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This paper focuses on an infinite-server queue modulated by an independently evolving
finite-state Markovian background process, with transition rate matrix Q ≡ (qij)

d
i,j=1.

Both arrival rates and service rates are depending on the state of the background process.
The main contribution concerns the derivation of central limit theorems (CLTs) for the
number of customers in the system at time t ≥ 0, in the asymptotic regime in which the
arrival rates λi are scaled by a factor N , and the transition rates qij by a factor Nα, with

α ∈ R
+. The specific value of α has a crucial impact on the result: (i) for α > 1 the system

essentially behaves as an M/M/∞ queue, and in the CLT the centered process has to be

normalized by
√

N ; (ii) for α < 1, the centered process has to be normalized by N1−α/2,
with the deviation matrix appearing in the expression for the variance.
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1. INTRODUCTION

The infinite-server queue has been intensively studied, perhaps owing to its wide applica-
bility and attractive computational features. In these systems jobs arrive according to a
given arrival process, go into service immediately, are served in parallel, and leave when
their service is completed. An important feature of this model is that there is no waiting:
jobs do not interfere with each other. The infinite-server queue was originally developed to
analyze the probabilistic properties of the number of calls in progress in a trunk in a com-
munication network, as an approximation of the corresponding system with many servers.
More recently, however, various other application domains have been identified, such as
road traffic [17] and biology [15].

In the most standard variant of the infinite-server model, known as the M/M/∞ model,
jobs arrive according to a Poisson process with a fixed rate λ, where the service times are
i.i.d. samples from an exponential distribution with mean μ−1 (independent of the job
arrival process). A classical result states that the stationary number of jobs in the system
has a Poisson distribution with mean λ/μ. Also the transient behavior of this queueing
system is well understood.

In many practical situations, however, the assumptions underlying the standard infinite-
server model are not valid. The arrivals often tend to be “clustered” (so that the assumption
of a fixed arrival rate does not apply), while also the service distribution may vary over time.
This explains the interest in Markov-modulated infinite-server queues, so as to incorporate
“burstiness” into the queue’s input process. In such queues, the input process is modulated
by a finite-state (of dimension d ∈ N) irreducible continuous-time Markov process (J(t))t∈R,
often referred to as the background process or modulating process, with transition rate matrix
Q ≡ (qij)d

i,j=1. If J(t) is in state i, the arrival process is (locally) a Poisson process with rate
λi and the service times are exponential with mean μ−1

i (while the obvious independence
assumptions are assumed to be fulfilled).

The Markov-modulated infinite-server queue has attracted some attention over the past
decades (but the number of papers on this type of system is relatively modest, compared
to the vast literature on Markov-modulated single-server queues). The main focus in the
literature so far has been on characterizing the steady-state number of jobs in the sys-
tem; see for example [5,7,8,12,14] and references therein. Interestingly, there are hardly any
explicit results on the probability distribution of the (transient or stationary) number of
jobs present: the results are in terms of recursive schemes to determine all moments, and
implicit characterizations of the probability generating function (pgf).

An idea to obtain more explicit results for the distribution of the number of jobs in
the system, is by applying specific time-scalings. In [2,9] a time-scaling is studied in which
the transitions of the background process occur at a faster rate than the Poisson arrivals.
As a consequence, the limiting input process becomes essentially Poisson (with an arrival
rate being an average of the λi s); a similar property applies for the service times. Under
this scaling, one gets in the limit the Poisson distribution for the stationary number of
jobs present. Recently, related transient results have been obtained as well, under specific
scalings of the arrival rates and transition times of the background process [2,4].

1.1. Contribution

Our work considers a time-scaling featuring in [2,4] as well. In this scaling, the arrival rates
λi are inflated by a factor N , while the background process (J(t))t∈R is sped up by a factor
Nα, for some α ∈ (0,∞). The primary focus is on the regime in which N grows large.
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The object of study is the number of jobs in the scaled system at time t, in the sequel
denoted by M (N)(t). More specifically, we aim at deriving a central limit theorem (CLT)
for M (N)(t), as well as for its stationary counterpart M (N). Interestingly, we find different
scaling regimes, based on the value of α. The rationale behind these different regimes lies
in the fact that for α > 1 the variances of M (N)(t) and M (N) grow essentially linearly in
N , while for α < 1 they grow as N2−α.

It is important to notice that there are actually two variants of this Markov-modulated
infinite-server queue. In the first (to be referred to as “Model i”) the service times of jobs
present at time t are subject to a hazard rate that is determined by the state J(t) of the
background process at time t. In the second variant (referred to as “Model ii”) the service
times are determined by the state of the modulating process at the job’s arrival epoch (and
hence can be sampled upon arrival).

The main contribution of our work is that we develop a unified approach to prove
the CLTs for both Models i and ii for the scalings given above, for arbitrary α ∈ (0,∞),
and for both the transient and stationary regimes. The technique used can be summarized
as follows. We first derive differential equations for the pgf s of the transient number of
jobs in the system M (N)(t) as well as its stationary counterpart M (N) (for both models).
The next step is to establish laws of large numbers: we identify �(t) (�, respectively) to
which N−1M (N)(t) (N−1M (N), respectively) converges as N → ∞. This result indicates
how M (N)(t) and M (N) should be centered in a CLT. The thus obtained centered random
variables are then normalized (i.e., divided by Nγ , for an appropriately chosen γ), so as
to obtain the CLT. As suggested by the asymptotic behavior of the variance of M (N)(t)
and M (N), as we pointed out above, the appropriate choice of the parameter γ in the
normalization is γ = (1/2) for α > 1, and γ = 1 − (α/2) for α < 1. The proofs rely on (non-
trivial) manipulations of the differential equations that underly the pgf s. For α < 1 the
deviation matrix [6] appears in the CLT in the expression for the variance.

1.2. Relation to the Previous Work

In our preliminary conference paper [3] we just covered Model i, with an approach similar
to the one featuring in the present paper. In [2] the transient regime of Model ii is analyzed,
but just for α > 1, relying on a different and more elaborate methodology. New results of
this paper are: (i) Model ii for α ≤ 1; (ii) the clt for the stationary number of jobs M (N) in
Model ii; and (iii) results on the correlation across time. The main contribution, however,
concerns the unified approach: where earlier work has been using ad hoc solutions for the
scenario at hand, we now have a general “recipe” to derive CLTs of this kind. Current
work in progress aims at functional versions of the CLTs for the process (M (N)(t))t∈R; [1]
covers the special case of uniform service rates, which constitutes the intersection of Models
i and ii.

1.3. Organization

The organization of this paper is as follows. In Section 2, we explain the model in detail
and introduce the notations used throughout the paper. Section 3 provides a systematic
explanation of our technique for proving this kind of CLTs; in addition, we demonstrate the
approach for a special case, viz. the transient analysis for the model with uniform service
rates (in which Models i and ii coincide). In Section 4, we recall the results for Model i

as derived in the precursor paper [3]. Then in Section 5, we state and prove for Model ii

the CLTs, both for the stationary and transient distribution. The single-dimensional con-
vergence can be extended to convergence of the finite-dimensional distributions (viz. at
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different points in time); see Section 6. In Section 7, we provide some numerical examples
so as to get insight into the speed of convergence to the various limiting regimes. The final
section of the paper, Section 8, contains a discussion and concluding remarks.

2. MODEL DESCRIPTION AND PRELIMINARIES

In this section, we first provide a detailed model description. We then give a number of
explicit calculations for the mean and variance of M (N)(t), that indicate how this random
variable should be centered and normalized so as to obtain a CLT. We conclude by pre-
senting a number of preliminary results (e.g., a number of standard results on deviation
matrices).

2.1. Model Description, Scaling

The main objective of this paper is to study an infinite-server queue with Markov-modulated
Poisson arrivals and exponential service times. In full detail, the model is described as
follows.

2.1.1. Model Consider an irreducible continuous-time Markov process (J(t))t∈R on a
finite state space {1, . . . , d}, with d ∈ N. Let its transition rate matrix be given by Q ≡
(qij)d

i,j=1; here the rates qij are nonnegative if i �= j, whereas qii = −∑j �=i qij (so that the
row sums are 0). Let πi be the stationary probability that the background process is in
state i, for i = 1, . . . , d; due to the irreducibility assumption there is a unique stationary
distribution. The time spent in state i (often referred to as the transition time) has an
exponential distribution with mean 1/qi, where qi := −qii.

