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We show that the strong connectivity problem is solvable in polynomial lime 1n 

case each value a in the distance matrix with O<a<oo 1s contained in a sub-

matrix of form [~ ~] (up to permuting rows or columns), thus extending a 

result ol Lucchesi 

The strong connectivity augmentation problem is: 

( l) given: a directed graph G = ( V,A ). a length function I: V X V-"Z + and an 
integer B. 

find: a set A'<;;; V X V so that the graph ( V,A U A') is strongly connected 
and so that 2.aeA·l(a)<B. 

(cf. Garey and Johnson [3]). This problem is easily seen to be N ?-complete. 
since the problem of finding a Hamiltonian cycle in a directed graph ( V,A ") is 
reducible to ( l ): just take A : = 0, I: V X v-z + defined by: 

(2) l(u,v): = 0 if (u,v)EA", 

:= l if (u,v)eA", 

and B : = I (cf. Eswaran and Tarjan [l]). 
In fact the traveling salesman problem: 

(3)given: a length function l':VX V-->Z+ and an integer B', 

find: a Hamiltonian cycle of length less than B' 

is a direct special case of (I) (take A : = 0, l(u, v) : = l'(u, v) + B' and 
B := B'I VI +B'). 

Another application of the strong connectivity augmentation problem is the 
planar feedback arc set problem (see below). 

The strong connectivity augmentation problem is trivially equivalent to the 
strong connectivity problem: 

(4) given: a length function I :VX V __,.z + U { oo} and an integer B, 

find: a subset A' CV X V so that ( V,A ') is strongly connected and so that 
2.aeA'l(a)<B. 

Indeed, (4) is just the case A = 0 in (I). Conversely, (l) can be reduced to 
(4) by resetting /(a):= 0 whenever a EA. Allowing /(a)= oo in (4) is 
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irrelevant: we could replace any oo by the value B. 
We may assume in (4) without loss of generality that for all i,j,k E V: 

(5) (i) I (i,i) = 0 
(ii) if l(i,j) = 0 and l(j,k) = 0 then l(i,k) = 0. 

It was shown by Lucchesi [5] (cf. Frank [2] and Lucchesi and Younger [6]) that 
the strong connectivity problem (4) is solvable in polynomial time if the fol
lowing condition on the length function holds: 

(6) for each i,jEV: if O<l(i,j)<oo then l(j,i) = 0. 

Equivalently, the strong connectivity augmentation problem is solvable in 
polynomial time if: 

(7) for each i,j E V: if 0<1 (i,j)< B then (j, i) EA. 

So problem (1) is solvable in polynomial time if in the distance table we have 
that for each value a with O<a<oo, the symmetric value is equal to 0: 

0 

. 0 .•.• 0 
(8) 

Cl· .• : 0 

·o 
Lucchesi showed that this implies a polynomial-time algorithm for the follow
ingfeedback arc set problem, in case G is planar: 

(9) given: a directed graph G = ( V,A ), a length function I :A ~z + and an 
integer B, 

find: a subset A'~A so that (V,A') is acyclic and so that IaEA'l(a)>B. 

In general, this problem is NP-complete (Karp [4]). 
To see that (9) is solvable in polynomial time if G is planar, we consider the 

planar dual graph G* = (F,A *) of G, directed in such a way that each arc of 
G crosses its dual arc in G* 'from left to right': 

(10) ·---- --->--

(where the uninterrupted arrow is an arc of G, and the interrupted arc is the 
dual arc in G*). Define for each pair (j,g)eFXF: 



124 

< i 1) r (f,g) : = o l 
t(g,J) := /(a)~ 
t(j,g) := 00 

Sif (j,g) = a* EA*, where 
la* is the dual arc of a EA, 
for all other pairs (j,g ). 

LetB* := 2.aEAl(a)-B. ThenforeachsubsetA'ofA one has: 
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(12) (V,A') is acyclic tj (F,A • U[(A \A')*]- 1) is strongly connected 

(here c- 1 denotes the set of inverse arcs of C). Moreover, 

(13) ~ l(a)>B tj ~ l*(g,f)<B*. 
aeA' (g,/)E[(A \A'lT' 

This reduces the planar feedback arc set problem to the strong connectivity 
problem satisfying (6). Hence it is solvable in polynomial time. 

Lucchesi's algorithm can also be used in a branch and bound method to 
solve the general strong connectivity problem. Typically, during the branching 
process, a node of the tree is labeled by a set R of 'required' arcs and a set F 
of 'forbidden' arcs. That is, the node only considers those subsets A' of V X V 
for which R c;;;,A' C.: ( V X V) \ F and for which ( V,A ') is strongly connected. So 
the bound corresponding to the node should be a lower bound on the 
minimum length of these subsets A'. 

