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The asymptotic accuracy of the estimated one-term Edgeworth expan­
sion and the bootstrap approximation for a Studentized U-statistic is 
investigated. It is shown that both the Edgeworth expansion estimate and 
the bootstrap approximation are asymptotically closer to the exact distribu­
tion of a Studentized U-statistic than the normal approximation. The 
conditions needed to obtain these results are weak moment assumptions on 
the kernel h of the U-statistic and a nonlattice condition for the distribu­
tion of g(X1) = E[h(X1, X2)IX1 ). As an application improved Edgeworth 
and bootstrap based confidence intervals for the mean of a U-statistic are 
obtained. 

1. Introduction and main results. Let X1, X2 , ... , Xn be independent 
and identically distributed (i.i.d.) random variables (r.v.) with common distri­
bution function (d.f.) F. Let h be a real-valued symmetric function of its two 
arguments with 

(1.1) 

Define a U-statistic of degree 2 by 

(1.2) Un=(~ r1 LL h(Xi, XJ 
l:5.i<j:5.n 

and suppose that 

(1.3) 

has a positive variance u;. Let 

(1.4) s; ~ 4(n - l)(n - 2)-' t[(n - 1)-' '~' h(X,, X;) - U" r 
and note that n - 1s~ is the jackknife estimator of the variance of Un. Let, for 
each n :2:. 2 and real x, 

(1.5) 

It is well-known that Fn converges in distribution to the standard normal d.f. 
<I>, as n ~ oo, provided Eh2(X1, X 2 ) < oo and ui > 0 [cf. Arvesen (1969)]. The 
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speed of this convergence to normality is of the classical order n - 112 [cf. 
Callaert and Veraverbeke (1981), Zhao (1983) and Helmers (1985)). 

The traditional way to improve upon the normal approximation is to 
establish a one-term Edgeworth expansion for Fn. Let, for n ~ 2 and real x, 

(1.6) 
Fn(x) = <l>(x) + 6- 1n- 1l 2u; 3<f>(x){(2x 2 + l)Eg3(X1) 

+ 3(x2 + l)Eg(X1)g(X2)h(X1,X2)}. 

THEOREM 1. Suppose that 

(1.7) Ejh(X1, X2 )!4+e < oo for some e > 0 

and 

(1.8) the d. f. of g( X 1 ) is nonlattice. 

Then, as n -+ oo, 

(1.9) supJFn(x) -Fn(x)J = o(n- 112 ). 
x 

Note that the nondegeneracy condition ui > 0, which is already needed to 
ensure asymptotic normality, is easily implied by assumption (1.8). 

The proof of Theorem 1 (cf. Section 2) depends heavily on the results of 
Callaert, Janssen and Veraverbeke (1980), Callaert and Veraverbeke (1981) 
and Helmers (1985). In this connection I also want to mention the paper of 
Bickel, Gotze and van Zwet (1986), which contains the best result concerning 
two-term Edgeworth expansions for normalized U-statistics of degree 2 so far 
obtained. 

In a non- or semipararnetric framework, F is completely unknown, and one 
does not know the quantities 

(1.10) 

appearing in the expansion (1.6). These moments depend on the underlying 
d.f. F and must be estimated from the observations X1, ... , Xn. One way of 
doing this is to compute bootstrap estimates for a and b; i.e., we replace a and 
b by their empirical counterparts. Let frn denote the empirical d.f. based on 
X1, ... , Xn. Conditionally given X1, ... , Xn, let Xi*, ... , x: be n independent 
r.v.'s with common d.f. F,P the bootstrap sample of size n drawn with 
replacement from Pn. Bootstrap estimates an and bn of a and bare obtained 
by simply replacing X1, X 2, g and E by Xt, X2*, gn and E*, where 

(1.11) gn( X;*) = E*[ h( Xi*, X 2*) - 8n1Xt] 

for i = 1, 2, and 

(1.12) 
n n 

8n =E*h(Xi*,X2*) = n-2 L L h(Xi,Xj)· 
i=lj=l 
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E * of course refers to the conditional expectation w.r.t. Fn, conditionally given 
that X1, ... , Xn are observed. A simple calculation yields 

( 1.13) 

and 

(1.14) 

( n - 12::7= 1( n- 1L:'.J= 1h(X;, XJ - en) 2)3/2 

Thus easily computable expressions for the bootstrap estimates an and bn are 
available and no Monte Carlo simulations are required for the evaluation of 
these estimates. 

