On the strong connectivity problem

A. Schrijver
Centre for Mathematics and Computer Science P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The strong connectivity augmentation problem is:
(1) given: a directed graph $G=(V, A)$, a length function $l: V \times V \rightarrow \mathbb{Z}_{+}$and an integer B,
find: a set $A^{\prime} \subseteq V \times V$ so that the graph $\left(V, A \cup A^{\prime}\right)$ is strongly connected and so that $\Sigma_{a \in A^{\prime}} l(a)<B$.
(cf. Garey and Johnson [3]). This problem is easily seen to be $N P$-complete, since the problem of finding a Hamiltonian cycle in a directed graph $\left(V, A^{\prime \prime}\right)$ is reducible to (1): just take $A:=\varnothing, l: V \times V \rightarrow \mathbb{Z}_{+}$defined by:

$$
\begin{align*}
l(u, v) & :=0 \text { if }(u, v) \in A^{\prime \prime} \tag{2}\\
& :=1 \text { if }(u, v) \notin A^{\prime \prime}
\end{align*}
$$

and $B:=1$ (cf. Eswaran and Tarjan [1]).
In fact the traveling salesman problem:
(3) given: a length function $l^{\prime}: V \times V \rightarrow \mathbb{Z}_{+}$and an integer B^{\prime},
find: a Hamiltonian cycle of length less than B^{\prime}
is a direct special case of (1) (take $A:=\varnothing, l(u, v):=l^{\prime}(u, v)+B^{\prime}$ and $\left.B:=B^{\prime}|V|+B^{\prime}\right)$.

Another application of the strong connectivity augmentation problem is the planar feedback arc set problem (see below).

The strong connectivity augmentation problem is trivially equivalent to the strong connectivity problem:
(4) given: a length function $l: V \times V \rightarrow \mathbb{Z}_{+} \cup\{\infty\}$ and an integer B,
find: a subset $A^{\prime} \subseteq V \times V$ so that $\left(V, A^{\prime}\right)$ is strongly connected and so that $\Sigma_{a \in A^{\prime}} l(a)<B$.
Indeed, (4) is just the case $A=\varnothing$ in (1). Conversely, (1) can be reduced to (4) by resetting $l(a):=0$ whenever $a \in A$. Allowing $l(a)=\infty$ in (4) is
irrelevant: we could replace any ∞ by the value B.
We may assume in (4) without loss of generality that for all $i, j, k \in V$:
(5) (i) $l(i, i)=0$
(ii) if $l(i, j)=0$ and $l(j, k)=0$ then $l(i, k)=0$.

It was shown by Lucchesi [5] (cf. Frank [2] and Lucchesi and Younger [6]) that the strong connectivity problem (4) is solvable in polynomial time if the following condition on the length function holds:
(6) for each $i, j \in V$: if $0<l(i, j)<\infty$ then $l(j, i)=0$.

Equivalently, the strong connectivity augmentation problem is solvable in polynomial time if:
(7) for each $i, j \in V$: if $0<l(i, j)<B$ then $(j, i) \in A$.

So problem (1) is solvable in polynomial time if in the distance table we have that for each value α with $0<\alpha<\infty$, the symmetric value is equal to 0 :

Lucchesi showed that this implies a polynomial-time algorithm for the following feedback arc set problem, in case G is planar:
(9) given: a directed graph $G=(V, A)$, a length function $l: A \rightarrow \mathbb{Z}_{+}$and an integer B,
find: a subset $A^{\prime} \subseteq A$ so that $\left(V, A^{\prime}\right)$ is acyclic and so that $\Sigma_{a \in A^{\prime}} l(a)>B$.
In general, this problem is $N P$-complete (Karp [4]).
To see that (9) is solvable in polynomial time if G is planar, we consider the planar dual graph $G^{*}=\left(F, A^{*}\right)$ of G, directed in such a way that each arc of G crosses its dual arc in G^{*} 'from left to right':

(where the uninterrupted arrow is an arc of G, and the interrupted arc is the dual arc in $\left.G^{*}\right)$. Define for each pair $(f, g) \in F \times F$:

$$
\left.\begin{array}{ll}
l^{*}(f, g):=0 \tag{11}\\
l^{*}(g, f):=l(a)
\end{array}\right\} \quad\left\{\begin{array}{l}
\text { if }(f, g)=a^{*} \in A^{*}, \text { where } \\
a^{*} \text { is the dual arc of } a \in A \\
l^{*}(f, g):=\infty
\end{array}, \text { for all other pairs }(f, g) . ~ \$ ~ l\right.
$$

Let $B^{*}:=\Sigma_{a \in A} l(a)-B$. Then for each subset A^{\prime} of A one has:
(12) $\quad\left(V, A^{\prime}\right)$ is acyclic $\Leftrightarrow\left(F, A^{*} \cup\left[\left(A \backslash A^{\prime}\right)^{*}\right]^{-1}\right)$ is strongly connected
(here C^{-1} denotes the set of inverse arcs of C). Moreover,
(13) $\quad \sum_{a \in A^{\prime}} l(a)>B \Leftrightarrow \sum_{(g, f) \in\left[\left(A \backslash A^{\prime}\right)\right]^{-1}} l^{*}(g, f)<B^{*}$.

