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Abstract. There is a unique distance regular graph with intersection array i (7, 6, 4, 4; l, l, l, 6); it ha.s 
330 vertices, and its automorphism group M 22 .2 acts distance transitively. It does not have an 
antipodal 2-cover, but it has a unique antipodal 3-cover, and this latter graph ha.s automorphism 
group 3.M22 .2 acting distance transitively. As a side result we show uniqueness of the strongly 
regular graph with parameters (u,k,.l,µ) = (231,30, 9, 3) under the assumption that it is a gamma 
space with lines of size 3. 

I. Uniqueness of the Cameron Graph 

There exists a strongly regular graph (sometimes called the Cameron graph) on 231 
vertices with full automorphism group M22 .2 constructed by taking as vertices the 
unordered pairs from a 22-set and joining two pairs whenever they are disjoint and 
their union is contained in a block of a (fixed) Steiner system S(3, 6, 22) on this 22-set. 
(For undefined terminology, see e.g. Cameron & van Lint [3].) This graph becomes 
the collinearity graph of a partial linear space with lines of size 3 if one takes as 
lines the triples of pairwise disjoint pairs whose union is a block of the Steiner 
system. This partial linear space is a gamma space, that is, given a line Land a point 
x outside, then x is collinear with zero, one or all points of L. The next theorem 
shows that this property characterizes our graph. 

Theorem 1. Let (X, 2') be a gamma space with lines of size 3 such that its collinearity 
graph I' is strongly regular with parameters (v, k, A.,µ) = (231, 30, 9, 3). Then I' is 
isomorphic to the Cameron graph described above. 

(Here, following common practice but unlike [3], v denotes the number of vertices, 
k the valency, A. the number of common neighbours of two adjacent vertices and µ 
the number of common neighbours of two nonadjacent vertices of a graph I'.) 

Proof Write I'(x) for the set of neighbours of a vertex x; µ(x, y) = I'(x) n I'(y) for 
the set of common neighbours of two nonadjacent vertices x and y. The graph 
induced by r on µ(x,y) is called a µ-graph. 

( l) Each µ-graph is either a 3-coclique or a line. 
(For: each {x} U I'(x) is a subspace of(X, Sf), and the intersection of subspaces 
is again a subspace.) 
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(2) Each vertex is in ten 7-cliques and each line in two 7-cliques; each 7-clique is 
a subspace isomorphic to the Fano plane. 
(For: maximal cliques are subspaces and have at most 11 vertices (e.g. because 
1 = 9), and at least 7 vertices; but no STS ( 11) exists, so there are two maximal 
cliques on each line and each has 7 vertices.) 

The m-ciique extension of a graph is obtained by replacing each vertex x by an 
m-clique C,,, and joining each vertex of Cx to each vertex of Cy whenever x - y. 
(3) For each vertex x, r(x) is isomorphic to the 2-clique extension of the line graph 

of the Petersen graph. 
(For: fonn a graph L1 with the Fano planes on x as vertices and the lines on x 
as edges and (reverse) inclusion as incidence. Then L1 has 10 vertices, valency 
3, no triangles and no quadrangles (otherwise Fwould haveµ;;:::: 5), so L1 is the 
Petersen graph.) 

Note that the line graph of the Petersen graph is an antipodal 3-cover of the 
complete graph K5 so that we have a concept of antipodal concurrent lines. 
(4) Each line Lis contained in a unique subspace isomorphic to the GQ(2,2) 

generalised quadrangle (For: let L = { x, y, z} and let M, N be the two lines on 
x antipodal to L, say M = { x, u, v }. Let p be a common neighbour of u and y 
distinct from x. Since Mis antipodal to L we have that µ(u,y) is a 3-coclique, 
sop .... x and µ(p, x) is a 3-coclique, so py is antipodal to Land pu is antipodal 
to M. It follows that the 8 common neighbours ofa point of L\{x} and a point 
of M\{x} lie on the 8 lines not on x antipodal to Lor M, and we find two 
3 x 3 grids having LUM in common. But these same 8 points are also joined 
to N\{x} by the 4 lines not on x antipodal to N, and the 15 points and 15 lines 
we have found form a GQ(2, 2). Uniqueness follows since in a GQ(2, 2) all 
µ-graphs are 3-cocliques so that any two intersecting lines are antipodal and 
the whole construction was forced.) 

Let us call a GQ(2, 2) subgraph (subgeometry) a quad. 
(5) There are 77 quads, 5 on each vertex, I on each line, and any two have at most 

one vertex in common. Two nonadjacent vertices x, y are in a quad if and only 
if µ(x,y) is a 3-coclique. Quads are geodetically closed. 
{For: if x..., y and µ(x,y) is a 3-coclique and p is a common neighbour of x and 
y then the lines px and py are antipodes, and y is in the unique quad containing 
px.) 