In our second theorem we shall show that we may replace the quantities a 
and b in the expansion (1.6) by the bootstrap estimates an and bn, without 
affecting the asymptotic accuracy of the expansion. Let, for n ~ 2 and real x, 

(1.15) En(x) = <P(x) + 6- 1n- 112cf>(x){(2x 2 + l)an + 3(x2 + l)bn} 

denote the resulting one-term estimated Edgeworth expansion for Fn. In 
contrast with Fn [cf. (1.6)], the expansion En can be computed from the 
observations X1, .•• , Xn. 

THEOREM 2. Suppose that the assumptions of Theorem 1 are satisfied, 
and, in addition, 

( 1.16) 

Then, with probability 1, as n ~ oo, 

( 1.17) suplFn(x) - En(x)I = o(n- 112 ). 
x 

Theorem 2 tells us that the Edgeworth expansion estimate En is asymptoti­
cally E closer to the exact d.f. Fn than the classical normal approximation et>. 
In a way En adapts itself to the possible asymmetry present in the exact d.f. 
Fn; the normal approximation of course fails to achieve this. 

Another possibility to obtain an improved approximation for Fn is to employ 
bootstrap methods in a more direct way. We consider the bootstrapped 
Studentized U-statistic, corresponding to n112s;; 1(Un - e), based on the boot­
strap sample X i*, ... , X n*, which is given by 

(1.18) 
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Here Un* and Sn* are obtained from Un and Sn simply by replacing the X;'s 
by the X;*'s in (1.2) and (1.4); the parameter e [cf. (1.1)] is replaced by its 
natural estimator e,, [cf. (1.12)]. The bootstrap approximation 

(1.19) Fn*(x) = P*(n112s:- 1(Un* - en)~ x) 
for n 2 2 and real x, is nothing else but the conditional distribution of 
n112s,;-1<un* - en), conditionally given the observed values of Xv ... , Xn; P* 
of ~ourse refers to the conditional probability measure corresponding 
to Fn. 

Athreya, Ghosh, Low and Sen (1984) recently showed that 

(1.20) 
x 

with probability 1, provided, in addition to the assumptions already needed to 
guarantee asymptotic normality of Fn [cf. Arvesen (1969)], the requiremen 
Eh2(X1, X 1) < oo is imposed. We also refer to Bickel and Freedman (1981) for, 
closely related result for normalized U-statistics. 

THEOREM 3. Suppose that the assumptions of Theorem 2 are satisfied. 
Then, with probability l, as n ~ oo, 

( 1.21) 
x 

We see that the bootstrap approximation Fn* shares with the Edgeworth 
based estimate E,, the property of being asymptotically closer to the exact d.f. 
Fn than the normal approximation et>. [See Beran (1982, 1984) for some related 
results suggesting that Fn*, like En, should be locally asymptotically minimax 
among all possible estimates of F,, .] Both E,, as well as F,,* reflect-at least to 
first order-the asymmetry present in F,,. In contrast to E,,, the bootstrap 
approximation F,,* cannot be evaluated explicitly, and Monte Carlo simula­
tions are of course needed to obtain numerical approximations to F,,*. 

