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Preface

The ISIPTA meetings are the primary forum for pre-
senting and discussing advances in imprecise proba-
bility research. They are organized once every two
years by SIPTA, the Society for Imprecise Proba-
bility: Theories and Applications. The first meeting
was held in Ghent in 1999. It was followed by meet-
ings in Ithaca, Lugano, Pittsburgh, Prague, Durham,
Innsbruck, and Compiègne. After having successfully
hosted the SIPTA Summer School in 2012, we now
return to the beautiful and welcoming Italian city of
Pescara for

The 9th International Symposium
on Imprecise Probability: Theories and Applications

It is held from Monday 20 to Friday 24 July 2015.
As with previous ISIPTA meetings, there are only
plenary sessions in the program. In total, 31 papers
are presented by a short talk and a poster, which
guarantees ample time for discussion. The papers are
included in these proceedings and are also available on
the SIPTA website (www.sipta.org). Each submitted
paper has undergone a thorough reviewing process by
multiple expert reviewers, ensuring the quality of the
accepted contributions.
To provide a platform for preliminary ideas and chal-
lenging applications for which the research is not yet
completed, poster-only presentations were introduced
at ISIPTA ’09. It has become a tradition that is contin-
ued at ISIPTA ’15: during the conference 17 additional
posters will be presented. Short abstracts for these
poster-only presentations are included in these pro-
ceedings and are also available on the SIPTA website.
The contributions bring us a large number of new
results—both theoretical and applied—within the field
of imprecise probability. The broad impact of impre-
cise probability is shown by the wide variety in the
contributions’ domains: decision making, statistical
inference, belief aggregation, artificial intelligence, and
stochastic processes, amongst others.
We are pleased to have three eminent invited speakers:
Itzhak Gilboa, from Tel Aviv University and HEC Paris,
will propose a unified model of inductive reasoning;
Peter Williams, from the University of Sussex and BW
Mining, will review the intellectual background for the
development of coherent lower previsions; and Mas-

simo Marinacci, from Bocconi University, will discuss
approaches to model uncertainty in decision problems.
We are also pleased to have two tutorials to high-
light specific subdomains of the wide field of imprecise
probability: Barbara Vantaggi, from Universitá “La
Sapienza” di Roma, will lecture on de Finetti’s work on
coherence and its extensions to an imprecise context;
whereas Gregory Wheeler, from Ludwig-Maximilians
Universität in Munich, will teach us about the philo-
sophical foundations of imprecise probabilities.
During the conference two sets of prizes are awarded:
the Best Poster Award, sponsored by Springer and Wi-
ley, and the IJAR Young Researcher Award, granted by
the International Journal of Approximate Reasoning.
We express our gratitude for their support.
This conference is a result of the productive coopera-
tion between the members of the Steering Committee,
formed by Gert de Cooman, Teddy Seidenfeld, and
ourselves. We wish to thank all of those that have
contributed to the organization of this conference: all
the members of the Local Organizing Committee; the
Department of Engineering and Geology of the Uni-
versity G. d’Annunzio for its financial support; the
many members of the Program Committee and the
extra reviewers for their dedicated work in evaluating
the contributions. Last but not least, we would like
to particularly thank Matthias Troffaes and Sébastien
Destercke for their assistance with many aspects of
the conference, and for sharing their previous organi-
zational experience.
Finally, we thank all who have contributed to the
success of ISIPTA ’15, be it by submitting their re-
search results, presenting them at the conference, or
by attending sessions and participating in discussions.
In particular, we would like to welcome the delegates
from Statistics Korea, whom we thank for their effort
to become part of our research network.

Thomas Augustin
Serena Doria

Enrique Miranda
Erik Quaeghebeur

June 2015
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A Unified Model of Inductive Reasoning

Itzhak Gilboa
Eitan Berglas School of Economics, Tel-Aviv University, Israel

HEC, Paris, France

We offer a model that can capture three types of
reasoning.1 The first, which is the most common in
economic modeling, is Bayesian. The agent formulates
the set of possible states of the world and a prior prob-
ability distribution over this state space. The agent’s
predictions are a relatively straightforward matter of
applying Bayes’ rule, as new observations allow her
to rule out some states and condition her probability
distribution on the surviving states.

An alternative mode of reasoning is case-based. The
agent considers past observations and predicts the
outcome that appeared more often in those past cases
that are considered similar. If all past observations are
considered equally similar, the case-based prediction
is simply the mode, that is, the outcome that is most
frequent in the database. If the agent uses a similarity
function that puts all its weight on the most recent
outcome, her prediction will simply be that outcome.

Finally, rule-based reasoning calls for the agent to
base her predictions on regularities that she believes
characterize the phenomenon in question.

The boundaries between the three modes of reasoning
are not always sharp. Our focus is on the Bayesian
approach. By “Bayesian reasoning” we refer to the
common approach in economic theory, according to
which all reasoning is Bayesian. Any source of uncer-
tainty is modeled in the state space, and all reasoning
about uncertainty takes the form of updating a prior
probability via Bayes’ rule.

We present a framework that unifies these three modes
of reasoning (and potentially others), allowing us to
view them as special cases of a general learning pro-
cess. The agent attaches weights to conjectures. Each
conjecture is a set of states of the world, capturing
a way of thinking about how outcomes in the world
will develop. The associated weights capture the rela-

1The talk is based on joint work with (i) Larry Samuelson
and David Schmeidler (2013); (ii) Gabrielle Gayer (2014); (iii)
Alfredo Di Tillio and Larry Samuelson (2013).

tive influence that the agent attaches to the various
conjectures. The weighted sum of these conjectures is
a Belief Function as in Dempster (1967) and Shafer
(1976).

Given a sequence of observations, the agents rules out
the conjectures that have been refuted by them, and
continues with the weighted sum of the remaining ones.
This turns out to be equivalent to Dempster-Shafer
rule of combination, or updating of a belief function.

To generate a prediction, the agent sums the weight of
all nontrivial conjectures consistent with each possible
outcome, and then ranks outcomes according to their
associated total weights. In the special case where each
conjecture consists of a single state of the world, our
framework is the standard Bayesian model, and the
learning algorithm is equivalent to Bayesian updating.
Employing other conjectures, which include more than
a single state each, we can capture other modes of
reasoning, as illustrated by simple examples of case-
based and of rule-based reasoning.

Our model could be used to address either positive or
normative questions. We focus on positive ones, de-
scribing how the reasoning process of an agent evolves
as observations are gathered. Within the class of such
questions, our model could be used to capture a variety
of psychological biases and errors, but the focus of this
paper is on the reasoning of an agent who makes no ob-
vious errors in her reasoning. Such an agent may well
be surprised by circumstances that she has deemed
unlikely, that is, by “black swans,” but will never be
surprised by a careful analysis of her own reasoning.
The optimality of this reasoning process is a normative
question, which we do not address here.

Our main results concern the dynamics of the weight
put on Bayesian vs. non-Bayesian reasoning. We sug-
gest conditions under which Bayesian reasoning will
give way to other modes of reasoning, and alternative
conditions under which the opposite conclusion holds.
Importantly, if the agent does not know the type of

9th International Symposium on Imprecise Probability: Theories and Applications, Pescara, Italy, 2015
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process she is facing, and attempts to be open-minded
about it, Bayesian reasoning will disappear in the limit.
The very simple reason is that there are many Bayesian
conjectures, whereas other families of conjectures may
be small. Specifically, the weight put on the Bayesian
conjectures (as a whole) has to be divided among expo-
nentially many disjoint subset, whereas the case-based
ones (as well as some families of rule-based ones) are
only polynomially large.

In a similar vein, we can also ask how the rela-
tive weight of rule-based and case-based conjectures
changes with evidence. If a “rule” has to provide a
prediction at each and every node, and be computable,
we find that (i) if reality is simple enough (say, com-
putable), then rule-based reasoning takes over; (ii) if
reality isn’t simple enough, then case-based reasoning
is likely to be dominant.

Finally, the model can also be used to reason about
counterfactuals.
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Model Uncertainty

Massimo Marinacci
Università Bocconi, Milan, Italy

We study decision problems in which the consequences
of the alternative actions depend on states determined
by a generative mechanism representing some natural
or social phenomenon. Model uncertainty arises as
decision makers may not know such mechanism. Two
types of uncertainty result, a state uncertainty within
models and a model uncertainty across them. We dis-
cuss some two-stage static decision criteria proposed
in the literature that address state uncertainty in the

first stage and model uncertainty in the second one (by
considering subjective probabilities over models). We
consider two approaches to the Ellsberg-type phenom-
ena that these decision problems feature: a Bayesian
approach based on the distinction between subjective
attitudes toward the two kinds of uncertainty, and
a non-Bayesian one that permits multiple subjective
probabilities. Several applications are used to illustrate
concepts as they are introduced.

9th International Symposium on Imprecise Probability: Theories and Applications, Pescara, Italy, 2015
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Early Approaches to Exact Imprecision

Peter M. Williams
Associate, Department of Informatics, University of Sussex, Brighton, UK

Principal, BW Mining, Brighton, UK

The 1960s and 70s were a period of widespread in-
terest in the philosophical and mathematical founda-
tions of probability. Bayesian ideas were recognized
though not well understood, and treated with caution
by mainstream statisticians. This talk surveys the in-
tellectual climate of the period, including the impact of
de Finetti’s ideas, then becoming more widely known
in English translation, and traces the motivation and
development of non-additive measures of uncertainty,
together with their impact on the then developing
treatment of uncertainty in artificial intelligence.
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De Finetti Coherence and Beyond
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The aim of the tutorial is to present the concept of
coherence, which dates back to de Finetti, showing its
role in managing incomplete (or missing) information.

We will start recalling the notion of coherence for (un-
conditional) probabilities and the related fundamental
theorem.

Then, in order to generalize this notion to assessments
on a set of conditional events, the axiomatic definition
of conditional probability, essentially due to Renyi, de
Finetti and Dubins, needs to be recalled together with
the representation theorem of a conditional probability
by means of a linearly ordered class of finitely additive
measures.

Both for the unconditional and conditional case, de
Finetti’s coherence has a betting scheme interpretation
and it can also be characterized in terms of solvability
of a sequence of linear systems for each finite subset
of conditional events.

One of the main peculiarities of de Finetti’s coherence
is that a coherent assessment can always be extended,
generally not in a unique way, to any superset of
(conditional) events, giving rise to a class of coherent
extensions.

The relationship of coherence with the first fundamen-
tal theorem of the asset pricing will be underlined.

The role of coherence is particularly meaningful in
Bayesian statistics where the extensions of a likelihood
function and a prior probability need to be found. Even
in this case the coherent extensions are not necessarily

unique, and the whole class of coherent extensions
needs to be considered. This leads to study lower and
upper envelopes.

However, the coherent extensions could be required to
satisfy some further properties such as disintegrability
and conglomerability: this leads to distinguish different
subclasses of extensions.

Models able to handle uncertainty in a more flexi-
ble way have favored the emergence of theories more
general than classical probability.

The resulting uncertainty calculi, such as possibility
measures, belief functions and k-monotone Choquet
capacities, can be interpreted in terms of envelopes of
de Finetti’s coherent probabilities, also referred to as
imprecise probabilities.

The main features of de Finetti’s coherence are dis-
cussed in connection with its “generalizations” to im-
precise probabilities, essentially given by Williams and
Walley.

The coherence criteria given by Williams and Walley
for imprecise probabilities differ in the way they face
conditioning, so a comparison of the different notions
will be presented.

Finally, the different notions of coherence for (condi-
tional) random quantities will be reviewed by compar-
ing Williams and Walley theories.

Some examples coming from applications will be used
to illustrate key concepts.
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Introduction to
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Gregory Wheeler
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gregory.wheeler@lrz.uni-muenchen.de

In this tutorial we will introduce several topics in the
foundations of imprecise probabilities through a re-
view of key historical figures, including John Maynard
Keynes, B.O. Koopman, and I.J. Good, Henry Kyburg,
Terrence Fine and Isaac Levi, and their reactions to
the subjectivist-rationalist tradition associated with
Ramsey, de Finetti, and Savage, and the later devel-

opments associated with Peter Williams and Peter
Walley. We will end with a short overview of Epis-
temic Decision Theory, which aims to reinterpret the
machinery of strictly proper scoring rules as measures
of “epistemic accuracy,” and the issues which arise
from impossibility theorems which indicate that there
are no strictly IP proper scoring rules.
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The Multilabel Naive Credal Classifier
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Abstract
We present a credal classifier for multilabel data. The
model generalizes the naive credal classifier to the mul-
tilabel case. An imprecise-probabilistic quantification
is achieved by means of the imprecise Dirichlet model
in its global formulation. A polynomial-time algorithm
to compute whether or not a label is optimal according
to the maximality criterion is derived. Experimental
results show the importance of robust predictions in
multilabel problems.

Keywords. Credal classification, imprecise Dirichlet
model, multilabel classification.

1 Introduction

A classifier represents the relationship between the
characteristics of an object (features) and its cate-
gory (class). A traditional classifier predicts the class
variable given the value of the features. Credal clas-
sifiers generalize traditional classifiers, allowing for
set-valued predictions of classes. A credal classifier
drops the non-optimal classes returning the classes
that are potentially optimal given the information
available. Depending on the data, there can be one
or multiple optimal classes. Credal classifiers are thus
less informative but more reliable than traditional
classifiers [8]. Both credal and traditional classifiers
assume the classes to be mutually exclusive.

Multilabel classification is a modern type of classifica-
tion, in which an object is allowed to have multiple
relevant classes (or labels). Multilabel classification
arises naturally in many domains. A news article
discussing EU treaties could be labeled for instance
as politics and finance and environment. Similarly,
tagging of photos and videos are natural multilabel
problems. In bioinformatics, the identification of the
best mix of drugs for curing HIV has been addressed
as a multilabel problem [14].

The simplest approach for multilabel classification is

binary relevance. Given q labels, binary relevance
develops q independent single-label classifiers. The
main shortcoming of binary relevance is that it ignores
the dependencies among the different classes, which
in many cases are important [12]. The algorithm
of classifier chain [17] is a state-of-the-art approach
to model dependencies among classes. Although it
achieves good empirical performance, it has no direct
probabilistic interpretation.

To model the dependence among classes in a probabilis-
tically sound way, probabilistic graphical models are
typically used [1, 3, 5, 18]. Each label is represented
by a Boolean variable. The i-th Boolean variable rep-
resents whether the i-th label is relevant or not for
the current instance. The inference task is to detect
the most probable joint configuration of the labels.
A joint configuration of the labels is a sequence of
zeros and ones. Given q labels, there are 2q possible
sequences. Evaluating the robustness of the prediction,
already important in traditional classification, is even
more important in multilabel classification. There is
however little work on this subject.

In this paper, we tackle this problem by means of
imprecise probabilities [19]. We propose a graphical
model which generalizes the naive Bayes to the multil-
abel setting. We learn the model using the imprecise
Dirichlet model (IDM) [4, 20]. We discuss two types of
inferences based on the criterion of maximality. The
joint model detects the maximal sequences, among the
2q possible ones. This inference is exact but is feasible
only when q is limited, for instance smaller than 10.
The marginal inference detects separately the maxi-
mal states of each label. We provide an approximated
algorithm to solve this inference which scales to tens
of labels.

The only other example of credal multilabel classifier
currently available is the recent work of Destercke [13]
which devises a framework similar to binary relevance
but based on credal classifiers.
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The paper is organized as follows. We review some
basics about Bayesian networks and the IDM in Sect.
2. We indeed show how the IDM applies to Bayesian
networks in Sect. 3. The (single-label) classical naive
credal classifier is reviewed in Sect. 4. The new model
we present for multilabel data is described in Sect. 5.1.
Classification with this model is addressed in Sect. 5.2
and the technical theorems behind the inference algo-
rithms are in Sect. 5.3. Simulations and conclusions
are in Sects. 6 and 7, while the proofs of the technical
results are in the Appendix.

2 Preliminaries

We denote random variables by uppercase letters,
generic values by lowercase letters and the sets of
possible values by calligraphic letters. For instance
X is a variable whose generic value is x ∈ X . For a
Boolean variable X, X := {0, 1}; given a generic value
x ∈ X , its negation is ¬x .

