
World Wide Web (2015) 18:1717–1736
DOI 10.1007/s11280-015-0334-4

A formal method for rule analysis and validation
in distributed data aggregation service

Vlad Serbanescu ·Florin Pop ·Valentin Cristea ·
Gabriel Antoniu

Received: 1 September 2014 / Revised: 28 January 2015 /
Accepted: 23 February 2015 / Published online:10 March 2015
© Springer Science+Business Media New York 2015

Abstract The usage of Cloud Serviced has increased rapidly in the last years. Data manage-
ment systems, behind any Cloud Service, are a major concern when it comes to scalability,
flexibility and reliability due to being implemented in a distributed way. A Distributed Data
Aggregation Service relying on a storage system meets these demands and serves as a repos-
itory back-end for complex analysis and automatic mining of any type of data. In this paper
we continue our previous work on data management in Cloud storage. We present a formal
approach to express retrieval and aggregation rules with a compact, yet powerful tool called
Rule Markup Language. Our extended solution proposes a standard form to schemes and
uses the tool to match the rules to the XML form of the structured data in order to obtain the
unstructured entries from BlobSeer data storage system. This allows the Distributed Data
Aggregation Service (DDAS) to bypass several steps when processing a retrieval request.
Our new architecture is more loosely-coupled with a separate module, the new tool, used
for transforming the XML entries to standard XML files which represent the final result.
We model the dynamic behavior of the system using this new standard to ensure a simpler
and efficient representation of the operations performed by the client while maintaining the
constraints imposed by a distributed system running in the Cloud. Furthermore we prove
that this method correctly performs the translation between the storage model’s unstructured
view of data and the client’s structured objects.

V. Serbanescu
Formal Methods Department, Centrum Wiskunde and Informatica, Amsterdam, Netherlands
e-mail: vlad.serbanescu@cwi.nl

F. Pop (�) · V. Cristea
Computer Science Department, Faculty of Automatic Control and Computers,
University Politehnica of Bucharest, Bucharest, Romania
e-mail: florin.pop@cs.pub.ro

V. Cristea
e-mail: valentin.cristea@cs.pub.ro

G. Antoniu
INRIA Rennes-Bretagne, Atlantique, France
e-mail: gabriel.antoniu@inria.fr

mailto:vlad.serbanescu@cwi.nl
mailto:florin.pop@cs.pub.ro
mailto:valentin.cristea@cs.pub.ro
mailto:gabriel.antoniu@inria.fr


1718 World Wide Web (2015) 18:1717–1736

Keywords Data aggregation · Data management · Cloud storage · Intelligent cloud
services · Distributed services · Formal methods · Rule markup language

1 Introduction

As applications work with a continuously growing volume of data they require storage that
can achieve high scalability and performance. With cloud computing technology evolving
at a very fast rate, many IT solutions tend to operate completely or partially in the cloud
allowing full usage of its features. Distributed systems have now reached Exascale dimen-
sion [21] processing very large amounts of data on a regular basis. Cloud storage provides
manageability (the ability to manage a system with minimal resources), a great number of
access methods (protocols through which cloud storage is exposed) and multi-tenancy (sup-
port for multiple users). At the same time this ensures scalability (ability to scale to meet
higher demands or load in an efficient manner), data availability (a measure of a system’s
uptime) with data being replicated over several systems and storage efficiency (measure of
how efficiently the raw storage is used) [2]. Furthermore cloud storage has yielded excel-
lent results for system control (configuring for cost, performance, or other characteristics)
and measure of the cost of the storage.

In this paper we extend our proposed Distributed Data Aggregation Service (DDAS) [17]
using a formal method for representing queries and aggregation operations. As the volume
of data stored in Cloud environments grows, we consider that there is a need for formal
methods and techniques for QoS analysis and ensuring consistency. With the development
of private Clouds authentication, portability and interaction with the Cloud are becoming
significant issues that we aim to tackle by adding formality to the user’s operations. The
motivation of this paper resulted from the heterogeneity of data present in Big Data appli-
cations (digital libraries, e-Health applications, Smart Cities Apps, multimedia applications
[8, 16]) and the need to have a standard of representing data in an expressive and analyzable
format suitable for various tools and services.

Continuing with our approach to represent the structure of objects in XML format along
with expanding their attributes, we want to define a standard form for selecting, filtering
and aggregating objects using a Rule Markup Language (RML) tool [10, 19]. RML was
designed for ease of use to write patterns that match certain elements in an XML file and
apply transformation rules to the file to produce a desired output. The tool has been tested
and validated, therefore we can maintain the fast and reliable data access shown in our pre-
vious work without correctness issues as we show in this paper. The analysis of the data
elements is done using this formal method by pre-processing data in the RML standard.
Queries are defined as XML rules and expansion and aggregation schemes now have a stan-
dard format to fit as input for the RML tool. The integration of the tool and its performance
impact is based on experimental results.

The scope of our problem now covers a broader area, not only in terms of high require-
ments for performance, cost, availability, reliability and enabling access to a large volume
of resources by a large number of clients, but also in terms of computer-human interaction
and ease of programming. RML is designed to be very usable and interoperable such that
programmers can learn to use it in a short amount of time without a lot of background or
experience in programming. This tool does not add any new technology that needs to be
assimilated by clients, with only knowledge in XML and defining rules in RML needed to
use the previous Distributed Data Aggregation Service.



World Wide Web (2015) 18:1717–1736 1719

As the volume of data and storage devices continues to grow, data management and
aggregation has become a critical requirement in a wide spectrum of research domains,
ranging from data-mining, monitoring repositories and digital libraries to high-energy
physics [1], climate simulations or matrix equation solving. All these domains have a dif-
ferent view of data and by introducing formal techniques and rules to define objects we
can maintain a consistent and, at the same time, correct representation of operations when
selecting and filtering data regardless of the application [7].

