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Preface

The ISIPTA meetings are the primary forum for pre-
senting and discussing advances in imprecise proba-
bility research. They are organized once every two
years by SIPTA, the Society for Imprecise Proba-
bility: Theories and Applications. The first meeting
was held in Ghent in 1999. It was followed by meet-
ings in Ithaca, Lugano, Pittsburgh, Prague, Durham,
Innsbruck, and Compiegne. After having successfully
hosted the SIPTA Summer School in 2012, we now
return to the beautiful and welcoming Italian city of
Pescara for

The 9th International Symposium
on Imprecise Probability: Theories and Applications

It is held from Monday 20 to Friday 24 July 2015.

As with previous ISIPTA meetings, there are only
plenary sessions in the program. In total, 31 papers
are presented by a short talk and a poster, which
guarantees ample time for discussion. The papers are
included in these proceedings and are also available on
the SIPTA website (www.sipta.org). Each submitted
paper has undergone a thorough reviewing process by
multiple expert reviewers, ensuring the quality of the
accepted contributions.

To provide a platform for preliminary ideas and chal-
lenging applications for which the research is not yet
completed, poster-only presentations were introduced
at ISIPTA ’09. It has become a tradition that is contin-
ued at ISTPTA ’15: during the conference 17 additional
posters will be presented. Short abstracts for these
poster-only presentations are included in these pro-
ceedings and are also available on the SIPTA website.

The contributions bring us a large number of new
results—both theoretical and applied—within the field
of imprecise probability. The broad impact of impre-
cise probability is shown by the wide variety in the
contributions’ domains: decision making, statistical
inference, belief aggregation, artificial intelligence, and
stochastic processes, amongst others.

We are pleased to have three eminent invited speakers:
Itzhak Gilboa, from Tel Aviv University and HEC Paris,
will propose a unified model of inductive reasoning;
Peter Williams, from the University of Sussex and BW
Mining, will review the intellectual background for the
development of coherent lower previsions; and Mas-

simo Marinacci, from Bocconi University, will discuss
approaches to model uncertainty in decision problems.

We are also pleased to have two tutorials to high-
light specific subdomains of the wide field of imprecise
probability: Barbara Vantaggi, from Universita “La
Sapienza” di Roma, will lecture on de Finetti’s work on
coherence and its extensions to an imprecise context;
whereas Gregory Wheeler, from Ludwig-Maximilians
Universitat in Munich, will teach us about the philo-
sophical foundations of imprecise probabilities.

During the conference two sets of prizes are awarded:
the Best Poster Award, sponsored by Springer and Wi-
ley, and the IJAR Young Researcher Award, granted by
the International Journal of Approximate Reasoning.
We express our gratitude for their support.

This conference is a result of the productive coopera-
tion between the members of the Steering Committee,
formed by Gert de Cooman, Teddy Seidenfeld, and
ourselves. We wish to thank all of those that have
contributed to the organization of this conference: all
the members of the Local Organizing Committee; the
Department of Engineering and Geology of the Uni-
versity G. d’Annunzio for its financial support; the
many members of the Program Committee and the
extra reviewers for their dedicated work in evaluating
the contributions. Last but not least, we would like
to particularly thank Matthias Troffaes and Sébastien
Destercke for their assistance with many aspects of
the conference, and for sharing their previous organi-
zational experience.

Finally, we thank all who have contributed to the
success of ISIPTA ’15, be it by submitting their re-
search results, presenting them at the conference, or
by attending sessions and participating in discussions.
In particular, we would like to welcome the delegates
from Statistics Korea, whom we thank for their effort
to become part of our research network.

Thomas Augustin
Serena Doria
Enrique Miranda
Erik Quaeghebeur

June 2015
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A Unified Model of Inductive Reasoning

Itzhak Gilboa
Eitan Berglas School of Economics, Tel-Aviv University, Israel
HEC, Paris, France

We offer a model that can capture three types of
reasoning The first, which is the most common in
economic modeling, is Bayesian. The agent formulates
the set of possible states of the world and a prior prob-
ability distribution over this state space. The agent’s
predictions are a relatively straightforward matter of
applying Bayes’ rule, as new observations allow her
to rule out some states and condition her probability
distribution on the surviving states.

An alternative mode of reasoning is case-based. The
agent considers past observations and predicts the
outcome that appeared more often in those past cases
that are considered similar. If all past observations are
considered equally similar, the case-based prediction
is simply the mode, that is, the outcome that is most
frequent in the database. If the agent uses a similarity
function that puts all its weight on the most recent
outcome, her prediction will simply be that outcome.

Finally, rule-based reasoning calls for the agent to
base her predictions on regularities that she believes
characterize the phenomenon in question.

The boundaries between the three modes of reasoning
are not always sharp. Our focus is on the Bayesian
approach. By “Bayesian reasoning” we refer to the
common approach in economic theory, according to
which all reasoning is Bayesian. Any source of uncer-
tainty is modeled in the state space, and all reasoning
about uncertainty takes the form of updating a prior
probability via Bayes’ rule.

We present a framework that unifies these three modes
of reasoning (and potentially others), allowing us to
view them as special cases of a general learning pro-
cess. The agent attaches weights to conjectures. Each
conjecture is a set of states of the world, capturing
a way of thinking about how outcomes in the world
will develop. The associated weights capture the rela-

IThe talk is based on joint work with (i) Larry Samuelson
and David Schmeidler (2013); (ii) Gabrielle Gayer (2014); (iii)
Alfredo Di Tillio and Larry Samuelson (2013).

tive influence that the agent attaches to the various
conjectures. The weighted sum of these conjectures is
a Belief Function as in Dempster (1967) and Shafer

(7).

Given a sequence of observations, the agents rules out
the conjectures that have been refuted by them, and
continues with the weighted sum of the remaining ones.
This turns out to be equivalent to Dempster-Shafer
rule of combination, or updating of a belief function.

To generate a prediction, the agent sums the weight of
all nontrivial conjectures consistent with each possible
outcome, and then ranks outcomes according to their
associated total weights. In the special case where each
conjecture consists of a single state of the world, our
framework is the standard Bayesian model, and the
learning algorithm is equivalent to Bayesian updating.
Employing other conjectures, which include more than
a single state each, we can capture other modes of
reasoning, as illustrated by simple examples of case-
based and of rule-based reasoning.

Our model could be used to address either positive or
normative questions. We focus on positive ones, de-
scribing how the reasoning process of an agent evolves
as observations are gathered. Within the class of such
questions, our model could be used to capture a variety
of psychological biases and errors, but the focus of this
paper is on the reasoning of an agent who makes no ob-
vious errors in her reasoning. Such an agent may well
be surprised by circumstances that she has deemed
unlikely, that is, by “black swans,” but will never be
surprised by a careful analysis of her own reasoning.
The optimality of this reasoning process is a normative
question, which we do not address here.

Our main results concern the dynamics of the weight
put on Bayesian vs. non-Bayesian reasoning. We sug-
gest conditions under which Bayesian reasoning will
give way to other modes of reasoning, and alternative
conditions under which the opposite conclusion holds.
Importantly, if the agent does not know the type of

17



I. Gilboa

process she is facing, and attempts to be open-minded
about it, Bayesian reasoning will disappear in the limit.
The very simple reason is that there are many Bayesian
conjectures, whereas other families of conjectures may
be small. Specifically, the weight put on the Bayesian
conjectures (as a whole) has to be divided among expo-
nentially many disjoint subset, whereas the case-based
ones (as well as some families of rule-based ones) are
only polynomially large.

In a similar vein, we can also ask how the rela-
tive weight of rule-based and case-based conjectures
changes with evidence. If a “rule” has to provide a
prediction at each and every node, and be computable,
we find that (i) if reality is simple enough (say, com-
putable), then rule-based reasoning takes over; (ii) if
reality isn’t simple enough, then case-based reasoning
is likely to be dominant.

Finally, the model can also be used to reason about
counterfactuals.

18
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Model Uncertainty

Massimo Marinacci
Universita Bocconi, Milan, Italy

We study decision problems in which the consequences
of the alternative actions depend on states determined
by a generative mechanism representing some natural
or social phenomenon. Model uncertainty arises as
decision makers may not know such mechanism. Two
types of uncertainty result, a state uncertainty within
models and a model uncertainty across them. We dis-
cuss some two-stage static decision criteria proposed
in the literature that address state uncertainty in the

first stage and model uncertainty in the second one (by
considering subjective probabilities over models). We
consider two approaches to the Ellsberg-type phenom-
ena that these decision problems feature: a Bayesian
approach based on the distinction between subjective
attitudes toward the two kinds of uncertainty, and
a non-Bayesian one that permits multiple subjective
probabilities. Several applications are used to illustrate
concepts as they are introduced.
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Early Approaches to Exact Imprecision

Peter M. Williams
Associate, Department of Informatics, University of Sussex, Brighton, UK
Principal, BW Mining, Brighton, UK

The 1960s and 70s were a period of widespread in-
terest in the philosophical and mathematical founda-
tions of probability. Bayesian ideas were recognized
though not well understood, and treated with caution
by mainstream statisticians. This talk surveys the in-
tellectual climate of the period, including the impact of
de Finetti’s ideas, then becoming more widely known
in English translation, and traces the motivation and
development of non-additive measures of uncertainty,
together with their impact on the then developing
treatment of uncertainty in artificial intelligence.
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De Finetti Coherence and Beyond

Barbara Vantaggi
“La Sapienza” University of Rome, Italy
barbara.vantaggi@sbai.uniromal.it

The aim of the tutorial is to present the concept of
coherence, which dates back to de Finetti, showing its
role in managing incomplete (or missing) information.