We denote by P (X) the probability mass function
over X. Given a set of variables X, arranged into a
directed acyclic graph, a Bayesian network is a set of
conditional tables P (Xi|Pa(Xi)) where Pa(Xi) are the
parents of Xi, i.e., the immediate predecessors of Xi

within the graph. This defines a joint mass function
P (x) =

∏
i P (xi|pa(Xi)) [15].

A credal set over X is a (convex) set of probability
mass functions over X. Given a credal set, the maxi-
mality criterion allows to choice the optimal (i.e., most
probable) states as follows: x′′ ∈ X is maximal if and
only if there is no x′ ∈ X s.t. P (x′) > P (x′′) for each
P (X) in the credal set [19].

The imprecise Dirichlet model [20] (IDM) is a standard
approach to learn credal sets from multinomial data.
Given a variable X, a Dirichlet prior P (θx) ∝ θst(x)−1

would induce a probability θx = n(x)+st(x)
N+s . Thus,

considering all the priors s.t.
∑

x t(x) = 1, would
make θx to vary between n(x)

N+s and n(x)+s
N+s .

3 IDM-Based Learning with
Independence

In this section we discuss the particular problem of
learning a set of multivariate distributions through the
IDM under specific independence assumption. This
is done in the special case where the independence
relations can be described within the framework of
Bayesian networks. We extend Zaffalon’s ideas stated
in [23].

To begin the discussion let us consider the following
example.

X Y Z

Figure 1: A chain topology.

Example 1. Consider a Bayesian network over three
Boolean variables X, Y , and Z with the topology in
Fig. 1. This models the conditional independence
between X and Z given Y , with the joint distribution
factorizing as P (x, y, z) = P (x) · P (y|x) · P (z|y). The
likelihood of a set of observations D is:

L(θ) := P (D|θ) =
∏

x

θn(x)
x

[∏

y

θ
n(x,y)
y|x

[∏

z

θ
n(y,z)
z|y

]]
,

(1)
where θx := P (x), θy|x := P (y|x), and θz|y := P (z|y),
for each x, y, z, and n(·) is the counting function. A
conjugate prior over the parameters θ is:

P (θ) ∝
∏

x

θst(x)−1
x

[∏

y

θ
st(x,y)−1
y|x

[∏

z

θ
st(y,z)−1
z|y

]]
,

(2)
where s and the t(·) are nonnegative parameters. The
first term in Eq. (2) is proportional to a Dirichlet prior.
We set

∑
x t(x) = 1. Considering the corresponding

(structural) constraint for the counts in the likelihood,
i.e.,

∑
x n(x) = N , we can regard s as the equivalent

sample size (ESS) of this prior distribution.

Let us identify the additional constraints required to
regard s as an ESS even for the prior in Eq. (2).
We just identify the (again, structural) constraints on
the likelihood

∑
xy n(x, y) =

∑
yz n(y, z) = N , which

correspond to:

∑

xy

t(x, y) =
∑

yz

t(y, z) = 1. (3)

The updated parameters become therefore:

θx = n(x) + st(x)
N + s

, (4)

θy|x = n(x, y) + st(x, y)
n(x) + st(x) , (5)

θz|y = n(y, z) + st(y, z)
n(y) + st(y) , (6)

with t(x) =
∑

y t(x, y) and t(y) :=
∑

z t(y, z).

An IDM-based model is therefore obtained by consid-
ering all the specifications of the parameters in Eqs.
(4-6) consistent with the above constraints over t(x),

A. Antonucci & G. Corani

28



t(x, y), and t(y, z):
∑

x

t(x) = 1 (7)
∑

y

t(x, y) = t(x),∀x (8)

∑

z

t(y, z) =
∑

x

t(x, y),∀y. (9)

Such a model can be regarded as induced by a set of
priors made of Dirichlet components and with ESS
s. This is the way we generalize the IDM to mul-
tivariate models with independence. To check that
the constraints are sufficient, consider all the (struc-
tural and not all independent) constraints satisfied by
the count function n(·) in Eq. (1), i.e.,

∑
x n(x) =∑

xy n(x, y) =
∑

yz n(y, z) = N ,
∑

y n(x, y) = n(x),∑
z n(y, z) = n(y),

∑
x n(x, y) = n(y). It is a trivial

exercise to check that the t(·) parameters satisfy the
analogous relations (with one replacing N).

The example deals with a node which is a child of
a child of another variable. This situation does not
appear in Zaffalon’s original work for the naive topol-
ogy, neither in other papers about more connected
topologies [24].

This approach can be easily extended to general
Bayesian networks. The specifications over X ap-
ply to parentless nodes with Y replaced by the whole
children set, the specifications over Z apply to any
childless node with Y replaced by the whole parents
set, and those for Y apply to any non-root non-leaf
node with the parents and children playing the role of
X and Z.

This section provides guidelines for learning the pa-
rameters of Bayesian networks based on the IDM. The
resulting model is a credal network [9], with the local
parameters taking their values from different credal
sets, but with the constraints over the parameters of
the prior inducing a non-separate specification [2].

4 The Naive Credal Classifier

In this section we briefly review the credal version
of the naive Bayes classifier as proposed by Zaffalon
in [23]. We denote the class variable as C and the
feature variables as F := (F1, . . . , Fm). A dataset
of N complete i.i.d. joint observations of (C,F ) is
available together with a counting function n(·).
The features are assumed to be conditionally inde-
pendent given the class. This corresponds to the
topology in Fig. 2 and induces the factorization
P (c,f) = P (c) · ∏m

i=1 P (fi|c), for each c ∈ C and
f := (f1, . . . , fm) ∈∏m

i=1 Fi.

C

F1 F2 F3 F4

Figure 2: An example of naive topology.

By proceeding as in Ex. 1, we have:

P (c) = n(c) + st(c)
N + s

, (10)

P (fi|c) = n(c, fi) + st(c, fi)
n(c) + st(c) , (11)

for each fi ∈ Fi, c ∈ C, i = 1, . . . ,m. The class labels
assigned to an unannotated instance f of the features
are those s.t. arg maxc∈C P (c,f).

The IDM constraints on the above positive parameters
are:

∑
c t(c) = 1 and

∑
fi
t(c, fi) = t(c), for each

i = 1, . . . ,m and c ∈ C.1 We denote as t a generic
value for the joint variable of these parameters and by
T the corresponding feasible region.

The class labels assigned to f by this credal classifier
are the undominated ones according to the maximal-
ity criterion. Given c′, c′′ ∈ C, c′ dominates c′′ if
P (c′,f) > P (c′′,f) for any specification consistent
with the IDM constraints. This is equivalent to check:

inf
t∈T

[
n(c′′) + st(c′′)
n(c′) + st(c′)

]m−1 m∏

i=1

n(c′, fi) + st(c′, fi)
n(c′′, fi) + st(c′′, fi)

> 1.

(12)
The optimization of the second term can be achieved
independently. The objective function rewrites as:
[
n(c′′) + st(c′′)
n(c′) + st(c′)

]m−1 m∏

i=1

n(c′, fi)
n(c′′, fi) + st(c′′) , (13)

with the constraints being simply now t(c′)+t(c′′) = 1,
with t(c′), t(c′′) > 0. In other words, we can express
the objective function as a function of a single vari-
able. Its logarithmic derivative is a linear fractional
variable, and the second derivative is always positive.
Overall the minimization can be efficiently achieved
by bracketing (see [23] for the details).

5 The Multilabel Credal Classifier

5.1 Model Specification

In this section we extend the setup of the previous sec-
tion to multilabel classification. The class variable C is

1The strict positivity is required because otherwise the cor-
responding prior would be improper.
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replaced by q (Boolean) class labels C := (C1, . . . , Cq),
where q is the cardinality of C. This is standard way
to cope with non-exclusivity: if the j-th label of C is
active Cj = 1, otherwise Cj = 0.

We call C1 the superclass, and the other class labels
subclasses. We assume the conditional independence
of the subclasses given the superclass. Simplistically
we set as superclass the class which is more frequently
observed as active. The dependencies between classes
can be learned in more sophisticated way, optimizing
for instance the Bayesian scores [7] of the graph which
connects the classes.

A dataset of N joint observations of (C,F ) is available
together with a counting function n(·).
Each feature is replicated q times. For each k =
1, . . . ,m, {F j

k}
q
j=1 are replicas of Fk. For each j =

1, . . . , q, the replicated features {F j
k}m

k=1 are assumed
to be independent given Cj . This is a simplifying
assumption, already formulated in other papers [3].
Strictly speaking, an additional dummy child modeling
the fact that all the replicas corresponds to the same
variable should have been added.

Accordingly, the joint factorizes as follows:

P (c,f) = P (c1)
[

q∏

i=2
P (ci|c1)

]
q∏

j=1

m∏

k=1
P (f j

k |cj),

(14)
where the values of the class labels and of the features
are those consistent with c and f . Parameters in Eq.
(14) can be learned from the data through a procedure
similar to that in the previous sections, i.e.,

P (c1) = n(c1) + st(c1)
n+ s

, (15)

P (ci|c1) = n(c1, ci) + st(c1, ci)
n(c1) + st(c1) , (16)

P (f j
k |cj) = n(cj , fk) + st(cj , f

j
k)

n(cj) + st(cj) . (17)

An IDM-like version is obtained by considering all the
models consistent with the following constraints:2

∑

c1

t(c1) = 1, (18)

∑

ci

t(c1, ci) = t(c1),∀ci (19)

∑

fj
k

t(cj , f
j
k) =

∑

c1

t(c1, cj) = t(cj),∀cj , (20)

2Here and in the following, if there is no risk of ambiguity,
the arguments of the sums and the products are omitted for
sake of notation. E.g.,

∑
c1

is a shortcut for
∑

c1∈C1
.

F
(1)
1

F
(1)
2

F
(1)
3

C1

C2 C3

F
(2)
3F

(2)
2F

(2)
1 F

(3)
1 F

(3)
2 F

(3)
3

Figure 3: The multilabel naive topology.

together with the strict positivity of all the parameters.
Even in this case we denote by t the generic value of
the joint variable including all these parameters and by
T the corresponding feasible region. The imprecision
in this model can be regarded as induced by s missing
observations, which we are completely ignorant about.

5.2 Maximal Sequences and Maximal Labels

Consider a complete observation f of the features
and two sequences of labels c′ and c′′. According
to maximality, the second sequence is undominated
by the first if and only if there is (at least) a prior
consistent with the constraints s.t. the first sequence
is less (or equally) probable than the second, i.e.,3

inf
t∈T

Pt(c′,f)
Pt(c′′,f) ≤ 1. (21)

In Section 5.3 we discuss how to ascertain whether
sequence c′ dominates c′′, in linear time with respect
to the number of classes and features.

A more complex problem is to ascertain whether se-
quence c′′ is optimal. This happens if the condition
(21) is satisfied for each possible specifications of c′,
i.e.,

max
c′

inf
t

Pt(c′,f)
Pt(c′′,f) ≤ 1. (22)

To detect the non-dominated sequences it is in prin-
ciple necessary to compare each possible sequence c′
against each possible alternative sequence c′′. This
implies running 2q · 2q = 22q tests of the same type as
Eq. (21). In Section 5.3 we present a more efficient
procedure, which detects the maximal sequences by
running the test of Eq. (22) only once for each can-
didate sequence c′′ (i.e., 2q times), with a substantial
computational saving. We call this model the joint
model, as it makes inference on the joint probability

3This is an alternative formulation w.r.t. that in Eq. (12).
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of the labels. Yet the complexity of the joint is expo-
nential in the number of labels; thus the identification
of the optimal sequences is feasible only of the number
of classes is limited, for instance q < 10.

We thus devise a different approach in order to deal
with datasets containing many labels. It looks for the
maximal states of each label rather than for the max-
imal sequences. We call this approach the marginal
model. The marginal inference has polynomial com-
plexity (see Section 5.3); it is however less informative
than the detection of the maximal sequences. Consider
having detected k labels whose maximal states are both
relevant and non-relevant. The 2k sequences obtained
combining their states in all possible ways contain the
maximal sequences and others non-maximal sequences.
It is not possible to know which of the 2k sequences is
maximal and which is non-maximal.

This approach corresponds to the following optimiza-
tion task:

min
c′′:c′′

l
=1

max
c′

inf
t

Pt(c′,f)
Pt(c′′,f) ≤ 1, (23)

for each l = 1, . . . , q, with the minimum over all the
specifications of the second sequence s.t. c′′l = 1.
If the inequality is satisfied, then there is at least
an optimal sequence whose l-th label is active. By
replacing c′′l = 1 with c′′l = 0, we can decide if there is
an optimal sequence with the l-th label inactive.4

By iterating the test in Eq. (23) and its analogous
with cl = 0 for each l = 1, . . . , q, we can decide, for
each label, which one of the following three options
applies: (i) all the maximal sequences have that label
active; or (ii) all the maximal sequences have the label
inactive; or (iii) there are maximal sequences with the
label active and others with the label inactive.

We call this approach based on the joint model in Eq.
(14) and the IDM constraints in Eqs. (18-20) multilabel
naive credal classifier (MNCC). The derivation uses
ideas analogous to those proposed by De Bock and de
Cooman to detect the maximal sequences in hidden
Markov models [11].

5.3 Solving the Optimization

In this section we present the technical results be-
hind our implementation of the MNCC and a possi-
ble direction for its development. Let us start from
the maximality-based dominance test among two se-
quences, which can be performed as follows.

4By removing the constraints c′′
l = 1 from Eq. (23) we

test whether there is a maximal sequence. But this is true by
definition. Thus, if the inequality in Eq. (23) is not satisfied for
c′′

l = 1, then it should be satisfied for c′′
l = 0, and vice versa.

Theorem 1. Given two sequences c′ and c′′ and an
instance of the features f , the decision task in Eq. (21)
is equivalent to:

∏

i:c′
i
=¬c′′

i

n(c′1, c′i) · gi(c′i, c′′i ,f)
n(c′′1 , c′′i ) + s

≤ 1, (24)

if c′1 = c′′1 , and to

inf
0<t1<1

h(c′1, c′′1 , t1,f)
∏

i

n(c′1, c′i)g̃i(c′i, c′′i ,f)
n(c′′1 , c′′i ) + st1

, (25)

if c′1 = ¬c′′1 , where

gi(c′i, c′′i ,f) := inf
0<ti<1

∏

k

n(c′i,fk)
n(c′

i
)+s(1−ti)

n(c′′
i

,fk)+sti

n(c′′
i

)+sti

, (26)

g̃i(c′i, c′′i ,f) := gi(c′i, c′′i ,f) if c′i = ¬c′′i and one other-
wise, and h(c′1, c′′1 , t1,f) is defined as
[

n(c′′1) + st1
n(c′1) + s(1− t1)

]q+m−2∏

k

n(c′1, fk)
n(c′′1 , fk) + st1

. (27)

Furthermore, the objective functions in Eq. (25) and
Eq. (26) are convex.

The proof of this theorem is in the Appendix.

Th. 1 can be used to decide whether or not c′ does
not dominate c′′. Because of the convexity results, the
optima in Eq. (25) and Eq. (26) can be evaluated
by bracketing (e.g., bisection) in constant time (as-
suming that we work with finite precision). Thus, the
dominance test only takes O(qf) time.

To detect the set of maximal sequences, the test should
be iterated over all the possible pairs. Alternatively,
we can adopt the approach in Eq. (22), i.e., maximiz-
ing w.r.t. c′. If we add the constraint c′1 = c′′1 , the
maximization becomes trivial because of the factor-
ization in Eq. (24). If c̃′ is the value leading to the
maximum, we have c̃′1 = c′′1 and, for i > 1,

c̃′i :=
{
¬c′′i if n(c′′1 ,¬c′′i )gi(¬c′′i ,c′′i ,f)

n(c′′1 ,c′′
i

)+s > 1,
c′′i otherwise.

(28)

Thus, we perform the dominance test as in Th. 1
with c̃′ and c′′. We similarly proceed for c′1 = ¬c′′1 by
considering Eq. (25) instead of Eq. (24). If t∗1 is the
value leading to the infimum, the task rewrites as:

max
c′2,...,c′q

[
h(¬c′′1 , c′′1 , t∗1,f)

∏

i

n(¬c′′1 , c′i)g̃i(c′i, c′′i ,f)
n(c′′1 , c′′i ) + st∗1

]
.