This reduces the planar feedback arc set problem to the strong connectivity problem satisfying (6). Hence it is solvable in polynomial time.

Lucchesi's algorithm can also be used in a branch and bound method to solve the general strong connectivity problem. Typically, during the branching process, a node of the tree is labeled by a set R of 'required' arcs and a set F of 'forbidden' arcs. That is, the node only considers those subsets A^{\prime} of $V \times V$ for which $R \subseteq A^{\prime} \subseteq(V \times V) \backslash F$ and for which (V, A^{\prime}) is strongly connected. So the bound corresponding to the node should be a lower bound on the minimum length of these subsets A^{\prime}.

In order to find such a bound, we can assume that R is reflexive (i.e., $(i, i) \in R$ for all i) and transitive (i.e., if (i, j) and (j, k) belong to R, then $(i, k) \in R$). Moreover, we can reset
(14) $l(a):=0 \quad$ if $a \in R$,

$$
l(a):=\infty \quad \text { if } a \in F
$$

If after this resetting, Lucchesi's condition:
(15) for all $i, j \in V$: if $0<l(i, j)<\infty$ then $l(j, i)=0$
is satisfied, Lucchesi's algorithm gives us the exact minimum value (instead of a lower bound) in polynomial time. This suggests that in our branching strategy, we should strive for a situation where (15) holds. That is, for choices of R and F satisfying:
(16) for all $i, j \in V:(i, j) \in R$, or $(j, i) \in R$, or both $(i, j) \in F$ and $(j, i) \in F$.

We show that the strong connectivity problem can also be solved in polynomial time if we weaken Lucchesi's condition (15) to:
(17) for all $i, j \in V$: if $0<l(i, j)<\infty$ then $\exists i^{\prime}, j^{\prime} \in V$ with

$$
l\left(i, i^{\prime}\right)=l\left(j^{\prime}, i^{\prime}\right)=l\left(j^{\prime}, j\right)=0
$$

This is indeed weaker than Lucchesi's condition, since if (15) holds we can take $i^{\prime}=i$ and $j^{\prime}=j$ in (17).

Condition (17) means that in the distance table we have that any value with $0<\alpha<\infty$ is part of a 2×2-matrix $\left[\begin{array}{ll}0 & 0 \\ \alpha & 0\end{array}\right]$ as in:

So the difference with Lucchesi's condition is that the diagonal elements of $\left[\begin{array}{ll}0 & 0 \\ \alpha & 0\end{array}\right]$ need not be diagonal elements of the distance matrix.

Theorem. The strong connectivity problem is solvable in polynomial time if (17) is satisfied.

Proof. Let l satisfy (18). We may assume furthermore that $l(i, i)=0$ for all $i \in V$, and if $l(i, j)=l(j, k)=0$ then $l(i, k)=0$ for all $i, j, k \in V$.

Suppose now that $0<l(i, j)<\infty$ for some $i, j \in V$ while $l(j, i) \neq 0$. By (17) there exist $i^{\prime}, j^{\prime} \in V$ so that $l\left(j^{\prime}, i\right)=l\left(j^{\prime}, i^{\prime}\right)=l\left(j, i^{\prime}\right)=0$. We introduce two new points, $i^{\prime \prime}$ and $j^{\prime \prime}$ say. Let $V:=V \cup\left\{i^{\prime \prime}, j^{\prime \prime}\right\}$, and

$$
\begin{aligned}
& \bar{l}(a, b):=l(a, b) \quad \text { if } a, b \in V,(a, b) \neq(i, j), \\
& \bar{l}(i, j):=\infty \\
& \bar{l}\left(i, i^{\prime \prime}\right):=\bar{l}\left(i^{\prime \prime}, i^{\prime}\right):=\bar{l}\left(j^{\prime}, j^{\prime \prime}\right):=\bar{l}\left(j^{\prime}, j^{\prime \prime}\right):=\bar{l}\left(j^{\prime \prime}, j\right):=0, \\
& \bar{l}(a, b):=\infty \quad \text { for all other } a, b \in \bar{V} .
\end{aligned}
$$