We shall write Q(L) and Q(x,y) for the unique quad on the line L or on the 
nonadjacent vertices x, y (this notation implying that µ(x,y) is a 3-coclique). 
( 6) Let Q be a quad and x rf: Q. Then F(x) n Q is either empty or a line. If we write 

I';(Q) = {yld(y,Q) = i} then IF0 (Q)I = 15, II'1 (Q)I = 120, II'2(Q)I = 96. 
(For: let L be a line on x meeting Qin y, then Lis in a Fano plane together 
with one of the three lines on y in Q.) 

(7) If Q, Q' are two quads, and Q n Q' = {z} then the 8 nonneighbours of z in Q' 
are in I'2(Q). There are 60 quads meeting Q in a single point, 5 on each point 
of I'2(Q), so there are 16 quads disjoint from Q and these are entirely contained 
within I'1 (Q). 
(For: let xeQ', ye Q, x,.., y, x,.., z then F(x) n Q is a line Lon y. This line does 
not contain z, so z has a neighbour on it and we may assume z - y. But now 
x - y - z and Q' is geodetically closed, soy E Q', contradiction.) 

(8) There are no three pairwise disjoint quads. 
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(For: suppose Q1, Q2 , Q3 are pairwise disjoint, and define yii: Q1 -+ Q/ by 
YiAx) = I'(x) n Qj, where Q* denotes the generalized quadrangle dual to Q. 
Then if!= Y3i oy12 is an isomorphism from Q1 ontoQ3 • IfxeQ1 and:1',.., l/t(x) 
then µ(x,ifl(x)) is the line y12 (x), but l/l(x) also has a neighbour on the line 
y13(x), contradiction. Thus x - t/l(x) for each x e Q, and y13 o t/J-1 is a polarity 
of Q3 where all points are absolute. But GQ(2, 2) has no such polarity, 
contradiction.) 

(9) For a graph LI with the quads as vertices, two quads being adjacent whenever 
they are disjoint. Then LI is the unique strongly regular graph with parameters 
(v,k,1,µ) = (77, 16,0,4) and is isomorphic with the graph that has the blocks 
of S(3, 6, 22) as vertices and pairs of disjoint blocks as edges. 
(For: we have seen v, k, A. and µ = 4 is easily checked. Now the result follows 
from Brouwer [2].) 

Now we might continue describing I' in terms of LI, exploiting detailed knowledge 
of LI. Instead I'll choose another way, showing the rank 4 structure of r. 
(10) I' carries a 3-class association scheme with (x,y)eR0 iff x = y, (x,y)eR 1 , 

ilT x - y, (x, y) E R 2 iff x ,.... y and µ(x, y) is a line (x, y) e R3 iff x ,.., y and µ(x, y) 
is a 3-coclique. The parameters are (P~i) =I, 

30 0 0) 
9 16 4 
3 21 6 , 

3 24 3 

(0 0 160 0) 
( . ) 0 16 112 32 
Pii ii = 1 21 108 30 ' 

,o 24 120 16 

(
·o o o 40) 

. 0 4 32 4 
(p~j) = 0 6 30 4 . 

\ 1 3 16 20 

(For: 
a) p5 3 = 4: If (x, y) E R1 , (x, z), (y, z) E R3 then by (7) x, y, z are all in one quad, the 

unique quad on xy, and in this quad there are 4 points nonadjacent to x and y. 
b) Pf3 = 4: Suppose µ(x,y) = L. There are two quads on x disjoint from L, and 

if Q is such a quad then yr/; Q and I'(y) n Q = 0 (otherwise I'(y) n Q would be 
a line and µ(x,y) would contain at least 4 points); y is in 5 quads and each 
meets Qin a single point. These 5 points form an ovoid, as follows from a) and 
hence 3 of them are adjacent to x. Remain 2 possibilities for z with (x,z)eR 3 

on each Q, so p~ 3 = 4. 
c) pl 3 = 4: Suppose x - y- z, (x,z)eR3 • Then Q(x,z) is the unique quad on xy 

and z is one of the 4 neighbours of y not on xy in this quad. 
d) pf3 = 3: Suppose x - z, (.x,y), (y,z)eR 3 • Then x, y, z are all in one quad Q(x,y) 

and z is one of the 3 neighbours of x nonadjacent toy in this quad. 
e) pf3 = 6: Suppose x - z, (x,y)eR 2 , (y,z)eR3 • Let Q = Q(y,z). By b} the line 