In order to find such a bound, we can assume that R is reflexive (i.e., 
(i,i) ER for all i) and transitive (i.e., if (i,j) and (j,k) belong to R, then 
(i,k)ER). Moreover, we can reset 

(14) /(a):=O 
/(a):= oo 

if a ER, 
if a EF. 

If after this resetting, Lucchesi's condition: 

(15) for all i,jEV: if 0</(i,j)<oo then l(j,i) = 0 

is satisfied, Lucchesi's algorithm gives us the exact minimum value (instead of 
a lower bound) in polynomial time. This suggests that in our branching stra
tegy, we should strive for a situation where (15) holds. That is, for choices of 
R and F satisfying: 

(16) for all i,JEV:(i,j)ER, or (j,i)ER, or both (i,j)EF and (j,i)EF. 

We show that the strong connectivity problem can also be solved in polyno
mial time if we weaken Lucchesi's condition (15) to: 

(17) for all i,jEV: if 0</(i,j)<oo then 3i', j'E Vwith 
/(i,i') = l(j',i') = f(j',j) = 0. 

This is indeed weaker than Lucchesi's condition, since if (15) holds we can 
take i' = i and j' = j in (17). 

Condition (17) means that in the distance table we have that any value with 

O<a<oo is part of a 2X2-matrix [~ ~] as in: 
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0 0 

(18) 
cl. 0 

So the difference with Lucchesi's condition is that the diagonal elements of 

[~ ~] need not be diagonal elements of the distance matrix. 

THEOREM. The strong connectivity problem is solvable in polynomial time if (17) 
is satisfied. 

PROOF. Let / satisfy (18). We may assume furthermore that l(i,i) = 0 for all 
iEV, and if l(i,j) = l(j,k) = 0 then l(i,k) = 0 for all i,j,kEV. 

Suppose now that O<l(i,j)<oo for some i,j E V while l(j,i)=f=O. By (17) 
there exist i',j'E V so that lU:..it) = l(j',i') = l(j,i') = 0. We introduce two 
new points, i" and j" say. Let V: = VU {i",j"}, and 

l(a,b): = l(a,b) if a,bE V,(a,b)=l=(i,j), 

(19) 
/(i,j) : = 00 
- - - - -
l(i,i") : = l(i",i') : = l(j',j") : = l(j',j") : = /(j",j) : = 0, 

l(a,b) : = oo for all other a,b E V. 

We show that the strong connectivity problem for V,l is equivalent to that 
for V,l. First, let A be a minimum length subset of VX V with (V,A) strongly 
connected. Let: 

(20) 4 : = A U {(i,i"),(i",i'),(j",i"),(j',j"),(j",j)} if (i,j)fiA, 
A : = (A \ {(i,j)}) U {(i,i"),(i",i'),(j",i"),(j',j"),(j",j),(i",j")} if (i,j) EA. 

Clearly, 

(21) ~/(a) = ~_/(a). 
aeA aeA 

Moreover, ( V,A) is strongly connected. This follows directly_ from (20) if 
(i,j)eA. If (i,j)EA, then (i,i"),(i",j"),(j",j) form a path in A from i to j. 
Hence also in this case, ( V,A) is strongly connected. 

Conversely, let A be a minimum length subset of VXV withJV,A) strongly 
connected. Without loss of generality, if /(a,b) = 0 then (a,b)EA. Let: 

(22) A : = A_n(VX V) 
A : = (A n(VX V))U {(i,j)} 

if (i",j")ei. 
if (i",j")EA. 

Again (21) holds. Moreover (V,A) is strongly connected. To see this, take 
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a,b E V. We show that A contains a path from a to b. Since (V,A) is strongly 
connected, A contains a path P from a to b. Assume that P passes i" and j" as 
few as possible. If P does not traverse i" nor j", it is also a path in A. So sup
poses p traverses i" or j". Consider all arcs incident to i" or)" with finite 
length: 

i j 

(23) 

i' j I 

Since (i,i'),(j',i'),(j',j) EA, and since (i,j) EA if (i" ,j") EA, it follows that P 
does not intersect {i",j"l:._ 

So replacing V,I by V,I gives an equivalent problem, and decreases the 
number of pairs (i,j) with 0</(i,j)<oo and l(j,i)::f=O. Therefore, after at most 
I V 12 such replacements, we attain an equivalent strong connectivity problem 
satisfying Lucchesi's condition. This is solvable in polynomial time by 
Lucchesi's algorithm. 0 

This theorem suggests that in a branch and bound process, our branching stra
tegy should strive for a situation where the following holds: 

(24) for all i,jEV: (i,j)EF, or (i,i'),(j',i'),(j',j)ER for some i',j'EV. 

(The second alternative includes the case (i,j)ER, by taking i' = j, j' = i.) 
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