We show that the strong connectivity problem for \bar{V}, \bar{l} is equivalent to that for V, l. First, let A be a minimum length subset of $V \times V$ with (V, A) strongly connected. Let:
$\begin{array}{lll}\text { (20) } & \bar{A}:=A \cup\left\{\left(i, i^{\prime \prime}\right),\left(i^{\prime \prime}, i^{\prime}\right),\left(i^{\prime \prime}, i^{\prime \prime}\right),\left(j^{\prime}, j^{\prime \prime}\right),\left(j^{\prime \prime}, j\right)\right\} & \text { if }(i, j) \notin A, \\ \bar{A}:=(A \backslash\{(i, j)\}) \cup\left\{\left(i, i^{\prime \prime}\right),\left(i^{\prime \prime}, i^{\prime}\right),\left(j^{\prime \prime}, i^{\prime \prime}\right),\left(j^{\prime}, j^{\prime \prime}\right),\left(j^{\prime \prime}, j\right),\left(i^{\prime \prime}, j^{\prime \prime}\right)\right\} & \text { if }(i, j) \in A .\end{array}$
Clearly,
(21) $\sum_{a \in A} l(a)=\sum_{a \in \bar{A}} \bar{l}(a)$.

Moreover, (V, \bar{A}) is strongly connected. This follows directly from (20) if $(i, j) \notin A$. If $(i, j) \in A$, then $\left(i, i^{\prime \prime}\right),\left(i^{\prime \prime}, j^{\prime \prime}\right),\left(j^{\prime \prime}, j\right)$ form a path in A from i to j. Hence also in this case, (\bar{V}, \bar{A}) is strongly connected.

Conversely, let \bar{A} be a minimum length subset of $\bar{V} \times \bar{V}$ with (\bar{V}, \bar{A}) strongly connected. Without loss of generality, if $l(a, b)=0$ then $(a, b) \in \bar{A}$. Let:

$$
\begin{array}{ll}
A:=\bar{A} \cap(V \times V) & \text { if }\left(i^{\prime \prime}, j^{\prime \prime}\right) \notin \bar{A}, \tag{22}\\
A:=(\bar{A} \cap(V \times V)) \cup\{(i, j)\} & \text { if }\left(i^{\prime \prime}, j^{\prime \prime}\right) \in \bar{A} .
\end{array}
$$

Again (21) holds. Moreover (V, A) is strongly connected. To see this, take
$a, b \in V$. We show that A contains a path from a to b. Since (\bar{V}, \bar{A}) is strongly connected, \bar{A} contains a path P from a to b. Assume that P passes $i^{\prime \prime}$ and $j^{\prime \prime}$ as few as possible. If P does not traverse $i^{\prime \prime}$ nor $j^{\prime \prime}$, it is also a path in A. So supposes P traverses $i^{\prime \prime}$ or $j^{\prime \prime}$. Consider all arcs incident to $i^{\prime \prime}$ or $j^{\prime \prime}$ with finite length:

Since $\left(i, i^{\prime}\right),\left(j^{\prime}, i^{\prime}\right),\left(j^{\prime}, j\right) \in A$, and since $(i, j) \in A$ if $\left(i^{\prime \prime}, j^{\prime \prime}\right) \in \bar{A}$, it follows that P does not intersect $\left\{i^{\prime \prime}, j^{\prime \prime}\right\}$.

So replacing V, l by V, \bar{l} gives an equivalent problem, and decreases the number of pairs (i, j) with $0<l(i, j)<\infty$ and $l(j, i) \neq 0$. Therefore, after at most $|V|^{2}$ such replacements, we attain an equivalent strong connectivity problem satisfying Lucchesi's condition. This is solvable in polynomial time by Lucchesi's algorithm.

This theorem suggests that in a branch and bound process, our branching strategy should strive for a situation where the following holds:

$$
\begin{equation*}
\text { for all } i, j \in V:(i, j) \in F \text {, or }\left(i, i^{\prime}\right),\left(j^{\prime}, i^{\prime}\right),\left(j^{\prime}, j\right) \in R \text { for some } i^{\prime}, j^{\prime} \in V \text {. } \tag{24}
\end{equation*}
$$

(The second alternative includes the case $(i, j) \in R$, by taking $i^{\prime}=j, j^{\prime}=i$.)

References

1. K.P. Eswaran and R.E. Tarjan, Augmentation problems, SIAM Journal on Computing 5 (1976) 653-665.
2. A. Frank, How to make a digraph strongly connected, Combinatorica 1 (1981) 145-153.
3. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman, San Francisco, 1979.
4. R.M. KARP, Reducibility among combinatorial problems, in: Complexity of Computer Computations (R.E. Miller and J.W. Thatcher, eds.), Plenum Press, New York, 1972, pp. 85-103.
5. C.L. Lucchesi, A minimax equality for directed graphs, Ph.D. Thesis, University of Waterloo, Waterloo, Ontario, 1976.
6. C.L. Lucchesi and D.H. Younger, A minimax theorem for directed graphs, Journal of the London Mathematical Society (2) 17 (1978) 369374.