L = µ(x, y) meets Q, in a point p, say. Now I'(x) n Q is the line pz, and Q is the 
unique quad containing the line py. For p there are 3 choices on Land in each 
case we find two possibilities for z. 

f) p~ 3 = 20: Suppose (x,y)eR3 , Q = Q(x,y). Inside Q there are 4 points non
adjacent to x and y. Any other point z with (x,z), (y,z)ER3 must be in I'2 (Q). 
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If z e I'2 (Q) then the five quads on z meet Q in five points forming an oval 0 
in Q. Now Q has 6 ovals, and if 0, O' are any two ovals then there are precisely 
32 points z detennining either 0 or O' (for: 0 n O' = {p} and there are 32 
points nonadjacent top in the four quads distinct from Q on p); it follows that 
any given oval (and in particular the one containing x, y) is determined by 16 
points z. 
Thus p~ 3 = 4 + 16 = 20. 

All other pjk are determined by these (and the parameters of I' as a strongly regular 
graph).) 

(11) (x, R3 ) is isomorphic with the triangular graph (2;} 
(For: it has the right parameters by (10), and uniqueness follows by Connor 
[4].) . 

Let us identify the quads in this triangular graph. 

Lemma. Let L1 be a triangular graph (;) and Ta noncomplete subgraph isomorphic 

to (~)· If_ LI is labelled with (~)for some n-set Y then this labelling induces a 

labelling with(~) on T, where Z is some m-subset of Y. (In other words, there are 

only canonical ways co embed noncomplete triangular subgraphs.) 

Proof Let x, y be vertices of T labelled with ab and ac respectively. We prove that 
some vertex of T is labelled with be. Choose z ET, z ~ y, z - x. Then z is labelled 
with cd, say. Now µ(x, z) is a 4-circuit, so there are two vertices, u, v e T adjacent to 
each of x, y, z. But these must be labelled ad and be. O 

(This Lemma reminds me of recent work by J.I. Hall on Kneser graphs - probably 
it is a special case of some of his results.) 
(12) r is the graph with as vertices the pairs from a set of 22 symbols, where two 

pairs are adjacent whenever they are disjoint and their union is contained in 
a block of a S(3, 6, 22) design on the set of symbols. 
(For: the collinearity graph of a quad GQ(2, 2} is the complement of the 

triangular graph(~). so by the Lemma and (11) we can label X with the pairs 

from a set 1: of 22 symbols and the quads correspond to certain 6-subsets of 
1:. Each triple in 1: determines a unique quad, so these 6-sets form a Steiner 
system S(3, 6, 22) onJ:. If two pairs are adjacent in I' then they are nonadjacent 
in (X,R 3 ), i.e. disjoint, and they are contained in a quad.) O 

Remark. The association scheme described in (10) corresponds to the group action, 
i.e., M22 acts rank 4 on X with suborbits 1 + 30 + 160 + 40. 

2. Uniqueness of a Graph on 330 Vertices 

Define a graph I' with as vertices the 330 blocks of the Steiner system S(S, 8, 24) 
missing two fixed symbols. where two blocks are adjacent whenever they are 
disjoint. 
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We have the following correspondence between graph distance and size of 
intersection: 

IBnB'I d(B,B') 
8 0 
0 l 
2 3 

4 {: 

if the sextet determined by B and B' has both 
fixed symbols in the same tetrad, 
otherwise. 

It is easy to check r is distance regular (in fact, distance transitive) with intersection 
array i(7, 6, 4, 4; 1, l, l, 6). Thas full group ofautomorphisms M22 .2. The vertices, 
edges and Petersen subgraphs of r form a geometry with Buekenhout diagram 

o--=-0---o 
1 2 2 

330 1155 231 
points edges Petersen subgraphs 

Our aim here is to prove uniqueness of r from its parameters. Let us start with a 
lemma producing the Petersen subgraphs. 

Lemma. Let I' be a graph withµ= c3 = 1 and ,l = 0, a 2 = 2. Then any two vertices 
at distance two in I' determine a unique induced Petersen graph. 

(For notation, see Biggs [l]; we do. not suppose that Fis distance regular.) 