Results, similar to our Theorems 2 and 3, were obtained for the simpler case 
of smooth functions of Studentized sample means by Babu and Singh (1983, 
1984). For the important special case of the Student t-statistic these authors 
proved (1.21), provided F is continuous and EXf < oo. If we take 
h(x,y) = ~(x + y) in Theorem 3, we obtain the same result, requiring only 
that Fis nonlattice and EIX1 14 +' < oo, for some E > 0. In addition, we extend 
the results of Babu and Singh (1983, 1984) to an important class of nonlinear 
statistics, i.e., to Hoeffding's class of U-statistics. This opens a way to obtain a 
similar result for Studentized statistical functions of a more general type. Such 
an extension will be considered elsewhere. 

It should be noted that, without Studentization, the improved accuracy of 
order o( n - 1/ 2 ) of the Edgeworth and bootstrap based estimates does not hold 
true any more. This is a consequence of the fact that the leading terms in the 
asymptotic expansions for the exact d.f. of n 112(Un - 8) and the corresponding 
bootstrap approximation [i.e., the conditional d.f. of n 112(Un* - en)] are no 
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longer identical, but are respectively equal to <P(x2- 1ug- 1) and <P(xs;:;- 1), which 
differ typically by an amount of order n - 112 in probability. The interesting 
phenomenon that Studentization enables us to obtain more accurate bootstrap 
estimates for the d.f. of a statistical function is also discussed in Babu and 
Singh (1984) [see also Hartigan (1986)]. 

Next we indicate very briefly an important application of our results to the 
problem of obtaining better confidence intervals than the classical jackknife 
confidence intervals based on the normal approximation, by employing Edge­
worth and bootstrap based approximations. 

We wish to establish confidence intervals for the mean e = Eh(X1, X2 ) of a 
U-statistic. Let u"12 = <l>- 1(1 - a/2). The normal approximation yields an 
approximate two-sided confidence interval 

(1.22) ( U S - 1/2 u + s -1/2 ) 
n - nn ua/2> n nn ua/2 

for 8. Though the difference between true and nominal confidence level is of 
order o(n - 112 ), the upper and lower confidence limits in (l.22) have error rates 
equal to a/2 + O(n - 112). Thus, in the case of two-sided normal based confi­
dence intervals of the form (l.22), we find a coverage probability 1 -
a+ o(n- 112 ), while for the corresponding one-sided intervals we obtain a 
coverage probability 1 - a /2 + 0( n - 112). The reason behind this is that it is 
easily checked from (1.6) that the skewness terms of order n - 112 in an 
asymptotic expansion for the coverage probability cancel in the two-sided case, 
but give rise to an error term of order n - 112 in the coverage probability for 
one-sided intervals. A clear exposition of this issue was recently given by Hall 
and Singh in their contributions to the discussion of a paper by Wu (1986) on 
resampling methods in regression models. 

Improved confidence intervals for e can be obtained by using either the 
estimated Edgeworth expansion En [cf. (1.15)] or the bootstrap approximation 
Fn* [cf. (1.19)]. Inverting En yields an Edgeworth based confidence interval for 
e given by 

(1.23) (u S -112~ u s -112~ ) 
n - nn CnE,a/2 - ' n + nn CnE,a/2 + ' 

where 

(1.24) CnE,o:/2 ± = Ua/2 ± 6-ln- 112{u!;2(2an + 3bn) +(an+ 3bn)} 

with an and bn as in (1.13) and (1.14). 
Similarly, a bootstrap based confidence interval for e is given by 

(1.25) (u - 112s c* u - 112s c* ) n - n n nB,1-a/2> n - n n nB,cx/2 ' 

where Cn*B, a:/2 and Cn*B, l-a:/2 denote the (a/2)th and (1 - a/2)th percentile 
of the (simulated) bootstrap approximation Fn*. Though, asymptotically, the 
lengths of each of the three intervals (1.22), (l.23) and (1.25) are the same, the 
Edgeworth and bootstrap based intervals (1.23) and (1.25) are more accurate 
than the usual normal based jackknife confidence interval (l.22) in the sense 
that not only the error in the coverage probability for these corrected two-sided 
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intervals is of a lower order than n- 112, but also the upper and lower 
confidence limits in (l.23) and (l.25) have error rates equal to a/2 + o(n- 112). 

