Technical Report
CS-R9025, Centre for Mathematics and Computer Science, Amsterdam, 1990.

138

[BW) D.R. BROUGH and A. WALKER, Some Practical Properties of Logic Programming
Interpreters, in: Proceedings of the International Conference on Fifth Generation
Computer Systems, (ICOT eds), 1984, 149-156.

[Ca] L. CAVEDON, Continuity, Consistency, and Completeness Properties for Logic
Programs, Technical Report 88/33, Dept. of Comp. Sci., University of Melbourne,
1988. To appear in Theoretical Computer Science.

[Cl] K.L. CLARK, Negation as Failure, in: Logic and Data Bases, (H. Gallaire and
J. Minker, eds), Plenum Press, New York, 1978, 293-322.

[Co] M.A. COVINGTON, Eliminating Unwanted Loops in PROLOG, SIGPLAN Notices,
Vol. 20, No. 1, 1985, 20-26.

[vG] A. VAN GELDER, Efficient Loop Detection in PROLOG using the Tortoise-and-Hare
Technique, J. Logic Programming 4, 1987, 23-31.

[KT] D.B. KEMP and R.W. TOPOR, Completeness of a Top-Down Query Evaluation
Procedure for Stratified Databases, in: Proceedings of the Fifth International Conference
on Logic Programming, MIT Press, Cambridge Massachusetts, 1988, 178-194.

[L] J.W. LLOYD, Foundations of Logic Programming, Second Edition, Springer-Verlag,
Berlin, 1987.

[LS] J.W. LLOYD and J.C. SHEPHERDSON, Partial Evaluation in Logic Programming,
Technical Report CS-87-09, Dept. of Computer Science, University of Bristol, 1987.

[PI] T.C. PRzYMUSINSKI, On the Declarative Semantics of Deductive Databases and Logic
Programs, in: Foundations of Deductive Databases and Logic Programming (J. Minker
ed.), Morgan Kaufmann Publishers, Los Altos, 1987, 193-216.

[P2] T.C. PRzYMUSINSKI, On the Declarative and Procedural Semantics of Logic Programs,
J. Automated Reasoning 5, 1989, 167-205.

[PG] D. POOLE and R. GOEBEL, On Eliminating Loops in PROLOG, SIGPLAN Notices,
Vol. 20, No. 8, 1985, 38-40.

[PP] H. PRZYMUSINSKA and T.C. PRZYMUSINSKI, Weakly Perfect Model Semantics for
Logic Programs, in: Proceedings of the Fifth International Conference on Logic
Programming, (R.A Kowalski and K.A. Bowen eds.), MIT Press, Cambridge
Massachusetts, 1988, 1106-1120.

[SGG] D.E. SMITH, M.R. GENESERETH and M.L. GINSBERG, Controlling Recursive
Inference, Artificial Intelligence 30, 1986, 343-389.

[SI] H. SEKI and H. ITOH, A Query Evaluation Method for Stratified Programs under the
Extended CWA, in: Proceedings of the Fifth International Conference on Logic
Programming, MIT Press, Cambridge Massachusetts, 1988, 195-211.

[V] L. VIEILLE, Recursive Query Processing: The Power of Logic, Theoretical Computer
Science 69, 1989, 1-53.