Our new solution continues to rely on BlobSeer for an efficient storage system that
offers a scalable architecture, data location transparency, high throughput under concurrent
accesses, the storage of massive data with fine grain access and has to cope with common
problems of large scale distributed systems such as the integration of diverse technologies
used in different parts of the distributed systems, tolerance to faults, ensuring confidentiality
and protection, efficient use of resources. However we introduce on top a general-purpose
method for XML transformations and apply it to the objects represented in XML form. With
this approach it is easy to avoid the complexity and difficulty of configuring the system for
diverse structures of data.

Our main objective is to extend the proposed model with rules for representing the aggre-
gation of data. We want to provide a formal analysis and validation of those new rules in
order to prove correctness and efficiency in processing data. We aim to use the RML tool to
handle the application of the rules to objects represented in XML form and obtain the output
required by the DDAS and BlobSeer thereafter to read to objects from the cloud and provide
the expected results to the client. Furthermore we want to keep the characteristics validated
this far in our solution while providing the user with an easy to understand interface with
out system. More specifically we seek to ensure the transparency of the transformations by
integrating our RML tool as a separate module in the control flow of operations.

The development of DDAS relies on a distributed data management system, namely
BlobSeer. The service is designed to respect all the requirements and constraints imposed
by data-intensive applications and utilizes multiple features of BlobSeer [14] such as data
stripping, distributed metadata management and versioning-based concurrency control. The
DDAS is designed to ensure scalability, fault tolerance and data retrieval performance [17].

Another significant issue we tackled was the way we volatile data was stored while the
system was running. First we had to store a mapping between the objects’ identifiers and
the metadata pointing to the location in BlobSeer; then we had to maintain a metadata
catalogue for each expansion and aggregation scheme that maps to a list of all matching
object identifiers generating a data explosion when adding new schemes. We had to both
distribute the metadata catalogue over several machines and even checkpoint the metadata
catalogue itself to BlobSeer to reduce the overhead of the program main memory. As we
shall see in Section 3, we now create aggregation schemes on the fly and discard them after
the RML tool does the matching process.

This paper has the following research and scientific contributions:

– A formal method for requests made by clients;
– A standard XML format for expansion and aggregation schemes;
– The integration of this standard and formal method into the DDAS.

The rest of this paper is structured as follows. Section 2 presents a critical overview of
the existing solutions for data storage, aggregation and retrieval in Large Scale Distributed
Systems. The Rule Markup Language solution is also presented in this section. The model
for the Distributed Data Aggregation Service together with the formal model for translating



1720 World Wide Web (2015) 18:1717–1736

between the two views described in Section 3. The architectural model of the entire system
analyzing with each layer and component of the solution is analyzed in Section 4. Section 5
shows the implementation of the system and the a real use-case scenario for the solution:
Application for aggregating scientific data. Section 6 draws the conclusions of the work
done so far and proposes the future work.

2 Related work

Our starting point for the research work is the Distributed Data Aggregation Service we
proposed for manipulation of large volumes of data. In this section we look at some of
the issues we had with our proposed model, including testing difficulties, metadata space
management and communication. Nonetheless, we continue to make full use of the charac-
teristics proven in our work which include minimized access and computation costs, high
levels of fault tolerance and data consistency as well as data persistence and replication, as a
good solution to improve QoS in different networks [11, 22]. We study how the RML solu-
tion fits our model and mitigates some of the problems that arose in our previous work. We
also illustrate the proofs of correctness of the aggregation rules that this new tool supports.

2.1 Data storage and aggregation solution

The Distributed Data Aggregation Service was built to complement BlobSeer’s features
which maintain data in circulation unstructured, ensuring scalability via metadata which
specifies an object’s location, application-level parallelism using snapshots of an object’s
location, support for multi-tenancy and various types of objects. However, we needed to
have a clear and simple method of processing objects based on an application’s actual rep-
resentation. We did this by mapping objects to a so-called scheme, a representation in XML
format with a minimal number of elements. Each element was a key-value pair that together
identified an application’s view of its objects. To ease the interaction with BlobSeer, we
imposed the constraint that each object needed to have a unique identifier element and an
entry element with the actual stream representation of the object as its value. For example,
for an application that processes publications all objects must have four properties: a key,
a format, a digital library from which it comes and the entry containing the actual publi-
cation, and a value associated to each of them. Furthermore the application and the service
both could expand the entry element to more specific elements in the same XML key -
value format. A really big difficulty came whenever we had to create a new scheme for an
aggregation operation as we had several steps to perform:

– A lookup on all objects and entry expansions for those that did not have the required
scheme mapped to their key.

– A match between each expansion scheme and the required scheme.
– Storing the matching objects in our metadata catalogue with the new scheme as the key.

Therefore we considered that our system was ideal for performing a large number of read
operations on already created schemes compared to write and new aggregation operations.
In our current extension this assumption is no longer necessary as we modify our algorithm
to use RML to define the new scheme and the tool to handle the matching described in
Section 3.

Another significant issue we tackled was the way we volatile data was stored while the
system was running. First we had to store a mapping between the objects’ identifiers and



World Wide Web (2015) 18:1717–1736 1721

the metadata pointing to the location in BlobSeer; then we had to maintain a metadata
catalogue for each expansion and aggregation scheme that maps to a list of all matching
object identifiers generating a data explosion when adding new schemes. We had to both
distribute the metadata catalogue over several machines and even checkpoint the metadata
catalogue itself to BlobSeer to reduce the overhead of the program main memory. As we
shall see in Section 3, we now create aggregation schemes on the fly and discard them after
the RML tool does the matching process.