Let M(t) denote the number of jobs in the system at time t, and M its steady-state
counterpart. The dynamics of the process (M(t))t∈R can be described as follows. While the
process (J(t))t∈R, usually referred to as the background process or modulating process, is in
state i ∈ {1, . . . , d}, jobs arrive at the queue according to a Poisson process with rate λi ≥ 0.
The service times are assumed to be exponentially distributed with rate μi, however, more
importantly this statement can be interpreted in two ways:

Model i: In the first variant of our model, the service times of all jobs present at a certain
time instant t are subject to a hazard rate determined by the state J(t) of back-
ground chain at time t, regardless of when they arrived. Informally, if the system
is in state i, then the probability of an arbitrary job leaving the system in the
next Δt time units is μi Δt.

Model ii: In the second variant the service rate is determined by the background state as
seen by the job upon its arrival. If the background process was in state i, the
service time is sampled from an exponential distribution with mean μ−1

i .

The difference between the two models is nicely illustrated by the following alternative
representation [5]. In Model i M(t) has a Poisson distribution with random parameter
ψ(J), while in Model ii it is Poisson with random parameter ϕ(J), where J ≡ (J(s))s∈[0,t],
and

ψ(f) :=
∫ t

0

λf(s)e
− ∫ t

s
μf(r)drds, ϕ(f) :=

∫ t

0

λf(s)e
−μf(s) (t−s)ds, (1)

with f : [0, t] 	→ {1, . . . , d}.
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2.1.2. Scaling In this paper, we consider a scaling in which both (i) the arrival process,
and (ii) the background process are sped up, at a possibly distinct rate. More specifically,
the arrival rates are scaled linearly, that is, as λi 	→ Nλi, whereas the background chain is
scaled as qij 	→ Nαqij , for some positive α. We call the resulting process (M (N)(t))t∈R, to
stress the dependence on the scaling parameter N ; the corresponding background process
is denoted by (J (N)(t))t∈R.

The main objective of this paper is the derivation of CLTs for the number of jobs in
the system, as N grows large. As mentioned in the introduction, the parameter α plays an
important role here: it turns out to matter whether α is assumed smaller than, equal to, or
larger than 1. Letting the system start off empty at time 0, we consider the number of jobs
present at time t, denoted by M (N)(t); we write M (N) for its stationary counterpart.

Our main result is a “non-standard CLT”: for a deterministic function �(t),

M (N)(t) −N�(t)
Nγ

(2)

converges in distribution to a zero-mean Normal distribution with a certain variance, say,
σ2(t). It is important to note that in the case α > 1 we have that the parameter γ equals
the usual (1/2), while for α ≤ 1 it has the uncommon value 1 − (α/2). A similar dichotomy
holds for the stationary counterpart M (N). In the next subsection, we present explicit
calculations for the mean and variance of M (N)(t) and M (N) that explain the reason behind
this dichotomy.

2.2. Explicit Calculations for the Mean and Variance

We now present a number of explicit calculations for the mean and variance of the number of
jobs present; for ease we consider the case that μi = μ for all i ∈ {1, . . . , d}, so that Models
i and ii coincide. We assume J(0) is distributed according to the stationary distribution of
the Markov chain J(t). Directly from, for example, [2], for any N ∈ N,

EM (N)(t)
N

= �(t) :=
1 − e−μt

μ

d∑
i=1

πiλi,
EM (N)

N
= � :=

1
μ

d∑
i=1

πiλi.

We now concentrate on the corresponding variance; we first consider the non-scaled
system, to later explore the effect of the time-scaling. In the sequel we use the notation
pij(t) := P(J(t) = j |J(0) = i). The “law of total variance”, with J ≡ (J(s))t

s=0, entails that

VarM(t) = E Var(M(t) |J) + Var E(M(t) |J). (3)

We first recall from (1) that M(t) obeys a Poisson distribution with the random parameter
ϕ(J). As a result, the second term on the right-hand side of (3) can be written as

Varϕ(J) = Var
(∫ t

0

λJ(s)e
−μ (t−s)ds

)
=
∫ t

0

∫ t

0

Cov
(
λJ(u)e

−μ (t−u)λJ(v)e
−μ (t−v)

)
du dv,

which can be decomposed into I1 + I2, where

I1 :=
d∑

i=1

d∑
j=1

λiλjKij , with Kij :=
∫ t

0

∫ v

0

e−μ(t−u)e−μ(t−v)πi (pij(v − u) − πj) du dv,

I2 :=
d∑

i=1

d∑
j=1

λiλjLij , with Lij :=
∫ t

0

∫ t

v

e−μ(t−u)e−μ(t−v)πj (pji(u− v) − πi) du dv.
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Let us first evaluate Kij . To this end, substitute w := v − u (i.e., replace u by v − w), and
then interchange the order of integration, so as to obtain

Kij = e−μtπi

∫ t

0

(∫ t

w

e2μvdv

)
e−μ(t+w) (pij(w) − πj) dw.

Performing the inner integral (i.e., the one over v) leads to

Kij =
1
2μ
e−μtπi

∫ t

0

(
eμ(t−w) − e−μ(t−w)

)
(pij(w) − πj) dw.

The integral Lij can be evaluated similarly:

Lij = e−μtπj

∫ t

0

(∫ t−w

0

e2μvdv

)
e−μ(t−w) (pji(w) − πi) dw

=
1
2μ
e−μtπj

∫ t

0

(
eμ(t−w) − e−μ(t−w)

)
(pji(w) − πi) dw = Kji.

The first term in the right-hand side of (3) is easily evaluated, again relying on the fact that
M(t) has a Poisson distribution, conditional on J :

E Var(M(t) |J) =
d∑

i=1

πiλi

∫ t

0

e−μsds =
1 − e−μt

μ

d∑
i=1

πiλi = �(t).

Now we study the effect of the time-scaling: we replace λi by Nλi (for i = 1, . . . , d) and
pij(w) by pij(Nαw) (for i, j = 1, . . . , d). Introduce the deviation matrix D, by

[D]ij :=
∫ ∞

0

(pij(t) − πj) dt;

see for example, [6]. Combining the above results, it is a matter of some elementary algebra
to verify that, in obvious notation,

VarM (N)(t) ∼ N�(t) +N2−α 1 − e−2μt

μ

d∑
i=1

d∑
j=1

πiλiλj [D]ij .

From this relation, the above-mentioned dichotomy becomes clear. It is observed that for
α > 1 the variance of M (N)(t) grows linearly in N , and is essentially equal to the corre-
sponding mean, viz. N�(t). The intuition here is that in this regime the background process
jumps faster than the arrival process, so that the arrival stream is nearly Poisson with
parameter

∑d
i=1 πiλi. The resulting system behaves therefore, as N → ∞, essentially as an

M/M/∞. If α < 1 the background process is slower than the arrival process. The variance
of M (N)(t) now grows like N2−α, proportionally to a constant that is a linear combination
of the entries of the deviation matrix D.

The above computations were done for the transient number of jobs M (N)(t), but
obviously an analogous reasoning applies to its stationary counterpart M (N).
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2.3. Preliminaries on Deviation Matrices, Additional Notation

In this subsection, we recall a number of key properties of deviation matrices; for more
detailed treatments we refer to for example, the standard texts [11,13,16], as well as the
compact survey [6]. We also introduce additional notation, which is intensively used later on.

We define the diagonal matrices Λ and M, where [Λ]ii = λi and [M]ii = μi. We denote
the invariant distribution corresponding to the transition matrix Q by the vector π; we
follow the convention that vectors are column vectors unless stated otherwise, and that
they are written in bold fonts. As π denotes the invariant distribution, we have πTQ = 0T

and πT1 = 1, where 0 and 1 denote vectors of zeros and ones, respectively. In the sequel,
we frequently use the “time-average arrival rate” λ∞ :=

∑d
i=1 πiλi = πTΛ1, and the “time

average departure rate” μ∞ :=
∑d

i=1 πiμi = πTM1.
We recall some concepts pertaining to the theory of deviation matrices of Markov

processes; see for example, [6]. In particular, we let Π := 1πT denote the ergodic matrix.
We also define the fundamental matrix F := (Π −Q)−1. It turns out that the deviation
matrix D, introduced above, satisfies D = F − Π. We will frequently use the identities
QF = FQ = Π − I, as well as the facts that ΠD = DΠ = 0 (here 0 is to be read as an
all-zeros d× d matrix) and F1 = 1.