We will start recalling the notion of coherence for (un-
conditional) probabilities and the related fundamental
theorem.

Then, in order to generalize this notion to assessments
on a set of conditional events, the axiomatic definition
of conditional probability, essentially due to Renyi, de
Finetti and Dubins, needs to be recalled together with
the representation theorem of a conditional probability
by means of a linearly ordered class of finitely additive
measures.

Both for the unconditional and conditional case, de
Finetti’s coherence has a betting scheme interpretation
and it can also be characterized in terms of solvability
of a sequence of linear systems for each finite subset
of conditional events.

One of the main peculiarities of de Finetti’s coherence
is that a coherent assessment can always be extended,
generally not in a unique way, to any superset of
(conditional) events, giving rise to a class of coherent
extensions.

The relationship of coherence with the first fundamen-
tal theorem of the asset pricing will be underlined.

The role of coherence is particularly meaningful in
Bayesian statistics where the extensions of a likelihood
function and a prior probability need to be found. Even
in this case the coherent extensions are not necessarily

unique, and the whole class of coherent extensions
needs to be considered. This leads to study lower and
upper envelopes.

However, the coherent extensions could be required to
satisfy some further properties such as disintegrability
and conglomerability: this leads to distinguish different
subclasses of extensions.

Models able to handle uncertainty in a more flexi-

ble way have favored the emergence of theories more
general than classical probability.

The resulting uncertainty calculi, such as possibility
measures, belief functions and k-monotone Choquet
capacities, can be interpreted in terms of envelopes of
de Finetti’s coherent probabilities, also referred to as
imprecise probabilities.

The main features of de Finetti’s coherence are dis-
cussed in connection with its “generalizations” to im-
precise probabilities, essentially given by Williams and
Walley.

The coherence criteria given by Williams and Walley
for imprecise probabilities differ in the way they face
conditioning, so a comparison of the different notions
will be presented.

Finally, the different notions of coherence for (condi-
tional) random quantities will be reviewed by compar-
ing Williams and Walley theories.

Some examples coming from applications will be used
to illustrate key concepts.
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Introduction to
the Philosophical Foundations of Imprecise Probabilities

Gregory Wheeler
Munich Center for Mathematical Philosophy
Ludwig Maximilians University
Geschwister-Scholl-Platz 1, 80539 Munich
gregory.wheeler@Irz.uni-muenchen.de

In this tutorial we will introduce several topics in the
foundations of imprecise probabilities through a re-
view of key historical figures, including John Maynard
Keynes, B.O. Koopman, and I.J. Good, Henry Kyburg,
Terrence Fine and Isaac Levi, and their reactions to
the subjectivist-rationalist tradition associated with
Ramsey, de Finetti, and Savage, and the later devel-
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opments associated with Peter Williams and Peter
Walley. We will end with a short overview of Epis-
temic Decision Theory, which aims to reinterpret the
machinery of strictly proper scoring rules as measures
of “epistemic accuracy,” and the issues which arise
from impossibility theorems which indicate that there
are no strictly IP proper scoring rules.
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The Multilabel Naive Credal Classifier

Alessandro Antonucci and Giorgio Corani
IDSIA SUPSI/USI
Lugano (Switzerland)
{alessandro,giorgio}@idsia.ch

Abstract

We present a credal classifier for multilabel data. The
model generalizes the naive credal classifier to the mul-
tilabel case. An imprecise-probabilistic quantification
is achieved by means of the imprecise Dirichlet model
in its global formulation. A polynomial-time algorithm
to compute whether or not a label is optimal according
to the maximality criterion is derived. Experimental
results show the importance of robust predictions in
multilabel problems.

Keywords. Credal classification, imprecise Dirichlet
model, multilabel classification.

1 Introduction

A classifier represents the relationship between the
characteristics of an object (features) and its cate-
gory (class). A traditional classifier predicts the class
variable given the value of the features. Credal clas-
sifiers generalize traditional classifiers, allowing for
set-valued predictions of classes. A credal classifier
drops the non-optimal classes returning the classes
that are potentially optimal given the information
available. Depending on the data, there can be one
or multiple optimal classes. Credal classifiers are thus
less informative but more reliable than traditional
classifiers [8]. Both credal and traditional classifiers
assume the classes to be mutually ezclusive.

Multilabel classification is a modern type of classifica-
tion, in which an object is allowed to have multiple
relevant classes (or labels). Multilabel classification
arises naturally in many domains. A news article
discussing EU treaties could be labeled for instance
as politics and finance and environment. Similarly,
tagging of photos and videos are natural multilabel
problems. In bioinformatics, the identification of the
best mix of drugs for curing HIV has been addressed
as a multilabel problem [14].

The simplest approach for multilabel classification is

binary relevance. Given ¢ labels, binary relevance
develops ¢ independent single-label classifiers. The
main shortcoming of binary relevance is that it ignores
the dependencies among the different classes, which
in many cases are important [12]. The algorithm
of classifier chain [17] is a state-of-the-art approach
to model dependencies among classes. Although it
achieves good empirical performance, it has no direct
probabilistic interpretation.

To model the dependence among classes in a probabilis-
tically sound way, probabilistic graphical models are
typically used [1, 3, 5, 18]. Each label is represented
by a Boolean variable. The ¢-th Boolean variable rep-
resents whether the i-th label is relevant or not for
the current instance. The inference task is to detect
the most probable joint configuration of the labels.
A joint configuration of the labels is a sequence of
zeros and ones. Given ¢ labels, there are 29 possible
sequences. Evaluating the robustness of the prediction,
already important in traditional classification, is even
more important in multilabel classification. There is
however little work on this subject.

In this paper, we tackle this problem by means of
imprecise probabilities [19]. We propose a graphical
model which generalizes the naive Bayes to the multil-
abel setting. We learn the model using the imprecise
Dirichlet model (IDM) [4, 20]. We discuss two types of
inferences based on the criterion of mazimality. The
joint model detects the maximal sequences, among the
24 possible ones. This inference is exact but is feasible
only when ¢ is limited, for instance smaller than 10.
The marginal inference detects separately the maxi-
mal states of each label. We provide an approximated
algorithm to solve this inference which scales to tens
of labels.

The only other example of credal multilabel classifier
currently available is the recent work of Destercke [13]
which devises a framework similar to binary relevance
but based on credal classifiers.
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The paper is organized as follows. We review some
basics about Bayesian networks and the IDM in Sect.
2. We indeed show how the IDM applies to Bayesian
networks in Sect. 3. The (single-label) classical naive
credal classifier is reviewed in Sect. 4. The new model
we present for multilabel data is described in Sect. 5.1.
Classification with this model is addressed in Sect. 5.2
and the technical theorems behind the inference algo-
rithms are in Sect. 5.3. Simulations and conclusions
are in Sects. 6 and 7, while the proofs of the technical
results are in the Appendix.

2 Preliminaries

We denote random variables by uppercase letters,
generic values by lowercase letters and the sets of
possible values by calligraphic letters. For instance
X is a variable whose generic value is z € X'. For a
Boolean variable X, X := {0, 1}; given a generic value
z € X, its negation is —x .

We denote by P(X) the probability mass function
over X. Given a set of variables X, arranged into a
directed acyclic graph, a Bayesian network is a set of
conditional tables P(X;|Pa(X;)) where Pa(X;) are the
parents of X, i.e., the immediate predecessors of X;
within the graph. This defines a joint mass function

P(z) = [[; P(z:i[pa(X;)) [15].

A credal set over X is a (convex) set of probability
mass functions over X. Given a credal set, the maxi-
mality criterion allows to choice the optimal (i.e., most
probable) states as follows: z”/ € X is mazimal if and
only if there is no 2’ € X s.t. P(a’) > P(2") for each
P(X) in the credal set [19].

The imprecise Dirichlet model [20] (IDM) is a standard
approach to learn credal sets from multinomial data.
Given a variable X, a Dirichlet prior P(f,.) oc #5t(®)~1
would induce a probability 6, = %Sst(w) Thus,
considering all the priors s.t. Y _t(z) = 1, would

n(x n(x)+s
N(-&-?s and J(V—)&-s .

make 6, to vary between

3 IDM-Based Learning with
Independence

In this section we discuss the particular problem of
learning a set of multivariate distributions through the
IDM under specific independence assumption. This
is done in the special case where the independence
relations can be described within the framework of
Bayesian networks. We extend Zaffalon’s ideas stated
in [23].

To begin the discussion let us consider the following
example.
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Figure 1: A chain topology.