The first solution studied is in [3] which proposes a robust and flexible super peered
Distributed Hash Table (DHT). The solution provides a simple technique applicable to the
majority of existing DHT systems that involves hiding a subset of the nodes that make up
the DHT, from the overlay. This enables the use of super-peers in DHT-based networks,
while avoiding the deficiencies of a classical DHT which assume that all nodes that make
up the DHT can perform all the lookup operations supported at an equal performance level.
Additionally it overcomes the high maintenance overhead and single point of failure that
improved super-peer DHT has. However this solution comes at the cost of placing high loads
of data on the nodes that are visible in the overlay, which may cause very high latencies if
these nodes to do not have great computing capabilities.

Another storage system is proposed in [5] and it’s main purpose is to handle large
amounts of structured data while taking into consideration the varying data size and latency
requirements. The model used is that of a a sparse, distributed persistent multi-dimensional
sorted map containing uninterpreted array of bytes. It also maintains a versioning system of
the data indexed by timestamps. On one hand the main advantages of this solution are that
it provides high performance lookup, scalability, high availability of data and it is used in
many real applications. On the other hand the it also has disadvantages due to its implemen-
tation which requires difficult configurations of the clusters and also places a heavy load on
the master server of the solution.

The S3 storage system proposed by Amazon [15] aims to provide storage as a low-
cost, highly available service, with a simple ’pay-as-you-go’ charging model. The positive
aspects of this model are the high-level access control and the global availability of
the system. It does however have many negative aspects such as not having any form
of Service Level Agreement (SLA) to maintain stored data and also having the pos-
sibility of losing all the stored data if something as simple as your email account is
compromised.

We also look at the solution presented in [12] where the data storage environment
is implemented to handle a very high write throughput and also scale with the num-
ber of users. Although the system has many advantages such as the ability to scale
incrementally, using replication to ensure high availability and durability and failure detec-
tion, Cassandra also has to deal with certain issues such as non-uniform data and load
distribution.

Finally we analyze the data storage solution provided by BlobSeer [14]. This solution
represents data as BLOBS taking into consideration that most data in circulation is unstruc-
tured. This gives the possibility of ensuring scalability using the same BLOB to store large
amounts of data by only maintaining the offset of the BLOB. Along with these features
BlobSeer also provides the user with a versioning-oriented access interface for manipulat-
ing blobs, therefore allowing application-level parallelism as an older version can be read
while a newer version is generated. To interact with BlobSeer all that is required is a handle
that points to a specific BLOB from which data is extracted or to which data is stored. Min-
imizing the number of handles that will be created during a request was a major priority in
our implementation.



1722 World Wide Web (2015) 18:1717–1736

2.2 Rule markup language (RML)

The main focus of the proposed solution is to establish a standard model for representing
aggregation and expansion operations. For this we looked to have a formal approach in
parsing the XML descriptions of objects, instead of doing the parsing inside the program.
We required something simple that did not introduce new programming techniques for the
user, but was sufficient to solve the issues presented in the previous subsection.

The RML that we studied provided the best solution for this. The underlying idea of
this tool is to specify transformations in XML documents by means of rules which are for-
mulated in a problem domain XML vocabulary of choice. These rules consist of a mix of
XML from the problem domain and the Rule Markup Language. The output produced by
this tool remains in the same XML format that we intend to use for the aggregation oper-
ation. The RML approach re-uses the problem domain XML as much as possible, with a
“programming by example” technique. With this ruleâǍŞbased approach it becomes pos-
sible to define transformations in a much simpler way than for example XSLT the official
W3C Recommendation for XML transformations.

Another solutions refer to the rules implicitly embedded in Web pages [13] or a single
general rule language (REWERSE I1 Rule Markup Language - R2ML), which processes
everything in a uniform manner.

Our purpose is to add a set of XML constructs to our XML vocabulary that represents an
application’s objects and define define RML rules for that XML vocabulary. Specific RML
tools can execute these rules, to transform the input XML according to the rule definition.

2.3 Aggregation solutions

When applied to the web, aggregation finds applications in meta-searching, search engine
comparison, spam fighting and word association techniques [20], and reduces communica-
tion overhead [24].

In the first solution in [9] a method for aggregating web-service data is presented. This
framework employs a set of interconnected aggregation nodes, which cooperate with each
other to execute client requests. This aggregation solution provides great response times and
high throughput when requests involve a large number of aggregation nodes with each one
handling a low number of requests. However if the request load is not distributed uniformly
and a low number of aggregation nodes are used the throughput and performance are very
low.

The second solution [23] evaluates the interfaces and implementations for user-defined
aggregation in several state of the art distributed computing systems. The User-defined
aggregation in Hadoop implementations make user responsible for understanding the
defined types and using casts or access functions to fill in the required fields. This apparently
adds a lot of complexity to trivial computation, however for more complicated aggregation
functions the overhead of casting between system types is less noticeable, and the bene-
fits of having access to a full-featured high-level language, in this case Java, will be more
apparent. The interfaces of User-defined aggregation in a database show the benefits that
built-in database functions have when writing an aggregation method, but also the limits of
database languages when user-defined functions and types are more complex.

Another solution [6] presents the collective operations implemented in MPI. These oper-
ations process data over several processors using functions like MPI-Bcast, MPI-Scatter
or MPI-Gather and even aggregate data using MPI-Reduce. These collective functions can
also be used to work on a shared object such as a file using MPI collective I/O. The main



World Wide Web (2015) 18:1717–1736 1723

advantage of these operations is that processes can return from an aggregating call without
waiting for the completion of other processes. However,to ensure good response times sev-
eral request scheduling algorithms have to be tested for a specific problem that uses MPI
collective I/O.

Using BlobSeer for an aggregation solution allows the convenient placing of objects
to train the DDAS for future operations. The system organizes data in BLOBS, mark-
ing each storage operation with a new version, it can prove very effective in the complex
aggregation process. With a model that collects objects that match common attributes,
our service will send data to BlobSeer such that all retrieval and aggregation opera-
tions for a specific pattern will be reduced to reading data from the right location in
BlobSeer.