We use the following three vector-valued generating functions throughout the paper: p
denotes the unscaled pgf; p̄ ≡ p̄(N) denotes the corresponding moment generating function
(mgf) under the law-of-large-numbers scaling; and p̃ ≡ p̃(N) denotes the mgf centered and
normalized appropriately for the CLT at hand. For the transient cases, these generating
functions involve an extra argument t to incorporate time. Importantly, all three generating
functions are vectors of dimension d as we consider distributions jointly with the state of
the background process; to make the notation easier, we assume that these vectors are
row vectors. Lastly, φ ≡ φ(N) denotes the scalar mgf under the centering and normalization
(obtained by summing the elements of p̃).

3. OUTLINE OF CLT PROOFS

In this section, we point out how we set up our CLT proofs. In the next two sections
this “recipe” is then applied to analyze Models i and ii, covering both the transient and
stationary number of jobs in the system. We use a fairly classical approach to proving the
CLTs for centered and normalized sequences of random variables of the type (2). More
specifically, our objective is to show that under the appropriate normalization (i.e., an
appropriate choice of γ), the mgf of (2) converges to that of the Normal distribution; the
same is done for the stationary counterpart of (2).

Our technique consists of the following steps.

(a) Derive a differential equation for the pgf p of the random quantities M(t) and M .
(b) Establish the “mean behavior” �(t) (�, respectively) of M (N)(t) (M (N), respec-

tively). This law of large numbers follows by manipulating the mgf p̄ ≡ p̄(N),
obtaining a scalar limit solution exp(ϑ�(t)) in the transient case, and exp(ϑ�) in
the stationary case.

(c) Reformulate the differential equation for the uncentered and unnormalized pgf p

into a recurrence relation for the centered and normalized mgf p̃ ≡ p̃(N).
(d) Manipulate and iterate this equation, approximate by suitable Taylor expansions,

to obtain a differential equation for the scalar mgf φ under the chosen centering
and normalization.
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(e) Discard asymptotically vanishing terms, so as to obtain a unique limit solution, viz.,
φ(ϑ) = exp(ϑ2σ2(t)) in the transient case and φ(ϑ) = exp(ϑ2σ2) in the stationary
case. We explicitly identify σ2(t) and σ2.

This limit solution resulting from the last step corresponds to a zero-mean Normal dis-
tribution. Due to Lévy’s continuity theorem, this pointwise convergence of characteristic
functions implies convergence in distribution to the zero-mean Normal random variable, so
that we have derived the CLT. Issues related to the uniqueness of the solution of the differ-
ential equation are dealt with in the Appendix. Below we demonstrate this proof technique
for the special case that the service rates in each of the states are identical, that is, M = μI
for some μ > 0, so that Models i and ii coincide. Importantly, Proposition 1 in Section 3.1
holds for general M.

3.1. Differential Equations for the pgf p

First we derive a system of differential equations for the pgf of the number of jobs in the
system, jointly with the background state. We consider the bivariate process (M(t), J(t))t∈R,
which is an ergodic Markov process on the state space {1, . . . , d} × N. With the states of
this process enumerated in the obvious way, it has the (infinite-dimensional) transition rate
matrix ⎛

⎜⎜⎜⎜⎜⎝

Q− Λ Λ
M Q−M− Λ Λ

2M Q− 2M− Λ Λ
3M Q− 3M− Λ Λ

.. . . . . . . .

⎞
⎟⎟⎟⎟⎟⎠ .

We set out to find the transient distribution (pk(t))∞k=0, where pk(t) is a d-dimensional
row-vector whose entries are defined by [pk(t)]j := P(M(t) = k, J(t) = j). The (row-vector-)
pgf p(t, z) is then defined through

p(t, z) :=
∞∑

k=0

pk(t)zk,

such that

[p(t, z)]j = E

(
zM(t)1{J(t)=j}

)
.

Proposition 1: The pgf p(t, z) satisfies the following differential equation:

∂p(t, z)
∂t

= p(t, z)Q+ (z − 1)
(
p(t, z) Λ − ∂p(t, z)

∂z
M
)
.

Proof: The result follows from classical arguments. By virtue of the Chapman–Kolgomorov
equation, we have that

dpk(t)
dt

= pk−1(t)Λ + pk(t)(Q− Λ − kM) + (k + 1)pk+1(t)M, (4)

for all k ∈ N, where we put p−1(t) := 0 for all t ≥ 0.



MARKOV-MODULATED INFINITE-SERVER QUEUES 441

From the standard relations

∞∑
k=0

(k + 1)pk+1(t)z
k =

∂p(t, z)
∂z

, and
∞∑

k=0

kpk(t)zk = z
∂p(t, z)
∂z

,

we obtain by multiplying both sides of (4) by zk and summing over k ∈ N,

∂p(t, z)
∂t

= zp(t, z)Λ + p(t, z)(Q− Λ) − z
∂p(t, z)
∂z

M +
∂p(t, z)
∂z

M.

The claim follows directly. �

We assume that at time 0 the system starts off empty. Under the scaling Λ 	→ NΛ and
Q 	→ NαQ, Proposition 1 implies that we have the following system of partial differential
equations (PDEs) governing (M (N)(t), J (N)(t)):

∂p(N)(t, z)
∂t

= Nαp(N)(t, z)Q+ (z − 1)
(
Np(N)(t, z)Λ − ∂p(N)(t, z)

∂z
M
)

(5)

describing the pgf p(N) of the number of jobs in the scaled system.

3.2. Mean Behavior

In the remainder of this section, we assume that all service rates are identical: M = μI.
To obtain the limiting behavior of N−1M (N)(t) when N grows large, it turns out to be
convenient to take the following steps.

(i) Rewrite the differential equation (5) as a recurrence relation for p(N) involving the
fundamental matrix F ; recall from Section 2.3 the relation QF = Π − I.

(ii) Translate this into a recurrence relation in terms of the mgf p̄(N) of N−1M (N)(t),
using a Taylor expansion for z = exp(ϑ/N).

(iii) Sum over the possible background states by postmultiplying with 1, so as to obtain
a scalar mgf; in this step we make use of the identity F1 = 1.

(iv) Obtain the limiting differential equation by taking the limit for N → ∞. This
equation has a closed solution. This is the mgf of the limiting constant �(t).

In this way we have proven the convergence in distribution of N−1M (N)(t) to �(t); as
this limit is a constant, convergence in probability follows immediately.

Let us go through the procedure in full detail now. Postmultiplication of Eq. (5) with
F and N−α, using QF = Π − I, results in the recurrence relation

p(N)(t, z) = p(N)(t, z)Π +N−α(z − 1)
(
Np(N)(t, z)Λ − ∂p(N)(t, z)

∂z
M
)
F

− N−α ∂p
(N)(t, z)
∂t

F. (6)

We are now set to state and prove the mean behavior of M (N)(t). Define �(t) := � (1 −
e−μt), with � = λ∞/μ.



442 J. Blom et al.

Lemma 1: N−1M (N)(t) converges in probability to �(t), as N → ∞.

Proof: We introduce the transient scaled mgf p̄(N)(t, ϑ):

p̄(N)(t, ϑ) := p(N)(t, z),

with z ≡ z(N)(ϑ) = exp(ϑ/N). Evidently,

∂p̄(N)(t, ϑ)
∂t

=
∂p(N)(t, z)

∂t
,

∂p̄(N)(t, ϑ)
∂ϑ

=
∂p(N)(t, z)

∂z

dz

dϑ
=

z

N

∂p(N)(t, z)
∂z

.

Substituting these expressions into Eq. (6) and noting that z±1 = 1 ± ϑN−1 +O(N−2), we
obtain

p̄(N)(t, ϑ) = p̄(N)(t, ϑ)Π +N−α

(
ϑ p̄(N)(t, ϑ) Λ − ϑ

∂p̄(N)(t, ϑ)
∂ϑ

μI

− ∂p̄(N)(t, ϑ)
∂t

)
F + o(N−α).

The above implies that p̄(N)(t, ϑ) = p̄(N)(t, ϑ)Π +O(N−α), and the same holds for the
partial derivatives of p̄(N)(t, ϑ), so all p̄(N)(t, ϑ) between the brackets can be replaced by
p̄(N)(t, ϑ)Π. Postmultiplying by 1Nα and using the identities Π1 = 1 and F1 = 1, yields

0 =
(
ϑλ∞p̄(N)(t, ϑ)1 − μϑ

∂p̄(N)(t, ϑ)
∂ϑ

1 − ∂p̄(N)(t, ϑ)
∂t

1
)

+ o(1);

recall the definitions Π := 1πT and λ∞ := πTΛ1. Define p̄(t, ϑ)1 as the limit of p̄(N)(t, ϑ)1
as N → ∞. Now multiply the differential equation with Nα and let N → ∞. We thus obtain
a scalar PDE in p̄(t, ϑ)1

∂(p̄(t, ϑ)1)
∂t

= ϑλ∞(p̄(t, ϑ)1) − μϑ
∂(p̄(t, ϑ)1)

∂ϑ
.