Example 1. Consider a Bayesian network over three
Boolean variables X, Y, and Z with the topology in
Fig. 1. This models the conditional independence
between X and Z given Y, with the joint distribution
factorizing as P(x,y,z) = P(x) - P(y|x) - P(z|y). The
likelihood of a set of observations D 1is:

x

)
where 0, := P(x), 0, = P(y|z), and 0., := P(z|y),
for each x,y, z, and n(-) is the counting function. A
conjugate prior over the parameters 6 is:

L(6) := P(D|0) = H gr(®) [H 9;\(57@/) [H QZ%Z)H
Yy z (1

)

2)
where s and the t(-) are nonnegative parameters. The
first term in Eq. (2) is proportional to a Dirichlet prior.
We set ) t(x) = 1. Considering the corresponding
(structural) constraint for the counts in the likelihood,
i.e., y_.n(x) =N, we can regard s as the equivalent
sample size (ESS) of this prior distribution.

st(x)—1 st(z,y)—1 st(y,z)—1
o) o2 [Tl |
T Yy z

Let us identify the additional constraints required to
regard s as an ESS even for the prior in Eq. (2).
We just identify the (again, structural) constraints on
the likelihood 3, n(z,y) = 3, . n(y,z) = N, which
correspond to:

Doty = ty,2) =1. (3)

Yy Yyz

The updated parameters become therefore:

n(x) + st(x)

=TT @
_ nla,y) + stz y)

Oy = n(z) + st(x) 5)
_ n(y,2) + st(y,2)

T T )

with t(z) = ¥, ta,y) and t(y) == ¥, t(y, 2).

An IDM-based model is therefore obtained by consid-
ering all the specifications of the parameters in Eqs.
(4-6) consistent with the above constraints over t(z),
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t(z,y), and t(y, z):

S ta) =1 (7)

xT

Zt(l‘,y) = t(x),Vm (8)

D oty 2) = Ha,y),Vy. (9)

Such a model can be regarded as induced by a set of
priors made of Dirichlet components and with ESS
s. This is the way we generalize the IDM to mul-
tivariate models with independence. To check that
the constraints are sufficient, consider all the (struc-
tural and not all independent) constraints satisfied by
the count function n(-) in Eq. (1), ie., >  n(z) =
Zmy n(z,y) = Zyz n(?/a z) = N, Zy n(z,y) = n(x)’
Yoo n(y,z) =n(y), >, n(x,y) =n(y). Itis a trivial
exercise to check that the t(-) parameters satisfy the
analogous relations (with one replacing N ).

The example deals with a node which is a child of
a child of another variable. This situation does not
appear in Zaffalon’s original work for the naive topol-
ogy, neither in other papers about more connected
topologies [24].

This approach can be easily extended to general
Bayesian networks. The specifications over X ap-
ply to parentless nodes with Y replaced by the whole
children set, the specifications over Z apply to any
childless node with Y replaced by the whole parents
set, and those for Y apply to any non-root non-leaf
node with the parents and children playing the role of
X and Z.

This section provides guidelines for learning the pa-
rameters of Bayesian networks based on the IDM. The
resulting model is a credal network [9], with the local
parameters taking their values from different credal
sets, but with the constraints over the parameters of
the prior inducing a non-separate specification [2].

4 The Naive Credal Classifier

In this section we briefly review the credal version
of the naive Bayes classifier as proposed by Zaffalon
in [23]. We denote the class variable as C' and the
feature variables as F := (F,...,F,). A dataset
of N complete i.i.d. joint observations of (C,F) is
available together with a counting function n(-).

The features are assumed to be conditionally inde-
pendent given the class. This corresponds to the
topology in Fig. 2 and induces the factorization
P(c,f) = P(c) - [Ii~, P(file), for each ¢ € C and
f:: (f17"'7fm) € HZL-E

Figure 2: An example of naive topology.

By proceeding as in Ex. 1, we have:

p(e) = MO, (10)
(c, fi) + st(c, fi)

n(c) + st(c)

n
P(file) = ; (11)
for each f; € F;, c€C,i=1,...,m. The class labels
assigned to an unannotated instance f of the features
are those s.t. arg max.cc P(c, f).

The IDM constraints on the above positive parameters
are: » . t(c) = 1 and > ; t(c, fi) = t(c), for each
i=1,...,mand ¢c € C.! We denote as t a generic
value for the joint variable of these parameters and by
T the corresponding feasible region.

The class labels assigned to f by this credal classifier
are the undominated ones according to the maximal-
ity criterion. Given ¢/,¢’ € C, ¢ dominates ¢’ if
P(d,f) > P(d", f) for any specification consistent
with the IDM constraints. This is equivalent to check:

n(c"”) + st(d”’) melm n(c, f;) + st(c, fi)

|: TL(C/) + St(C/) :| ;EII n(c”, fl) + St(C”, fl)

(12)

The optimization of the second term can be achieved
independently. The objective function rewrites as:

> 1.

inf
teT

[n(c”) + st(c”)]m_l ﬁ n(cﬂn@x £) (13)

n(c’) + st(c) P , fi) +st(c”)’

with the constraints being simply now ¢(¢’) +t(¢”) = 1,
with ('), t(¢”) > 0. In other words, we can express
the objective function as a function of a single vari-
able. Its logarithmic derivative is a linear fractional
variable, and the second derivative is always positive.
Overall the minimization can be efficiently achieved
by bracketing (see [23] for the details).

5 The Multilabel Credal Classifier

5.1 Model Specification

In this section we extend the setup of the previous sec-
tion to multilabel classification. The class variable C is

IThe strict positivity is required because otherwise the cor-
responding prior would be improper.
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replaced by ¢ (Boolean) class labels C := (C1,...,Cy),
where ¢ is the cardinality of C. This is standard way
to cope with non-exclusivity: if the j-th label of C is
active C'; = 1, otherwise C; = 0.

We call C; the superclass, and the other class labels
subclasses. We assume the conditional independence
of the subclasses given the superclass. Simplistically
we set as superclass the class which is more frequently
observed as active. The dependencies between classes
can be learned in more sophisticated way, optimizing
for instance the Bayesian scores [7] of the graph which
connects the classes.

A dataset of N joint observations of (C, F') is available
together with a counting function n(-).

Each feature is replicated q times. For each k =
m, {F}}j_, are replicas of Fj. For each j =
1,...,q, the replicated features {Fg};’;l are assumed

to be independent given C;. This is a simplifying
assumption, already formulated in other papers [3].
Strictly speaking, an additional dummy child modeling
the fact that all the replicas corresponds to the same
variable should have been added.

Accordingly, the joint factorizes as follows:

q

[ Peiler) ] 1_1 f[ (files),

=2

P(c7.f):P(Cl)

(14)
where the values of the class labels and of the features
are those consistent with ¢ and f. Parameters in Eq.
(14) can be learned from the data through a procedure
similar to that in the previous sections, i.e.,

n(er) + st(er)

P(cy) = —— , (15)
P - ekt
P(f]g|cj): (ijf)—’_St( J’f ) (17)

n(cj) + st(c;)

An IDM-like version is obtained by considering all the
models consistent with the following constraints:?

> te) =1, (18)

C1

Zt(cl,ci) = t(e1), Ve (19)

Ci

D e ) =Y tler, ) = t(ey), Ve, (20)

i e

2Here and in the following, if there is no risk of ambiguity,
the arguments of the sums and the products are omitted for

sake of notation. E.g., ch is a shortcut for 261€C1'
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Figure 3: The multilabel naive topology.

together with the strict positivity of all the parameters.
Even in this case we denote by t the generic value of
the joint variable including all these parameters and by
T the corresponding feasible region. The imprecision
in this model can be regarded as induced by s missing
observations, which we are completely ignorant about.

5.2 Maximal Sequences and Maximal Labels

Consider a complete observation f of the features
and two sequences of labels ¢/ and ¢”. According
to maximality, the second sequence is undominated
by the first if and only if there is (at least) a prior
consistent with the constraints s.t. the first sequence
is less (or equally) probable than the second, i.e.,®

Pt(cl7 f)
f ——12- < 1. 21
ter P(c, f) = (21)
In Section 5.3 we discuss how to ascertain whether

sequence ¢’ dominates ¢, in linear time with respect
to the number of classes and features.

A more complex problem is to ascertain whether se-
quence ¢’ is optimal. This happens if the condition
(21) is satisfied for each possible specifications of ¢/,
i.e.,

(<, f)
ot 5o ) < L (22)

maX mf

To detect the non-dominated sequences it is in prin-
ciple necessary to compare each possible sequence ¢’
against each possible alternative sequence ¢”. This
implies running 29 - 29 = 224 tests of the same type as
Eq. (21). In Section 5.3 we present a more efficient
procedure, which detects the maximal sequences by
running the test of Eq. (22) only once for each can-
didate sequence ¢’ (i.e., 29 times), with a substantial
computational saving. We call this model the joint
model, as it makes inference on the joint probability

3This is an alternative formulation w.r.t. that in Eq. (12).
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of the labels. Yet the complexity of the joint is expo-
nential in the number of labels; thus the identification
of the optimal sequences is feasible only of the number
of classes is limited, for instance ¢ < 10.

We thus devise a different approach in order to deal
with datasets containing many labels. It looks for the
maximal states of each label rather than for the max-
imal sequences. We call this approach the marginal
model. The marginal inference has polynomial com-
plexity (see Section 5.3); it is however less informative
than the detection of the maximal sequences. Consider
having detected k labels whose maximal states are both
relevant and non-relevant. The 2F sequences obtained
combining their states in all possible ways contain the
maximal sequences and others non-maximal sequences.
It is not possible to know which of the 2* sequences is
maximal and which is non-maximal.