(29)
The value of t∗1 depends on c′ and the maximization
cannot be distributed over the product as in the previ-
ous case. Nevertheless, for the i-th term of the product,
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a maximization w.r.t. c′i ∈ {¬c′′i , c′′i } would be:

max
{
n(¬c′′1 ,¬c′′i )gi(¬c′′i , c′′i ,f)

n(c′′1 , c′′i ) + st∗1
,

n(¬c′′1 , c′′i )
n(c′′1 , c′′i ) + st∗∗1

}
,

(30)
with the double star denoting the fact that the two
optima w.r.t. t1 can be different. Sufficient conditions
for one of these two terms being the maximum irre-
spectively of the values of t∗1 and t∗∗1 can be used to
determine c̃′ as in the previous case, i.e.,

c̃′i :=




¬c′′i if n(¬c′′1 ,¬c′′i )gi(¬c′′i ,c′′i ,f)

n(c′′1 ,c′′
i

)+s >
n(¬c′′1 ,c′′i )
n(c′′1 ,c′′

i
) ,

c′′i if n(¬c′′1 ,¬c′′i )gi(¬c′′i ,c′′i ,f)
n(c′′1 ,c′′

i
) <

n(¬c′′1 ,c′′i )
n(c′′1 ,c′′

i
)+s .

(31)
Yet, unlike the specification in Eq. (28), it might
be that none of the two inequalities in Eq. (31) are
satisfied, and the corresponding value of c̃′i remains
undefined. If this is the case, we heuristically set the
value of c̃′i corresponding to the limit of Eq. (31) for
small values of s > 0.5

The above approach, whose complexity is the same as
a single dominance test, i.e., O(qf), can be used to
decide whether or not a sequence c′′ is maximal. This
is the case if the test in Th. 1 is satisfied for both the
specifications of c′ in Eq. (28) and Eq. (31).

To obtain the whole set of optimal sequences, we iterate
this procedure over all the 2q possible specifications of
c′′. To avoid this exponential blow-up, the approach
in Eq. (23), i.e., minimizing w.r.t. c′′ with a fixed
value for c′′l , can be considered instead. In practice this
corresponds to minimize the maximum between the
above considered expressions for c′1 = c′′1 and c′1 = ¬c′′1 .
Although each one of the two expressions factorizes,
moving the minimum w.r.t. the different factors inside
the two arguments of the maximum might introduce
an approximation, i.e.,

min
c′′1

min
c′′2 ,...,c′′q

max
c′1

max
c′2,...,c′2

inf
t

Pt(c′,f)
Pt(c′′,f) ≥

min
c′′1

max
c′1

min
c′′2 ,...,c′′q

max
c′2,...,c′2

inf
t

Pt(c′,f)
Pt(c′′,f) , (32)

where the constraint c′′l = 1 on both sides is left im-
plicit for sake of readability. The above inequality
trivially follows from the technical result here below.
Lemma 1. Given two arrays ~a and ~b with the same
length n, the following inequality holds:

min
i

max{ai, bi} ≥ max{min
i
ai,min

i
bi} (33)

where ai and bi are the i-th elements of ~a and ~b, and
the minima are intended w.r.t. i = 1, . . . , n.

5If n(¬c′′
1 , ¬c′′

i )gi(¬c′′
i , c′′

i ,f) 6= n(¬c′′
1 , c′′

i ), it is easy to check
that the two inequalities cannot be simultaneously satisfied and,
for sufficiently small s, one of them is always satisfied.

The proof of this lemma is in the Appendix. The right-
hand side of Eq. (32) can be efficiently evaluated by
reducing it to a single dominance test as we did in the
first part of this section for the task in Eq. (22). If its
value is (strictly) greater than one, Eq. (32) implies
that also the left-hand side of Eq. (23) is greater than
one, i.e., there is no maximal sequence with the l-th
label active. If this is the case, we conclude that all
the maximal sequences have the l-th label inactive. If
the analogous optimization with the constraint c′′l = 0
instead of c′′l = 1 gives a result greater than one, we
similarly conclude that all the maximal sequences have
the l-th label active. Finally, if none of the above two
is the case, we adopt a cautious approach by stating
that there could either be maximal sequences with the
l-th label active and inactive. The above approach
can be considered to efficiently characterize the set
of maximal sequences of the MNCC by means of an
outer approximation.

6 Experiments

We compare the two variants of MNCC (joint model
and marginal model) with the Bayesian graphical
model, whose structure is as in Fig. 3. We adopt
the BDeu prior [15, Chap.17] to learn the Bayesian
model. This model is referred to in the following as
the Bayesian model.

We consider four benchmark datasets, whose charac-
teristics are reported in Tab. 1. Emotions, Scene, and
Slashdot are classical benchmark datasets for multil-
abel classifiers. The E-mobility dataset is taken from
a mobility study. It tracks which means of transport
(car, train, bus, etc.) are used by a person for a given
trip. The features are constituted by the length and
duration of the trip, hour and day of the week, number
of persons, reason of the trip, etc. [6].

Data set Classes Features Instances

Emotions 6 44/72 593
Scene 6 224/294 2407
E-mobility 10 14/18 4226
Slashdot 22 496/1079 3782

Table 1: Benchmark datasets.

We validate the classifiers by a ten-folds cross-
validation. Before training any classifier, we perform
two pre-processing steps. First, we discretize numeri-
cal features into four bins. Then we perform feature
selection as follows. We adopt the correlation-based
feature selection (CFS) [21, Chap. 7.1], often used in
traditional classification. We perform CFS q times,
once for each different label. Eventually, we retain the
union of the features selected in the q runs. This is a
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useful pre-processing step which reduces the number
of features, removing the non-relevant ones. As an
example, Tab. 1 displays the number of features after
and before this selection procedure when applied to
the benchmark datasets considered in this paper. Fea-
ture selection for multilabel classification is however
an open problem, and more sophisticated approaches
can be designed to this end.

We start by assessing the joint model. We measure
the exact match of the Bayesian model, namely the
proportion of times in which the whole sequence of
classes has been correctly predicted. For the MNCC
we measure the # of sequences, namely the number of
maximal sequences; moreover we measure the credal
match, namely the proportion of times in which the ac-
tual sequence belongs to the set of optimal sequences.

Dataset Bayesian Credal (MNCC)
Exact match # of seqs Credal match

Emotions .27 9.4 .80
Scene .29 7.6 .80

Table 2: Experimental results of the joint model.

The sequence predicted by the Bayesian model is al-
ways recognized as maximal. The credal joint model
is more robust than its Bayesian counterpart: the
credal match is about three times larger than the to-
tal accuracy of the Bayesian multilabel classifier (see
Tab.2). The number of maximal sequences is reason-
ably limited, considering that the presence of 6 classes
implies 64 possible sequences. The exact match of
the Bayesian classifier drops sharply on the instances
which have many maximal sequences. On the Scene
dataset, the total accuracy is 0.23 and 0.40 on the
instances which have respectively less and more than
nine maximal sequences. A similar pattern is observed
also on the Emotions dataset. These results are ob-
tained through the joint model, which enumerates all
the 2q possible sequences and checks whether they are
maximal as in Eq. (22). They show the interesting
potential of the credal approach to multilabel clas-
sification. Yet, the joint model can only cope with
small q.

The marginal model can deal with larger q and thus can
be tested on more challenging datasets. We adopt the
outer approximation corresponding to the dominance
test in Eq. (23). Results of a ten-folds cross validations
are in Figs. 4–6. We evaluate the marginal model
label-wise. In particular we measure for each label
the accuracy of Bayesian model when MNCC returns
a determinate and an indeterminate prediction. We
also report the determinacy, i.e. the proportion of
instances on which MNCC is determinate. On Scene

C1 C2 C3 C4 C5 C6

0

.25

.50

.75

1.00

Emotions

C1 C2 C3 C4 C5 C6

0

.25
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.75

1.00

Scene

Figure 4: Accuracy of the Bayesian model on the
instances on which the marginal MNCC model is de-
terminate (light bars) and indeterminate (dark bars).
The black squares denote the determinacy level. The
results are presented label-wise.
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E-mobility

Figure 5: Accuracy of the Bayesian model on the
E-mobility dataset. Light gray bars denote the accu-
racy when the marginal MNCC model is determinate.
When determinacy (black squares) is one, the dark
gray bar associated to the case when MNCC is in-
determinate is not shown. The results are presented
label-wise.
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Figure 6: Accuracy of the Bayesian model on the
Slashdot dataset. The dark gray bars denote the
accuracy of the Bayesian model when the MNCC is
indeterminate. If the determinacy (black squares) is
zero, the light gray bar corresponding to the cases
when the MNCC is determinate is undefined. Labels
are sorted according to the determinacy level just for
sake of readability. The results are presented label-
wise.

and Emotions the accuracy of the Bayesian model
sharply drops when the multilabel classifier becomes
indeterminate. This confirms a well-known strength
of credal classifiers compared to Bayesian classifiers
[8]. This is generally confirmed also on E-mobility
and Slashdot. However in these datasets there are
also labels in which the Bayesian model is perfectly
accurate when the credal model is indeterminate (see
the first labels of both datasets). This suggests that
the credal model is excessively indeterminate in some
situations. This is a problem which is also known in
traditional classification and which could be mitigated
for instance by ε-contaminating the IDM with the
uniform prior.

Future studies might inspect also further indicator of
performance for multilabel classification, such as the
F-metric. We focus on the exact match and on the
label-wise accuracy as the inferences for this indicators
are optimal. Optimal inferences for other indicators
have still to be developed.

A Matlab software implementation of the MNCC is
freely available at http://ipg.idsia.ch/software.

7 Conclusions

We have generalized the naive credal classifier to cope
with multilabel data. The preliminary experiments
are promising: the credal approach yields more robust
predictions than the Bayesian approach. To scale to
large number of labels it is necessary adopting the
marginal model, whose inference is approximated.

As future work, it could be interesting to compare the
inferences yielded by local and the global specification
of the IDM (e.g., by exploiting some of the results in
[10]). Moreover one could consider optimality criteria
others than maximality (e.g., E-admissibility). A com-
parison with other methods possibly yielding multiple
sequences (e.g., [16, 22]) could be also considered.
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A Proofs

Proof of Theorem 1. We consider the objective func-
tion in Eq. (21) by distinguishing whether or not the
two sequences c′ and c′′ share the first label, i.e.,

Pt(c′,f)
Pt(c′′,f) =





Gt(c′, c′′,f), if c′1 = c′′1 ,

Ht(c′, c′′,f), if c′1 = ¬c′′1 .
(34)

Because of Eq. (14), function Gt(c′, c′′,f) writes as:

∏

i:c′
i
=¬c′′

i


 n(c′1, c′i) + st(c′1, c′i)
n(c′′1 , c′′i ) + st(c′′1 , c′′i )

m∏

k=1

n(c′i,fk)+st(c′i,fk)
n(c′

i
)+st(c′

i
)

n(c′′
i

,fk)+st(c′′
i

,fk)
n(c′′

i
)+st(c′′

i
)


 ,

(35)
where the restriction in the outer product is possible
because of the contribution of the other terms is one
(remember that c′1 = c′′1). A preliminary optimization
w.r.t. the constraints can be achieved as in Sect. 4 by
setting t(c′i, fk)→ 0 and t(c′′i , fk)→ t(c′′i ) (remember
that c′i = ¬c′′i ). Similarly, t(c′1, c′i)→ 0 and t(c′′1 , c′′i )→
t(c′′1). After these operations, the result rewrites as:

∏

i

′

 n(c′1, c′i)
n(c′′1 , c′′i ) + st(c′′1)

∏

k

n(c′i,fk)
n(c′

i
)+st(c′

i
)

n(c′′
i

,fk)+st(c′′
i

)
n(c′′

i
)+st(c′′

i
)


 , (36)

where the prime in the product is a shortcut for the
restriction. The optimization w.r.t. t(c′′1) is achieved in
the limit t(c′′1)→ 1. Even the remaining optimization
tasks can be achieved independently of the others. The
result is the left-hand side of Eq. (24), where, in Eq.
(26), we have set ti := t(c′′i ), and hence t(c′i) = 1− ti
(remember that, for these terms, c′i = ¬c′′i ).
We similarly proceed for Ht(c′, c′′,f), i.e., because of

Eq. (34) and Eq. (14):
[
n(c′′1) + st(c′′1)
n(c′1) + st(c′1)

]q+m−2∏

k

n(c′1, fk) + st(c′1, fk)
n(c′′1 , fk) + st(c′′1 , fk)

∏

i

n(c′1, c′i) + st(c′1, c′i)
n(c′′1 , c′′i ) + st(c′′1 , c′′i )

∏

j

′∏

k

n(c′j ,fk)+st(c′j ,fk)
n(c′

j
)+st(c′

j
)

n(c′′
j

,fk)+st(c′′
j

,fk)
n(c′′

j
)+st(c′′

j
)

.

(37)

As in the previous case, we perform some optimization,
rename the remaining variables, and independently
optimize w.r.t. ti (i > 1). Afterwards, we optimize
w.r.t. t1 and inftHt(c′, c′′,f) becomes as in Eq. (25).

Finally, we prove that the objective functions in the
right-hand side of Eq. (26) and in Eq. (25) are convex.
The derivative of the logarithm of the objective function
in the right-hand side of Eq. (26) divided by the positive
constant s is equal to:

m

n(c′i) + s(1− ti)
−
∑

k

1
n(c′′i , fk) + sti

+ m

n(ci)′′ + sti
.

(38)
The second derivative, again divided by s, is:

m

[n(c′i) + s(1− ti)]2
+
∑

k

1
[n(c′′i , fk) + sti]2

(39)

− m

[n(ci)′′ + sti]2
, (40)

and its nonnegativity easily follows from n(c′′i ) ≥
n(c′′i , fk). Similarly, the second derivative of the loga-
rithm of the objective function in Eq. (25) is:

− q +m− 2
[n(c′′1) + st1]2 + q +m− 2

[n(c′1) + s(1− t1)]2

+
∑

k

1
[n(c′′1 , fk) + st1]2 +

∑

i

1
[n(c′′1 , c′′i ) + st1]2 (41)

As in the previous case, the nonnegativity follows from
n(c′′i ) ≥ n(c′′i , fk).
Proof of Lemma 1. We prove the result by contra-
diction. Thus, we assume that:

min
i

max{ai, bi} < max{min
i
ai,min

i
bi}. (42)

Let i∗ denote the arg min of the left-hand side. If,
without any lack of generality, we assume mini ai ≥
mini bi, Eq. (42) rewrites as:

max{ai∗ , bi∗} < min
i
ai. (43)

If ai∗ > bi∗ , we obtain the contradiction ai∗ < mini ai.
Otherwise, we have:

ai∗ ≤ bi∗ < min
i
ai (44)

which is also a contradiction.
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Abstract
In this article we define a procedure which corrects
an incoherent probability assessment on a finite do-
main by exploiting a geometric property of L1-distance
(known also as Manhattan distance) and mixed inte-
ger programming. L1-distance minimization does not
produce, in general, a unique solution but rather a
corrected assessment that could result an imprecise
probability model. We propose a correction method
for the merging of two separate assessments whose
direct juxtaposition could be incoherent, and for the
revision of beliefs where the core of the assessment
must remain unchanged. A prototypical example on
antidoping analysis guides the reader through this
article to explain the various procedures.

Keywords. coherence, mixed-integer optimization,
probability merging and revision, imprecise probabil-
ity.

1 Introduction

The problem of correcting probability evaluations, es-
pecially on finite settings, has a long history and
has been largely debated. Considering the signifi-
cant amount of research on this subject, we can just
mention two main “streams”: one is the “right way” of
assessing probability values, whose roots can be found
in [4, 17, 20] while the other is the so called “calibra-
tion question” that stems from the seminal paper [31]
and subsequent developments [15, 16]. More recently
these two streams have been joined and faced with a
unifying view by de Finetti’s notion of coherence ([18]
and in particular [27, pag. 361]). Hence several ap-
proaches have been proposed to deal with “incoherent”
probabilities, for both unconditional and conditional
values and by adopting different notions of “distances”
and “scoring rules” (among the many, refer, e.g., to
[6, 7, 8, 9, 28, 30]).