It is straightforward to check that p̄(t, ϑ)1 = exp(ϑ�(t)) satisfies the equation as well as the
boundary conditions p̄(t, 0)1 = 1 and p̄(0, ϑ)1 = 1. Now the stated follows directly. �

3.3. Recurrence Relations for the Centered and Normalized mgf p̃(N)

Now that we have derived the weak law of large numbers, we introduce in the next step
the centered and normalized mgf p̃(N)(t, ϑ), that is, centered around N�(t) and normalized
by N−γ , with the scalar γ yet to be determined. We perform a change of variables in the
recurrence relation for p(N), Eq. (6), so as to obtain the recurrence relation for the centered
and normalized mgf p̃(N).
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The pgf p(N) can be expressed in the normalized and centered mgf p̃(N) using

p̃(N)(t, ϑ) = exp(−N�(t)ϑ/Nγ)p(N) (t, exp(ϑ/Nγ)) ,

which can be written as

p(N)(t, z) = exp(�(t)ϑN1−γ) p̃(N)(t, ϑ),

with z ≡ z(N)(ϑ) = exp(ϑN−γ). It is readily verified that

∂p(N)(t, z)
∂z

dz

dϑ
= exp(�(t)ϑN1−γ)

(
�(t)N1−γ p̃(N)(t, ϑ) +

∂p̃(N)(ϑ)
∂ϑ

)
;

dz

dϑ
= N−γ exp(ϑNγ) = N−γz,

so the derivatives of p(N) can be expressed in terms of the corresponding derivatives of p̃(N):

∂p(N)(t, z)
∂t

= exp(�(t)ϑN1−γ)

(
�′(t)ϑN1−γ p̃(N)(t, ϑ) +

∂p̃(N)(t, ϑ)
∂t

)
,

∂p(N)(t, z)
∂z

=
1
z

exp(�(t)ϑN1−γ)

(
N�(t) p̃(N)(t, ϑ) +Nγ ∂p̃

(N)(t, ϑ)
∂ϑ

)
.

Now perform the change of variables and substitute the expressions for p(N)(t, z) and its
partial derivatives into Eq. (6). Dividing by exp(�(t)ϑN1−γ) yields the following recurrence
relation for p̃(N):

p̃(N)(t, ϑ) = p̃(N)(t, ϑ)Π +N1−α
(
z(N)(ϑ) − 1

)
p̃(N)(t, ϑ)ΛF

−N1−α

(
1 − 1

z(N)(ϑ)

)
�(t) p̃(N)(t, ϑ)MF

−Nγ−α

(
1 − 1

z(N)(ϑ)

)
∂p̃(N)(t, ϑ)

∂ϑ
MF

−N1−α−γ�′(t)ϑp̃(N)(t, ϑ)F −N−α ∂p̃
(N)(t, ϑ)
∂t

F. (7)

3.4. Differential Equation for the Scalar, Centered, and Normalized mgf φ(N)

The next step is to expand z in a Taylor series. Assuming certain restrictions on γ (that
we later justify) we delete all terms of order smaller than N−α. The resulting recurrence
relation is iterated and manipulated until all terms in the right-hand side contain p̃(N)Π.
Next we postmultiply this system of PDEs by 1, so as to obtain a scalar PDE in terms of
φ(N)(t, ϑ) := p̃(N)(t, ϑ)1. In this step, we make use of the definition of Π := 1πT and the
identities Π1 = 1 and F1 = 1.
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The Taylor expansions of z and z−1 are

z±1 = 1 ± ϑN−γ +
1
2
ϑ2N−2γ +O(N−3γ),

Applying these to Eq. (7) results in

p̃(N)(t, ϑ) = p̃(N)(t, ϑ)Π + ϑN1−α−γ p̃(N)(t, ϑ)(Λ − �(t)M− �′(t)I)F

+
ϑ2

2
N1−α−2γ p̃(N)(t, ϑ)(Λ + �(t)M)F

− ϑN−α ∂p̃
(N)(t, ϑ)
∂ϑ

MF −N−α ∂p̃
(N)(t, ϑ)
∂t

F +O(N1−α−3γ) +O(N−α−γ).

(8)

Under the assumption that γ > 1/3 (to be justified later) the order terms can be replaced
by o(N−α).

Next we iterate Eq. (8) until all terms in the right-hand side either contain p̃(N)(ϑ)Π
or are of O(N−α). For the latter we assume a second restriction, viz., γ ≥ 1 − α/2 (also
justified later). We thus obtain

p̃(N)(t, ϑ) = p̃(N)(t, ϑ)Π

+ ϑN1−α−γ
(
p̃(N)(t, ϑ)Π + ϑN1−α−γ p̃(N)(t, ϑ)(Λ − �(t)M− �′(t)I)F

+ O(N1−α−2γ) +O(N−α)
)
(Λ − �(t)M− �′(t)I)F

+
ϑ2

2
N1−α−2γ

(
p̃(N)(t, ϑ)Π +O(N1−α−γ) +O(N−α)

)
(Λ + �(t)M)F

− ϑN−α ∂p̃
(N)(t, ϑ)
∂ϑ

MF −N−α ∂p̃
(N)(t, ϑ)
∂t

F + o(N−α);

here we remark that in the O(N−α)-terms p̃(N) can be replaced by p̃(N)Π as an immediate
consequence of the fact that Eq. (8) implies p̃(N) = p̃(N)Π + o(1), while the same applies
to its derivatives. The above equation can be rewritten as

p̃(N)(t, ϑ) = p̃(N)(t, ϑ)Π + ϑN1−α−γ p̃(N)(t, ϑ)Π(Λ − �(t)M− �′(t)I)F

+ ϑ2N2−2α−2γ p̃(N)(t, ϑ)Π(Λ − �(t)M− �′(t)I)F (Λ − �(t)M− �′(t)I)F

+
ϑ2

2
N1−α−2γ p̃(N)(t, ϑ)Π(Λ + �(t)M)F

− ϑN−α ∂p̃
(N)(t, ϑ)
∂ϑ

ΠMF −N−α ∂p̃
(N)(t, ϑ)
∂t

ΠF + o(N−α). (9)

Now postmultiply Eq. (9) by 1Nα; using the identities Π1 = 1 and F1 = 1, and the
definition Π := 1πT. We obtain

0 = ϑN1−γφ(N)(t, ϑ)πT (Λ − �(t)M− �′(t)I)1

+ ϑ2N2−α−2γ φ(N)(t, ϑ)πT(Λ − �(t)M− �′(t)I)F (Λ − �(t)M− �′(t)I)1

+
ϑ2

2
N1−2γφ(N)(t, ϑ)πT(Λ + �(t)M)1 − ϑμ

∂φ(N)(t, ϑ)
∂ϑ

− ∂φ(N)(t, ϑ)
∂t

+ o(1).
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Directly from the definition of �(t), it is seen that the first term on the right-hand side
vanishes. In addition, it takes some elementary algebra to check that

πT(Λ − (�(t)μ+ �′(t))I)F (Λ − (�(t)μ+ �′(t)I)1 = πTΛDΛ1 =: U,

where we used F = D + Π = D + 1πT, and

1
2
πT(Λ + �(t)μI)1 = λ∞

(
1 − e−μt

2

)
.

This results in the PDE

∂φ(N)(t, ϑ)
∂t

+ ϑμ
∂φ(N)(t, ϑ)

∂ϑ

= ϑ2φ(N)(t, ϑ)
(
N2−α−2γU +

1
2
N1−2γλ∞(1 − 1

2
e−μt)

)
+ o(1). (10)

3.5. Limit Solution

The last step in our proof is to obtain the limiting differential equation for φ(t, ϑ), being
the limit of φ(N)(ϑ, t). Its unique solution corresponds to a normal distribution N (0, σ2(t)).