3 Distributed data aggregation service model

In this section we present the application of a formal method to our expansion and aggrega-
tion schemes using the Rule Markup Language. As in our previous work, the main schemes
remain the identical like the following XML format with a small modification because RML
work on attributes and their names so all values of elements have to be attribute names:

<?xml version = "1.0" ?>
<root>
<key value ="2082445" />
<type value = "bib" />
<dl name = "acm" />
<entry value = "

@inproceedings{2082445,
author = {Potlog, Alina-Diana and Xhafa, Fatos and

Pop, Florin and Cristea, Valentin},
title = {Evaluation of Optimistic Replication Techniques for

Dynamic Files in P2P Systems},
booktitle = {3PGCIC’11: Proceedings of the 2011 Int.

Conference on P2P, Parallel, Grid, Cloud and
Internet Computing},

year = {2011},
pages = {259--265},
publisher = {IEEE Computer Society},
address = {Washington, DC, USA},

} "
/>
</root>

The first simplification comes with expansion schemes. As attributes are expanded from
the entry, they are added with the same expansion scheme instead of creating separate
schemes for different attributes.

The main focus of the application is now the attributes it needs to aggregate on, making
it easier for a client to associate future aggregation rules with existing aggregation schemes.
For example the previous scheme with the “author” and “publisher” added would look like
the following:



1724 World Wide Web (2015) 18:1717–1736

<?xml version = "1.0" ?>
<root>

<key value = "2082445" />
<type value = "bib" />
<dl name = "acm" />
<author name = "Potlog, Alina-Diana" />
<author name = "Xhafa, Fatos"/>
<author name = "Pop, Florin" />
<author name = "Cristea, Valentin" />
<publisher name = IEEE Computer Society />

</root>

There will be no separate expansion schemes for just the “author” attribute or just the
“publisher” attribute. The second enhancement of the system comes in the definition of
rules for aggregation schemes. A former selection scheme looked like this:

<?xml version = "1.0" ?>
<root>

<select>
<author name ="Pop, Florin" />
<publisher name=IEEE Computer Society />

</select>
</root>

For this simple scheme we had to expand all entries to match it or not. Even the already
expanded scheme would not actually match and an expansion from the main scheme was
required.

Furthermore, for each attribute value a separate scheme needed to be created. With the
RML tool all that is needed is to define 2 simple rules to match the attributes “author” and
“publisher” and bind the key of the object such that it can be output if it matches.

<div class = "rule">
<div class = "antecedent">

<root>
<key value = "rml-A">
<author name ="Pop, Florin" />
<publisher name=IEEE Computer Society />

</root>
</div>
<div class = "consequence">

<key value = "rml-A">
</div>

</div>

This approach only constrains the application to have an agreement on the representation
of both expansion schemes and subsequent aggregation schemes while allowing as many
attributes as the user wants in the same expansion scheme regardless of the amount of selec-



World Wide Web (2015) 18:1717–1736 1725

tions, exclusions and aggregation that may be requested subsequently. This significantly
reduces lookup time as all objects are ran through the same tool on the fly, as well as main
memory space as the number of expansion schemes is reduced and the aggregation schemes
are discarded as soon as the output is generated.

In this section we present the proposed model for the Distributed Data Aggregation Ser-
vice that is implemented based on BlobSeer’s features. We describe the view that our service
has on the objects that it handles. Moreover we show how application specific objects with a
certain structure are serialized in order to interact with the storage system while at the same
time maintaining a view of their structures for all the basic and complex aggregation oper-
ations. Also we follow the steps taken by the DDAS to process each storage and retrieval
request. The structured objects view, object storage model and request processing model
were presented in [17].

3.1 Structured objects view

As was presented in our related work section, we already know that BlobSeer stores data as
unstructured blobs. This feature allows our service to handle objects of any type, however
we require a method through which applications can describe their objects before they are
processed and stored by the DDAS. The main idea is to map each object to one scheme.
A scheme is represented by a set of key-value pairs that are the properties of the object.
In addition, a scheme can have one or more reduce functions. The main scheme of an
object must contain a key that uniquely identifies the object, an entry that is a stream that
represents the object and all the properties that the objects have in common. For example,
for an application that processes publications all objects must have four properties: a key, a
format, a digital library from which it comes and the entry containing the actual publication,
and a value associated to each of them. Therefore all objects stored in the DDAS must be
mapped to this scheme. Each storing operation can also map the object to a scheme that
expands its entry property to more key-value pairs that identify particular properties of the
object.

All retrieval operations imply an input scheme which the DDAS uses to identify all of
the objects requested. This is known as an aggregation scheme and requires a lookup on
all the objects stored the first time this operation is called on the DDAS.

3.2 Object storage

With a model for retaining each object’s structure, the DDAS can store the main scheme of
an object into BlobSeer. The DDAS is now responsible for mapping the key of the object to
the meta information that points the the object’s main scheme in BlobSeer and maintains a
catalogue for all these mappings known as the object catalogue. Furthermore it maintains
a catalogue of all recurring aggregation schemes that are each mapped to a list of object
meta information that expand to that scheme. This catalogue is known as the metadata
catalogue.

Finally we attempt to spread objects into blobs as evenly as possible by storing objects
that map to a new scheme in a new BLOB, unless the object has already been stored and
already fits an existing scheme. This means that when a retrieval operation is requested
based on an aggregation scheme, most objects that fit the scheme in the metadata cata-
logue is stored in the same BLOB. For applications that process very large objects in size
but not in numbers, the object catalogue would not become a bottleneck due to the low
number of keys, however this catalogue is stored in a distributed manner, taking advantage



1726 World Wide Web (2015) 18:1717–1736

of BlobSeer’s features, for applications that deal with a growing number of small objects
that are frequently accessed and modified.