The risk of dealing with incoherent probability as-

sessments is significantly present when the numerical
evaluation comes from different sources of information
and/or structural constraints limit the possible states
(see, e.g., [5, 11, 12, 24, 33]). In this paper we come
back to the fore of this argument leaving aside the
more probabilistic approaches based on scoring rules
that have a forecasting perspectives, by adopting the
more aseptic approach based on geometrical distance
minimization. In particular we will deal with the sim-
ple and easily understood L1-distance, known also as
“Manhattan” or “taxi-cab” metric. The main reason
for using such metric is because we are able to propose
an effective procedure (presented in Sec. 3), which
is based on integer linear programming and hence is
much more efficient than the correction procedures
needed for other distances, for instance the quadratic
programming for L2-distance. L1-distance minimiza-
tion has moreover a simple interpretation, since it
implies a direct minimal modification of each single
value, permitting to use it for different purposes like
the merging between two separate assessments (de-
scribed in Sec. 4) and the revision of beliefs (depicted
in Sec. 5).

The peculiarity of using L1 minimization is the non-
uniqueness, in general, of the solution and this could
represent an alternative way of legitimating the adop-
tion of imprecise probability models, in addition to the
historical ones as stemming from buying/selling prices
or desirability of gambles [35], or from extensions of
coherent precise initial assessments [13, Chap.15]. In
this paper, we assume that the initial assessments
are precise, but this assumption could be easily gen-
eralized to initial imprecise probability assessments.
However, assuming initial assessments as being precise
is reasonable as it is consistent with usual estimate
techniques which tend to express precise values.

In order for this paper to be as self-contained as pos-
sible, the next Section 2 briefly introduces the notion
of probability assessments and formalizes the problem
of their coherence. As already stated, the subsequent
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Section 3 contains a proposal of a new correction algo-
rithm based on L1-distance minimization via mixed
integer programming and on properties of convex poly-
topes, while Sections 4 and 5 legitimate its usefulness.
A short concluding Section 6 closes the contribution.

2 Probability Assessments

A probability assessment on a finite domain can be
expressed through a quadruple π = (V,U, p,C), where
V = {X1, . . . , Xn} is a finite set of propositional vari-
ables, representing any potential event of interest, U is
a subset of V that contains the effective events taken
into consideration, p : U → [0, 1] is a function which
assigns a probability value to each variable in U , and
C is a finite set of logical constraints which lie among
all the variables in V .

Note that the explicit presence of the set of variables
V , even if the numerical assessment is given on the
subset U , permits to extend an initial assessment to
a larger domain without redefine the whole model,
allowing a dynamical analysis. In this paper we will
use it only on the merging application of Sec.4, but
it is a good practice to allow this distinction also in
static descriptions.

Since the Boolean logical setting in which we em-
bed the assessment, in the sequel we will adopt the
usual logical notation, with ¬, ∧ and ∨ denoting the
negation, disjunction and conjunction connectives, re-
spectively; ⇒ the material implication; = the logical
equivalence; > and ⊥ the universal tautology and con-
tradiction (sure and impossible events), respectively.

Usually some possible forms of logical constraints are:
φ = ψ, φ =⇒ ψ and φ = ⊥, where ψ and φ are
boolean expressions involving the variables of V . But
without loss of generality, we suppose that C is ex-
pressed in conjunctive normal form, i.e., each element
of C is a disjunction of literals formed with variables
in V , i.e., each element can be written as disjunctive
clause ( ∨

h∈H
Xh

)
∨
(∨

l∈L
¬Xl

)

for some H,L ⊆ {1, . . . , n}, so that C results as their
conjunction.

For example, the constraint Xi =⇒ Xj is expressed
in C by the clause ¬Xi ∨Xj .

A truth-value assignment α is a function from V to
{0, 1}. Given a proposition φ, we write α |= φ when α
satisfies φ, otherwise we write α 6|= φ.

There are different, but equivalent, ways to define the
coherence, i.e., the “rationality”, of an assessment π:

from semantical, syntactical or operational point of
views (see, e.g., [12, 13, 18, 27]). Here we adopt the
pragmatic way already used in [1], where a probability
assessment π = (V,U, p,C) is coherent if there exists
a probability distribution µ : 2V → [0, 1] on the set
of all truth-value assignments 2V which satisfies the
following properties

1. for each α ∈ 2V , if there exists a constraint c ∈ C
such that α 6|= c, then µ(α) = 0;

2.
∑

α∈2V

µ(α) = 1;

3. for each X ∈ U ,
∑

α∈2V ,α|=X
µ(α) = p(X).

The coherence of a probability assessment, called
shortly CPA, has been already studied in [1, 2, 3, 32],
albeit in a slightly different form, showing that check-
ing if π is coherent is a NP-complete problem, even
when the constraints in C are binary (i.e., each of them
involves only two variables).

The computational problem CPA is strictly related to
the Probabilistic Satisfiability problem (PSAT [23]),
where the probability assessment is defined on some
finite set of propositions, instead that on the proposi-
tional variables. It can be proved that every instance
of CPA can be easily translated as a PSAT instance,
and that every PSAT can be formulated in a normal
form, which is essentially a CPA instance [14].

There exist several algorithms to solve CPA and PSAT
problems:

• A column-generation [23, 25] approach, where the
problem is solved using linear programming tech-
niques which exploit the sparsity of the solutions;

• CPA algorithm [1, 2], which is based on a symbolic
manipulation which, in some cases, needs a further
linear programming procedure;

• SAT-based approach [19], in which the problem
is translated in a pure propositional satisfiability
form (SAT);

• MIP-based approach [14], in which the problem
is formulated as a mixed integer programming
problem (MIP).

3 Correcting Probability Assessments

When a probability assessment π = (V,U, p,C) is not
coherent, then it is possible to “correct” it in different
ways, in order to obtain a coherent probability assess-
ment π′ which is as close as possible to π, according
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to a distance or a pseudo-distance function between
probability assessments.

One possibility is to revise only the probability values,
i.e., π′ = (V,U, p′,C), and to use a distance between
probability assessments which is defined only in terms
of p and p′.

Another possibility, which will not be taken into ac-
count in this paper, could be to revise (also) the logical
constraints.

Since p and p′ correspond to vectors of Rn, where
n = |U |, it is possible to use a distance d in Rn. Then,
chosen a distance d, a d-correction of a probability
assessment π = (V,U, p,C) is a vector p′ such that the
probability assessment π′ = (V,U, p′,C) is coherent
and d(p, p′) is minimized. We denote Cd(π) the sets of
all the d-correction of π.

Clearly if π is coherent, then Cd(π) = {p}, for any
distance d of Rn.

In general, given a probability assessment π, Cd(π)
could have more than one element and in this case
the operation of correcting a probability assessment
leads to an imprecise probability model, the so called
“credal set”.

As already stated in te Introduction, several distance
choice are possible. Among the many, in this paper
we focus on the L1 distance defined as

d1(p, p′) =
n∑

i=1
|p(Xi)− p′(Xi)|

and we denote Cd1(π) as C(π). Whether this could be
the best distance and how it performs with respect to
the others is not directly considered. Rather its use
as a tool is considered as it is reasonable and easily
interpretable by users so that technical aspects con-
nected with its adoption are addressed. Our interest
in L1 distance is that with its adoption translating the
optimization problem into a linear problem by using
both integer and real variables is possible. This last
represents a computational advantage compared to
other distances that imply implementation of non lin-
ear (quadratic, logarithmic, etc.) optimizations tools.

The resulting mixed integer program P1 is built simi-
larly to the method described in [14]. Let us suppose
that U = {X1, . . . , Xn}. Moreover let m = |C|.
The real variables of P1 are

• bij , for i = 1, . . . , n and j = 1, . . . , n+ 1.

• qj , for j = 1, . . . , n+ 1

• ri, si, for i = 1, . . . , n

all of them are non-negative (as usual in linear pro-
gramming).

The program P1 also has the integer variables

• aij , for i = 1, . . . , n and j = 1, . . . , n+ 1

which are constrained to 0 or 1.

The constraints of P1 are

1. for each i = 1, . . . , n,

n+1∑

j=1
bij = p(Xi) + (ri − si)

2. for i = 1, . . . , n and j = 1, . . . , n+ 1,

0 ≤ bij ≤ aij , aij − 1 + qj ≤ bij ≤ qj

3.
n+1∑

i=1
qj = 1

4. for i = 1, . . . , n,

ri ≤ 1, si ≤ 1

Moreover, for each clause ci (for i = 1, . . . ,m), where
ci =

∨
h∈Hi

Xh ∨
∨
l∈Li

¬Xl, and for each j = 1, . . . , n+ 1

the following linear constraint is added
∑

h∈Hi

ah,j +
∑

l∈Li

(1− al,j) ≥ 1

Finally, the objective function to be minimized is
n∑

i=1
(ri + si)

Solving the linear program P1 is equivalent to correct-
ing the probability p, because every correction p′ of
p is a coherent probability assessment, hence it can
be written as a convex combination of at most n+ 1
atoms, i.e., truth assignments which satisfy the logi-
cal constraint C (for more details refer, e.g., to [25]).
The binary variables aij are a representation of these
atoms, because of the constraint 4., while the real vari-
ables qj are the coefficients of the convex combination.
The role of constraint number 2. is to set bij = aij · qj
(for i = 1, . . . , n and j = 1, . . . , n+ 1), without using
the multiplication, otherwise P1 would not be a linear
problem. The variables ri, si are slack variables, which
represent, respectively, the positive and the negative
difference between p(Xi) and p′(Xi), as implied by
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the constraint 1. Finally, the objective function corre-
sponds to minimize the L1-distance between p and p′,
i.e.,

∑n
i=1 |p(Xi)− p′(Xi)|.

From a theoretical point of view, to find the correction
is a computational hard problem. Indeed given a
probability assessment π = (V,U, p,C) and a real non-
negative number D, it is a NP-complete problem to
check if there exists a coherent probability assessment
π′ = (V,U, p′,C) such that d1(p, p′) ≤ D. The proof
of NP-containment is easy because any solution of
P1 provides a succinct certificate for the existence of
π′ i.e., the values of aij , ri and si’s. While the NP–
hardness derives from the fact that the coherence of
π (which is a NP-complete problem) can be tested by
posing D = 0.

Anyway, the actual implementations of MIP solvers
make possible to solve probability correction problems
of reasonable size in a feasible amount of time.

The optimal value δ for the objective function corre-
sponds to the minimum possible correction on p and
any coherent probability assessment π′ = (V,U, p′,C)
such that d1(p, p′) = δ is a possible solution i.e., p′ is
an element of C(π).

In many situations C(π) has more than one element
and the MIP problem is able to find just one solution,
which could not be a good representative of all the
elements of C(π), as it happens when it is an extreme
value. Hence the following procedure to generate all
the elements of C(π) is proposed.

Let Q be the set of all vectors q ∈ Rn such that the
probability assessments (V,U, q,C) are coherent. Q
forms a convex polytope whose extremal points are
exactly the atoms, i.e., all truth-value assignments α
which satisfy the logical constraints C.

Let Bπ(δ) be the ball of all vectors q ∈ Rn such that
d(p, q) ≤ δ, with p the numerical probability assess-
ment present in π. Such ball Bπ(δ) is a convex set
whose extremal points are the points p±δei, where ei is
the i-th vector of the canonical basis, for i = 1, . . . , n.

Then C(π) is a convex set of Rn, because it is the
intersection (see [29]) between the convex sets Q and
Bπ(δ).

It is possible to describe C(π) in terms of its extremal
points q1, . . . , qs, indeed any element of q ∈ C(π) can
be expressed as

q =
s∑

i=1
λiqi

for some coefficients λ1, . . . , λs ∈ R, such that 0 ≤
λi ≤ 1, for i = 1, . . . , s, and

∑s
i=1 λi = 1.

As a starting point, let us find a particular element

p̄ ∈ C(π), which has the property that

max
i=1,...,n

|p̄(Xi)− p(Xi)| (1)

is minimum, among all the coherent assessments such
that

d1(p̄, p) = δ. (2)

This optimization problem can be formulated as a MIP
problem P2. All the constraints and the variables of
P1 are reported in P2. Moreover, P2 contains a
new real variable z, which is subject to the constraints
ri+si ≤ z, for i = 1, . . . , n (hence z ≥ max

i=1,...,n
(ri+si)),

and the new additional constraint
∑n
i=1(ri + si) = δ

(which represents the equality (2)). In this way, the
P2 objective function to be minimized is simply z,
since it equates (1).

The corrected assessment π̄ = (V,U, p̄,C) differs from
π by δ and tries to spread this difference as much as
possible among the variables of U . Moreover, p̄ is, in
some sense, the most “central” point of C(π).

Using p̄, it is possible to find the face F1 of the polytope
Q where C(π) lies. The face F1 is itself a convex set
with at most n+ 1 atoms as extremal points, which
can be found as a part of the solutions of P2 (i.e., the
optimal values of aij).

By looking at the signs of p̄(Xi) − p(Xi), for i =
1, . . . , n, it is also possible to determine the face F2 of
Bπ(δ) which contains C(π). Indeed, F2 is a convex set
with at most n extremal points of the form

p+ sign(p̄(Xj)− p(Xj)) · δ · ej . (3)

The extremal points Q = {q1, . . . , qs} of C(π) can be
easily found by means of the following procedure.

• let E1 be the extremal points of F1 and E2 be the
extremal points of F2

• compute H1 as the H-representation of F1

• compute H2 as the H-representation of F2

• letH = H1∪H2, the H-representation of F1∩F2 =
C(π)

• compute Q as the V-representation of H

where the V-representation of a convex set C is the set
of its extremal points, while the H-representation of
C is a set H of half-spaces such that C =

⋂
h∈H

h. It is

possible to convert from the V-representation of C to
its H-representation by means of a face enumeration
algorithm, while the inverse conversion is performed
by a vertex enumeration algorithm [21].
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Both steps can be computed in polynomial time as
shown, for instance, in [21].

Let us summarize the whole process with the following
pseudo-code where FaceEnum and VertexEnum are
suitable procedures to compute the H and V represen-
tations.

procedure Correct
Input: assessment (V,U, p,C)
Output: extr. points W and min. distance δ
begin

prepare MIP program P1
solve it and extract the optimal value δ
if δ = 0 then

return ({p}, 0)
else

prepare MIP program P2
solve it
extract the values aij , ri, si
E1 :=columns of matrix aij
compute p̄ from ri, si
compute E2 with formula 3
H1 := FaceEnum(E1)
H2 := FaceEnum(E2)
Q := VertexEnum(H1 ∪H2)
return (Q, δ)

endif
end

3.1 A Simple Numerical Example

Let us illustrate a simplified example that can help
one to show the previous procedure step by step.
Example 1. Consider a statistical analysis of doping
in sports and how it improves performance while si-
multaneously damaging health. So let us consider the
binary variables (i.e., events) X1 = D ≡“the athlete
uses banned performance-enhancing drugs” (i.e., "dop-
ing"), X2 = E ≡“the athlete is showing a performance-
enhancing in the last period” and X3 = H ≡“the ath-
lete is showing a significant change in his/her biological
profile”.