First, note that if we choose γ larger than both 1 − α/2 and 1/2, we do not obtain
a CLT, but rather that the random variable under study converges in distribution to the
constant 0. Hence, we take γ = max{1 − α/2, 1/2}, in which case the largest term dominates
in (10), with both terms contributing if α = 1. Note that this choice is consistent with the
restrictions on γ we used during our proof. We obtain by sending N → ∞,

∂φ(t, ϑ)
∂t

+ ϑμ
∂φ(t, ϑ)
∂ϑ

= ϑ2φ(t, ϑ) g(t), (11)

with g(t) := U 1{α≤1} + (λ∞(1 − e−μt/2)) 1{α≥1}.
We propose the ansatz

φ(t, ϑ) = exp
(

1
2
ϑ2e−2μtf(t)

)
,

for some unknown function f(t); recognize the mgf associated with the Normal distribution.
This leads to the following ordinary differential equation (ODE) for f(t):

f ′(t) = 2e2μtg(t),

which is obviously solved by integrating the right-hand side. From this we immediately find
the expression for the variance σ2(t) of the Normal distribution.

With this last step we have proven our claim. It is instructive to compare the findings
with the expressions obtained in Section 2.2.

Theorem 1: Consider Model i or ii with μi = μ for all i ∈ {1, . . . , d}. The random variable

M (N)(t) −N�(t)
Nγ

converges to a Normal distribution with zero mean and variance σ2(t) as N → ∞; here
the parameter γ equals max{1 − α/2, 1/2}, and σ2(t) := σ2

m(t)1{α≤1} + �(t)1{α≥1}, with
σ2

m(t) := μ−1(1 − e−2μt)U .
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Corollary 1: Consider Model i or ii with μi = μ for all i ∈ {1, . . . , d}. The random
variable

M (N) −N�

Nγ

converges to a Normal distribution with zero mean and variance σ2 as N → ∞; here the
parameter γ equals max{1 − α/2, 1/2}, and σ2 := σ2

m1{α≤1} + �1{α≥1}, with σ2
m := μ−1U .

4. MODEL I: STATIONARY AND TRANSIENT DISTRIBUTION

In this section, we briefly recall the results of the steps for Model i, both for the stationary
and time-dependent behavior. The proofs are analogous to those in the previous section.
Comparing the results of Lemma 2 and Theorem 2 with those of Lemma 1 and Theorem 1,
respectively, the effect of heterogeneous service rates becomes visible.

Proposition 2: Consider Model i. In the stationary case the pgf p(z) satisfies the following
differential equation:

p(z)Q = (z − 1)
(
dp(z)
dz

M− p(z)Λ
)
.

In the transient case the pgf p(t, z) satisfies the following differential equation:

∂p(t, z)
∂t

= p(t, z)Q+ (z − 1)
(
p(t, z) Λ − ∂p(t, z)

∂z
M
)
.

Define �(i) := λ∞/μ∞, and �(i)(t) = �(i) (1 − e−μ∞t).

Lemma 2: Consider Model i. As N → ∞,

(1) N−1M (N)(t) converges in probability to �(i)(t).
(2) N−1M (N) converges in probability to �(i).

Theorem 2: Consider Model i. The random variable

M (N)(t) −N�(i)(t)
Nγ

converges to a Normal distribution with zero mean and variance σ2(t) as N → ∞; here
σ2(t) := σ2

m(t)1{α≤1} + �(i)(t)1{α≥1}, with

σ2
m(t) := 2e−2μ∞t

∫ t

0

e2μ∞sπT(Λ − �(i)(s)M)D(Λ − �(i)(s)M)1 ds.

The random variable
M (N) −N�(i)

Nγ

converges to a Normal distribution with zero mean and variance σ2 as N → ∞; here σ2 :=
σ2

m1{α≤1} + �(i)1{α≥1}, with

σ2
m := μ−1

∞ πT(Λ − �(i)M)D(Λ − �(i)M)1.

In both cases the parameter γ equals max{1 − α/2, 1/2}.
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The formula for σ2
m(t) can be evaluated more explicitly. Define Gm,n(t) := e−mμ∞t −

e−nμ∞t, for m,n ∈ N. Direct computations yield that σ2
m(t) equals

U
1
μ∞

G0,2(t) + Û
�(i)

μ∞
(2G1,2(t) −G0,2(t)) + Ǔ

(�(i))2

μ∞

(
G0,2(t) − 4G1,2(t) + 2μ∞te−2μ∞t

)
,

with Û := πTMDΛ1 + πTΛDM1 and Ǔ := πTMDM1. It is readily verified that σ2
m(t) →

σ2
m as t→ ∞, as expected.

5. RESULTS FOR MODEL II

In this section we study Model ii: the service times are now determined by the background
state as seen by the job upon arrival. The approach is as before: we first derive a system of
differential equations (Section 5.1), then establish the mean behavior by means of laws of
large numbers (Section 5.2), and finally derive the CLTs (Section 5.3).

5.1. Differential Equations for the pgf p.

For the transient distribution, a system of differential equations was previously derived in [2].
It is based on the observation thatM(t) has a Poisson distribution with (random) parameter
ϕ(J), see (1). The intuition behind this formula is that a job arriving at time s survives in
the system until time t with probability e−μi (t−s) (assuming that the background process
is in state i), which is distributionally equivalent with “thinning” the Poisson parameter
with exactly this fraction. This description yields, after some manipulations, the following
differential equation for the pgf, the row vector p(t, z):

∂p(t, z)
∂t

= p(t, z)Q̃+ (z − 1)p(t, z)Δ(t), (12)

where Q̃ = (q̃ij)d
i,j=1 is the transition rate matrix of the time-reversed version of J(·) (i.e.,

q̃ij := qjiπj/πi), and Δ(t) denotes a diagonal matrix with entries [Δ(t)]ii := λi exp(−μit).

Remark 1: It is noted that the definition of p is slightly different from the one used in [2].
In the present paper, we consider the generating function of the number of jobs present at
time t jointly with the state of the background process at time t, whereas [2, Proposition 2]
considers the generating function of the number of jobs present at time t conditioned on the
background state at time 0. As a consequence, we obtain a slightly different equation, but
it is easy to translate them into each other.

Our objective is to set up our proof such that it facilitates proving both the transient and
stationary CLT. Näıvely, one could try to obtain a differential equation for the stationary
behavior by sending t→ ∞ in (12), but it is readily checked that this yields a trivial relation
only: 0 = 0. A second näıve approach would be to establish the CLT for M (N)(t), and to
send then t to ∞; it is clear, however, that this procedure relies on interchanging two limits
(N → ∞ and t→ ∞), of which a formal justification is lacking.

We therefore resort to an alternative approach. It relies on a description based on a
more general state space: we do not only keep track of the number of jobs present, but we
rather record the numbers of jobs present of each type, where “type” refers to the state of
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the background process upon arrival. To this end, we introduce the d-dimensional stochastic
process

M (t) = (M1(t), . . . ,Md(t))t∈R,

where the kth entry denotes the number of particles of type k in the system at time t. The
transient and stationary total numbers of jobs present are denoted by

M(t) :=
d∑

k=1

Mk(t), M :=
d∑

k=1

Mk,

respectively. As usual, we add a superscript (N) when working with the model in which
imposed our scaling on the arrival rates and the transition rates of the background process.

As before, we first derive a differential equation for the unscaled model. The generating
function p(t,z) is defined as follows:

[p(t,z)]j = E

(
d∏

k=1

z
Mk(t)
k 1{J(t)=j}

)
.

In addition, Ek is a matrix for which [Ek]kk = 1, and whose other entries are zero. For a
row vector q, the multiplication qEk thus results in a (row) vector which leaves the kth
entry of q unchanged, while the other entries become zero. The following result covers the
transient case.

Proposition 3: Consider Model ii. The pgf p(t,z) satisfies the following differential
equation:

∂p(t,z)
∂t

= p(t,z)Q+
d∑

k=1

(zk − 1)
(
λk p(t,z)Ek − μk

∂p(t,z)
∂zk

)
.

With the pgf p(z1, . . . , zd) defined in the obvious way, the differential equation for the
stationary case is the following.

Proposition 4: Consider Model ii. The pgf p(z) satisfies the following differential
equation:

0 = p(z)Q+
d∑

k=1

(zk − 1)
(
λk p(z)Ek − μk

∂p(z)
∂zk

)
.

The proofs of these propositions are straightforward, and follow the same lines as before:
we consider the generator of the Markov process, and transform the Kolmogorov equation
(for the transient case) and the invariance equation (for the stationary case).