This approach corresponds to the following optimiza-
tion task:

bi(c, f)

min maxmf B, F)

<1, (23)

cief=1 ¢
for each [ = 1,...,q, with the minimum over all the
specifications of the second sequence s.t. ¢/ = 1.
If the inequality is satisfied, then there is at least
an optimal sequence whose [-th label is active. By
replacing ¢ = 1 with ¢ = 0, we can decide if there is
an optimal sequence with the [-th label inactive.*

By iterating the test in Eq. (23) and its analogous
with ¢ = 0 for each | = 1,...,q, we can decide, for
each label, which one of the following three options
applies: (i) all the maximal sequences have that label
active; or (ii) all the maximal sequences have the label
inactive; or (iii) there are maximal sequences with the
label active and others with the label inactive.

We call this approach based on the joint model in Eq.
(14) and the IDM constraints in Eqs. (18-20) multilabel
naive credal classifier (MNCC). The derivation uses
ideas analogous to those proposed by De Bock and de
Cooman to detect the maximal sequences in hidden
Markov models [11].

5.3 Solving the Optimization

In this section we present the technical results be-
hind our implementation of the MNCC and a possi-
ble direction for its development. Let us start from
the maximality-based dominance test among two se-
quences, which can be performed as follows.

4By removing the constraints ¢/ = 1 from Eq. (23) we
test whether there is a maximal sequence. But this is true by
definition. Thus, if the inequality in Eq. (23) is not satisfied for
¢/ =1, then it should be satisfied for ¢}/ = 0, and vice versa.

Theorem 1. Given two sequences ¢ and ¢’ and an
instance of the features f, the decision task in Eq. (21)
is equivalent to:

TL(Cl, z) gl(cﬂcl’f)
II “mi<e @

i:ci==c!’
k2 T

if &y =¢f, and to

inf h(cl,cl,tl,f)]:[n(q» c;)gi(ci, ¢ )7 (25)

0<t:1 < n(cf,c) + st1

if ¢ = e, where
n(c;, fr)

V=t e @9
k n(C;’)Jrsti

gi(ci, ¢}

gi(ch, el  f) = gi(c, dl, f) if ¢, = ¢! and one other-
wise, and h(c), e t1, f) is defined as

(e, fr) (

n(cy) + sty H
k (Cl ’ fk) + Stl

n(cy) +s(1 —t1)

27)

:|q+m2

Furthermore, the objective functions in Eq. (25) and
Eq. (26) are convez.

The proof of this theorem is in the Appendix.

Th. 1 can be used to decide whether or not ¢’ does
not dominate ¢”. Because of the convexity results, the
optima in Eq. (25) and Eq. (26) can be evaluated
by bracketing (e.g., bisection) in constant time (as-
suming that we work with finite precision). Thus, the
dominance test only takes O(qf) time.

To detect the set of maximal sequences, the test should
be iterated over all the possible pairs. Alternatively,
we can adopt the approach in Eq. (22), i.e., maximiz-
ing w.r.t. ¢. If we add the constraint ¢} = ¢, the
maximization becomes trivial because of the factor-
ization in Eq. (24). If & is the value leading to the
maximum, we have & = ¢} and, for i > 1,
. n C”,_\C/v, _\C” C”,

a{ 8 SR

c; otherwise

Thus, we perform the dominance test as in Th. 1
with & and ¢”. We similarly proceed for ¢j = —¢] by
considering Eq. (25) instead of Eq. (24). If ¢] is the
value leading to the infimum, the task rewrites as:

n(=cf, )ii(el. ¢l f)
max | h(=cf, ey, 5, e i &
6,2’.”70; [ ( 1 1 1 f)l:[ n( 7/ //) + St*

(29)
The value of ¢} depends on ¢’ and the maximization
cannot be distributed over the product as in the previ-
ous case. Nevertheless, for the i-th term of the product,
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a maximization w.r.t. ¢ € {~c//, ¢} would be:

n(=ef, )
"n(c, el —|—st**}

(30)
with the double star denoting the fact that the two
optima w.r.t. t; can be different. Sufficient conditions
for one of these two terms being the maximum irre-
spectively of the values of ¢} and t;* can be used to
determine & as in the previous case, i.e.,

(2 Z

max{n(_'clllvﬁc )gi(=cl ey f)

n(cf,c) + sti

i

"o n(=c), =) gi(—ef el f) n(=cy i)
é/ . _\Ci lf n(c’l’,c”)+s > n(c”,c”) 9
T ! ifn(ﬁc/l ;=) gi (=l e L F) < (ﬁc'l’,c;/)
i n(c// C//) n( /17 /,)+S
(31)

Yet, unlike the specification in Eq. (28), it might
be that none of the two inequalities in Eq. (31) are
satisfied, and the corresponding value of & remains
undefined. If this is the case, we heuristically set the
value of & corresponding to the limit of Eq. (31) for
small values of s > 0.5

The above approach, whose complexity is the same as
a single dominance test, i.e., O(qf), can be used to
decide whether or not a sequence ¢” is maximal. This
is the case if the test in Th. 1 is satisfied for both the
specifications of ¢’ in Eq. (28) and Eq. (31).

To obtain the whole set of optimal sequences, we iterate
this procedure over all the 2¢ possible specifications of
¢”. To avoid this exponential blow-up, the approach
in Eq. (23), i.e., minimizing w.r.t. ¢” with a fixed
value for ¢/, can be considered instead. In practice this
corresponds to minimize the maximum between the
above considered expressions for ¢f = ¢/ and ¢} = —¢f.
Although each one of the two expressions factorizes,
moving the minimum w.r.t. the different factors inside
the two arguments of the maximum might introduce
an approximation, i.e.,

B f) o
Pt(C// ) -
P(c, f)
( Il’f)

where the constraint ¢/ = 1 on both sides is left im-
plicit for sake of readability. The above inequality
trivially follows from the technical result here below.

mln min maX max lnf
cy cé/,...,c’c; ¢ ch,....ch

(32)

min max min max mf
! cé/,.wc’ chyennCh

Lemma 1. Given two arrays a@ and b with the same
length n, the following inequality holds:

min max{a;, b;} > max{mina;, minb; } (33)

where a; and b; are the i-th elements of d and 5, and
the minima are intended w.r.t. i =1,....n

SIf n(=cf, =i )gi(=cf ¢, f) # n(=cy, ), it is easy to check
that the two 1nequahtles cannot be 51multaneously satisfied and,
for sufficiently small s, one of them is always satisfied.
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The proof of this lemma is in the Appendix. The right-
hand side of Eq. (32) can be efficiently evaluated by
reducing it to a single dominance test as we did in the
first part of this section for the task in Eq. (22). If its
value is (strictly) greater than one, Eq. (32) implies
that also the left-hand side of Eq. (23) is greater than
one, i.e., there is no maximal sequence with the I-th
label active. If this is the case, we conclude that all
the maximal sequences have the [-th label inactive. If
the analogous optimization with the constraint ¢} =
instead of ¢ = 1 gives a result greater than one, we
similarly conclude that all the maximal sequences have
the [-th label active. Finally, if none of the above two
is the case, we adopt a cautious approach by stating
that there could either be maximal sequences with the
[-th label active and inactive. The above approach
can be considered to efficiently characterize the set
of maximal sequences of the MNCC by means of an
outer approximation.

6 Experiments

We compare the two variants of MNCC (joint model
and marginal model) with the Bayesian graphical
model, whose structure is as in Fig. 3. We adopt
the BDeu prior [15, Chap.17] to learn the Bayesian
model. This model is referred to in the following as
the Bayesian model.

We consider four benchmark datasets, whose charac-
teristics are reported in Tab. 1. Emotions, Scene, and
Slashdot are classical benchmark datasets for multil-
abel classifiers. The E-mobility dataset is taken from
a mobility study. It tracks which means of transport
(car, train, bus, etc.) are used by a person for a given
trip. The features are constituted by the length and
duration of the trip, hour and day of the week, number
of persons, reason of the trip, etc. [6].

Data set Classes Features Instances
Emotions 6 44/72 593
Scene 6 224/294 2407
E-mobility 10 14/18 4226
Slashdot 22 496/1079 3782

Table 1: Benchmark datasets.

We validate the classifiers by a ten-folds cross-
validation. Before training any classifier, we perform
two pre-processing steps. First, we discretize numeri-
cal features into four bins. Then we perform feature
selection as follows. We adopt the correlation-based
feature selection (CFS) [21, Chap. 7.1], often used in
traditional classification. We perform CFS ¢ times,
once for each different label. Eventually, we retain the
union of the features selected in the ¢ runs. This is a
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useful pre-processing step which reduces the number
of features, removing the non-relevant ones. As an
example, Tab. 1 displays the number of features after
and before this selection procedure when applied to
the benchmark datasets considered in this paper. Fea-
ture selection for multilabel classification is however
an open problem, and more sophisticated approaches
can be designed to this end.

We start by assessing the joint model. We measure
the exact match of the Bayesian model, namely the
proportion of times in which the whole sequence of
classes has been correctly predicted. For the MNCC
we measure the # of sequences, namely the number of
maximal sequences; moreover we measure the credal
match, namely the proportion of times in which the ac-
tual sequence belongs to the set of optimal sequences.