Hence the domain U of our assessment will be U =
{D,E,H}, while, at the moment, the universal set V
can be any, not better specified, superset V ⊇ U .
Suppose one obtains the probability values p(D) = 0.9,
p(E) = 0.8 and p(H) = 0.9 by collecting informa-
tion from disparate sources of information (e.g., public
health registers, drugs consumption’s and physicians’
files, trainer interviews, etc.) on athletes showing
significant increases in their performances or health
alterations. At a first look the numerical evaluation
p = (0.9, 0.8, 0.9) on U , except from the extremely

a1
a2

a3

a4

p

Q

Figure 1: Configuration of the assessment of the dop-
ing example: the coherent assessments polytope Q is
delimited by vertexes a1, a2, a3, a4; the initial inco-
herent assessment p = (0.9, 0.8, 0.9) is at L1 distance
δ = 0.2 from Q.

high values, could seems “acceptable”. On the contrary,
since doping causes both an enhancing in the perfor-
mance and an alteration of the health and furthermore
and since information is collected only among athletes
already showing at least one of the two “symptoms”,
the assessment must be endowed with the logical con-
straints:

D ⇒ E ∧H; (4)
¬(E ∨H) = ⊥, (5)

or, equivalently, with the set of clauses

C = {E ∨H,¬D ∨ E,¬D ∨H}. (6)

Consequently the assessment π = (V,U, p,C) is inco-
herent since the set of coherent values Q is character-
ized by the probability inequalities





p′(D) ≤ p′(E)
p′(D) ≤ p′(H)
p′(E) + p′(H)− p′(D) ≥ 1

,

and consist of the convex 0-1 polytope with vertexes
a1 = (1, 1, 1), a2 = (0, 1, 1), a3 = (0, 0, 1), a4 =
(0, 1, 0) and, as it also apparent from Fig. 1, p is out-
side it and hence incoherent. The first step of the
previously described procedure, through MIP program
P1, returns that δ = 0.2, while the second MIP pro-
gram P2 finds p = (0.833, 0.867, 0.967) so that one can
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a1

q1=b1

q2=b2

q4

q3

b3

C(p)
p

p

Figure 2: Zooming on the doping example assessment:
facet F2 of Bπ(δ) is the grey triangle (b1, b2, b3), the
set of corrected assessment C(π) is the dashed polygon
with vertexes q1 = b1, q2 = b2, q3 and q4.

derive the V-representations of the two facets as

E1 =





a1· = a1,
a2· = a3,
a3· = a4



 (7)

E2 =





b1 = (0.7, 0.8, 0.9),
b2 = (0.9, 1, 0.9),
b3 = (0.9, 0.8, 1.1)



 . (8)

With them the intermediate calls to FaceEnum produce
the H-representations (not reported here because of an
hard reading) of the facets F1 and F2. The final call
to the VertexEnum returns the V-representation of the
whole set C(π) of corrected values (the dashed polygon
in Fig. 2) that is

Q =





q1 = b1 = (0.7, 0.8, 0.9),
q2 = b2 = (0.9, 1, 0.9),
q3 = (0.9, 0.9, 1),
q4 = (0.8, 0.8, 1)




. (9)

�

4 Merging Probability Assessments

Given two coherent probability assessments π1 =
(V,U, p,C) and π2 = (V,W, q,D), on the same propo-
sitional variables V , one can say that π1 and π2 are
compatible if for each variable x ∈ U ∩W , p(x) = q(x).
In other words, p and q coincide on the variables in

common among π1 and π2. The compatibility of two
probability assessments means that they do not assign,
in an apparent way, different probability values to the
same variable. Nevertheless, they can be contradictory
by assigning different values to same proposition in an
implicit way, thus the assessment formed by joining
together π1 and π2 could be incoherent.
Example 2. Take for example as π1 = (V,U, p,C)
the “barycentric” correction of π in Ex.1 given by the
first P1 MIP program, and let π2 = (V,W, q,D) be a
further investigation over official training data that,
agreeing with the percentages of enhancing performers
and of biological perturbations, claims moreover that
the percentage of athletes that naturally, i.e., without
doping, are able to enhance significantly their perfor-
mance showing biological modifications is of the 1%.
Hence one has

W = {X2 = E,X3 = H,X4 = (¬D ∧ E ∧H)}; (10)

q =




q(E) = p(E) = 0.867,
q(H) = p(H) = 0.967,
q(X4) = 0.01


 ; (11)

D ≡ C ∪ {¬D ∨ ¬X4, E ∨ ¬X4, H ∨ ¬X4}. (12)

By construction π1 and π2 are “compatible” since they
give the same probabilities to the common subdomain
U ∩W = {E,H}, but they disagree on X4 since the all
coherent extensions of p give zero probability to X4.�

If two probability assessments π1 = (V,U, p,C) and
π2 = (V,W, q,D) are compatible, one can denote π1 +
π2 as the probability assessment (V,U ∪W, r,C ∪D),
where r : U ∪W → [0, 1] is defined by joining together
p and q, i.e.,

r(x) =
{
p(x) if x ∈ U
q(x) if x ∈W

The compatibility condition assures that the value of
r(x), when x ∈ U ∩W , is uniquely defined.

Given two compatible probability assessments π1 =
(V,U, p,C) and π2 = (V,W, q,D), the merging opera-
tion of π1 and π2 is defined by

π1 ⊕ π2 = Correct(π1 + π2)

Example 2. (continues) If one takes the juxtaposi-
tion of the two assessments π1 and π2 one gets an
assessment π1 + π2 with components V , U ∪ W =
(D,E,H,X4), r = (0.8333, 0.8667, 0.9667, 0.01) and
logical constraints D. It is, as explained before, inco-
herent, with an L1 minimal distance of δ = 0.01 and
its correction π1 ⊕ π2 is the credal set with extremal
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numerical values

q1 = (0.8333, 0.8767, 0.9667, 0.01)
q2 = (0.8333, 0.8667, 0.9767, 0.01)
q3 = (0.8233, 0.8667, 0.9667, 0.01)
q4 = (0.8333, 0.8667, 0.9667, 0.00). �

Compatibility is not always present between different
assessments, especially if the two sources of informa-
tion stem from disparate contexts. When the proba-
bility assessments to be merged are non compatible,
i.e., they assign different probability values to some
common variables, it is not possible to join directly
them into a unique assessment. Anyhow two different
solutions are possible: a “weighted combination” of
the two assessments, or a “assignment to duplicates”,
as detailed in the next paragraphs.

The first approach requires one to create a non con-
tradictory probability assessment from π1 and π2, by
choosing a unique probability value for each variable
in U ∩W . A possible solution is to use a weighted
average of p and q, i.e., chosen a weighting coefficient
ω ∈ [0, 1], where π1 +ω π2 defines the probability as-
sessment (V,U ∪W, r,C∪D), where r : U ∪W → [0, 1]
is now defined

r(x) =





p(x) if x ∈ U \W
q(x) if x ∈W \ U
ωp(x) + (1− ω)q(x) if x ∈ U ∩W

Finally, the merging operation of π1 and π2 is

π1 ⊕ω π2 = Correct(π1 +ω π2)

When ω = 1
2 , equal importance is given to π1 and π2

and ⊕ 1
2
becomes commutative. While the extreme

values ω = 0 and ω = 1 correspond to the cases
where the values of π2 (or π1, respectively), are used
for contradictory situations. In some sense ω

1−ω is a
measure of the relative reliability of π1 with respect
to π2.

Example 3. If one renders explicit the contradiction
on X4 of the two assessment π1 and π2 of Ex.2, i.e.,
by considering p(X4) = 0, and one chooses ω = 1

2 ,
one has the starting weighted assessment π1 + 1

2
π2

with components V , U ∪ W = (D,E,H,X4), r =
(0.8333, 0.8667, 0.9667, 0.005) and logical constraints
again expressed through the same set of clauses D. It
is anyhow incoherent with an L1 minimal distance of
δ = 0.01 but its correction π1 ⊕ 1

2
π2 is now the credal

set with extremal values

q1 = (0.8333, 0.8742, 0.9667, 0.0075)
q2 = (0.8308, 0.8642, 0.9667, 0.00)
q3 = (0.8333, 0.8667, 0.9742, 0.0075)
q4 = (0.8308, 0.8667, 0.9642, 0.00)
q5 = (0.8358, 0.8692, 0.9667, 0.00)
q6 = (0.8258, 0.8667, 0.9667, 0.0075). �

Of course, by varying the weight ω in π1 ⊕ω π2, one
obtains a class of new coherent (imprecise) assessments
over the domain U ∪W that have the peculiarity of
being “compromises” of the two original π1 and π2, but
with the same weight for each event with associated
different values.

A different approach is to create a probability assess-
ment which maintains both numerical values and to
solve the apparent contradiction by adding a new logi-
cal variable X ′i, for each event Xi ∈ U ∩W such that
p(Xi) 6= q(Xi), and assigning the values r(Xi) = p(Xi)
and r(X ′i) = q(Xi). Moreover, the logical constraint
Xi = X ′i is added to C ∪D.

Indeed, the assessment so obtained π1 +π2 is obviously
incoherent and the merging operation of π1 and π2 is
computed as

π1 ⊕I π2 = Correct(π1 + π2).

Note that, whenever the two assessments π1 and π2
are compatible, this merging operator π1 ⊕I π2 coin-
cides with the previous π1 ⊕ π2 since no duplication
of variables is needed in such a case.

The main difference between the two approaches is
that the latter ⊕I tries to automatically solve the con-
tradiction, while the operator ⊕ω needs an explicit
way of solving it. The approach of ⊕ω is in some sense
a supervised one, because the user must explicitly
provide a weight ω, while ⊕I adopts an unsupervised
approach, and these difference can leads to very dif-
ferent final results, as the following example shows.

Example 4. Let us proceed as in Ex.3 but main-
taining the two distinct values associated to X4,
i.e., let us start with the assessment π1 + π2
with components V , U ′ = (D,E,H,X4, X

′
4), r =

(0.8333, 0.8667, 0.9667, 0.00, 0.01) and with logical con-
straints augmented to D∪{¬X4∨X ′4, X4∨¬X ′4}. This
further assessment has again a minimal L1 distance
of δ = 0.01 from the polytope Q of coherent assess-
ments (note anyhow the different cardinality of the
space n = 5), but whose correction leads now to a
precise assessment with numerical values

(0.8333, 0.8667, 0.9667, 0.00, 0.00). �
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Anyway, the idea behind these two definitions is the
same, i.e., the merging of two information sources can
be performed in two steps. First, put together all
the information I, and then find the smallest number
of corrections on I such that the new information I ′
is consistent. The choice of which merging operator
adopt should be based on the availability or not of
relevance, or better of the reliability, of the sources of
information. If a reliability grade is available, or rea-
sonably assessed, the ⊕ω should be preferred, if not the
⊕I operator avoids the use of unrealistic assumptions.

Thinking the probability assessments as belief states,
the merging operators are a belief merging functions
(see, e.g., [22]).

Our approach is different from usual imprecise proba-
bility technique “a la Walley” (see in particular [34]),
where usually the convex hull of incompatible assess-
ments is considered. This is a so called “least com-
mitment” procedure, while our proposal can be dually
thought as “maximal commitment”. In fact, in our
merging operators, values which are exogenous to the
initial assessments (like those appearing by doing the
convex hull) are avoided as much as possible, and orig-
inal opinions are maintained fixed and crisp as much
as possible. Moreover the convex hull of initial assess-
ments is not guaranteed to at least “avoid sure loss”,
so that the Walley’s “natural extension” procedure is
not always applicable. On the contrary, our approach
is always applicable.

5 Revising Probability Assessments

In this section we propose how the correction procedure
can be used to revise a probability assessment.

Suppose that the coherent probability assessment π1 =
(V,U, p,C) represents our current belief state and a
new reliable information arrives, represented by the
probability assessment π2 = (V,W, q,D).

One could merge π1 and π2 as described in the previous
section, but suppose that one would rather update our
belief state with the new available information, with
the idea that

• one assumes that the new information is correct

• one allows to revise, as less as possible, our current
state in order to adapt it to the new information

The revision can be performed as follows. First, π1
and π2 are merged together with the operator +0, thus
in the case of contradiction, the values from π2 are
used. Second, the resulting assessment is corrected by
forbidding any change the probabilities of the variables

in W . This can be achieved with the procedure Cor-
rect2 which is a small modification of the procedure
Correct. Correct2 has a further parameter, the set
T of the variables whose probability value cannot be
corrected, and when the MIP systems P1 and P2 are
built, the constraint 1 for the variables of T reduces to

n+1∑

j=1
bij = p(Xi)

and their corresponding variable ri and si are not
created.

The revision of π1 with π2 is then computed as

π1 ? π2 = Correct2(π1 +0 π2,W )

Note that any probability assessment (V,U ∪W, r′,C∪
D) resulting from π1 ? π2 is such that it agrees with q,
i.e., r′(x) = q(x) for all x ∈W .
Example 5. If in Ex.2 one wants to inevitably main-
tain as valid the latter investigation π2 one starts with
an adjoined initial assessment π1 +0 π2 with compo-
nents V , U ∪W = (D,E,H,X4), W = (E,H,X4),
r = (0.8333, 0.8667, 0.9667, 0.01) and logical con-
straints D. The only possibility to correct it is to
reduce the numerical evaluation r(D) = 0.8333 to
r′(D) = 0.823, so that the result of the revision is the
precise assessment π1 ? π2 with components V , U ∪
W = (D,E,H,X4), r′ = (0.8233, 0.8667, 0.9667, 0.01)
and the same logical constraints D. �

Such revising methodology, that in general leads to
an imprecise model, could be thought as an analo-
gous of the famous Jeffrey’s rule of combination [26].
The main difference between the two is that our pro-
posal minimize the probability mass dislocation from
the original assessment, maintaining as much as pos-
sible the magnitude of the values, hence working in
an “additive” way, while Jeffrey’s rule maintains as
much as possible the odds ratios, hence working in a
“multiplicative” way.

Moreover the Jeffrey’s rule produces a final probability
assessment which could be too different from π since
it inevitably alters all the values of p on U \W , while
our approach tries to modify p as less as possible, in
line with the belief revision methodology [22].

6 Conclusions

In this article, a preliminary proposal for a correction
of incoherent probability assessments on finite domains
through L1 distance minimization was presented. The
proposal’s novelty is reflected in a new procedure that
uses mixed integer programming while profiting from
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geometrical properties of the convex sets involved,
makes such a method easily applicable.

Apart from the applicability of the direct incoher-
ent correction “per se,” we have stressed that such a
method can be tailored to naturally implement the
merging of disparate assessments or reasonable belief
revisions. We focused on the combination of two differ-
ent assessments, but the generalization to the merging
or revision of several assessments is straightforward:
it simply requires the generalization of the weighted
combination +ω by allowing convex combination of
several values and to iterate the juxtaposition + which
duplicates several times.

Our procedure can be seen as a reasonable way to
generate lower-upper probability models from precise,
but incoherent, probabilities estimates.

Future research should systematically analyze the pro-
cedure through simulation studies and investigate for-
mal properties of the correction operator. We are
confident that the revising ? operator satisfies some
properties which are the probabilistic counter-parts
of the Katsuno-Mendelzon axiom for belief revision
operators.
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Abstract
A statistical model can be constructed from a null
probability measure by defining a set of statistics rep-
resenting log-likelihood ratios of alternative measures
to the null measure. Conversely, any model consist-
ing of equivalent measures can be so expressed. A
linear combination of statistics will also define a log-
likelihood ratio if the normalizing constant is finite. In
this way, any such model can be naturally extended to
a convex subset of the linear span of these statistics. A
finite dimensional subset defines an exponential family
with the canonical parameters of a measure defined
by coordinates relative to a set of basis functions.

Given a base measure on the parameter space, one can
implement a similar structure with a set of parametric
functions. The log-likelihood itself being a parametric
function, the set of all possible log-likelihoods thus
defines a space of measures conjugate to the statisti-
cal model. The conjugate space will have one more
dimension spanned by the above-mentioned parameter-
dependent normalizing constant.

If the base measure is considered a prior distribution,
then the translation by the observed log-likelihood
defines the posterior. An imprecise prior defined by a
set of measures is in the same manner translated to a
set of posterior measures. Upper and lower previsions
can then be computed as extrema over this posterior
set.

Keywords. Information geometry, exponential fam-
ily, sets of measures.

1 Introduction

Statistical inference deals with observations that are
realizations of a random process whose probability law
is postulated to be one of a set of probability laws. We
call this set the model space. Bayesian inference also
requires a probability measure defined on the model
space indexed by a set of parameters such that the

distribution of the observations is viewed as being con-
ditional on an unobserved realized parameter. Bayes’
rule is then used to combine the prior distribution
on the model space with the observation to give a
posterior distribution on the model space, which will
hopefully be more informative than the prior. This
procedure is called Bayesian updating, but in the com-
puter science community it is also known as learning
from data, a terminology that is more descriptive of
what is actually happening.

While Bayesian inference is based on a solid mathe-
matical foundation, its use has been much criticized as
being an improper method for scientific investigation
(see Mayo [10] for an overview). One of the criticisms
relates to the arbitrariness of the prior distribution.
The subjectivity reflected in the prior seems out of
place in the objectiveness of science. Even if one
acknowledges that all inference relies on prior assump-
tions that are inherently subjective, there remains the
practical issue of enunciating these assumptions suf-
ficiently precisely to define a probability distribution
on the model space.