The PDE for the transient scaled model follows directly from Proposition 3, by replacing
λk by Nλk, and Q by NαQ. It results in

∂p(N)(t,z)
∂t

= Nαp(N)(t,z)Q+
d∑

k=1

(zk − 1)
(
Nλk p(N)(t,z)Ek − μk

∂p(N)(t,z)
∂zk

)
. (13)

The stationary case can be dealt with analogously, relying on Proposition 4.
Our objective is to derive the CLT for both the transient and stationary case. We

do so by presenting the full analysis for the transient case; in the stationary case we can
leave out one term. Importantly, this approach does not have the problem of illegitimately
interchanging two limits.
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5.2. Mean Behavior

As before, we first derive the law of large numbers. Again we rewrite the differential
equations (13) as a recurrence relation for p(N) that involves the fundamental matrix F :

p(N)(t,z) = p(N)(t,z)Π +N−α
d∑

k=1

(zk − 1)
(
Nλk p(N)(t,z)Ek − μk

∂p(N)(t,z)
∂zk

)
F

− N−α ∂p
(N)(t,z)
∂t

F (14)

for the transient case, and likewise for the stationary case.
The following lemma establishes weak laws of large numbers for M (N)(t) and M (N)(t),

as well as their steady-state counterparts M (N) and M (N). We first define

�
(ii)
k (t) := πk

λk

μk
(1 − e−μkt), �

(ii)
k := πk

λk

μk
.

Also, �(ii)(t) :=
∑

k �
(ii)
k (t) and �(ii) :=

∑
k �

(ii)
k .

Lemma 3: Consider Model ii. As N → ∞,

(1) N−1M(N)(t) converges in probability to �(ii)(t).

(2) N−1M(N) converges in probability to �(ii).
(3) N−1M (N)(t) converges in probability to �(ii)(t), and N−1M (N) to �(ii).

Proof: Similarly to the proof of Lemma 1, we first introduce the scaled mgf p̄(N)(t,ϑ) :=
p(N)(t,z), with zk ≡ z

(N)
k (ϑk) = exp(ϑk/N), for k = 1, . . . , d. We see immediately that

∂p̄(N)(t,ϑ)
∂t

=
∂p(N)(t,z)

∂t
,

∂p̄(N)(t,ϑ)
∂ϑk

=
∂p(N)(t,z)

∂zk

dzk

dϑk
=
zk

N

∂p(t,z)
∂zk

.

Now we substitute these expressions in Eq. (14), and note that z±1
k = 1 ± ϑkN

−1 +
O(N−2). As a consequence,

p̄(N)(t,ϑ) = p̄(N)(t,ϑ)Π +N−α
d∑

k=1

ϑk

(
λk p̄(N)(t,ϑ)Ek − μk

∂p̄(N)(t,ϑ)
∂ϑk

)
F

− N−α ∂p̄
(N)(t,ϑ)
∂t

F + o(N−α).

It directly follows that p̄(N)(t,ϑ) = p̄(N)(t,ϑ)Π +O(N−α), and hence also

∂p̄(N)(t,ϑ)
∂t

=
∂p̄(N)(t,ϑ)

∂t
Π +O(N−α),

∂p̄(N)(t,ϑ)
∂ϑk

=
∂p̄(N)(t,ϑ)

∂ϑk
Π +O(N−α).

The next step is to postmultiply the previous display by 1Nα, and after some elementary
steps we obtain the following scalar PDE in p̄(N)(t,ϑ)1:

∂(p̄(N)(t,ϑ)1)
∂t

=
d∑

k=1

ϑk

(
πkλk(p̄(N)(t,ϑ)1) − μk

∂(p̄(N)(t,ϑ)1)
∂ϑk

)
+ o(1).
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Now let N → ∞; define p̄(t,ϑ)1 := limN→∞ p̄(N)(t,ϑ)1. We propose the following form for
the limiting function p̄(t,ϑ)1:

p̄(t,ϑ)1 = exp

(
d∑

k=1

ϑk�̄k(t)

)
,

for specific functions �̄k(·) (to be determined later). Plugging this form into the differential
equation, it means that the following equation must be fulfilled by the �̄k(·):

d∑
k=1

ϑk (�̄′k(t) − πkλk + μk�̄k(t)) = 0.

As this must hold for any ϑk, this equation leads to a separate differential equation for
every �̄k(t), which moreover agrees with the one in the first part of the claim (�̄k(t) = �

(ii)
k (t),

that is). We conclude that we have established the claim for the transient case: N−1M (N)(t)
converges in probability to �(ii)(t) as N → ∞.

For the stationary case, we can follow precisely the same procedure, but without the
partial derivative with respect to time, so that we now end up with a differential equation
in p̄(ϑ)1 as follows:

0 =
d∑

k=1

ϑk

(
πkλk(p̄(ϑ)1) − μk

∂(p̄(ϑ)1)
∂ϑk

)
,

for which p̄(ϑ)1 = exp(
∑d

k=1 ϑk�
(ii)
k ) forms a solution. This completes the proof of the

second claim. The third claim follows trivially. �

5.3. Central Limit Theorems

Next, we state and prove the CLT result for Model ii. To this end, we first define the
(symmetric) matrices V (t) and V := limt→∞ V (t) with entries

[V (t)]jk :=
λjλk[D̄]jk

μj + μk
(1 − e−(μj+μk)t), [V ]jk =

λjλk[D̄]jk

μj + μk
;

here D̄ denotes the (symmetric) matrix defined by [D̄]jk = (πj [D]jk + πk[D]kj). Also, C :=
limt→∞ C(t), where

[C(t)]jk := [V (t)]jk1{α≤1} + �
(ii)
j (t)1{α≥1}1{j=k}.

The following theorem is the main result of this section.

Theorem 3: Consider Model ii. The random vector

M(N)(t) −N�(ii)(t)
Nγ

converges to a d-dimensional Normal distribution with zero mean and covariance matrix
C(t) as N → ∞. In both cases the parameter γ equals max{1 − α/2, 1/2}. The random
vector

M(N) −N�(ii)

Nγ

converges to a d-dimensional Normal distribution with zero mean and covariance matrix C
as N → ∞.
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Proof: Mimicking the proof of the CLT in Section 3, we start again with setting up a
recurrence relation for the centered and normalized mgf p̃(N). Define z by zk ≡ z

(N)
k (ϑk) :=

exp(ϑkN
−γ), for k = 1, . . . , d, with the value of γ to be determined later on. We first

concentrate on the transient case and introduce the centered and normalized mgf p̃(t,ϑ):

p̃(N)(t,ϑ) = exp

(
−N1−γ

d∑
k=1

ϑk�
(ii)
k (t)

)
p(N) (t,z) .

We wish to perform a change of variables in Eq. (14) to obtain a recurrence relation in
p̃(N)(t,ϑ). To this end, note that

∂p(N)(t,z)
∂zk

dzk

dϑk
= exp

(
N1−γ

d∑
k=1

ϑk�
(ii)
k (t)

)(
�
(ii)
k (t)N1−γ p̃(N)(t,ϑ) +

∂p̃(N)(t,ϑ)
∂ϑk

)
,

where
dzk

dϑk
= N−γ exp(ϑkN

−γ) = N−γzk.

Also,

∂p(N)(t,z)
∂t

= exp

(
N1−γ

d∑
k=1

ϑk�
(ii)
k (t)

)(∑
k

ϑk
d�

(ii)
k (t)
dt

N1−γ p̃(N)(t,ϑ) +
∂p̃(N)(t,ϑ)

∂t

)
.

Now perform the change of variables, and substitute the expressions for the partial deriva-
tives of p(N)(t,z) into Eq. (14). Dividing the equation by exp(N1−γ

∑d
k=1 ϑk�

(ii)
k (t)) gives

the following recurrence relation for p̃(N)(t,z):

p̃(N)(t,ϑ) = p̃(N)(t,ϑ)Π +N1−α
d∑

k=1

(zk − 1)λk p̃(N)(t,ϑ)Ek F

− N−α
d∑

k=1

(
1 − 1

zk

)
Nγμk

(
N1−γ�

(ii)
k (t)p̃(N)(t,ϑ) +

∂p̃(N)(t,ϑ)
∂ϑk

)
F

− N1−α−γ
d∑

k=1

ϑk
d�

(ii)
k (t)
dt

p̃(N)(t,ϑ)F −N−α ∂p̃
(N)(t,ϑ)
∂t

F.

The next step is to introduce the second-order Taylor expansions for zk and z−1
k :

z±1
k = 1 ± ϑkN

−γ +
1
2
ϑ2

kN
−2γ +O(N−3γ).