3.3 Request processing model

The main purpose of the DDAS is to maximize BlobSeer’s features without performing
extensive lookup throughout an application’s entire collection when retrieving data. There-
fore aside from when a retrieval on an aggregation scheme that does not exist inside the
meta-catalogue, all other operations involve only reading and writing in particular blobs of
the storage system.

When a request to store new data is made, the new object is stored inside the object
catalogue. The model for processing retrieval operations simply involves either retriev-
ing the list inside the metadata catalogue for the scheme requested or an entire lookup
on all objects if the scheme does not exist. Therefore the process of aggregation is con-
tinuous whenever a write operation is completed, allowing very efficient data retrieval
operations.

4 Proposed model

The newly designed flow model (see Figure 1) undergoes several modifications that inte-
grate the RML tool in the system as a separate loosely coupled component. We also supress
the role of Collect Gate as parsing of XML files and expanding them is no longer neces-
sary, completely reducing the overhead of this step in the aggregation process. Like all other
components in the system the RML tool will have to handle a large number of XML files
to apply the transformation, therefore we need to efficiently isolate it’s function when it
comes to input and output. The only learning mechanism that the DDAS will now need to
have is to map recurring rules to a list of unique identifiers such that common aggregation
operation won’t even need to go through the tool.

4.1 Data back-end storage system

The Data Backend Storage System is represented by BlobSeer, which was studied and moti-
vated in our previous work for its excellent storage capabilities. It stores the “entry” field
of an XML file and interacts only with the DDAS through standard read and write requests.
For a read operation it accepts as input the serialized form of the “entry” field and returns
the metadata (BLOB id, BLOB version, page, offset and size) associated to the storage loca-
tion. For a write request, it accepts the metadata pointing to the object requested and outputs
the serialized form of the object.

4.2 DDAS overview

This component is the main result of our previous work. It represents the mediator com-
ponent between BlobSeer and all other data-management applications that require fast and
reliable storage and retrieval of data; moreover it also mediates communication with the
RML tool. Its main role is to translate between BlobSeer unstructured view of data and
the XML formatted objects that each application handles and our new tool processes. It
is divided into two layers: the metadata management layer and the extended BlobSeer
client.



World Wide Web (2015) 18:1717–1736 1727

Figure 1 Rule Analysis and Validation Flow for DDAS

Regardless of the type of request or application, the upper layer uses the RML tool to
transform the schemes of the objects using the defined rule and obtain the identifiers of
the objects that match. Its role is to use these identifiers to retrieve the metadata necessary
for BlobSeer. Interaction with the RML tool is no longer required when performing a store
operation.

The extension of the BlobSeer client writes data into BLOBS specified by the informa-
tion in the metadata catalogue. Each scheme is assigned a BLOB to which new objects that
fit the scheme will be stored. If an object fits more than one scheme then all schemes will
simply point to the same meta-information and the object will only be stored in one BLOB.



1728 World Wide Web (2015) 18:1717–1736

For an input aggregation scheme, the DDAS either identifies it in the metadata catalogue
or if it does not exist, it will request from the RML tool the list of object keys that fit the
aggregation scheme and then discard it, unless it recurrs past a threshold which will cause
the DDAS to cache it. Using the keys or the existing aggregation scheme the service will
send to the extended client the meta-information based on which the retrieval of data from
BlobSeer will be made.

4.3 RML tool used for validation in DDAS

This is the novel addition to the architecture that mainly simplifies the aggregation process
and surpresses the role of CollectGate. Because RML works with XML formats there is
no need to parse the input anymore and the tool directly proceeds with the tranfsormation
whose output will always be XML files containing the identifiers of the objects whose
input files match the given rule. The role of this component is to perform quick searches
and selections based on a few properties and offer a standard for defining rules and object
properties that are easy to understand and follow. RML was designed to perform pattern
matching in XML and therefore can do all aggregation operations on the fly without the
need to do any matching when new objects are stored.

4.4 Rule analysis and validation flow for DDAS

We now explain how objects are handled and flow through each of the components in Fig-
ure 1 during a request made by an application to store data or a client to retrieve a set of
objects based on an aggregation scheme. When an application (i.e a crawler) wants to store
objects it first collects a massive amount of data from various sources. Then the application
makes a storage request to the DDAS with a large set of objects as input. Each new object
can be stored with an expansion scheme with all attributed that the application considers
significant (without the need to create more than one) and directly written into BlobSeer.
The expansion scheme in XML format, the object’s unique identifier and its BlobSeer meta-
data are stored in the DDAS. These operations will no longer be as costly despite the large
amount of data being handled, as there is no interaction with ant other component of the
system.

An aggregation operation requires a client to input a rule defined in RML. Upon receiving
this rule, the DDAS looks for the rule in its cache to possbily skip invoking the RML tool at
all. If the rule is found then the list of matching identifiers is searchedin the object catalogue
to find each object’s metadata. The extended BlobSeer client will then read the objects based
on this meta information. However, if the rule is not cached the it will be passed along with
all the expansion schemes of the objects set stored to be processed by the RML tool. The tool
will provide a list of XML files containing the identifiers of the objects that mtch the rule
and based on these identifiers the interaction with BlobSeer will take place as previously
stated. At the end of the request the read objects from BlobSeer will be provided to the user.

5 Experimental methodology and results

This section describes how the modules in the architecture are implemented and the test
cases used to validate our solution. We consider the data structures used to minimize the
lookup overhead introduced by the DDAS, the mechanisms used to handle concurrent
requests and how a client or application sends requests using the schemes described in our



World Wide Web (2015) 18:1717–1736 1729

model. We will describe two real environment applications that will be tested on the DDAS
and present the results obtained for the first test scenario.