Proof 

a u 

Let d(a,x) = 2, with a...., p"' x. Let x have heighbours w, yin I'2 (a), with a - r - w, 
a - q· - y. Since r has girth 5, all points mentioned are distinct. Since w has two 
neighbours (r and x) in I'2 (q} we have d(w,q) = 2, sy q - v - w, and similarly 
r - z - y. Again d(v, z) = 2 (not v - z, since v ,,,, z ,,,, r - w - v would be a 4-circuit, 
and not d(v,z) = 3 since {w,q} c:: I'(v)nr;(z)) so v,.., u,.,,, z for some vertex u. We 
must have d(a, u) = 2 and d(p, v) = 2 sop - u, completing our Petersen graph. O 

(We find that there are k(k - 1)/6 Petersen graphs on a vertex and vk(k - 1)/60 
Petersen graphs altogether, so these numbers must be integers for a graph r 
satisfying the hypotheses of the Lemma.) 

This Lemma applies to our graph on 330 vertices as well as to its antipodal 
2-covers and 3-covers (these pass all known existence criteria). The three distance 
distribution diagrams are 
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u = 330 

u = 660 

u = 990 

In these cases we have k = 7, each vertex x is in 7 Petersen graphs arid the triples 
induced by these on I'(x) must form the Fano plane; in particular, two Petersen 
graphs on a vertex x have an edge in common. 

Proposition. There is no distance regular graph on 660 vertices with intersection array 
i(7, 6, 4, 4, 3, 1, 1, l; 1, 1, 1, 3, 4, 4, 6, 7). 

Proof Let I'be such a graph. Choose vertices x0 , a, b, x 8 with d(x0 ,x8 ) = 8, a - b, 
{a,b} c: Tt{x0 )n F4 (x8 ). Since c4 = 3 is odd, there must be a Petersen graph Pon 
the edge ab meeting both I'3(xo) n I'(a) and I'3(xs) n I'(a), say X3 E p n I'(a) n £; (xo), 
x 5 ePn I'(a)n I'J{.x 8 ). Let x0 - x 1 - x 2 - x3 - a - x 5 - x 6 - x 7 - x8 be a geo
desic. P must have an edge in common with the Petersen graph determined by x 1 

and x3 , and this edge lies in I'3 (x0 ); similarly, P must have an edge in I'5 (x0 )- but 
one easily sees that this is impossible since a4 = 1. O 

Theorem 2. There is a unique distance regular graph r on 330 vertices with intersec
tion array i(7, 6, 4, 4; 1, 1, l, 6). 

Proof We first show that the graph .d with as vertices the Petersen subgraphs of r 
where two Petersen graphs are adjacent when they meet, is isomorphic to the 
Cameron graph. First of all LI has 231 vertices and valency 30. 

Claim. The distance distribution around a Petersen graph P is 

Indeed: P is geodetically closed so any point in I'1 (P) has a unique neighbour 
in P. Also, if x, yeP with d(x,y) = 2 then the two neighbours of y at distance two 
to x are in Pandit follows that T1 (P) is a coclique. If z E I'2(P) then at most 7 points 
of P can be in I'2 (z), so there are points of P in I'3 (z). Now since c3 = 1 we must 
have that I'2(z) n P is geodetically closed and hence is an edge. If P' is the unique 
Petersen graph on z meeting P then P' contains an edge on z in I'2 (P), so z has at 
most 4 neighbours in I'3 (P). The maximum possible distance to P is 3 since I' has 
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diameter 4 and a4 = 1 < 3. If some point u e T3(P) had at most two neighbours in 
I'z(P) then IP n I'3 (u)I ~ 4, and removing at most two edges from P we are left with 
a graph where each vertex has degree at most one - impossible. Thus the number 
of edges between r 2 (P) and I'3 (P) is both at most and at least 480 = 4.120 = 3.160 
and we have equality everywhere, proving the claim. 

Let us compute A. If P, P' and P" are three Petersen graphs that have pairwise 
nonempty intersection then by the previous P n P' n P" is nonempty. Let P n P' = 
{u, v}, then there is one more Petersen graph on {u, v}, and 4 others on u and on v, 
so that 1 = 1 + 4 + 4 = 9. 

Next look at µ. There are two possibilities (as was to be expected, since the 
Cameron graph is rank 4, not rank 3): (i) P' meets T1(P), and (ii) d(P,P') > 1. 

In the first case we see from "a2(P} = l" that any P" meeting both P and P' must 
contain the (unique, since c3 = 1) edge joining P and.P' so that P and P' have three 
common neighbours. 

In the second case we see from the distance distribution diagram around P and 
the fact that any two Petersen graphs on a point have an edge in common, that P' 
contains 3 edges in I'2 (P). 

(Indeed, if u e T3{P) then u is in 6 Petersen graphs meeting I'1 (P), two on each 
edge uv with v e I'2 (P). sou is in a unique Petersen graph P' not meeting T1(P), and 
P' contains the three neighbours of u in T2 (P) so that P' n IJ(P) is a coclique. But 
the only way to split a Petersen graph into a coclique and a graph where each vertex 
has degree (at most) one is as K4 + 3K2 .) 