Ignoring all terms that are provably smaller than N−α under the assumption that γ > 1/3
(justified later), and combining terms of the same order, we obtain

p̃(N)(t,ϑ) = p̃(N)(t,ϑ)Π +N1−α−γ
d∑

k=1

ϑk p̃(N)(t,ϑ)

(
λkEk − μk�

(ii)
k (t)I − d�

(ii)
k (t)
dt

I

)
F

+N1−α−2γ
d∑

k=1

ϑ2
k

2
p̃(N)(t,ϑ)

(
λkEk + μk�

(ii)
k (t)I

)
F

−N−α
d∑

k=1

ϑkμk
∂p̃(N)(t,ϑ)

∂ϑk
F −N−α ∂p̃

(N)(t,ϑ)
∂t

F,
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up to an error term that is o(N−α). As we did in the proof of the CLT in Section 3 with
Eq. (8), we iterate and manipulate this relation, under the assumption that γ ≥ 1 − α/2
(justified later), until all terms in the right-hand side contain p̃(N)Π. Then we postmultiply
with 1Nα, and develop a differential equation in terms of φ(N)(t,ϑ) := p̃(N)(t,ϑ)1. After
some (by now quite familiar) manipulations, we obtain the following PDE in φ(N)(t,ϑ):

∂φ(N)(t,ϑ)
∂t

+
d∑

k=1

ϑkμk
∂φ(N)(t,ϑ)

∂ϑk
=

1
2
φ(N)(t,ϑ)

⎛
⎝N2−α−2γ

d∑
j=1

d∑
k=1

ϑjϑkλjλk[D̄]jk

+ N1−2γ
d∑

k=1

ϑ2
kπk(λk + μk�

(ii)
k (t))

)
+ o(1),

where we have used that

πT

⎛
⎝ d∑

j=1

ϑj(λjEj − μj�
(ii)
j (t)I − d�

(ii)
k (t)
dt

I)

⎞
⎠F

(
d∑

k=1

ϑk(λkEk − μk�
(ii)
k (t)I − d�

(ii)
k (t)
dt

I)

)
1

=
d∑

j=1

d∑
k=1

ϑjϑkλjλk

(
πTEjDEk1

)
=

1
2

d∑
j=1

d∑
k=1

ϑjϑkλjλk[D̄]jk.

The last part of the proof concerns the limiting behavior as N → ∞. Pick, as before,
γ = max{1 − α/2, 1/2}, to obtain the following PDE:

∂φ(t,ϑ)
∂t

+
d∑

k=1

ϑkμk
∂φ(t,ϑ)
∂ϑk

=
1
2
φ(t,ϑ)

⎛
⎝ d∑

j=1

d∑
k=1

ϑjϑkλjλk[D̄]jk1{α≤1} +
d∑

k=1

ϑ2
k(πkλk + μk�

(ii)
k (t))1{α≥1}

⎞
⎠ .

It is straightforward to verify that the following expression constitutes a solution for this
differential equation:

φ(t,ϑ) = exp

⎛
⎝1

2

d∑
j=1

d∑
k=1

ϑjϑk[V (t)]jk1{α≤1} +
1
2

d∑
k=1

ϑ2
k�

(ii)
k (t)1{α≥1}

⎞
⎠ .

If we redo the derivation for the stationary case (i.e., we now discard the terms origi-
nating from the derivative with respect to t in the original partial differential equation), we
end up with

φ(ϑ) = exp

⎛
⎝1

2

d∑
j=1

d∑
k=1

ϑjϑk[V ]jk1{α≤1} +
1
2

d∑
k=1

ϑ2
k�

(ii)
k 1{α≥1}

⎞
⎠ .

This completes the proof. �
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Corollary 2: Consider Model ii. An immediate consequence of Thm. 3 is that, with γ as
defined before, the random variables

M (N) −N�(ii)

Nγ
and

M (N)(t) −N�(ii)(t)
Nγ

converge to Normal distributions with zero mean and variances

d∑
j=1

d∑
k=1

[V ]jk1{α≤1} + �(ii)1{α≥1} and
d∑

j=1

d∑
k=1

[V (t)]jk1{α≤1} + �(ii)(t)1{α≥1},

respectively, as N → ∞.

6. CORRELATION ACROSS TIME

Above we analyzed the joint distribution of the two queues at a given point in time. A
related question, to be covered in this section, concerns the joint distribution at distinct
time epochs. For ease we assume that the service rates are identical (and equal to μ), so
that Models i and ii coincide.

6.1. Differential Equation

We follow the line of reasoning of [2, Proposition 2]; we consider again the non-scaled
model, but, as before, these results can be trivially translated in terms of the N -scaled
model. Fix time epochs 0 ≡ s1 ≤ s2 ≤ · · · ≤ sK for some K ∈ N. The goal of this subsection
is to characterize the joint transform, for j = 1, . . . , d,

Ψj(t,z) := E

(
K∏

k=1

z
M(t+sk)
k

∣∣∣∣∣ J(0) = j

)
.

Assume a job arrives between 0 and Δt, for an infinitesimally small Δt. Then it is still in
the system at time t+ sk, but not anymore at t+ sk+1 with probability fk(t) − fk+1(t),
where fk(t) := e−μ(t+sk). As a consequence, we obtain the following relation:

Ψj(t,z) = λjΔt b(t,z)Ψj(t− Δt,z)

+
∑
i�=j

qjiΔtΨi(t− Δt,z) +

⎛
⎝1 − λjΔt−

∑
i�=j

qjiΔt

⎞
⎠Ψj(t− Δt,z) + o(Δt),

where

b(t,z) := (1 − f1(t)) + z1(f1(t) − f2(t)) + · · ·
+ (z1 · · · zK−1)(fK−1(t) − fK(t)) + (z1 · · · zK)fK(t).

With elementary manipulations, we obtain

Ψj(t,z) − Ψj(t− Δt,z)
Δt

=
d∑

i=1

qjiΨi(t− Δt,z) + aj(t,z)Ψj(t− Δt,z) + o(1),
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where aj(t,z) := λj (b(t,z) − 1) . Now letting Δt ↓ 0, and defining A(t,z) := diag{a(t,z)},
we obtain the differential equation, in vector notation,

∂

∂t
Ψ(t,z) = (Q+A(t,z))Ψ(t,z).

6.2. Covariance

We now explicitly compute Cov(M(s),M(t)), assuming, without loss of generality, that
s ≤ t; the computations are similar to the ones in Section 2.2 (and therefore some steps are
left out). The “law of total covariance”, with J ≡ (J(r))t

r=0, entails that

Cov(M(s),M(t)) = E Cov(M(s),M(t) |J) + Cov(E(M(s) |J),E(M(t) |J)). (15)

Due to the fact that M(s) obeys a Poisson distribution with the random parameter ϕ(J),
the second term in the right-hand side of (15) can be written as I1 + I2, where

I1 :=
d∑

i=1

d∑
j=1

λiλjKij , where Kij :=
∫ s

0

∫ v

0

e−μ(s−u)e−μ(t−v)πi (pij(v − u) − πj) du dv,

I2 :=
d∑

i=1

d∑
j=1

λiλjLij , where Lij :=
∫ s

0

∫ t

v

e−μ(s−u)e−μ(t−v)πj (pji(u− v) − πi) du dv.

It takes some standard algebra to obtain

Kij = e−μtπi

∫ s

0

(∫ s

w

e2μvdv

)
e−μ(s+w) (pij(w) − πj) dw

=
1
2μ
e−μtπi

∫ s

0

(
eμ(s−w) − e−μ(s−w)

)
(pij(w) − πj) dw.

Similarly, Lij = L
(1)
ij + L

(2)
ij , where

L
(1)
ij :=

1
2μ
e−μtπj

(
eμs − e−μs

) ∫ t−s

0

eμw (pji(w) − πi) dw,

L
(2)
ij :=

1
2μ
e−μsπj

∫ t

t−s

(
eμ(t−w) − e−μ(t−w)

)
(pji(w) − πi) dw.

Now concentrate on the first term in the right-hand side of (15). To this end, consider the
following decomposition:

M(s) := M (1)(s, t) +M (2)(s, t), M(t) := M (2)(s, t) +M (3)(s, t),

where M (1)(s, t) are the jobs that arrived in [0, s) that are still present at time s but have
left at time t, M (2)(s, t) the jobs that have arrived in [0, s) that are still present at time t,
and M (3)(s, t) the jobs that have arrived in [s, t) that are still present at time t. Observe
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that, conditional on J , these three random quantities are independent. As a result,

E Cov(M(s),M(t) |J) = E Var(M (2)(s, t) |J).

Mimicking the arguments used in [5], it is immediate that M (2)(s, t) has a Poisson
distribution with random parameter ξ(J), where

ξ(f) :=
∫ s

0

λf(r)e
−μf(r)(t−r)dr.