Accordingly the intervals (l.23) and (l.25) are asymmetric around the point 
estimate Un of 8, in contrast with the symmetric interval (l.22). In this way, 
the asymmetry present in Fn is reflected in our improved interval estimates 
for 8. We note in passing that the one-sided Edgeworth based intervals 
suggested by Beran (1984), page 103, do not have the desirable property of 
having error rates equal to a /2 + o( n - 112). This is due to the fact that no 
Studentization is employed. 

Our results can be viewed as a mathematical contribution to the asymptotic 
distribution theory for bootstrapping Studentized U-statistics. In a way the 
only thing we do is prove for U-statistics what statisticians expect to be true 
about bootstrapping in nice asymptotically normal situations. 

To conclude this section, we remark that improved confidence intervals of 
the form (l.23) or (l.25) are also discussed in Hinkley and Wei (1984) for a 
large class of Studentized statistical functions. However, these authors use 
formal expansions only to arrive at their Edgeworth and bootstrap based 
confidence intervals, whereas in the present paper such improved interval 
estimates are derived rigorously for the case of Studentized U-statistics of 
degree 2. 

Second-order correct bootstrap confidence intervals for a real-valued param­
eter 8 based on maximum likelihood estimators in a parametric framework are 
also considered by Efron (1987), but his approach is of a different fiavor. We 
also refer to Hall (1988) where a detailed higher-order comparison is made of 
various types of bootstrap confidence intervals for real-valued parameter 8 
based on statistics which are smooth functions of sums of i.i.d. random 
vectors. 

2. Proof of Theorem 1. We begin by writing 

(2.1) n112S;; 1(Un - 8) = 2- 1u; 1n112(Un - 8)2ugS;; 1, 

where 

(2.2) 

with 

(2.3) 

n 

2ugS;; 1 = 1 - ~u; 2n- 1 E f(X;) +Rn 
i= 1 

f(x) = 4(g2(x) - ui) 

+ 8 {' g(y)(h(x,y) - 8 - g(x) - g(y)) dF(y) 
-co 

for real x, and Rn is a remainder term, satisfying 

(2.4) P({IRnl~n- 1l2(Iogn)- 1})=o(n- 1l2 ) asn-+oo. 

To establish (2.1)-(2.4) we inspect the proof given by Callaert and Veraverbeke 
(1981) of their relation (A.10) [which is precisely (2.2)-(2.4) with o(n -l/2) 
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replaced by O(n - 112 )] to find that (2.2)-(2.4) is true under the assumptions 

o-i > 0 and Elh(Xv X2 )1 4 +' < co, for some s > 0. Recall that o-g2 > 0 is implied 

by assumption (1.8). 
Define 

(2.5) 

and let 

(2.6) 

Vn = 2- 10-g- 1 n 1l 2(Un - 0)(1 - ~u; 2n- 1 f f(X;)) 
l= 1 

Gn(x) = P(Vn ~ x) for -co< X <co. 

A simple argument involving (2.4) now yields: 

P({/2- 1u; 1n 1l 2(Un - 8)Rn/ :2:: n- 11 2(logn)- 112}) 

~ P({I Rn I 2 n -l/2(log n )- 1}) 

(2.7) 
+ P ({12-10-g-1n1/2( Un - {}) / 2 (log n) 1/2}) 

= o( n - 11 2 ) + P( {/ r 1ug- 1n 1 l 2 ( Un - 8) / 2 (log n) 112}). 

Application of the theorem of Malevich and Abdalimov (1979) directly gives us: 

(2.8) P({/2- 1ug- 1n112 (Un - 8)/ :2:: (logn) 112}) = o(n- 11 2), 

provided u} > 0 and Elh(X1, X2 )1 3 +' < co, for some s > 0. 