Dataset Bayesian Credal (MNCC)
Exact match  # of seqs  Credal match

Emotions 27 9.4 .80

Scene .29 7.6 .80

Table 2: Experimental results of the joint model.

The sequence predicted by the Bayesian model is al-
ways recognized as maximal. The credal joint model
is more robust than its Bayesian counterpart: the
credal match is about three times larger than the to-
tal accuracy of the Bayesian multilabel classifier (see
Tab.2). The number of maximal sequences is reason-
ably limited, considering that the presence of 6 classes
implies 64 possible sequences. The exact match of
the Bayesian classifier drops sharply on the instances
which have many maximal sequences. On the Scene
dataset, the total accuracy is 0.23 and 0.40 on the
instances which have respectively less and more than
nine maximal sequences. A similar pattern is observed
also on the Emotions dataset. These results are ob-
tained through the joint model, which enumerates all
the 29 possible sequences and checks whether they are
maximal as in Eq. (22). They show the interesting
potential of the credal approach to multilabel clas-
sification. Yet, the joint model can only cope with
small q.

The marginal model can deal with larger ¢ and thus can
be tested on more challenging datasets. We adopt the
outer approximation corresponding to the dominance
test in Eq. (23). Results of a ten-folds cross validations
are in Figs. 4-6. We evaluate the marginal model
label-wise. In particular we measure for each label
the accuracy of Bayesian model when MNCC returns
a determinate and an indeterminate prediction. We
also report the determinacy, i.e. the proportion of
instances on which MNCC is determinate. On Scene

1.00 — : . : :
75| 3
50 | 3

.25 N

C1 Co Cs Cy Cs Ce
Emotions

1.00 . .

5 |- -

.50 - N

25 |- N

Cl CQ 03 C4 05 C’6
Scene

Figure 4: Accuracy of the Bayesian model on the
instances on which the marginal MNCC model is de-
terminate (light bars) and indeterminate (dark bars).
The black squares denote the determinacy level. The
results are presented label-wise.

C1
s m
C3
Ca !
s _—T
Ceg ] [ 8
Cr ] .-
Cg ] .
Cy l .
Cio ] [ =
| | |
0 25 .50 75 1.00
E-mobility

Figure 5: Accuracy of the Bayesian model on the
E-mobility dataset. Light gray bars denote the accu-
racy when the marginal MNCC model is determinate.
When determinacy (black squares) is one, the dark
gray bar associated to the case when MNCC is in-
determinate is not shown. The results are presented
label-wise.
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|
0 .25 .50 .75 1.00
Slashdot

Figure 6: Accuracy of the Bayesian model on the
Slashdot dataset. The dark gray bars denote the
accuracy of the Bayesian model when the MNCC is
indeterminate. If the determinacy (black squares) is
zero, the light gray bar corresponding to the cases
when the MNCC is determinate is undefined. Labels
are sorted according to the determinacy level just for
sake of readability. The results are presented label-
wise.
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and Emotions the accuracy of the Bayesian model
sharply drops when the multilabel classifier becomes
indeterminate. This confirms a well-known strength
of credal classifiers compared to Bayesian classifiers
[8]. This is generally confirmed also on E-mobility
and Slashdot. However in these datasets there are
also labels in which the Bayesian model is perfectly
accurate when the credal model is indeterminate (see
the first labels of both datasets). This suggests that
the credal model is excessively indeterminate in some
situations. This is a problem which is also known in
traditional classification and which could be mitigated
for instance by e-contaminating the IDM with the
uniform prior.

Future studies might inspect also further indicator of
performance for multilabel classification, such as the
F-metric. We focus on the exact match and on the
label-wise accuracy as the inferences for this indicators
are optimal. Optimal inferences for other indicators
have still to be developed.

A Matlab software implementation of the MNCC is
freely available at http://ipg.idsia.ch/software.

7 Conclusions

We have generalized the naive credal classifier to cope
with multilabel data. The preliminary experiments
are promising: the credal approach yields more robust
predictions than the Bayesian approach. To scale to
large number of labels it is necessary adopting the
marginal model, whose inference is approximated.

As future work, it could be interesting to compare the
inferences yielded by local and the global specification
of the IDM (e.g., by exploiting some of the results in
[10]). Moreover one could consider optimality criteria
others than maximality (e.g., E-admissibility). A com-
parison with other methods possibly yielding multiple
sequences (e.g., [16, 22]) could be also considered.
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A  Proofs

Proof of Theorem 1. We consider the objective func-
tion in Eq. (21) by distinguishing whether or not the
two sequences ¢ and ¢ share the first label, i.e.,

Gi(c', ", f), ifc)=df,
= (34)
Hy(c, ", f), ifc =~df.

Because of Eq. (14), function G¢(c',c”, f) writes as:

n(eh, fi) 5t 1)
0 n(é), ) + st(c), ) ﬁ CAETICAN
n(cy, ) + st(c], ) n(ef fi)+st(c fr) |

irc;=—cy k=1 n(cé')+st(cg’)

(35)
where the restriction in the outer product is possible
because of the contribution of the other terms is one
(remember that ¢j = ¢ ). A preliminary optimization
w.r.t. the constraints can be achieved as in Sect. 4 by
setting t(ch, fr) = 0 and t(c!, fr) — t(c!) (remember
that ¢, = =cf ). Similarly, (cl, c)—0 and t(cd,d) —
t(cy). After these operations, the result rewrites as:

n(c;)Jrst(c;)
) H n(c!, fr)+st(c)) |’ (36)
k n(c)+st(c))

' n(cl, ¢i)
11 n(ef, ¢f) + st(c

i

where the prime in the product is a shortcut for the
restriction. The optimization w.r.t. t(cf) is achieved in
the limit t(c]) — 1. Even the remaining optimization
tasks can be achieved independently of the others. The
result is the left-hand side of Eq. (24), where, in Eq.
(26), we have set t; := t(c}), and hence t(c;) =1 —t;
(remember that, for these terms, ¢, = —cl).

We similarly proceed for Hy(c',c”, f), i.e., because of
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Eq. (34) and Eq. (14):

:| gtm=—2 H TL(C/ly fk) + St(Cll, fk)
A n(cllla fk) + St(clllv fk)
n(cj, fr)+st(c], fr)
n(c;)Jrst(c;)
(S T T )
n(c;')-l-st(c;’)

11 n(cr, ¢) + st(c, ¢)

Latet ey +sef el

==

(37)

As in the previous case, we perform some optimization,
rename the remaining variables, and independently
optimize w.r.t. t; (i > 1). Afterwards, we optimize
w.r.t. t1 and infy He(c', ¢, f) becomes as in Eq. (25).

Finally, we prove that the objective functions in the
right-hand side of Eq. (26) and in Eq. (25) are convex.
The derivative of the logarithm of the objective function
in the right-hand side of Eq. (26) divided by the positive
constant s is equal to:

¥ ! 4™
n(ch) + s(1 —t;) - n(c, fr) +sti  n(c)” + st

(38)

The second derivative, again divided by s, 18:
5+ ————— 39
[n(c )—i—sl—t Z fk + st;]2 (39)
- (40)

- [nle)" + st

and its nonnegativity easily follows from n(c]) >
n(ct, fi). Similarly, the second derivative of the loga-
rithm of the objective function in Eq. (25) is:

__a+tm=2 q+m—2
[n( ”) +st1)2  [n(d)) + s(1—t1))?
1
Jrz Cl’f’f + st1]? i ; [n(cf,cf) + st1]? (1)

As in the previous case, the nonnegativity follows from
n(ci') = n(cf, fi)- O
Proof of Lemma 1. We prove the result by contra-
diction. Thus, we assume that:

min max{a;, b; } < max{mina;, minb;}. (42)

Let ©* denote the argmin of the left-hand side. If,
without any lack of generality, we assume min; a; >
min; b;, Eq. (42) rewrites as:

max{a;, b+ } < mina;. (43)

If a;« > b, we obtain the contradiction a;« < min; a;.
Otherwise, we have:

a;+ < b < mina; (44)

which is also a contradiction. O
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Abstract

In this article we define a procedure which corrects
an incoherent probability assessment on a finite do-
main by exploiting a geometric property of L1-distance
(known also as Manhattan distance) and mixed inte-
ger programming. L1-distance minimization does not
produce, in general, a unique solution but rather a
corrected assessment that could result an imprecise
probability model. We propose a correction method
for the merging of two separate assessments whose
direct juxtaposition could be incoherent, and for the
revision of beliefs where the core of the assessment
must remain unchanged. A prototypical example on
antidoping analysis guides the reader through this
article to explain the various procedures.

Keywords. coherence, mixed-integer optimization,
probability merging and revision, imprecise probabil-
ity.