We conclude that

E Cov(M(s),M(t) |J) = Eξ(J) =
d∑

i=1

πiλi

∫ s

0

e−μ(t−r)dr = �(s) e−μ(t−s).

When scaling λ 	→ Nλ and Q 	→ NαQ, for α > 0, it is readily verified that for N large,

Cov(M (N)(s),M (N)(t)) ∼ N�(s) e−μ(t−s) +N2−α e
−μt

μ

(
eμs − e−μs

)
U,

recalling that U := πTΛDΛ1. When taking s = t, we obtain formulae for the variance that
are in line with our findings of Section 2.2.

6.3. Limit Results

We again consider the situation in which the modulating Markov chain J(·) is sped up by
a factor Nα (for some positive α), while the arrival rates λi are sped up by N . In this
subsection, we consider the (multivariate) distribution of the number of jobs in the system
at different points in time. While in [2] we just covered the case of α > 1, we now establish
a CLT for general α.

As the techniques used are precisely the same as before, we just state the result. We
first introduce some notation. Define [Č(t)]k� = [Č(t)]�k, where for k ≥ �

[Č(t)]k� :=
U

μ

(
1 − e−2μ(t+s�)

)
e−μ(sk−s�)1{α≤1} +

λ∞
μ

(
1 − e−μ(t+s�)

)
e−μ(sk−s�)1{α≥1}.

Theorem 4: The random vector(
M (N)(t+ s1) −N�(t+ s1)

Nγ
, . . . ,

M (N)(t+ sK) −N�(t+ sK)
Nγ

)

converges to a K-dimensional Normal distribution with zero mean and covariance matrix
Č(t) as N → ∞. The parameter γ equals max{1 − α/2, 1/2}.

As t→ ∞, Č(t) → Č, where

[Č]k� =
uk�

2μ
, with uk� := 2

(
U1{α≤1} + λ∞1{α≥1}

)
e−μ(sk−s�).

We observe that the limiting centered and scaled process, as t→ ∞, has the correla-
tion structure of an Ornstein–Uhlenbeck process S(t) (at the level of finite-dimensional
distributions), that is, the solution to the stochastic differential equation

dS(t) = −μS(t)dt+
(
2U1{α≤1} +

√
λ∞ + μ�(t)1{α≥1}

)
dW (t),

with W (·) standard Brownian motion.
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7. NUMERICAL ILLUSTRATION

In this section, we briefly illustrate the accuracy of the approximations that are suggested
by the limit theorems of this paper. In particular, we consider the variance of the queue
content M (N) under stationarity for Model i. In this case, there is an exact expression for
the variance [14]:

Var[M (N)] = 2N2πTΛ(M−NαQ)−1Λ(2M−NαQ)−11 +N�(i) −N2(�(i))2.

On the other hand, Theorem 2 suggests the following asymptotic expression for the
variance of M (N):

V1(N) := N�(i)1{α≥1} +N2−ασ2
m1{α≤1}.

This expression discards one of the two contributions to the variance, and may therefore
be less accurate when both terms are of comparable size. To remedy this effect, we propose
the following simple alternative:

V2(N) := N�(i) +N2−ασ2
m,

which is asymptotically equivalent with V1(N) as N grows large.
In Figure 1, we illustrate these approximations in the three different regimes �� σ2

m,
� ≈ σ2

m, and �� σ2
m, for a two-state Markov process with generator Q and varying values

of α. The parameter values for the three cases are

Q =
(−1 1

3 −3

)
,

(−2 2
1 −1

)
,

(−1 1
3 −3

)
,

and λ = [1, 2], [1, 2], [1, 50], μ = [2, 1], [100, 1], [2, 1]. We observe that in all cases both
approximations tend to the exact values as N gets larger, but the errors are dependent on
the specific choices of the parameters of the Markov process. As to be expected, V2(N) is
the more accurate one. The contour plots in the middle row give the relative error in the
approximation V1(N). They nicely show the effect of the absence of one of the terms in
the approximation: for �� σ2

m the relative error is almost one if α = 1 − ε, whereas for
�� σ2

m this is the case for α = 1 + ε. If the two terms are in balance (� ≈ σ2
m), then we

see an increase of the relative error around α ≈ 1, which is absent in approximation V2(N),
plotted in the bottom row.

8. DISCUSSION AND CONCLUSION

In this paper, we derived CLTs for infinite-server queues with Markov-modulated input. In
our approach, the modulating Markov chain is sped up by a factor Nα (for some positive α),
while the arrival process is sped up by N . Interestingly, there is a phase transition in the
sense that the normalization to be used in the CLT depends on the value of α: rather than
the standard normalization by

√
N , it turned out that the centered process should be divided

by Nγ , with γ equal to max{1 − α/2, 1/2}. We have proved this by first establishing systems
of differential equations for the (transient and stationary) distribution of the number of jobs
in the system, and then studying their behavior under the scaling described above.

We have also derived a CLT for the multivariate distribution of the number of jobs
present at different time instants, complementing the analysis for just α > 1 in [2]. We antic-
ipate weak convergence to an Ornstein–Uhlenbeck process with appropriate parameters, but
establishing such a claim will require different techniques.
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Figure 1. Illustration of the behavior of the approximation in the three different regimes:
(left) �� σ2

m, (middle) � ≈ σ2
m, and (right) �� σ2

m. Top row: Plots of the variance of M (N)

along with two approximations; black: α = 0.7; blue: α = 1.0; red: α = 1.3. Full lines repre-
sent the exact values, dashed lines represent the first approximation V1(N) and dash-dotted
lines represent V2(N). Middle row: Contour plots of the relative error in the approximation
V1(N) for varying α and N . Bottom row: Same for approximation V2(N).
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APPENDIX

Uniqueness of solutions of the PDEs

In the various proofs of this paper, we have “solved” the differential equations by guessing a solution
and establishing that it satisfies both the differential equation itself and the boundary conditions.
We now show that the solutions are indeed unique by relying on the method of characteristics
[10]. The method consists of rewriting the PDE as a system of ODEs along so-called characteristic
curves, for which the theory of existence and uniqueness is well developed.

As all occurring pde s are of a similar form and moreover quasi-linear, we can suffice by
establishing uniqueness for the two types of PDEs, the first of which is as follows:

d∑
k=1

μkϑk
∂φ

∂ϑk
= g(ϑ) φ(ϑ1, . . . , ϑd),

for some function g(·) with boundary condition φ(0, . . . , 0) = 1. This pertains to differential
equations in the proofs of Lemma 3 and Theorem 3. Let us consider a parametric curve

(ϑ1(t), . . . , ϑd(t), φ(t)) ,

where φ(t) := φ(ϑ1(t), . . . , ϑd(t)) (with a slight but customary abuse of notation), subject to the
following system of ODEs:

dϑk(t)

dt
= μkϑk(t) and

dφ(t)

dt
= g(ϑ1(t), . . . , ϑd(t))φ(t).
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The ODEs in ϑk(t) have the following solution:

ϑk(t) = ϑk(0) exp(μkt),

while the ODE for φ is also quasi-linear with a continuous function g(·), such that a general solution
can be found with one undetermined constant. In order to construct the solution at an arbitrary
point (ϑ1, . . . , ϑd), one puts ϑk(0) = ϑk and then combines this with the boundary condition 1 =
φ(0, . . . , 0), which indeed gives us the condition to make the solution of the ode in φ(t) unique.

Next, we consider the PDE:

∂φ

∂t
+

d∑
k=1

μkϑk
∂φ

∂ϑk
= g(t, ϑ) φ(t, ϑ1, . . . , ϑd),

with the boundary condition φ(0, ϑ1, . . . , ϑd) = 1 (i.e., an empty system at t = 0) for which the
uniqueness question can be tackled in a similar but slightly different fashion (as t is now an explicit
variable of the problem). This form occurs in the proofs of Theorems 1 and 3 (as well as in the
proofs Lemmas 1 and 3 with the slight difference that there is a negative sign in the ∂/∂t-term,
which hardly changes our argument). Indeed, we consider the parametric curve:

(t, ϑ1(t), . . . , ϑd(t), φ(t)) ,

with the same ODEs imposed on ϑk(t) (and hence having the same solution as well), while

dφ(t)

dt
= g(t, ϑ1(t), . . . , ϑd(t)) φ(t)

has again a solution with one undetermined constant. In order to find the solution at (t, ϑ1, . . . , ϑd),
we put ϑk(t) = ϑk, from which we find ϑk(0) = ϑk exp(−μkt). These relations together with φ(0) =
1 ensure that each ode has a unique solution, and hence the original PDE has a unique solution
as well.