Together the relations (2. 7) and (2.8) imply that 

(2.9) P({/r 1ug- 1n 112 (Un - 8)Rn/ 2 n- 112(Iogn)- 112}) = o(n- 112). 

In view of the preceding argument it remains to prove that 

(2.10) 

i.e., we must prove (1.9) with Fn replaced by Gn. To prove (2.10) we remark 

that [cf. Helmers (1985)] 

(2.11) 

where 2ugn - 112vn 1 + (} is a U-statistic with varying kernel h n of the form 

h,, = a + n - 1(3, where a and f3 are given by 

(2.12) 

and 

(2.13) 

a(x,y) = h(x,y) - ~<Tg- 2(g(x) f(y) + g(y) f(x)) 

f3(x,y) = -i;u; 2((h(x,y) - 8)( f(x) + f(y)) 

-2(g(x)f(y) +g(y)f(x)) -2µ.,), 
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whereµ = jg(x) f(x) dF(x), with f given by (2.3). It is easily verified that Vn 2 

can be written as [cf. Callaert and Veraverbeke (1981), where this quantity is 
denoted by EZnl + Znsl: 

Vn 2 = -iu;3 n- 112E(g(X1)f(X1)) 

(2.14) 

where the function t/! is given by 

(2.15) t/!(x,y) = h(x,y) - fJ - g(x) - g(y) 

for real x and y and I:. y~ k denotes E 1 $ 1 < k ,, n. 1 .,_ ;, k .,_;. 

Callaert and Veraverbeke (1981) proved that the second moment of the 
second term on the r.h.s. of (2.14) is O(n - 2), using only Eh4(X1, X2 ) < oo. It 
follows directly that 

(2.16) 

so that we can replace, for our purposes, Vn by Vn 1 + EVn2 • 

Note that EVn2 is a nonrandom term of the critical order n- 112. By an 
argument like (2. 7)-(2.9) we easily verify that it suffices now to prove 

(2.17) suplHn(x) - Fn(x)I = o(n- 112 ) as n ~ oo, 
x 

where 

(2.18) 

for real x and n ~ 2, instead of proving (2.10). Note that 

V + EV. = -2-1u-1n112(n)-1 
nl n2 g 2 

(2.19) 

where 

(2.20) 

and 

x I:I: {a(Xi, XJ) - 8 + n - 113(X;, X1)} 
l:S.i <j s,n 

(2.21) Eg(X1)f(X1) = 4Eg3 (X1) + 8Eg(X1)g(X2 )h(X1,X2), 

where we have used (2.3). Clearly, Vn 1 is a suitably normalized U-statistic l 

degree 2 with kernel a+ n- 113 and EVn 2 = O(n- 112). 
In view of the result of Bickel, Gotze and Van Zwet (1986) (see their 

Theorem 1.2) [cf. also Callaert, Janssen and Veraverbeke (1980)] we easily 
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deduce from (2.18)-(2.21) that 

Hn(x) = P( {Vnl + EVn2 :$ x}) 

= P( {Vnl :$ x - EVn2}) 

= P( {Vn1 ::::; x + ~O"g- 3 n - 112(4Eg3 ( X 1) + 8Eg( X1)g( X 2 ) h( X 1 , X 2 ))}) 

(2.22) = <I>(x) 

+ {rn - 11 20"; 34>( x )( Eg 3 ( X 1) + 3Eg( X 1)g( X 2 )a( Xp X 2 ) )( 1 - x 2 ) 

+ {rn- 1121T; 3cf.>(x)(3Eg 3(X1) + 6Eg(X1)g(X2)h(X1, X2)) 

+ o( n -1;2), 

where we have used the assumptions (1.7) and (1.8) to validate the application 
of Theorem 1.2 of Bickel, Gotze and Van Zwet (1986). In addition, we have 
employed the fact that under the (weak) moment assumptions of Theorem 1 
the term in (2 .19) involving n - 1/3 is negligible for our purposes. This can be 
achieved by an analysis closely resembling the proof of Theorem 4.1 of 
Helmers and Van Zwet (1982). A simple calculation yields 

3Eg(X1)g(X2 )a(X1 , X 2 ) 

(2.23) 
= -3Eg 3(X1 ) - 3Eg(X1)g(X2)h(X1,X2 ). 