These criticisms were addressed in Walley’s fundamen-
tal treatise [14]. Walley introduces the concepts of
lower and upper previsions on a set of gambles. In
more conventional language, gambles are just random
variables, and the term prevision (borrowed from de
Finetti [6]), is essentially an expectation. Walley’s nov-
elty is in allowing the prevision to be defined on only
a subset of random variables, thus providing for an
incomplete description of a prior probability distribu-
tion which is more realistic than the classical Bayesian
requirement. Moreover, Walley posits so-called upper
and lower previsions which are merely bounds on the
expectations, thereby further providing for incomplete
knowldege, freeing one from having to specify a pre-
cise number as the prior expectation of any random
variable. When applied to indicator variables, upper
and lower previsions define upper and lower proba-
bilities. Walley’s development however is constrained
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by the assumption that gambles are bounded. The
case of unbounded gambles is discussed by Troffaes
and de Cooman [13].

Walley’s lower envelope theorem [14, Section 3.3.3]
shows that if the upper and lower previsions satisfy
coherence axioms, then they can be expressed in terms
of conventional expectations: One can find a set of
probability measures (dubbed credal set by Levi [9])
with corresponding expectation functionals, such that
the lower prevision is the infimum of all expectations
over the set, and the upper prevision is the supremum.
Thus working with upper and lower previsions is equiv-
alent to replacing probability measures with sets of
probability measures.

Inference can now be based on such imprecise prior
probabilities. Walley proposed a generalized Bayes’
rule in which imprecise prior probabilities are updated
to imprecise posterior probabilities. The posterior
probabilities would then be expected to be more precise
than the priors in the sense that the difference between
upper and lower probabilities is reduced. Walley [15]
also introduced the imprecise Dirichlet model (IDM)
for learning from multinomial data, in which the priors
are defined as a set of Dirichlet distributions with a
fixed concentration parameter s, and the posteriors are
Dirichlet distributions with s increased by the sample
size.

Diaconis and Ylvisaker [5] discussed the process of
Bayesian updating in exponential families. When the
model space is an exponential family, then one can
define a conjugate exponential family of prior distri-
butions (indexed by hyperparameters) on the model
parameters such that Bayesian updating can be ex-
pressed as a data induced change in the hyperparam-
eters. Moreover, under certain regularity conditions,
the predictive expectations of the canonical sufficient
statistics can be expressed as a weighted average of
prior expectation and sample mean.

Since the multinomial and Dirichlet distributions are
conjugate in the sense of Diaconis and Ylvisaker, Wal-
ley’s IDM can be viewed as an imprecise probability
version of their setup. Imprecise versions of other ex-
ponential families have been proposed by Quaeghebeur
and de Cooman [12], Quaeghebeur [11], Bickis [4], Be-
navoli and Zaffalon [3], Bataineh [2], and Lee [8]. The
problematic step in all these situations is determining
a set of priors. One wants a set sufficiently large such
that previsions are near-vacuous a priori but not so
large that learning from data is not possible. Such a
set of priors will be said to have the Benavoli-Zaffalon
(BZ) property as discussed in their paper [3].

In this paper, we consider a geometric representation
of model and prior probabilities in which the idea

of conjugacy is extended beyond that considered by
Diaconis and Ylvisaker. Using canonical parameteri-
zations, Bayes’ rule can be seen as a data-dependent
translation of a point representing the prior distribu-
tion. The generalized Bayes rule can similarly be seen
as a translation of an entire set. We can thus visualize
how various choices of prior set affect the process of
learning from data. We present several examples to
illustrate various situations that arise in this paradigm.
In most of these examples we consider the effect of a
single observation. The effect of i.i.d. samples should
then be viewed as iterations of the updating paradigm,
illustrating the effect of accumulating information.

2 Geometry of Probability Measures

Let Y be an observation space whose elements rep-
resent possible empirical observations. We make few
assumptions about the structure of this space; ele-
ments may be numeric or nominal, scalar or vector of
finite or infinite dimension. All we require is that we
are able to specify a probability measure P0 on some
σ-algebra of events defined on Y. We are interested
in making an inference about the probabilistic nature
of Y and may think of P0 as a null model which we
wish to compare with some other putative measure P1.
We will assume that no deterministic inference is pos-
sible, i.e., that any event that is possible (with positive
probability) under one measure is similarly possible
under another. In the language of probability theory,
P0 and P1 are equivalent measures: P0 ∼ P1.

2.1 One-Dimensional Case

The likelihood principle implies that any inference
concerning P1 vs. P0 is based solely on the likelihood
ratio, which is convenient to express in its logarithmic
form:

` = log dP1
dP0

, (1)

from which it follows that we can write

P1(A) =
∫

1Ae` dP0 (2)

where 1A represents the indicator function of a mea-
surable subset A of Y. By introducing a scalar pa-
rameter θ, we can define one-dimensional exponential
family P = {Pθ : θ ∈ Θ} where

Pθ(A) =
∫

1A exp(θ`− φ(θ)) dP0, (3)

φ(θ) = log
∫
eθ` dP0, (4)

and
Θ = {θ ∈ R : φ(θ) <∞}. (5)
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Theorem 1 Θ is a convex set.

Proof: If θ1, θ2 ∈ Θ and 0 < α < 1 then

eφ(αθ1+(1−α)θ2) =
∫
eαθ1`e(1−α)θ2` dP0.

By Hölder’s inequality, this is less than
(∫ (

eαθ1`
)1/α

dP0

)α(∫ (
e(1−α)θ2`

)1/(1−α)
dP0

)1−α

= φ(θ1)αφ(θ2)1−α.

Since φ(θ1) and φ(θ2) are both finite by definition, so is
φ(αθ1 + (1− α)θ2), and the result follows. �

Instead of postulating an alternative probability
model P1, we may start with a random variable (i.e.,
measurable function) v on Y that we think encapsu-
lates the inference we are interested in making. In
the same fashion we may define a one-dimensional
exponential family

Pθ(A) =
∫

1A exp(θv − φ(θ)) dP0, θ ∈ Θ (6)

where φ and Θ are defined as before in (4) and (5).

Definition 1 The family P = {Pθ : θ ∈ Θ} de-
fined by ( (6)) will be called the family generated by v
(over P0).

Definition 2 For any random variable T , Eθ(T ) is
defined as

Eθ(T ) =
∫
T dPθ =

∫
Teθv−φ(θ) dP0.

Theorem 2 If θ1 6= θ2 then Pθ1 6= Pθ2 iff v is not
almost surely constant.

Proof:

Pθ1 = Pθ2 ⇐⇒ P0
{
eθ1v−φ(θ1) = eθ2v−φ(θ2)} = 1

which is equivalent to

(θ1 − θ2)v = φ(θ1)− φ(θ2) a.s. (7)

Since the right side of (7) is constant, this equality can
hold only if v is almost surely constant or if θ1 = θ2. On
the other hand, if v is almost surely constant, then

φ(θ) = log
∫
eθv dP0 = θv a.s (8)

and thus (7) holds. �

If v is almost surely constant, then Pθ = P0 for all θ.
On the other hand, if

∫
eθv dP0 =∞ for all θ 6= 0, (9)

then Θ consists of a single point. In either case the
family generated by v has but a single probability
measure and provides no prospect for inference. In
the following we will assume that v is not constant
and that

∫
exp(θ1v) dP0 <∞ for at least one θ1 6= 0.

By Theorems 1 and 2, Θ will then include an interval
with endpoint θ1, with distinct θ’s corresponding to
distinct probability measures.

Theorem 3 If v1 and v2 are random variables on Y
such that v1 − v2 is almost surely constant, then for
any θ ∈ Θ, v1 and v2 define the same probability
measure and hence v1 and v2 generate the same family.

Proof: Let

φi(θ) = log
∫
eθvi dP0, i = 1, 2.

Then

φ2(θ) = log
∫
eθv1eθ(v2−v1) dP0

= φ1(θ) + θ(v2 − v1) a.s. (10)

For any event A, θ ∈ Θ, the probability defined by v1 is
∫

1Aeθv1−φ1(θ) dP0 =
∫

1Aeθv2−(φ1(θ)+θ(v2−v1)) dP0,

(11)

=
∫

1Aeθv2−φ2(θ) dP0, (12)

by (10). �

The random variable v may thus differ from a log
likelihood ratio by an arbitrary constant. We can
make the representation (6) unique by requiring that

∫
v dP0 = 0. (13)

Since
θv = log dPθ

dP0
+ φ(θ),

the convention (13) implies that

φ(θ) =
∫

log dP0
dPθ

dP0. (14)

The right side of (14) was described by Kullback [7]
as the mean information for discrimination in favour
of P0 against Pθ and is one way of quantifying the
ease with which a probability measure Pθ can be
distinguished from P0. It is commonly called the
Kullback-Leibler information or divergence [1] and de-
noted by I(P0|Pθ). The divergence may be viewed as
the distance from P0 to Pθ, although it does not sat-
isfy the axioms of a metric.1 A significant property of

1While I(P0|Pθ) > 0 iff P0 6= Pθ, it is not symmetric, does
not satisfy the triangle inequality and may even be infinite.
However, it can be shown that I(P0|Pθ) < ∞ when θ is in the
interior of the set (5).
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divergence is additivity over independent observations.
Let P (1,2)

θ = P
(1)
θ × P (2)

θ be the joint distribution of
two independent observations with distributions P (1)

θ

and P (2)
θ . Then

I(P (1,2)
0 |P (1,2)

θ ) = I(P (1)
0 |P

(1)
θ ) + I(P (2)

0 |P
(2)
θ ). (15)

The requirement (13) makes the representation unique,
and relates the normalizing constant φ to the diver-
gence.

The set of random variables forms a vector space, and
the representation (6) identifies a family of probability
measures with a convex subset of a one-dimensional
subspace, the origin representing the null measure P0.
The function v is a basis vector such that all proba-
bility measures in the family can be represented as
scalar multiples of v, the scalar being the parameter θ.
Because of the need of a normalizing constant φ(θ),
the log-likelihood ratios actually do not lie in a one-
dimensional subspace, but in a two-dimensional sub-
space spanned by v and the constant function 1 equal
to 1 everywhere. A probability measure Pθ actually
corresponds to an equivalence class of vectors differ-
ing by a multiple of 1. The convention (13) picks a
particular representative of the equivalence class.

We illustrate these ideas with an almost trivial exam-
ple.

Example 1. Let Y = {0, 1} with P0{0} = P0{1} = 1
2

and P1{0} = 1 − P1{1} = 1 − p for some p ∈ (0, 1).
Then

dP1
dP0

(0) = (1− p)
/ 1

2
dP1
dP0

(1) = p
/ 1

2

so that
dP1
dP0

(y) = 2(1− p)1−ypy

log dP1
dP0

= log 2 + (1− y) log(1− p) + y log p

= log p

1− p y + log 2 + log(1− p).

putting v(y) = y − 1
2 and θ = log(p/(1− p)) we have

that

log dP1
dP0

= θv + θ/2 + log 2− log(1 + eθ)

= θv − log
(

1 + eθ

2eθ/2

)

= θv − log cosh(θ/2). (16)

The family of binary distributions is thus dis-
played in the form (6) parametrized by the log-
odds θ = log(p/(1− p)) with

φ(θ) = I(P0|P1) = log cosh(θ/2).

3
-4 -3 -2 -1 0 1 2 3 4

-?
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)
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Figure 1: Probability manifold for binary distributions.
The set of measures forms a one-dimensional manifold
in the plane. The distance in the vertical directions
represents the divergence from the uniform distribu-
tion. The points in the manifold can be projected in
this direction onto the tangent plane. Location along
the plane is linear in the canonical parameter θ, but
non-linear in the success probability p.

The set of all functions on {0, 1} is two-dimensional,
being isomorphic to R2. The representation (16) iden-
tifies those functions that are log-likelihood ratios rela-
tive to uniform probabilities. Using a basis consisting
of the functions v0(y) = 1 and v1(y) = y − 1

2 , the
set of log-likelihood ratios (equivalently, probability
measures) can be visualized as in Figure 1. In this
figure, the equivalence classes correspond to vertical
lines.

Example 2. Suppose now that we have n i.i.d. ob-
servations y1, . . . , yn from Example 1. Let P0,n (resp.
P1,n) represent the joint distribution of n i.i.d. bi-
nary observations with success probability 1

2 (esp. p).
Again, let θ = log(p/(1− p)). The joint log likelihood
of independent observations is the sum of the log like-
lihoods, and by (15) the same will be true for the
divergences. Thus adding terms of the form (16) we
get

log dP1,n
dP0,n

(y1, . . . , yn) = θ

(
n∑

i=1
yi −

n

2

)
−n log cosh θ2 ,

(17)
which is the canonical form of the binomial family. Al-
ternatively, let Y be the set of all 2n binary sequences
and P0 be the uniform measure on this set. Then if
we decide that inferences are to made solely on the
basis of the function v(y1, . . . , yn) =

∑
i yi, the family

generated by v is again binomial. The picture of this
family is just a rescaling of Figure 1 and thus has
the same intrinsic geometry. This geometric equiv-
ariance under repeated sampling is characteristic of
exponential families.

Example 3. Let Y = R+, and define P0 by the
cumulative distribution function

P0((0, y]) = 1− e−y, y > 0,
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then with v1(y) = y − 1 the one-dimensional exponen-
tial family is

log dPθ
dP0

= θv1 − φ(θ) (18)

where

φ(θ) = I(P0|Pθ) = −θ − log(1− θ).

The natural parameter space is Θ = (−∞, 1) which
defines the family of exponential distributions with
expectation (1− θ)−1.

2.2 Multidimensional Case

The inference of interest may not be expressible in
terms of a single function v; we may require a fam-
ily of functions L0, in which case a construction as
in (3) is possible for any v ∈ L0. Indeed, for any
finite number of functions v1, . . . , vk ∈ L0 and scalar
parameters θ1, . . . , θk we can construct a probability
measure

Pθ(A) = Pθ1,...,θk
(A)

=
∫

1A exp
(

k∑

i=1
θivi − φ(θ)

)
dP0 (19)

provided that

φ(θ) = log
∫

exp
(∑

i

θivi

)
dP0 <∞. (20)

Thus a given set L0 of functions can be augmented by
their linear combinations, the set L of all such linear
combinations forming a vector space. In that case we
have a generalization of Definition 1:

Definition 3 Given a set L0 of random variables, the
set of probability measures defined by (19) and (20)
will be called the family generated by L0.

If for a fixed set of functions v1, . . . , vk every function
in L can be uniquely expressed as a linear combination
of v1, . . . , vk, then L will be a k-dimensional vector
space and v1, . . . , vk will be basis vectors. The vector
space will be infinite dimensional if no such finite basis
can be found.2 We focus on the finite-dimensional
case. Here it is convenient to fix a basis v1, . . . , vk
and consider θ> = (θ1, . . . , θk) representing the mea-
sure Pθ as a row vector and the values v1(y), . . . , vk(y)
as a column vector v. Then the vectors of parameters

2If L spans an infinite-dimensional space, then a basis might
be impossible to find, even if its existence is implied by the
axiom of choice.

and statistics act on each other via matrix multiplica-
tion. Thus, the family generated by v1, . . . , vk can be
represented as

P = {Pθ : θ ∈ Θ} where (21)

Pθ(A) =
∫

1Aeθ>v−φ(θ) dP0 (22)

Θ = {θ ∈ Rk : φ(θ) =
∫
eθ>v dP0 <∞}. (23)

As in the one-dimensional case, the log likelihood ra-
tio may differ by a constant from a function in L.
Thus if L is k-dimensional with basis v1, . . . , vk, the
set of log-likelihood ratios lies in a k + 1-dimensional
space spanned by v0, v1, . . . , vk, where v0 = 1. Again,
two functions that differ by a scalar multiple of 1
will define the same probability measure, and we can
consider probability measures to correspond to equiv-
alence classes of functions. To make the represen-
tation (22) unique we add the additional constraint
that E0(vi) = 0 for every i ≥ 1, which again will
specify a representative of the equivalence class. In
that case the normalizing constant φ(θ) = I(P0|Pθ)
as discussed before. Uniqueness also requires that the
functions v0, v1, . . . , vk are linearly independent when
restricted to the support of P0.