5.1 Data structures and concurrency control

A priority for data management is to handle numerous requests from multiple clients all over
the cloud, therefore our DDAS has to maintain a consistent metadata catalogue and object
catalogue. Furthermore we need to ensure fast lookup of meta-information, especially for an
existing aggregation scheme that does not require Collect Gate’s function. Taking this into
consideration we implemented the DDAS using JAVA Collections designed specifically for
these requirements. The object catalogue is represented by a ConcurrentHashMap with
the object unique identifiers as keys and the meta-information of the objects (as retrieved
by the extended client) as values. Additionally, the metadata catalogue is represented by the
same structure that maps schemes with lists of meta-information that represent the objects
which fit the scheme.

5.2 DDAS interaction

In order for a client application to interact with the DDAS we need to provide a formal
description of the format of the input and output of schemes and objects. We do this through
the means of XML files. The main scheme that represents an object is made up of a root
tag and inner tags which represent the object’s properties with their values as text con-
tent. All objects, independent of the application, must have the “key” and “entry” tags.
Similarly, the expansion scheme has the same XML format, however we assert that it is
significantly smaller in size as it does not contain a tag with the entire object. These two
types of XML files are input whenever a storage operation is required with the main object
scheme as a compulsory argument and the expansion scheme optional. The following is
an example of an XML file with the scheme for a BibTex object used in our first test
scenario.

<?xml version = "1.0" ?>
<root>

<key> 2082445 </key>
<type> bib </type>
<dl> acm </dl>
<entry>
@inproceedings{2082445,

author = {Potlog, Alina-Diana and Xhafa, Fatos and
Pop, Florin and Cristea, Valentin},

title = {Evaluation of Optimistic Replication Techniques for
Dynamic Files in P2P Systems},

booktitle = {3PGCIC’11: Proceedings of the 2011 Int.
Conference on P2P, Parallel, Grid, Cloud and
Internet Computing},

year = {2011},
pages = {259--265},
publisher = {IEEE Computer Society},
address = {Washington, DC, USA},

}
</entry>

</root>



1730 World Wide Web (2015) 18:1717–1736

The aggregation scheme is the argument required by the retrieval request and its XML
format contains a root tag with several inner tags with explicit names. First, the “select”
tag contains inner tags with properties and values that objects must match. Second, the
“exclude” tag has inner tags that represent the values for properties that objects must not
have in order to be retrieved. Finally, the aggregation scheme can contain multiple “func-
tion” tags which in turn have inner tags describing the property on which the function is
applied, the type of the property, the number of operands on which the function works and
the result type. The function must also have a name which is the path to one of the DDAS
predefined functions. An example of an aggregation scheme is the following:

<?xml version = "1.0" ?>
<root>

<select>
<atribute1> v1 </atribute1>
<atribute2> v2 </atribute2>

</select>
<exclude>

<atribute1> v1 </atribute1>
<atribute2> v2 </atribute2>

</exclude>
<function name="sum">

<property> property_name </property>
<propertyType> Int </propertyType>
<operands> 2 </operands>
<result> Integer </result>

</function>
</root>

We tested DDAS with an aggregation scenario of objects with a large size domain rang-
ing from 4KB to 1MB. We set the BlobSeer page size for all operation to 1KB as to
minimize the amount of padded data that will be added to the BLOB. We obtained the results
in Figure 5 for the transfer rate of the system. We can observe that regardless of the high
number of objects, as long as the entry size is small there is no overhead in the processing
of the aggregation rules, the only spikes resulting from network communication. The only
overhead introduced in the system appears when object sizes grow past a threshold (256KB)
and this is due to the page size being too small and implying a large number of reads and
writes to BlobSeer, reducing the transfer rate proportionally to the increasing object size.

5.3 Test scenarios and evaluation

As we described in the previous section the DDAS is implemented on top of BlobSeer’s
meta-data management scheme and storage system. Therefore we first needed to analyze a
series of configurations involving the page size of a BLOB in which data is stored and how
varying sizes of data affect the overhead of read and write operations. We performed tests by
deploying BlobSeer on the Grid’5000 scientific instrument [4] across 20 virtual machines
located at three different sites.

Figure 2 presents the performance times for aggregating objects of varying dimensions
(from 1KB to 64MB) with different setups of the DDAS, that is a variation of the Page
Size set in BlobSeer when writing and reading data. As objects size grows it is evident that



World Wide Web (2015) 18:1717–1736 1731

Figure 2 Performance times for aggregating objects of varying dimensions (from 1KB to 64MB) with
different setups of the DDAS

an operation becomes more costly at a fine level of granularity. If the ratio between object
and page size is large the time taken to complete an aggregation operation exponentially
grows due to the overhead generated by a large number of requests for reading or writing
on multiple small pages.

This evaluation is underlined by the transfer rate measurements shown in Figure 3 for
aggregating objects in the same size range. The results show a significant growth for a Page
Size of 1MB, therefore it is suitable when aggregating large objects.

A more detailed comparison of Page Sizes is shown in Figure 4. We observe that the
transfer rate for a Page Size set at 1KB stops growing significantly when objects go over
256KB. Similarly, for a Page Size set at 4KB the transfer rate peaks around 2MB and 4MB,
at which point it begins to decrease. Taking into account network anomalies we can gen-
eralize that for a ratio of up to 512 between Page Size and Object Size the fine granularity

Figure 3 Transfer rate for aggregating objects



1732 World Wide Web (2015) 18:1717–1736

Figure 4 Comparison of transfer rate for different values of page sizes

does not affect performance. After this peak in the ratio the Page Size inside BlobSeer must
be dynamically adjusted to suit the objects sizes.