Combining now (2.22) and (2.23), we easily check (2.17) and the proof of 
Theorem 1 is complete. D 

3. Proof of Theorem 2. In view of Theorem 1 it suffices clearly to show 
that, with probability 1, 

(3.1) 

and 

(3.2) E*gn( Xt)gn(X2*)h(Xt, xn ~ Eg(X1)g(X2 )h(X1 , X 2 ). 

We first prove (3.1) fork = 2. A simple calculation yields that [cf. (1.11)) 

(3.3) 

E*g~(Xt)=E*[n- 1 :f, h(Xi*,XJ)-en]
2 

j=l 

n n n 

= n- 3 L L L h(X,, XJ)h(X,, Xk) 
i=lj=l k=l 

n n n n 

- n- 4 L L L L h(Xi, XJ)h(Xk, X 1). 
i=lj=lk=ll=l 
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To proceed we note that the first term on the r.h.s. of (3.3) can be written as 

(3.4) 

n n n 

n- 3 L L L h(Xi, Xj)h(Xi, Xk) 
i=lj=l k=l 

n n n 

= 02 + n-1 L g2(XJ + 3n-2 L L g(X;)g(Xi) 
i=l i=lj=l 

n n 

+ 2on- 2 L L (g(X;) + g(Xj) + l/l(Xi, Xj)) 
i=lj=l 

n n 

+ 2n- 2 L L g(XJi/l(Xi, XJ 
i=l j=l 

n n n 

+ 2n- 1 I: g(X;)n- 2 L L l/l(Xj, Xk) 
i=l j=lk=l 

n n n 

+ n- 3 L L L l/l(X;, XJl/l(Xi, Xk), 
i=1j=1k=l 

where the functions g and 1/1 are given in (1.3) and (2.15) and (} = Eh(X1, X2). 

With the aid of the SLLN and the easily verified fact that the last five terms on 
the r.h.s. of (3.4) - 0 a.s. as n - oo, by the moment assumptions of Theorem 2 
and some well-known arguments involving conditional expectations, we find 
that 

n n n 

(3.5) n- 3 I: I: L h(Xi, Xj)h(X;, Xk) - 82 + Eg 2(X1) a.s. 
i=lj=lk=l 

as n - oo. Similarly, we also find for the second term on the r.h.s. of (3.3): 
n n n n 

(3.6) n- 4 I: I: I: I: h(X;, Xi}h(Xz, Xk) - 02 a.s. as n - oo. 
i=lj=l k=l l=l 

Together (3.3)-(3.6) yields (3.1) for the case k = 2. The proof of (3.1) fork = 3 
is similar and therefore omitted. 

It remains to establish (3.2). An argument like (3.2)-(3.6) yields 

E*gn(Xt)gn(X2*)h(Xt, xn 
n n n n 

= n- 4 L L L L h(Xi, Xk)h(Xj, Xt)h(Xi, Xi) 
i=l j=l k=l l=l 

n n n n n 

(3.7) - 2n- 5 L L L L L h(Xi, Xk)h(Xt, Xm)h(X;, XJ 
i=lj=lk=ll=lm=l 

n n n n n n 

+ n- 6 L L L L L L h(Xk, Xz)h(Xm, XP)h(Xi, XJ 
i=l j=l k=l l=l m=l p=l 

- Eg(X1)g(X2 )h(X1, X2 ) a.s. as n - oo. 