1 Introduction

The problem of correcting probability evaluations, es-
pecially on finite settings, has a long history and
has been largely debated. Considering the signifi-
cant amount of research on this subject, we can just
mention two main “streams”: one is the “right way” of
assessing probability values, whose roots can be found
in while the other is the so called “calibra-
tion question” that stems from the seminal paper
and subsequent developments [16]. More recently
these two streams have been joined and faced with a
unifying view by de Finetti’s notion of coherence ([18]
and in particular pag. 361]). Hence several ap-
proaches have been proposed to deal with “incoherent”
probabilities, for both unconditional and conditional
values and by adopting different notions of “distances”
and “scoring rules” (among the many, refer, e.g., to

(61 [71[81[91 28] [30))-

The risk of dealing with incoherent probability as-

sessments is significantly present when the numerical
evaluation comes from different sources of information
and/or structural constraints limit the possible states
(see, e.g., [B][11][12][24][33]). In this paper we come
back to the fore of this argument leaving aside the
more probabilistic approaches based on scoring rules
that have a forecasting perspectives, by adopting the
more aseptic approach based on geometrical distance
minimization. In particular we will deal with the sim-
ple and easily understood L;-distance, known also as
“Manhattan” or “taxi-cab” metric. The main reason
for using such metric is because we are able to propose
an effective procedure (presented in Sec. , which
is based on integer linear programming and hence is
much more efficient than the correction procedures
needed for other distances, for instance the quadratic
programming for Lo-distance. L;-distance minimiza-
tion has moreover a simple interpretation, since it
implies a direct minimal modification of each single
value, permitting to use it for different purposes like
the merging between two separate assessments (de-
scribed in Sec. |4) and the revision of beliefs (depicted
in Sec. .

The peculiarity of using L1 minimization is the non-
uniqueness, in general, of the solution and this could
represent an alternative way of legitimating the adop-
tion of imprecise probability models, in addition to the
historical ones as stemming from buying/selling prices
or desirability of gambles [35], or from extensions of
coherent precise initial assessments Chap.15]. In
this paper, we assume that the initial assessments
are precise, but this assumption could be easily gen-
eralized to initial imprecise probability assessments.
However, assuming initial assessments as being precise
is reasonable as it is consistent with usual estimate
techniques which tend to express precise values.

In order for this paper to be as self-contained as pos-
sible, the next Sectionbrieﬂy introduces the notion
of probability assessments and formalizes the problem
of their coherence. As already stated, the subsequent
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Sectioncontains a proposal of a new correction algo-
rithm based on Li-distance minimization via mixed
integer programming and on properties of convex poly-
topes, while Sectionsand legitimate its usefulness.
A short concluding Section|6|closes the contribution.

2 Probability Assessments

A probability assessment on a finite domain can be
expressed through a quadruple 7 = (V, U, p, €), where
V ={Xi,...,X,} is a finite set of propositional vari-
ables, representing any potential event of interest, U is
a subset of V' that contains the effective events taken
into consideration, p : U — [0, 1] is a function which
assigns a probability value to each variable in U, and
¢ is a finite set of logical constraints which lie among
all the variables in V.

Note that the explicit presence of the set of variables
V', even if the numerical assessment is given on the
subset U, permits to extend an initial assessment to
a larger domain without redefine the whole model,
allowing a dynamical analysis. In this paper we will
use it only on the merging application of Sec but
it is a good practice to allow this distinction also in
static descriptions.

Since the Boolean logical setting in which we em-
bed the assessment, in the sequel we will adopt the
usual logical notation, with =, A and V denoting the
negation, disjunction and conjunction connectives, re-
spectively; = the material implication; = the logical
equivalence; T and L the universal tautology and con-
tradiction (sure and impossible events), respectively.

Usually some possible forms of logical constraints are:
¢ =1, ¢ = Y and ¢ = L, where ¢ and ¢ are
boolean expressions involving the variables of V. But
without loss of generality, we suppose that € is ex-
pressed in conjunctive normal form, i.e., each element
of € is a disjunction of literals formed with variables
in V, i.e., each element can be written as disjunctive

clause
(15)- ()
heH leL

for some H,L C {1,...,n}, so that € results as their
conjunction.

For example, the constraint X; = X is expressed
in € by the clause - X; vV Xj;.

A truth-value assignment « is a function from V to
{0,1}. Given a proposition ¢, we write a = ¢ when «
satisfies ¢, otherwise we write a (= ¢.

There are different, but equivalent, ways to define the
coherence, i.e., the “rationality”, of an assessment 7:
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from semantical, syntactical or operational point of
views (see, e.g., [12][13][18][27]). Here we adopt the
pragmatic way already used in [1], where a probability
assessment m = (V, U, p, €) is coherent if there exists
a probability distribution p : 2V — [0,1] on the set
of all truth-value assignments 2V which satisfies the
following properties

1. for each o € 2V, if there exists a constraint ¢ € €
such that a [~ ¢, then p(a) = 0;

2. Z wla) =1;

ac2V

3. for each X € U, Z
a2V al=X

The coherence of a probability assessment, called
shortly CPA, has been already studied in [1][2][3][32],
albeit in a slightly different form, showing that check-
ing if m is coherent is a NP-complete problem, even
when the constraints in € are binary (i.e., each of them
involves only two variables).

The computational problem CPA is strictly related to
the Probabilistic Satisfiability problem (PSAT [23]),
where the probability assessment is defined on some
finite set of propositions, instead that on the proposi-
tional variables. It can be proved that every instance
of CPA can be easily translated as a PSAT instance,
and that every PSAT can be formulated in a normal
form, which is essentially a CPA instance |14].

There exist several algorithms to solve CPA and PSAT
problems:

e A column-generation approach, where the
problem is solved using linear programming tech-
niques which exploit the sparsity of the solutions;

o CPA algorithm [1][2], which is based on a symbolic
manipulation which, in some cases, needs a further
linear programming procedure;

e SAT-based approach [19], in which the problem
is translated in a pure propositional satisfiability
form (SAT);

e MIP-based approach [I4], in which the problem
is formulated as a mixed integer programming
problem (MIP).

3 Correcting Probability Assessments

When a probability assessment © = (V, U, p, €) is not
coherent, then it is possible to “correct” it in different
ways, in order to obtain a coherent probability assess-
ment 7’ which is as close as possible to 7, according
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to a distance or a pseudo-distance function between
probability assessments.

One possibility is to revise only the probability values,
ie., " = (V,U,p,€), and to use a distance between
probability assessments which is defined only in terms
of p and p'.

Another possibility, which will not be taken into ac-
count in this paper, could be to revise (also) the logical
constraints.

Since p and p’ correspond to vectors of R", where
n = |U|, it is possible to use a distance d in R™. Then,
chosen a distance d, a d-correction of a probability
assessment ™ = (V, U, p, €) is a vector p’ such that the
probability assessment «’ = (V,U,p’, €) is coherent
and d(p,p’) is minimized. We denote Cq4(7) the sets of
all the d-correction of 7.

Clearly if 7 is coherent, then Cq4(m) = {p}, for any
distance d of R".

In general, given a probability assessment 7, Cy4(7)
could have more than one element and in this case
the operation of correcting a probability assessment
leads to an imprecise probability model, the so called
“credal set”.

As already stated in te Introduction, several distance
choice are possible. Among the many, in this paper
we focus on the L distance defined as

n

di(p,p) = 3 Ip(X:) - p'(X,)]

i=1

and we denote Cgq, (7) as C(w). Whether this could be
the best distance and how it performs with respect to
the others is not directly considered. Rather its use
as a tool is considered as it is reasonable and easily
interpretable by users so that technical aspects con-
nected with its adoption are addressed. Our interest
in L, distance is that with its adoption translating the
optimization problem into a linear problem by using
both integer and real variables is possible. This last
represents a computational advantage compared to
other distances that imply implementation of non lin-
ear (quadratic, logarithmic, etc.) optimizations tools.

The resulting mixed integer program P1 is built simi-
larly to the method described in [14]. Let us suppose
that U = {X1,...,X,,}. Moreover let m = |€].

The real variables of P1 are
e bjj,fori=1,...,nand j=1,...,n+1.
o gj,forj=1,...,n+1

e r; 8, fori=1,...,n

all of them are non-negative (as usual in linear pro-
gramming).

The program P1 also has the integer variables
e a;j,fori=1,...,nand j=1,...,n+1

which are constrained to 0 or 1.

The constraints of P1 are

1. foreachi=1,...,n,

n+1
> bij =p(Xi) + (ri — 55)
j=1

2. fori=1,...,nand j=1,...,n+1,

0<bjj <ay, aij—14+q <bij <g;

n+1

> =1
i=1

4. fori=1,...,n,

ri<l, s <1
Moreover, for each clause ¢; (for i =1,...,m), where
cic=V XpVv V —X,,and foreach j=1,...,n+1

heH; leL;
the following linear constraint is added

Z ap,; + Z(l — al’j) >1

heH; leL;

Finally, the objective function to be minimized is

n

Z(h‘ + si)

i=1

Solving the linear program P1 is equivalent to correct-
ing the probability p, because every correction p’ of
p is a coherent probability assessment, hence it can
be written as a convex combination of at most n 4 1
atoms, i.e., truth assignments which satisfy the logi-
cal constraint € (for more details refer, e.g., to [25]).
The binary variables a;; are a representation of these
atoms, because of the constraint 4., while the real vari-
ables g; are the coefficients of the convex combination.
The role of constraint number 2. is to set b;; = a5 - g;
(fort=1,...,nand j=1,...,n+ 1), without using
the multiplication, otherwise P1 would not be a linear
problem. The variables r;, s; are slack variables, which
represent, respectively, the positive and the negative
difference between p(X;) and p’'(X;), as implied by
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the constraint 1. Finally, the objective function corre-
sponds to minimize the L;-distance between p and p’,
Le., S [p(X0) — p/(X0)]

From a theoretical point of view, to find the correction
is a computational hard problem. Indeed given a
probability assessment m = (V,U, p,€) and a real non-
negative number D, it is a NP-complete problem to
check if there exists a coherent probability assessment
7 = (V,U,p',€) such that di(p,p’) < D. The proof
of NP-containment is easy because any solution of
P1 provides a succinct certificate for the existence of
7’ i.e., the values of aij, 7; and s;’s. While the NP—
hardness derives from the fact that the coherence of
7 (which is a NP-complete problem) can be tested by
posing D = 0.