These two measurements were performed in parallel, but we also wanted to investigate
what happens when varying the objects size only slightly with the whole network dedicated
to a client performing operations on a very fine granularity (Page Size = 1KB). The results
in Figure 5 show that aside from a few errors due to the network the transfer rate is affected
as soon as objects grow past 256KB, even when size grows at a minimal rate.

After making a thorough analysis of the previous results we decided to investigate how
consistent the object:page ratio is and determine the range of object sizes for which a certain
page size is suitable. The results are presented in Figure 6. For example a Page Size of
1KB is suitable for objects up to 64KB. For objects between 64KB and 512KB a Page Size
between 4 and 16 KB yields good performance times, while a Page Size of 64KB is suitable

Figure 5 Transfer rate evolution for Page Size = 1KB. The transfer rate is affected as soon as objects grow
past 256KB



World Wide Web (2015) 18:1717–1736 1733

Figure 6 Determination the range of object sizes for which a certain page size is suitable

for objects up to 4MB. Finally we can conclude that for very large objects a Page Size of
1MB is the best setup in BlobSeer. A very important observation is that it is not sufficient
to select a large Page Size regardless of the object size due to the fact that the Page Size
determines the minimum amount of memory that will be used by one aggregation operation.

We varied both the actual data size and the page size of the blobs and obtained the results
in Figure 6. Clearly, a large page size outputs better response times for large size data,
however an issue appears as most of the data stored such as documents does not not pass
a few KB size, therefore a large page size would not be necessary and would be a large
overhead for numerous small objects. We established that a page size of about 4-16KB
would yield the best results for a large number of objects with a size up to 32KB that will
be presented in the first test scenario.

5.4 Application for aggregating scientific data

Most scientific documents such as articles, books and journals has used until now mostly
databases to store, retrieve and aggregate data. The use of databases allowed the mainte-
nance of structured data in relation with attributes and fast searches using indexes [18].
However this data is continuously growing and has finer granularity therefore this model
uses disk space inefficiently and creates large additional data through indexes. Our tests on
the DDAS for aggregating scientific data evaluate the specific characteristics of this appli-
cations such as the granularity for read and write operations, the manageability of large
volumes of data and how the documents remain persistent over long periods of time. The
results of read/write experiment presented in Table 1 allow to establish an upper bound for
data size to 10MB for 1KB page-size blob. Additionally we look at how this specific appli-
cation support data faults using BlobSeer’s data replication scheme and how efficiently can
a large number of clients retrieve and aggregate data.

The overhead of generating new schemes on the fly is minimal while eliminating the
need to store schemes in temporary or permanent memory. Therefore the RML tool needs
to be replicated only to maintain reliability of the service, and does not need to be scaled
in terms of resource provisioning. Furthermore, because the schemes and rules now have a
standard XML format, the DDAS is suitable for working in a federated cloud environment.



1734 World Wide Web (2015) 18:1717–1736

Table 1 Performance times of DDAS operations

Number of concurrent requests for 100K objects Read requests times (ms) Write requests times (ms)

1 26 91

10 110 137

100 831 917

1000 7521 7550

10000 93046 97165

The aggregation schemes output by the RML tool and sent as queries to the storage layer
can easily be formatted as context variables when requesting data from a resource deployed
on a different cloud. The RML tool is now the top layer of the DDAS and is responsible for
handling the input rules and generating the keys which are bound to those rules and passing
them to the metadata management layer. This layer matches the keys with the metadata used
for identifying the objects in BlobSeer. Finally the BlobSeer layer retrieves the serialized
data from the physical layer.

6 Conclusions

As data management and aggregation continues to evolve in a wide spectrum of research
domains and requirements become more specific and complex, the need for high perfor-
mance solutions for data intensive applications in Large Scale Distributed Systems grows
significantly. At the same time validation of results that can also reach Exascale dimension
is required In this paper we proposed an extension to the Distributed Data Aggregation Ser-
vice (DDAS) previously proposed using a formal method for analysing and validating the
aggregation process. We presented the new model of the DDAS in order to ensure a high
level of performance in all aspects of a data storage and aggregation as well as representa-
tion of object properties. Also we emphasized again on how several features of BlobSeer
will match the constraints of our solution.

The future work will focus on testing the solution and improving the times obtained by
implementing the data structures of the DDAS in a distributed manner. Additionally we will
evaluate our solution using the second data-intensive application described in section 5 and
finally we plan to run more tests to determine the best BlobSeer deployment configuration
for a specific data aggregation pattern.

Acknowledgment The research presented in this paper was supported by projects: “SideDOWN: Smart
Internet Data Downloader and Aggregator,” ID: PN-II-IN-CI-2012-1-0324; CyberWater grant of the Roma-
nian National Authority for Scientific Research, CNDI-UEFISCDI, project number 47/2012; MobiWay:
Mobility Beyond Individualism: an Integrated Platform for Intelligent Transportation Systems of Tomorrow
- PN-II-PT-PCCA-2013-4-0321; clueFarm: Information system based on cloud services accessible through
mobile devices, to increase product quality and business development farms - PN-II-PT-PCCA-2013-4-0870.