Thusµ = 3, and by Theorem 1 the graph .d is isomorphic to the Cameron graph. 
{Clearly the 3-lines of .d are the triples of Petersen graphs on a given edge, and the 
computation of 1 also proved the Gamma space property.) 

[This gives us a 22-set E and a Steiner system S(3, 6, 22) on E and a labelling of 

LI with ( ~) such that Petersen graphs at distance 2 correspond to inters~ctiri.g 
pairs and intersecting Petersen graphs correspond to disjoint pairs contained in a 
block of the Steiner system. We want to let the vertices of r correspond to 
8-subsets of E. This is done as follows: 

Given a vertex x, it is in 7 Petersen graphs labelled with 7 pairwise disjoint pairs 
of symbols. Label x with the set of 22 - 2.7 = 8 remaining symbols. We shall 
however not use this labelling.] 

·Each vertex x determines a 7-clique in .LI, and we find 330 7-cliques in LI in this 
way; but .d has only 330 7-cliques, 10 on each vertex of LI, so we indentify r as the 
graph with as vertices the Fano planes in LI, where two Fano planes are adjacent 
when they have a line in common. This shows that r is uniquely determined. O 

Remarks. The Petersen subgraphs arise as follows: 
Let ex, p be the two fixed symbols chosen in the symbol set EU {cx,P} in order to 

define r. Any sextet such that ex and f3 lie in the same tetrad T of the sextet has 5 
remaining tetrads, and the union of the any two of these is a block of S(S, 8,24}, 
giving 10 blocks altogether, and these 10 blocks induce a Petersen subgraph in r. 
The pair this Petersen graph is labelled with is T\ {a., P}, showing that the labelling 
proposed above is the correct one. 

The suborbit lengths (1 + 7 + 42 + 168 + 112) were given incorrectly by 
Fischer & McKay [5] but are stated correctly in Ivanov, Klin & Faradjev 
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[6]. The full automorphism group of I' is Mn.2, but already M22 acts distance 
transitively. 

3. Uniqueness ofa Graph on 990 Vertices 

Recently, existence of a distance transitive graph on 990 vertices with intersection 
array i(7, 6, 4, 4, 4, l, 1, 1; l, 1, l, 2, 4, 4, 6, 7) was shown by Ivanov, Ivanov & 
Faradjev [7]. Its full automorphism group is 3.M22.2; it is already distance transi
tive under 3.M22 . This graph is interesting for several reasons; for instance, it 
provides an example of a distance regular graph where the sequence (ai)O::>i::>d is 
not unimodal. 

Theorem 3. There is a unique distance regular graph 'f on 990 vertices with intersec
tion array i(7, 6, 4, 4, 4, 1, 1, 1; 1, l, 1, 2, 4, 4, 6, 7). 

Proof As before we find Petersen graphs; the distance distribution around a 
Petersen graph P is 

Let l' be an antipodal 3-cover of I'. Pick a Petersen graph P in I' and a vertex 
xe T3 (P). Then JJ(x) n P ~ 3K2 • Since P has only five subgraphs isomorphic to 
3K2 we see that I'3 (P) is a 32-cover of the complete graph K 5• Put L1 = I'3 (P) and 
consider the inverse images of P, x and L1 in l'. Above P we see three Petersen graphs 
JS1 , P2 , P3 at mutual distance 6. If x is one of the three vertices above x then l;(x) n Pi 
is a single edge (j = l, 2, 3) s~ that we find a labelling of the three edges in I'3(x) n P 
with { 1, 2, 3}. If x "' ji e T3(~) then the labelling of the three edges in I'J{y) n P 
determined by y is given by the requirement that each edge in f3(y) n p has the 
same label as the edge in I'3 (x) n Pit meets. 

Ifx1 , i 2 , i 3 are the three vertices above x then these determine three labellings 
of the three edges in f3(x)n P that are cyclic shifts of each other (since for i :I- j we 
have dji;. xi) = 8 so X; and xi cannot both have distance 3 to the same vertex of 
some Ph)-

Now L1 is connected, so identifying the vertex set of LI with L1 x Z3 all adjacencies 
in J are determined and clearly this determines l'. Thus there is at most one 
possibility for .I' and by the result oflvanov, Ivanov & Faradjev there is a unique l'. 

0 

Remark. I have not determined whether 1 is the union of three copies of L1 or is 
connected, since that is unimportant for·the above argument. 

The distance distribution diagram for LI follows. (We have v = 160, k = (1,4, 12, 
30, 60, 46, 7).) 
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