Anyway, the actual implementations of MIP solvers
make possible to solve probability correction problems
of reasonable size in a feasible amount of time.

The optimal value § for the objective function corre-
sponds to the minimum possible correction on p and
any coherent probability assessment 7' = (V, U, p/, €)
such that d;(p,p’) = ¢ is a possible solution i.e., p is
an element of C(r).

In many situations C(m) has more than one element
and the MIP problem is able to find just one solution,
which could not be a good representative of all the
elements of C(m), as it happens when it is an extreme
value. Hence the following procedure to generate all
the elements of C(7) is proposed.

Let Q be the set of all vectors ¢ € R™ such that the
probability assessments (V,U, ¢, €) are coherent. Q
forms a convex polytope whose extremal points are
exactly the atoms, i.e., all truth-value assignments «
which satisfy the logical constraints €.

Let B, (9) be the ball of all vectors ¢ € R™ such that
d(p,q) < 0, with p the numerical probability assess-
ment present in 7. Such ball B,(d) is a convex set
whose extremal points are the points p£de;, where e; is
the i-th vector of the canonical basis, for i = 1,... n.

Then C(m) is a convex set of R™, because it is the
intersection (see [29]) between the convex sets Q and
B (9).

It is possible to describe C(m) in terms of its extremal
points ¢, ..., qs, indeed any element of ¢ € C(7) can
be expressed as

S
g= N
i=1

for some coefficients Aq,...,As € R, such that 0 <
N <1, fori=1,....s,and > o _; N\ = 1.

As a starting point, let us find a particular element
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p € C(m), which has the property that
;max Ip(X:) — p(Xa)| (1)

is minimum, among all the coherent assessments such
that

di(p,p) = 6. (2)

This optimization problem can be formulated as a MIP
problem P2. All the constraints and the variables of
P1 are reported in P2. Moreover, P2 contains a
new real variable z, which is subject to the constraints
ri+s; <z fori=1,...,n (hence z > igxllaxn(r¢+si)),
and the new additional constraint Y., (r; +s;) =6
(which represents the equality ) In this way, the
P2 objective function to be minimized is simply z,

since it equates .

The corrected assessment 7 = (V, U, p, €) differs from
7w by § and tries to spread this difference as much as
possible among the variables of U. Moreover, p is, in
some sense, the most “central” point of C(m).

Using p, it is possible to find the face F of the polytope
Q where C(r) lies. The face F} is itself a convex set
with at most n 4+ 1 atoms as extremal points, which
can be found as a part of the solutions of P2 (i.e., the
optimal values of a;;).

By looking at the signs of p(X;) — p(X;), for i =
1,...,n, it is also possible to determine the face F5 of
B () which contains C(7). Indeed, F is a convex set
with at most n extremal points of the form

p + sign(p(X;) — p(X;)) -0 - ej. (3)

The extremal points @ = {q1,...,qs} of C(7) can be
easily found by means of the following procedure.

e let £ be the extremal points of F; and Es be the
extremal points of Fy

e compute Hy as the H-representation of F
e compute Hy as the H-representation of Fy

e let H = H{UH>, the H-representation of F1NFy =
C(m)

e compute () as the V-representation of H

where the V-representation of a convex set C' is the set
of its extremal points, while the H-representation of

C'is a set H of half-spaces such that C'= () h. It is
heH
possible to convert from the V-representation of C' to

its H-representation by means of a face enumeration
algorithm, while the inverse conversion is performed
by a vertex enumeration algorithm [21].
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Both steps can be computed in polynomial time as
shown, for instance, in [21].

Let us summarize the whole process with the following
pseudo-code where FaceEnum and VertexEnum are
suitable procedures to compute the H and V represen-
tations.

procedure Correct
Input: assessment (V,U,p, €)
Output: extr. points W and min. distance ¢
begin
prepare MIP program P1
solve it and extract the optimal value ¢
if § = 0 then
return ({p},0)
else
prepare MIP program P2
solve it
extract the values a;;,7;, S;
E1 :=columns of matrix a;;
compute p from 7, s;
compute F2 with formula
H1 := FaceEnum(E1)
H?2 := FaceEnum(E?2)
Q := VertexEnum(H1 U H2)
return (Q,9)
endif
end

3.1 A Simple Numerical Example

Let us illustrate a simplified example that can help
one to show the previous procedure step by step.

Example 1. Consider a statistical analysis of doping
in sports and how it improves performance while si-
multaneously damaging health. So let us consider the
binary variables (i.e., events) X1 = D =*“the athlete
uses banned performance-enhancing drugs” (i.e., "dop-
ing"), Xo = E =“the athlete is showing a performance-
enhancing in the last period” and X3 = H =“the ath-
lete is showing a significant change in his/her biological
profile”.

Hence the domain U of our assessment will be U =
{D,E, H}, while, at the moment, the universal set V
can be any, not better specified, superset V2 U.

Suppose one obtains the probability values p(D) = 0.9,
p(E) = 0.8 and p(H) = 0.9 by collecting informa-
tion from disparate sources of information (e.g., public
health registers, drugs consumption’s and physicians’
files, trainer interviews, etc.) on athletes showing
stgnificant increases in their performances or health
alterations. At a first look the numerical evaluation
p = (0.9,0.8,0.9) on U, except from the extremely

)

o

p(H)

p(E)

()]

Figure 1: Configuration of the assessment of the dop-
ing example: the coherent assessments polytope Q is
delimited by vertexes a1, as, ag, a4; the initial inco-
herent assessment p = (0.9,0.8,0.9) is at Ly distance
6 =0.2 from Q.

high values, could seems “acceptable”. On the contrary,
since doping causes both an enhancing in the perfor-
mance and an alteration of the health and furthermore
and since information is collected only among athletes
already showing at least one of the two “symptoms”,
the assessment must be endowed with the logical con-
straints:

D = EAH; (4)
~(EVH) = 1, (5)

or, equivalently, with the set of clauses
¢={FEVH-DVE-DVH}. (6)

Consequently the assessment m = (V,U,p, €) is inco-
herent since the set of coherent values Q is character-
ized by the probability inequalities

p'(D) < p(E)
p'(D) < p'(H) ,
p(E)+p(H)-p' (D) > 1

and consist of the convex 0-1 polytope with vertexes
al = (1,1,1), a2 = (0,1,1), a3 = (0,0,1), a4 =
(0,1,0) and, as it also apparent from Fz'g. p 1S out-
stde it and hence incoherent. The first step of the
previously described procedure, through MIP program
P1, returns that 6 = 0.2, while the second MIP pro-
gram P2 finds p = (0.833,0.867,0.967) so that one can
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Figure 2: Zooming on the doping example assessment:
facet F2 of B,(d) is the grey triangle (by, ba, b3), the
set of corrected assessment C(7) is the dashed polygon
with vertexes q; = bl, g2 = b2, g3 and q4.

derive the V-representations of the two facets as

a1. = ay,
Fl= az. = asg, (7)
as. — Q4

by = (0.7,0.8,0.9),
by = (0.9,1,0.9), §. (8)
bs = (0.9,0.8,1.1)

E2 =

With them the intermediate calls to FaceEnum produce
the H-representations (not reported here because of an
hard reading) of the facets F1 and F2. The final call
to the VertexEnum returns the V-representation of the
whole set C(m) of corrected values (the dashed polygon
n Fz'g. that is

g1 = bl = (0.7,0.8,0.9),
) @ =62=(09,1,09),
g1 = (0.8,0.8,1)

4 Merging Probability Assessments

Given two coherent probability assessments m; =
(V,U,p,€) and my = (V, W, q,D), on the same propo-
sitional variables V', one can say that 7y and w5 are
compatible if for each variable z € UNW, p(z) = q(z).
In other words, p and ¢ coincide on the variables in
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common among m; and 7. The compatibility of two
probability assessments means that they do not assign,
in an apparent way, different probability values to the
same variable. Nevertheless, they can be contradictory
by assigning different values to same proposition in an
implicit way, thus the assessment formed by joining
together m; and w5 could be incoherent.