This completes the proof of Theorem 2. D 
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4. Proof of Theorem 3. To prove Theorem 3, we proceed in a number of 
steps. 

To begin with, we shall show that the arguments leading to (2.10) in Section 

2 can be repeated to establish a parallel result for the bootstrapped quantities 

corresponding to the Studentized U-statistics n112S-;; 1(Un - 6) and its approxi­

mand Vn [cf. (2.5)]. Let n 112sn*- 1(Un* - 6n) be the bootstrapped Studentized 

U-statistic [cf. (1.20)], and let 

( 4.1) 

where 

( 4.2) o-2* = E*gz(X*) 
gn n 1 

with gn given by (l.13) and [cf. (2.3)] 

fn(x) = 4(gn(x) - o-}J 
(4,3) 00 

A 

+ 8 j gn(y)(h(x,y) - en - gn(x) - g,,(y)) dF,,(y) for real x. 
-oo 

Recall that Fn is the empirical d.f. based on X 1, .•. , X,,. Define 

( 4.4) 

for -oo < x < oo and n ~ 2. Analogous to (2.10) we must now show that 

(4.5) supjG,,*(x) -Fn*(x)I = o(n- 112 ) a.s. 
x 

with Fn* as in (l.21). To check (4.5), we simply follow the argument leading to 

the parallel result (2.10), to find that (4.5) holds, provided 
n n 

E*jh(X1*, X2*)J 4
+e = n- 2 L L lh(X;, XJJ4+' 

i=lj=l 

( 4.6) 

< oo a.s. 

This is a direct consequence of the SLLN for U-statistics and the 

Marcinkievitz-Zygmund SLLN for sums of i.i.d. r.v.'s using the moment 

requirements EJh(X1, X2 )J 4 +' < oo and EJh(X1, X1)J 2 +' 12 < oo, for some s > 0. 

Also note that 

( 4.7) 

17 2 * = E*g 2 (X*) = E*h(X* X*)h(X* X*) 
gn n 1 1 ' 2 1 ' 3 

n n n 

= n- 3 '[ L '[ h(Xi, X;)h(X;, Xk) 
i=l)=l k=l 

n 

= n- 1 L g 2(X;)(l + o(l)) ~ O"i a.s. as n ~ oo, 

i=l 
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by a simple calculation, similar to the one given in Section 3, using the 
moment assumptions of Theorem 3 and Kolmogorov's strong law. Together 
these results easily yield (4.5) by following the argument leading to (2.10). 

It remains to establish 

( 4.8) 
x 

with Fn as in (1.6). To prove this, we begin by noting that [cf. (2.11)] 

( 4.9) 

where 2<Tg: n - i12vn ~ + en is a U-statistic with varying kernel h <;: > of the form 
h<;:> =an+ n- 1{3n, where an and f3n are given by (2.12) and (2.13), with g, f, 
8 and µ, replaced by gn, fn, en and JLn, where 

f.Ln = J gn(x)fn(x)dFn(x) = n-l L g,,(XJfn(X;). 
i=l 

Note that Vn~ is obtained from Vn 2 by replacing f and g by fn and gn. The 
function if! [cf. (2.15)] should be replaced by ifln, which is given by 

(4.10) 

for real x and y. By an argument like the one given in (2.16) we easily check 
that we can replace, for our purpose, Vn* by Vn~ + E*Vn~· The assumptions 
Eh4(X1, X 2 ) < oo and Eh2(X1, X 1) < oo are needed to establish the result 
corresponding to (2.16). We can conclude, similarly as in (2.17), that it suffices 
now to establish 

( 4.11) sup!Hn*(x) -F"(x)I = o(n- 112 ) a.s., 
x 

where 

( 4.12) 

for real x and n ~ 2, instead of proving (4.8). Note that [cf. (2.19)] 