The work was developed under the DataCloud@Work associated team between KerData and Myriads
teams from INRIA Rennes - Bretagne Atlantique and the Computer Science Department from Politehnica
University of Bucharest

The work is partly funded by the EU project FP7-610582 ENVISAGE: Engineering Virtualized Services
(http://www.envisage-project.eu)

We would like to thank the reviewers for their time and expertise, constructive comments and valuable
insight.

http://www.envisage-project.eu


World Wide Web (2015) 18:1717–1736 1735

References

1. Aamodt, K. et al.: The ALICE experiment at the CERN LHC. JINST 3, S08002 (2008)
2. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: Depsky: dependable and secure storage in a

cloud-of-clouds. In: Proceedings of the sixth conference on Computer systems, EuroSys ’11, pp. 31–46.
ACM, New York, NY, USA (2011)

3. Brampton, A., MacQuire, A., Rai, I.A., Race, N.J.P., Mathy, L.: Stealth distributed hash table: a robust
and flexible super-peered dht. In: Proceedings of the 2006 ACM CoNEXT conference, CoNEXT ’06,
pp. 19:1–19:12. ACM, New York, NY, USA (2006)

4. Cappello, F., Caron, E., Dayde, M., Desprez, F., Jegou, Y., Primet, P., Jeannot, E., Lanteri, S., Leduc,
J., Melab, N., Mornet, G., Namyst, R., Quetier, B., Richard, O.: Grid’5000: A large scale and highly
reconfigurable grid experimental testbed. In: Proceedings of the 6th IEEE/ACM International Work-
shop on Grid Computing, GRID ’05, pp. 99–106. IEEE Computer Society, Washington, DC, USA
(2005)

5. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A.,
Gruber, R.E.: Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst. 26,
4:1–4:26 (2008)

6. Chen, J., Sehrish, S., Liao, W.-K., Choudhary, A., Schuchardt, K.: Improving the average response time
in collective i/o. In: Recent Advances in the Message Passing Interface, LNCS 6090, pp. 71–73 (2011)

7. Glatard, T., Montagnat, J., Pennec, X.: Efficient services composition for grid-enabled data-intensive
applications. In: Proceedings of the IEEE International Symposium on High Performance and Dis-
tributed Computing, pp. 333–334 (2006)

8. Gorgan, D., Bacu, V., Rodila, D., Pop, F., Petcu, D.: Experiments on ESIP—Environment oriented
satellite data processing platform. Earth Science Informatics 3(4), 297–308 (2010)

9. Hummer, W., Leitner, P., Dustdar, S.: Ws-aggregation: distributed aggregation of web services data. In:
Proceedings of the 2011 ACM Symposium on Applied Computing, SAC ’11, pp. 1590–1597. ACM,
New York, NY, USA (2011)

10. Jacob, J.: A rule markup language and its application to uml. In: Leveraging Applications of Formal
Methods, pp. 26–41. Springer (2006)

11. Kulla, E., Spaho, E., Xhafa, F., Barolli, L., Takizawa, M.: Using data replication for improving qos in
manets. In: Proceedings of the 2012 Seventh International Conference on Broadband, Wireless Comput-
ing, Communication and Applications, BWCCA ’12, pp. 529–533. IEEE Computer Society, Washington,
DC, USA (2012)

12. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS Oper. Syst. Rev.
44, 35–40 (2010)

13. Lee, J.K., Sohn, M.M.: The extensible rule markup language. Commun. ACM 46(5), 59–64 (2003)
14. Nicolae, B., Antoniu, G., Bougé, L., Moise, D., Carpen-Amarie, A.: Blobseer: Next-generation data

management for large scale infrastructures. J. Parallel Distrib. Comput. 71, 169–184 (2011)
15. Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon s3 for science grids: a viable solu-

tion? In: Proceedings of the 2008 international workshop on Data-aware distributed computing, DADC
’08, pp. 55–64. ACM, New York, NY, USA (2008)

16. Pop, F., Gruia, C., Cristea, V.: Distributed algorithm for change detection in satellite images for Grid
Environments. In: Parallel and Distributed Computing, 2007. ISPDC’07. Sixth International Symposium
on (pp. 41-41). IEEE (2007)

17. Serbanescu, V., Pop, F., Cristea, V., Antoniu, G.: Architecture of distributed data aggregation service. In:
Proceedings of the 2014 IEEE 28th International Conference on Advanced Information Networking and
Applications, AINA ’14, pp. 727–734. IEEE Computer Society, Washington, DC, USA (2014)

18. Song, S., Chen, L.: Indexing dataspaces with partitions. World Wide Web 16(2), 141–170 (2013)
19. Stam, A., Jacob, J., de Boer, F.S., Bonsangue, M.M., van der Torre, L.: Using xml transformations for

enterprise architectures. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods,
volume 4313 of Lecture Notes in Computer Science, pp. 42–56. Springer Berlin Heidelberg (2006)

20. Sufyan Beg, M.M., Ahmad, N.: Soft computing techniques for rank aggregation on the world wide web.
World Wide Web 6(1), 5–22 (2003)

21. Venugopal, S., Buyya, R., Ramamohanarao, K.: A taxonomy of data grids for distributed data sharing,
management, and processing. ACM Comput. Surv., 38 (2006)

22. Xhafa, F., Kolici, V., Potlog, A.-D., Spaho, E., Barolli, L., Takizawa, M.: Data replication in p2p col-
laborative systems. In: Proceedings of the 2012 Seventh International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, 3PGCIC ’12, pp. 49–57. IEEE Computer Society, Washington, DC, USA
(2012)



1736 World Wide Web (2015) 18:1717–1736

23. Yu, Y., Gunda, P.K., Isard, M.: Distributed aggregation for data-parallel computing: interfaces and imple-
mentations. In: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,
SOSP ’09, pp. 247–260. ACM, New York, NY, USA (2009)

24. Zhang, J., Tao, X., Wang, H.: Outlier detection from large distributed databases. World Wide Web 17(4),
539–568 (2014)


	A formal method for rule analysis and validation in distributed data aggregation service
	Abstract
	Introduction
	Related work
	Data storage and aggregation solution
	Rule markup language (RML)
	Aggregation solutions

	Distributed data aggregation service model
	Structured objects view
	Object storage
	Request processing model

	Proposed model
	Data back-end storage system*.5pt
	DDAS overview
	RML tool used for validation in DDAS
	Rule analysis and validation flow for DDAS

	Experimental methodology and results
	Data structures and concurrency control
	DDAS interaction
	Test scenarios and evaluation
	Application for aggregating scientific data

	Conclusions
	Acknowledgment
	References