With these additional conditions, for each Pθ ∈ P
, log dPθ/dP0 corresponds to a unique
point (−I(P0|Pθ), θ1, . . . , θk) in Rk+1. The set
of probability measures thus defines a k-dimensional
manifold
M = {(−I(P0|Pθ), θ1, . . . , θk) : I(P0|Pθ) <∞}

(24)
embedded in Rk+1. This manifold can be projected
one-to-one onto its tangent plane at the origin, giving
the natural parameter space3

Θ = {θ : I(P0|Pθ) <∞} (25)
which is a convex subset of Rk.

The family of normal distributions is a well-known
example:

Example 4. Let Y = R, and let P0 be the standard
normal distribution.

P0(A) = 1√
2π

∫
1Ae−y

2/2 dy,

and define v1(y) = y, v2(y) = y2 − 1. The representa-
tion (19) gives

log dPθ

dP0
= θ1y + θ2(y2 − 1)− I(P0|Pθ)

3This is slightly more restrictive than the usual definition,
which only requires the finiteness of φ(θ) and not of its particular
version I(P0|Pθ).
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Figure 2: Probability manifold for the Gaussian family,
with tangent plane at P0 = N(0, 1). The tangent plane
is ruled with coordinate lines corresponding to mean
and variance.

where Θ = {(θ1, θ2) ∈ R2 : θ2 < 0}. This
can be seen to be a Gaussian distribution with
mean µ = −θ1/(2θ2) and variance σ2 = −1/(2θ2).

Example 5. Consider now the setup of Example 3
but with the observation is right-censored at T . This
means that if y > T then one actually observes y = T .
Now

P0((0, y]) =
{

1− e−y 0 < y < T,
1 y ≥ T.

so that the distribution is no longer continuous but
has an atom, i.e., point of positive probability, at T .

Now let Pϑ be an exponential distribution with
mean (1 − ϑ)−1 also censored at T . Then the log
likelihood ratio is

` = log dPθ
′

dP0
=
{
θ′y + log(1− θ′) 0 < y < T,
θ′T y ≥ T.

The one-dimensional family generated by ` now has
natural parameter space (−∞,∞), but only P0 and Pϕ
represent censored exponential distributions.4 To
model a family of censored exponential distributions,
we need to introduce a second function δ = 1y<T . For
any exponential distribution censored at T we can now
write

log dPθ
dP0

= θ1v1 + θ2v2 − φ(θ1, θ2). (26)

4Each of the members of the family is a mixture of a trun-
cated exponential distribution and a point mass at T , but the
probability of the point mass in most cases is different from that
given by censoring.

The canonical representation with φ(θ1, θ2) =
I(P0|Pθ1,θ2) would require that

v1(y) = y − E0(y) = y − (1− e−T ) (27)
v2(y) = δ − E0(δ) = δ − (1− e−T ). (28)

φ(θ1, θ2) = I(P0|Pθ1,θ2)

= log
(
e(θ1−1)T + (θ1 − 1)e(θ2−1)T−θ2

)

− log(θ1 − 1) + θ2

− (θ1 + θ2)
(
1− e−T

)
.

Exponential distributions censored at T form a one-
dimensional non-linear manifold, defined by

{(θ1, θ2) : θ2 = log(1− θ1)},

in this two-dimensional exponential family. Such a
family is called a curved exponential family[1]. Re-
stricted to this submanifold, we have

I(P0|Pθ1,θ2) = −(θ1 + θ2)(1− e−T ),

which in this instance is a linear function of the canon-
ical parameters.

3 Geometry of Inference

3.1 Precise Priors

Suppose now that we express our prior uncertainty
about the model by a probability measure Π0 defined
on a suitable σ-algebra of subsets of P.
Denote by π0 the density of Π0 (considered as a mea-
sure on P) with respect to some dominating measure λ.
Then if the likelihood is given by (21) and an observa-
tion y is observed, Bayes’ rule will give the posterior
density

πy(v) = π0(θ) exp(θ>v(y)− I(P0|Pθ))∫
π0(ϑ) exp(ϑ>v(y)− I(P0|Pϑ)) dλ(ϑ) ,

(29)
where v(y) is the vector (v1(y), . . . , vk(y))>. If we
take the log ratio of posterior to prior, we get

log dΠy

dΠ0
(v) = θ>v− I(P0|Pθ)− ψ(y) (30)

where

ψ(y) = log
∫

exp
(
θ>v− I(P0|Pθ)

)
dΠ0(v). (31)

The set of possible posteriors (30) is of the same ex-
ponential form as (19) where the roles of parameter
and function are reversed.
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Let L∗ be the vector space of functions v∗ : P → R
spanned by

v0 : P 7→ −I(P0|P ) and (32)
vi : (Pθ1,...,θk

) 7→ θi i = 1, . . . , k. (33)

For brevity, denote by v∗ the row vector
(v0(P ), v1(P ), . . . , vk(P ))>.

Now given a vector η = (η0, η1, . . . , ηk) of hyperparam-
eters we can now define analogously to (19) for any
measurable set W of measures in P

Πη(W ) =
∫

1W exp
(

k∑

i=0
viηi − ψ(η)

)
dΠ0. (34)

This will define a probability measure on P provided
that

ψ(η) =
∫
ev
∗η dΠ0 <∞. (35)

Definition 4 The conjugate hyperparameter space Θ∗
is the set of all η ∈ Rk+1 such that (35) holds.

Definition 5 The space of measures P∗ conjugate 5

to the family P is the set {Πη : η ∈ Θ∗}.

By definition, P∗ includes the prior distribution and
all possible posteriors (but is generally much larger).
Moreover, if a posterior distribution is in P∗, then a
proper prior from which it was updated must also be
in P∗.

Theorem 4 If a prior distribution Πη in P∗ has hy-
perparameters

η = (η0, η1, . . . , ηk)

then after observing y the posterior distribution will
have hyperparameters

(η0 + 1, η1 + vi(y), . . . , ηk + vk(y)).

Proof: The density of the prior Π is dΠ/dΠ0 = exp(v∗η−
ψ(η)). By Bayes’ theorem, the posterior density is

dΠy

dΠ0
= ev∗η−ψ(η)eθ>v(y)−I(P0|Pθ)
∫
ev∗η−ψ(η)eθ>v(y)−I(P0|Pθ) dPθ

(36)

By definition,

v∗(Pθ) = (−I(P0|Pθ), θ1, . . . , θk)

so the numerator of (36) becomes exp
(
v∗(η + (1,v(y))

)
,

and the denominator becomes ψ(η + (1,v(y)). �

5This definition is more general than that of Diaconis and
Ylvisaker. Their construction would follow from using a (possi-
bly improper) Lebesgue prior for Π0.

The transformation from prior to posterior by an obser-
vation y can be represented in Θ∗ as a translation by
the vector (1, v1(y), . . . , vk(y)) is a translation by the
vector y∗−v0. Note that the translation is the same for
all priors. Even improper priors can be accommodated
by going outside Θ∗.

3.2 Imprecise Priors

Because the translation in Θ∗ is the same for all priors
(proper or improper), one can update a set of priors
simply by translating the whole set. This provides a
convenient way of representing updating of imprecise
priors, as the set of hyperparameters for the posteriors
is congruent to the set of prior hyperparameters.

It is often of interest to predict the value of some future
observation, by the posterior expectation of a random
variable v ∈ L. With a precise prior distribution Π0,
this would be computed as

v̂ =
∫ ∫

v(z) dPθ(z) dΠy(θ).

If instead of a precise prior, we have a set of priors Π0
leading to a set of posteriors Πy, then we compute
lower and upper previsions as

v = inf
Π∈Πy

∫ ∫
v(z) dPθ(z) dΠ(θ) (37)

v = sup
Π∈Πy

∫ ∫
v(z) dPθ(z) dΠ(θ). (38)

If the conjugate family is of the type discussed by
Diaconis and Ylvisaker, and if v ∈ L, then the sets
of constant predictive expectation v̂ form hyperplanes
in L∗ that intersect in a subspace containing the im-
proper Lebesgue prior. In this case the lower and
upper previsions (37) and (38) are given by the sup-
porting hyperplanes of the convex hull of the posterior
set, which thus can, without loss of generality, be taken
to be convex. If the prior set intersects all of these
diverging hyperplanes, then the prior prediction is
vacuous. As data are observed, the prior set is shifted
such that it no longer intersects all the hyperplanes,
and non-vacuous prediction can be made.

Definition 6 A set of priors will be said to have the
Benavoli-Zaffalon (BZ) property relative to the func-
tion v if v > inf v and v < sup v in (37) and (38)
for some observation y, but v = inf v and v = sup v
when Πy is replaced by the prior set Π0.

Example 6. Consider the setup in Example 1. For Π0
take a logistic distribution of θ (which is equivalent to
a uniform on p = (1 + exp(−θ))−1):

dΠ0
dλ

(θ) = eθ

(1 + e−θ)2 . (39)
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Define v∗0 , vii∗1 ∈ L∗ by

v∗0(θ) = − log cosh(θ/2)
v∗1(θ) = θ/2

It can be shown that

Θ∗ = {η1f
∗
1 + η0f

∗
2 : |η1| < 1 + η2/2}.

Plotting the basis vector v∗0 horizontally and v∗1 verti-
cally, the set of proper priors and posteriors is defined
by the wedge-shaped region in Figure 3. The update
rule for a single binary observation y can be expressed
as

η0 7→ η0 + 1 (40)
η1 7→ η1 + y − 1

2 (41)

Given any point representing a prior, the posterior
after a single observation is obtained by moving one
step to the right, a half-step up for a success, a half-
step down for a failure. A sequence of independent
observations then traces a path in the hyperparameter
space.

Sets of constant prediction of v = y − 1
2 form rays

emanating from η0 = −2, η1 = 0 (Figure 3). (The
intersection of these rays is not in Θ∗ but represents
an improper prior.) From this picture, one can vi-
sualize which sets of priors will have the Benavoli-
Zaffalon property. For example, Walley’s imprecise
beta model (IBM) gives a prior set corresponding to

{(η0, η1) : η0 = s, |η1| < s/2}, (42)

where s is taken to be 1 or 2. The prior predictions
are thus v = 0 and v = 1. After taking observations,
the prior set has moved such that it is contained in a
narrow cone of rays, leading to informative upper and
lower previsions.

Example 7. If the data are N(µ, 1), then
the conjugate prior family would be N(ν, σ2) which
can be reparametrized in canonical exponential form
by η0 = 1/2σ2 and η1 = ν/σ2. If we choose Π0 ∼
N(0, 1) then Θ∗ = (−1,∞) × (−∞,∞). Sets of con-
stant predictive expectation are again rays emanating
from (−1, 0) (Figure 4). Note that η0 again repre-
sents a concentration parameter. Unlike the case of
the IBM, fixing the set of priors by fixing the con-
centration parameter does not allow for learning from
data, as the interval of posterior predictions remains
infinite. Benavoli and Zaffalon [3] suggested using a
set of priors which in the present parametrization is
the rectangular region in Figure 4 which satisfies the
BZ-property.

Example 8. Let the model space be as in Exam-
ple 6 but define Π0 as a Gaussian distribution on Θ.
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Figure 3: Path of sets of posteriors from IDM
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Figure 4: Set of posteriors from Normal distribution,
using prior set suggested by Benavoli
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The same construction applies, but in this case the
conjugate family is not conjugate in the sense of Di-
aconis and Ylvisaker. The 2-dimensional exponen-
tial family created from a N(µ, σ2) prior is spanned
by θ and cosh(θ/2). Nonetheless, similar arguments
still allow for learning from data. If we start with a
set of N(µ, σ2) priors for various σ2, we obtain a 3-
dimensional family of posteriors spanned by cosh(θ/2),
θ and −θ2. The update rules for η0 and η1 are the
same as in (41), but η2, the coefficient of −θ2, is not
changed.

There seems to be no explicit formula for the nor-
malizing constant ψ, nor for the predictive expecta-
tions. Nonetheless, such quantities can be computed
numerically. As shown in Figure 8, the level sets of
predictive expectations appear as a set of almost flat
sheets pinched together at the origin. The limiting
case η2 = 0 is equivalent to the conjugate family in
Example 6. The path traced by a sequence of observa-
tions is as in Figure 3, raised by η2 = 1/(2σ2) in the
prior distribution. A set of priors with the Benavoli-
Zaffalon property can be obtained by including in its
boundary a set of the type in (42).

Example 9. Consider now the censored exponential
model of example (5). While the “natural” parameter
space is two-dimensional, we are only concerned with
models on the one-dimensional manifold θ2 = log(1 +
θ1). We thus take as Π0 the singular distribution
concentrated on this manifold such that that θ1 has
an exponential distribution with mean 1. (Note that

in this case the dominating measure λ is not Lebesgue
measure.) The conjugate space of posteriors then takes
the form

log dP0
dΠη1,η2

= θ1η1 + θ2η2 − ψ(η1, η2)

where

ψ(η1, η2) = (η2 + 1) log(η1 + 1)− Γ(η2 + 1)

The natural hyperparameter space is {η1 > −1, η2 >
−1}. In this case the family is only two-dimensional be-
cause of the linear dependence between φ and (θ1, θ2).

The Bayesian updating rule is

η1 7→ η1 + y

η2 7→ η2 + δ,

moving to the right by the observed lifetime and one
step up if the lifetime is not censored. This setup still
works if we allow T itself to vary with time. The hy-
perparameter keeps moving right while the individual
is alive (i.e., censored) and then jumps up one step
once a death is observed.

The posterior predictive expectation of the uncen-
sored lifetime is (η1 + 1)/η2. To create an impre-
cise inference, we can start with the hyperparameter
set {η2 > 0, η1 +η2} = 0. Initially, the predictive lower
prevision is 0, and the predictive upper prevision is ∞.
If an individual is observed to be alive at time y, the
lower prevision rises to y, but the upper prevision
remains at ∞. Once the individual is observed to
die at y, the upper prevision drops to 1 + y and the
lower prevision drops to y/2. If one observes a set of
independent lifetimes, then this process compounds.
If t is the total of observed lifetimes and d is the total
number of observed deaths, then the lower prevision
is t/(d+ 1) and the upper prevision is (t+ 1)/d. This
set of priors again has the Benavoli-Zaffalon property
(Figure 3.2).

4 Conclusions

In this paper we have shown how an exponential family
of probability measures is generated by postulating a
null distribution and a set of inferential functions. If
the set of functions is k-dimensional, then the family of
probability measures forms a k-dimensional manifold
embedded in k + 1-dimensional Euclidean space. This
manifold can be uniquely projected onto a tangent
plane whose coordinates parametrize the model. If a
prior distribution is defined on the set of probability
distribution, then the above development can be re-
peated with the parametric functions, thus giving an
exponential family that includes all possible posteriors.
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This family can again be projected onto a tangent
space of hyperparameters.

In this representation, Bayesian updating of a hyper-
parameter is expressed as a translation by a data-
dependent vector. This same translation can be ap-
plied to a set of hyperparameters, demonstrating the
updating of imprecise priors to imprecise posteriors.
The geometric perspective allows one to see when a set
of priors would enjoy the Benavoli-Zaffalon property
of near vacuous priors that allow for learning from
data.

This paper concentrates on the linear aspects of
the space of measures, and does not further explore
the metric aspects of the geometry implied by the
Kullback-Leibler information measure. These topics
will be examined in future papers.

Acknowledgments

The author is grateful to several anonymous referees for
their detailed comments that helped to improve the pa-
per. This research has been supported by grants from
the Natural Science and Engineering Research Coun-
cil of Canada and from the Office of Vice-President
Research at the University of Saskatchewan. Part
of this research was done while the author was the
Alan Richards Mathematics Fellow at Grey College,
Durham University.

References

[1] Shun-ichi Amari and Hiroshi Nagaoka, Methods of
Information Geometry, American Mathematical Soci-
ety, 2000

[2] Osama Bataineh, Imprecise Probability Models for
Logistic Regression. PhD Thesis, University of
Saskatchewan, 2012.

[3] Alessio Benavoli and Marco Zaffalon, A model of prior
ignorance for inferences in the one-parameter exponen-
tial family, Journal of Statistical Planning and Infer-
ence, 2012, 1960–1979.

[4] M.G. Bickis, The imprecise logit-normal model and its
application to estimating hazard functions, Journal of
Statistical Theory and Practice 3 (2009), 183–195.

[5] P. Diaconis and D. Ylvisaker, Conjugate priors for
exponential families. Ann. Statist. 7 (1979), 269–281.