V * + E*V* -2-1~-1*n112(n)-1 
nl n2 = vgn 2 

( 4.13) 

where 

( 4.14) 

and 

( 4.15) 

x EI: {a,,(X/, X/) - en+ n- 1f3n(X;*, X/)} 
l::si<j::sn 
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and [cf. (2.21), (3.1) and (3.2)], as n -> oo, 

E*gn(Xt)fn(Xt) 

( 4.16) = 4E*g!( Xt) + BE*gn( Xt)gn( X 2*)h( Xt, X 2*) 

-> 4Eg3( X 1) + 8Eg( X 1)g( X 2 ) h( X 1 , X 2 ) 

with probability 1. Note that Vn~ is a suitable normalized U-statistic of degree 

2 with kernel an+ n- 1{3n, based on the X;*'s, 1 ~ i ~ n, and E*Vn~ = 

O(n - 112) a.s. We can now simply repeat the calculations given in (2.22) and 

(2.23), to find that (4.11) [cf. (2.17)1 holds true, provided the assumptions of 

Theorem 3 remain valid, if we replace E, X1 and X 2 by E*, Xi* and X 2* and 

g by gn. Since the resulting moment assumptions E*/h(Xi*, X 2*)/4+e < oo, for 

some e > 0, and E*/h(Xi*, Xi*)/3 < oo, are already shown to be satisfied a.s., it 

remains to prove that, with probability 1, 

(4.17) the d.f. of gn( Xi*) is nonlattice 

for all sufficiently large n. To check (4.17), we note first that, because of 

assumption (1.8), it suffices to show that, for any fixed a > 0, 

(4.18) An = sup/ E*eitgn(X;*> - Eeitg<X1) / -> 0 a.s. 
ltlsa 

as n -> oo. To see this we begin by remarking that 

n n 

( 4.19) E*eitgn<Xt> = n-1 I: eitgn(X;) = n -1 I: e it(n-lEJ-1h(X;, Xj)-9n) 

i=l i=l 

so that 

(4.20) 

An~ sup /n-1 f:. {eit(n- 1EJ-1h(X;,X1)-9n) - eitg(X1>}/ 
ltlsa i=l 

+sup /n-1 £:. eitg<X1> _ Eeitg<X1>/ 
Jti Sa i = l 

= Anl + An2· 

~ecause /ei" - eiY/ ~ Ix - y/ we get 

An1 ~ an-l f:. /n-l f h(Xi, XJ) - f}n - g(X;)I 
i=l j=l 

(4.21) :$an-If /n-l f {g(XJ + g(XJ) + l/l(Xi, X;) + 8} - fJn - g(X;)I 
i=l J=l 
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Now n- 1'L/}= 1g(X)--+ 0 a.s. as n--+ oo, by the strong law, and similarly, 
(}n --+ (} a.s. by the SLLN for U-statistics and the strong law. To show finally 
that 

n-1 i~l I n-1 j~l l/!(Xi, XJ I-+ 0 a.s., 

we note first that n- 2 r:. '!= 11/!(Xi, Xt) --+ 0 a.s., again by the strong law, whereas 

n n 

( 4.22) n- 1 L .>i- 1 L cfl(Xi,X;) -+ 0 a.s. 
i=l j=l 

j4'i 

because of Lemma 5 on page 157 of Dehling, Denker and Philipp (1984). In the 
latter paper it is shown that, for any fixed i, 

(4.23) 
n 

n- 1 L l/l(Xi, XJ --+ 0 a.s., 
j=l 
j+i 

provided El/!2(X1, X 2)log2 ifl(X1, X 2 ) < co, which directly yields (4.22). We notf. 
in passing that the latter moment assumption may be relaxed [cf. Dehling 
(1989)]. Thus we have proved that .!ln 1 --+ 0 a.s. as n --+ oo. 

It remains to show that .!ln2 ~ 0 a.s. as n -+ oo. This is a direct consequence 
of a theorem of Feuerverger and Mureika (1977). This completes the proof of 
Theorem 3. O 
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