Example 2. Take for example as m = (V,U,p,€)
the “barycentric” correction of m in Eac given by the
first P1 MIP program, and let mo = (V,W,q,D) be a
further investigation over official training data that,
agreeing with the percentages of enhancing performers
and of biological perturbations, claims moreover that
the percentage of athletes that naturally, i.e., without
doping, are able to enhance significantly their perfor-
mance showing biological modifications is of the 1%.
Hence one has

W={Xy=E,Xs=H,Xy,=(-DANEANH)}; (10)

4(E) = B(E) = 0.867,
q=| q(H)=p(H)=0967, |; (11)
q(X4) = 0.01

D=C¢U{-DV-Xy,EV-Xy, HV-X,}. (12)

By construction w1 and wo are “compatible” since they
give the same probabilities to the common subdomain
UNW = {E, H}, but they disagree on X, since the all
coherent extensions of D give zero probability to X4.00

If two probability assessments 1 = (V, U, p,€) and
o = (V, W, ¢,®) are compatible, one can denote m +
7o as the probability assessment (V,U U W, r,€UD),
where r : UUW — [0, 1] is defined by joining together
p and g, i.e.,

| plz) ifxeU
r(z) = { q(z) fzeWw
The compatibility condition assures that the value of
r(z), when z € U N W, is uniquely defined.

Given two compatible probability assessments m =
(V,U,p,€) and 7o = (V, W, q, D), the merging opera-
tion of m; and 7y is defined by

71 @ my = Correct(m; + m2)

Example 2. (continues) If one takes the juxtaposi-
tion of the two assessments m1 and T one gets an
assessment w1 + mwo with components V, U U W =
(D,E,H,X,4), r = (0.8333,0.8667,0.9667,0.01) and
logical constraints ©. It is, as explained before, inco-
herent, with an L, minimal distance of § = 0.01 and
its correction w1 @ mwo is the credal set with extremal
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numerical values

¢1 = (0.8333,0.8767,0.9667,0.01)
g2 = (0.8333,0.8667,0.9767,0.01)
qs = (0.8233,0.8667,0.9667,0.01)
g4 = (0.8333,0.8667,0.9667, 0.00). |

Compatibility is not always present between different
assessments, especially if the two sources of informa-
tion stem from disparate contexts. When the proba-
bility assessments to be merged are non compatible,
i.e., they assign different probability values to some
common variables, it is not possible to join directly
them into a unique assessment. Anyhow two different
solutions are possible: a “weighted combination” of
the two assessments, or a “assignment to duplicates”,
as detailed in the next paragraphs.

The first approach requires one to create a non con-
tradictory probability assessment from 7, and 7y, by
choosing a unique probability value for each variable
in UNW. A possible solution is to use a weighted
average of p and g, i.e., chosen a weighting coefficient
w € [0, 1], where 7; +,, m2 defines the probability as-
sessment (V,UUW,r, €UD), where r : UUW — [0, 1]
is now defined

p(x) ifxeU\W
r(z) =< qx) ifxeeW\U
wp(z) + (1 —w)q(z) fzeUnNW

Finally, the merging operation of m; and 79 is

m @, w2 = Correct(my +, 72)

When w = %, equal importance is given to m; and mo
and @ 1 becomes commutative. While the extreme
values w = 0 and w = 1 correspond to the cases
where the values of 7o (or 71, respectively), are used
for contradictory situations. In some sense == is a
measure of the relative reliability of m; with respect

to ma.

Example 3. If one renders explicit the contradiction
on X4 of the two assessment w1 and wo of E:z: i.e.,
by considering p(X4) = 0, and one chooses w = %,
one has the starting weighted assessment +1m
with components V, UUW = (D,E,H,X,), r =
(0.8333,0.8667,0.9667,0.005) and logical constraints
again expressed through the same set of clauses ©. It
is anyhow incoherent with an L1 minimal distance of
6 = 0.01 but its correction m 69% o is now the credal

set with extremal values

@ = (0.8333,0.8742,0.9667, 0.0075)
» = (0.8308, 0.8642, 0.9667, 0.00)
5 = (0.8333,0.8667,0.9742, 0.0075)
g1 = (0.8308,0.8667, 0.9642, 0.00)
5= (
(

q
q

g5 = (0.8358,0.8692,0.9667,0.00)
g6 = (0.8258,0.8667,0.9667,0.0075). (]

Of course, by varying the weight w in 7w @, 72, one
obtains a class of new coherent (imprecise) assessments
over the domain U U W that have the peculiarity of
being “compromises” of the two original 71 and 72, but
with the same weight for each event with associated
different values.

A different approach is to create a probability assess-
ment which maintains both numerical values and to
solve the apparent contradiction by adding a new logi-
cal variable X/, for each event X; € U N W such that
p(X;) # q(X;), and assigning the values r(X;) = p(X;)
and r(X!) = ¢(X;). Moreover, the logical constraint
X; = X! is added to €U D.

Indeed, the assessment so obtained 7 4 7o is obviously
incoherent and the merging operation of 7, and 79 is
computed as

m1 @1 me = Correct(my + m2).

Note that, whenever the two assessments m; and 7o
are compatible, this merging operator m; @ mo coin-
cides with the previous m; @ w2 since no duplication
of variables is needed in such a case.

The main difference between the two approaches is
that the latter @y tries to automatically solve the con-
tradiction, while the operator @, needs an explicit
way of solving it. The approach of &, is in some sense
a supervised one, because the user must explicitly
provide a weight w, while &; adopts an unsupervised
approach, and these difference can leads to very dif-
ferent final results, as the following example shows.

Example 4. Let us proceed as in EI but main-
taining the two distinct values associated to Xy,
i.e., let us start with the assessment m —+ o
with components V, U = (D,E,H,X4,X}), 1 =
(0.8333,0.8667,0.9667,0.00,0.01) and with logical con-
straints augmented to D U{-~X,V X}, Xy V-X}}. This
further assessment has again a minimal Ly distance
of § = 0.01 from the polytope Q of coherent assess-
ments (note anyhow the different cardinality of the
space n = 5), but whose correction leads now to a
precise assessment with numerical values

(0.8333,0.8667,0.9667,0.00,0.00). g
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Anyway, the idea behind these two definitions is the
same, i.e., the merging of two information sources can
be performed in two steps. First, put together all
the information Z, and then find the smallest number
of corrections on Z such that the new information Z'
is consistent. The choice of which merging operator
adopt should be based on the availability or not of
relevance, or better of the reliability, of the sources of
information. If a reliability grade is available, or rea-
sonably assessed, the @, should be preferred, if not the
@ operator avoids the use of unrealistic assumptions.

Thinking the probability assessments as belief states,
the merging operators are a belief merging functions

(see, e.g., [22]).

Our approach is different from usual imprecise proba-
bility technique “a la Walley” (see in particular [34]),
where usually the convex hull of incompatible assess-
ments is considered. This is a so called “least com-
mitment” procedure, while our proposal can be dually
thought as “maximal commitment”. In fact, in our
merging operators, values which are exogenous to the
initial assessments (like those appearing by doing the
convex hull) are avoided as much as possible, and orig-
inal opinions are maintained fixed and crisp as much
as possible. Moreover the convex hull of initial assess-
ments is not guaranteed to at least “avoid sure loss”,
so that the Walley’s “natural extension” procedure is
not always applicable. On the contrary, our approach
is always applicable.

5 Revising Probability Assessments

In this section we propose how the correction procedure
can be used to revise a probability assessment.

Suppose that the coherent probability assessment 7, =
(V,U, p,€) represents our current belief state and a
new reliable information arrives, represented by the
probability assessment o = (V, W, ¢, D).

One could merge 7, and 7o as described in the previous
section, but suppose that one would rather update our
belief state with the new available information, with
the idea that

e one assumes that the new information is correct

e one allows to revise, as less as possible, our current
state in order to adapt it to the new information

The revision can be performed as follows. First, my
and 7o are merged together with the operator 4, thus
in the case of contradiction, the values from 7y are
used. Second, the resulting assessment is corrected by
forbidding any change the probabilities of the variables
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in W. This can be achieved with the procedure Cor-
rect2 which is a small modification of the procedure
Correct. Correct2 has a further parameter, the set
T of the variables whose probability value cannot be
corrected, and when the MIP systems P1 and P2 are
built, the constraint 1 for the variables of T" reduces to

n+1

Z bij = p(X5)

and their corresponding variable r; and s; are not
created.

The revision of m; with 75 is then computed as

T % o = Correct2(7r1 “+o0 7T27W)

Note that any probability assessment (V,UUW,r' €U
D) resulting from 71 * 7o is such that it agrees with ¢,
ie., r'(z) =q(z) for all z € W.

Example 5. If in E':L‘ one wants to inevitably main-
tain as valid the latter investigation wo one starts with
an adjoined initial assessment w 4o o with compo-
nents V, UUW = (D,E,H,X,), W = (E,H, Xy),
r = (0.8333,0.8667,0.9667,0.01) and logical con-
straints ®. The only possibility to correct it is to
reduce the numerical evaluation r(D) = 0.8333 to
(D) = 0.823, so that the result of the revision is the
precise assessment w1 x o with components V., U U
W = (D,E,H,X,), r =(0.8233,0.8667,0.9667,0.01)
and the same logical constraints ®. (|

Such revising methodology, that in general leads to
an imprecise model, could be thought as an analo-
gous of the famous Jeffrey’s rule of combination [26].
The main difference between the two is that our pro-
posal minimize the probability mass dislocation from
the original assessment, maintaining as much as pos-
sible the magnitude of the values, hence working