[6] Bruno de Finetti, Theory of probability, Wiley, New
York, 1974.

[7] Solomon Kullback, Information Theory and Statistics,
Wiley,1959.

[8] Chel Hee Lee, Imprecise Prior for Imprecise Inference
on Poisson Sampling Model. PhD Thesis, University
of Saskatchewan, 2014.

[9] Isaac Levi, The Enterprise of Knowledge: An Essay
on Knowledge, Credal Probability, and Change, MIT
Press, 1980.

[10] Deborah Mayo, Error and the Growth of Experimental
Knowledge, University of Chicago Press, 1996.

[11] Erik Quaeghebeur, Learning from samples using coher-
ent lower previsions. PhD thesis, University of Ghent,
2009.

[12] Erik Quaeghebeur and Gert de Cooman, Imprecise
probability models for inference in exponential families,
ISIPTA ’05: Proc. 4th Int. Symp. on Imprecise Prob-
abilities and Their Applications (Fabio G. Cozman,
Robert Nau, and Teddy Seidenfeld, eds.), July 2005,
pp. 287–296.

[13] Matthias C. M. Troffaes and Gert de Cooman, Lower
Previsions, Wiley, 2014.

[14] Peter Walley, Statistical reasoning with imprecise prob-
abilities, Chapman and Hall, London, 1991.

[15] Peter Walley, Inferences from multinomial data:
Learning about a bag of marbles, Journal of the Royal
Statistical Society, Series B 58 (1996), no. 1, 3–34.

M. Bickis

56



How to Choose Among Choice Functions

Seamus Bradley
Munich Centre for Mathematical Philosophy

LMU, Munich
seamus.bradley@lmu.de

Abstract
If one models an agent’s degrees of belief by a set
of probabilities, how should that agent’s choices be
constrained? In other words, what choice function
should the agent use? This paper summarises some
suggestions, and outlines a collection of properties of
choice functions that can distinguish between different
functions.

Keywords. decision making, choice functions, sets of
probabilities

1 Basics

This first section outlines some basic formalism. We
have a finite set of states Ω and we take the set of
events to be the power set of that: 2Ω.

We define a probability function over 2Ω as a function
pr : 2Ω → R with the following properties:

• pr(∅) = 0 and pr(Ω) = 1
• pr(∅) ≤ pr(X) ≤ pr(Ω) for all X
• pr(X ∪ Y ) + pr(X ∩ Y ) = pr(X) + pr(Y ) for all
X,Y ⊆ Ω

An agent’s degrees of belief are represented by a set of
probability functions, P . Call this set your representor.
With a little abuse of notation, we can define a function
P(H) which maps event H to the set of values that
the probability functions in P give to H. So P(H) =
{pr(H) : pr ∈ P}. We can then define P(H) and
P(H) as the minimal and maximal values that the
probabilities in P assign to H.1 These “summary
functions” give us objects that somehow represent
the belief and are easier to handle than the full set
of probability functions. It is sometimes convenient
to think of each pr ∈ P as a member of a “credal
committee” who collectively represent your opinions

1More properly, these should be the greatest lower bound
and the least upper bound, since we aren’t sure that the extrema
are attained. Nothing hangs on this.

and make your choices.

The objects of choice are gambles: real valued functions
from the set of states. A gamble ϕ wins ϕ(w) if w
turns out to be the true state. Let’s say we have acts
ϕ and ψ. Say we have some kind of random device
that outputs a 1 with probability p and a 0 otherwise.
pϕ+ (1− p)ψ is the act “get whatever ϕ gets you with
probability p, get whatever ψ gets you otherwise”. If
A is a set of acts, pA+ (1− p)ψ is the set of acts of
the form pϕ+ (1− p)ψ for ϕ ∈ A. Let A∗ be the set
of mixed acts over A. Note that the gambles have real
valued outcomes, so I am implicitly assuming that your
utility function is precise. I use “act” and “gamble”
interchangeably.

For probability function pr we define its expectation
Epr(ϕ) =

∑
w∈Ω pr(w)ϕ(w). That is, the expectation

– or expected value – for an act is a weighted sum
of what the act gets you in each state, weighted by
how likely pr considers that state. Orthodox decision
making is aimed at maximising this expected value.

We can define an imprecise expectation by taking
the set of the expectations for each pr ∈ P. That
is, EP(ϕ) = {Epr(ϕ),pr ∈ P}. We often drop the
subscript and just talk about E when it is obvious
what P is at issue. We can define E(ϕ) and E(ϕ) as
the smallest and largest expectations assigned to ϕ by
members of P. How are we to choose with imprecise
expectations? The first thing to note is that we can’t
simply “choose the biggest”. The Es for the various acts
will typically be sets of numbers: there’s no obvious
sense in which one collection of numbers is bigger than
the other. The sets can overlap. So we need to think
a little more carefully about what imprecise choice
involves.

We consider two kinds of gambles: those whose out-
come depends on the throw of a fair die, where the
probability of its landing even is fixed P(E) = {1/2};
and those whose outcome depends on the toss of a
coin of unknown bias, where the probability of the
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coin landing heads is unknown P(H) = [0, 1].

The main object of study in this paper will be vari-
ous forms of choice function. A choice function will
take a set of available acts and output a subset of
choiceworthy acts. A choice function is a function
C : 2A → 2A such that for all A ⊂ A we have C(A) ⊆ A
and C(C(A)) = C(A). That is, the function outputs
a subset of the acts available: it would be unhelpful
if the choice function gave you the advice to perform
some act that wasn’t available to you. We also re-
quire that the choice function is stable in a certain
sense. That is, applying the function a second time
has no effect. Call the set that the choice function
outputs – C(A) – the choice set. The majority of this
paper will be about what properties we can impose on
choice functions, and which of those properties it is
reasonable to demand in the imprecise case. We will
explore some well-known imprecise choice functions
and discover which properties they do or do not satisfy.

C(A) is meant to represent or encode what it is that
rationality requires of you when you must make a
choice among the members of A. There are many
ways of interpreting C(A). A “Strong” interpretation
would say that acts in C(A) are all equally the best
act: there is nothing to choose between the acts in
C(A) and you should be equally happy to take any of
them. ϕ ∈ C(A) is here considered an endorsement
of act ϕ. A weaker interpretation might be to say
that all the acts in C(A) are better2 than the acts
not in C(A). This interpretation does not preclude
there being strict preference between the acts in C(A).
ϕ ∈ C(A) isn’t now such a strong endorsement of
ϕ; but ψ /∈ C(A) is still considered a real flaw in ψ.
Consider the “vegetarian choice function” that rejects
all menu items containing meat. It is not the case that
all elements that survive this rejection criterion are
necessarily on a par.

In short, we can think of standards of rationality as
giving sufficient conditions for being acceptable, or
we can think of the standards of rationality as giving
necessary conditions for being acceptable. The former
accords with the positive understanding of rational-
ity: endorsing elements in C(A). The latter accords
with the negative understanding of rationality: those
elements outside C(A) are advised against.

Consider the reject set3 for a given choice rule: R(A) =
A\C(A). R(A) is the set of options that the choice rule

2Note that such “betterness” needn’t determine an order on
the acts. Consider the case where ϕ is better than ψ just in case
that ϕ doesn’t have some obvious flaw that ψ does. A choice
rule that returned the set of acts without this flaw would be an
example of this weaker sort of choice rule.

3Note that a reject set in this sense is not the same as what
[19] call a “reject statement”.

rejects. The weak interpretation of the choice function
amounts to endorsing the rejection of elements of R(A),
while the strong interpretation amounts to endorsing
the choice of elements in C(A). Call these reject-R and
endorse-C, respectively. The aim of this paper is to
suggest that there might not be a strong (endorse-C)
choice function for IP decision making, and that we
might have to make do with weak (reject-R) choice
functions. The contribution of the paper is primarily
philosophical, rather than mathematical. I further
want to present a case for preferring the “Maximality”
choice rule to the “E-admissibility” choice rule, and
while at least some of the properties of E-admissibility
that I mention are already known, I don’t know of
anyone who turns them into an argument against E-
admissibility. Finally, I mention a new “regret-based”
choice rule, although I don’t have space to do much
more than present it.

2 How to Constrain Choice Functions

What does a reasonable imprecise choice rule look
like? There are many places in the literature where
enterprises like this have been developed. There are
a great many ways we could approach the question
of how best to settle on an imprecise decision rule. I
survey some ways here.

I take inspiration from the classic discussions of choice
under complete ignorance, such as Milnor’s important
“Games Against Nature” [17] and Chapter 13 Luce
and Raiffa’s classic textbook [16]. I also look to social
choice theory: if we think of each probability in your
representor as a member of a credal committee that
has to vote on what you should do, then the parallel
between imprecise decision and social choice becomes
clear. Here I will draw on Arrow’s theorem [8] and
the work of Amartya Sen [26, 24].

There are two ways one might frame the discussion:
in terms of an ordering over the acts (Arrow, Milnor),
or in terms of a choice rule (Luce and Raiffa, Sen). I
will talk in terms of choice rules, but we will see that
relations will also play an important role.

There are several ways we could describe conditions
on the choice function. One is just to put conditions
on the functional form of the choice function. That is,
we could impose intuitive conditions on the function
with respect to how it interacts with unions and in-
tersections of sets of acts. For example consider the
condition we built into the definition of choice function:
C(C(A)) = C(A). This is a property that constrains
what kind of functions count as choice rules.

There is another way we might want to impose con-
straints on reasonable choice functions. This is by
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restricting various kinds of relation associated with
the choice function.

For this, we need some definitions. For reflexive rela-
tion �, let ∼ and � be its symmetric and irreflexive
parts respectively. A choice function C pairwise satis-
fies a relation � when, for all ϕ,ψ ∈ A:
• If ϕ � ψ then ϕ ∈ C({ϕ,ψ})
• If ϕ � ψ then {ϕ} = C({ϕ,ψ})

If � is understood as preference relation then pairwise
satisfying a relation means never picking a dispreferred
option in pairwise choices. A choice function C satisfies
a relation � when, for all ϕ,ψ ∈ A ⊆ A:
• If ϕ � ψ then ψ /∈ C(A)
• If ϕ ∼ ψ then ϕ ∈ C(A)⇔ ψ ∈ C(A)

Satisfying a relation can be understood as never pick-
ing a dispreferred option in any choice. We could then
constrain reasonable choice by demanding that the
choice function (pairwise) satisfies some particular re-
lation defined on the acts. If C(A) is nonempty for all
nonempty A4 and satisfies � then it pairwise satisfies
it, but the converse need not be true.

A relation can also determine a kind of choice function.
The maximal set for a relation � isM�:

M�(A) = {ϕ ∈ A : ¬∃ψ ∈ A,ψ � ϕ}

Interpreting the “�” as a relation of preference, this
M� is the set of acts that aren’t strictly dispreferred
to anything else in the set.5 Here are some facts about
M�.
(i) M� is a choice function
(ii) M� pairwise satisfies �
(iii) If � is acyclic6 on A where A is finite thenM�(A)

is non-empty
(iv) If � is transitive, thenM� satisfies �.
These are proved in the appendix (Theorem 2).

Going the other way, a choice function determines a
relation by

ϕ �C ψ ⇔ ϕ ∈ C({ϕ,ψ})

C pairwise satisfies �C. Under certain conditions C
satisfies �C [25]. Say that C is determined by pairwise
comparisons when this is the case.

Call a choice rule C more discriminating than C′ when
C(A) ⊆ C′(A) for all A. M� is the least discriminating

4We will call this property Decisive later.
5[3] makes a distinction between maximality (as defined

above) and strong maximality. The distinction won’t matter in
the current project since the relations I discuss are transitive,
and thus the two concepts overlap (see his Theorem 2).

6Meaning for all ϕ1 . . . ϕn, if ϕ1 � ϕ2, . . . ϕn−1 � ϕn then
ϕn � ϕ1.

choice function that satisfies �. That is, if C satisfies �
then C(A) ⊆M�(A) for all A. This is also proved in
the appendix (Theorem 3). We can think of relations
as pairs of elements of the domain of the relation,7
so it makes sense to talk about the intersection and
union of relations, and of one relation being a subset
of another.

Sometimes we will talk about the relation generated
by a function F into an ordered set (normally the
reals), �F . We understand this to be the relation
such that ϕ �F ψ iff F (ϕ) ≥ F (ψ). For instance,
ϕ �Epr ψ iff Epr(ϕ) ≥ Epr(ψ). We will sometimes
writeMF where more properly we should writeM�F .
For example, when your credences are precise, your
choice rule isMEpr . That is, you choose among the
things that do best by the criterion of expected value.
Note that ϕ ∈ MEpr(A) means (by definition) that
there does not exist a ψ ∈ A such that ψ �Epr ϕ. This
means that for all ψ ∈ A, Epr(ϕ) ≥ Epr(ψ). Which is
just to say that ϕ maximises expectation.

What if, instead of talking about maximality, we talked
about optimality? The optimal set for a relation � is:

Opt�(A) = {ϕ ∈ A : ∀ψ ∈ A,ϕ � ψ}

What we will find is that optimality – which is stronger
than maximality – is too strong a property. That is,
Opt� is often empty. Consider the set {ϕ,ψ} where
no relation holds between the two options. For this
set, there are no optimal acts – although both acts are
maximal in the sense ofM�. If the relation is com-
plete, reflexive and acyclic then Opt� is nonempty [26,
p. 55]. When Opt�(A) 6= ∅, and � is transitive then
Opt�(A) = M�(A) (Theorem 4). This means that
talking about optimality is superfluous. Maximality
is the more interesting concept in general. The two
happen to coincide for complete, transitive relations
but when we have incomplete relations, optimality
can be empty while maximality won’t be. See [27]
for more on the relationship between optimality and
maximality (in particular, theorems 5.2 and 5.3).

In summary, we want to analyse what sort of choice
rule makes sense for imprecise decision. We are going
to proceed by imposing certain intuitive constraints
on choice and showing that certain decision rules vio-
late these principles. The principles will come in two
flavours: restrictions on the functional form of C, and
relations that C must satisfy.

One might think that given the material I’m taking
inspiration from, I would be aiming at a representation
theorem (Luce and Raiffa, Milnor) or an impossibility
theorem (Arrow, Sen). I am doing neither. I don’t
think the conditions I discuss below are enough to

7That is, define X� ⊆ A×A by: (ϕ,ψ) ∈ X� iff ϕ � ψ.
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generate an impossibility, nor do I think they are
sufficient for any interesting kind of representation
(although the extremely general theorems of [7] or [5, 4]
might apply). Some of the decision rules I discuss have
been characterised. For example, E-admissibility [23].
And usingM� and axiomatising �, Maximality [22].
Perhaps also Gamma-maximin [11]. My main focus
is not on impossibility or representation, but on what
we can say about rational constraints on choice. Note
that in what follows I am presupposing some expected
utility evaluations of the gambles.

3 Properties of Choice Functions

3.1 Dominance Principles

Consider the choice function defined by

CID(A) = {ϕ ∈ A : ∀ψ ∈ A E(ϕ) ≥ E(ψ)}

This is a decision rule that Henry Kyburg [13] dis-
cussed. He calls it “Principle III”.8 It has also been
called “Interval Dominance”. Unfortunately, CID is
often empty. A choice rule that fails to give us advice
is not particularly helpful. This suggests a property
of choices rules that we might like to endorse.

Decisiveness: If C(A) = ∅ then A = ∅.
But consider the set of gambles that consists of the
set of gambles fn = n for all natural n. Or consider
gn = −1/n for all natural n. Arguably, no act in either
set is best, since there’s always a larger n (and thus a
smaller loss). I will focus my attention on closed and
bounded – often finite – sets of gambles.9

Despite failing as a choice rule, we can use this ID
idea to further restrict reasonable choice rules: when
some act does interval dominate all others, then the
dominating act should be in the choice set. Define
the relation ϕ �ID ψ iff E(ϕ) ≥ E(ψ).10 This gives us
another core condition.

Interval Dominance: C satisfies �ID

�ID is transitive and thus acyclic, soM�ID is decisive.
Often �ID is empty, so this condition will put no
restrictions on choice (i.e. M�ID(A) = A). However,

8In response to Teddy Seidenfeld’s comments (pp. 259–61),
Kyburg changes his mind (p. 271). We will discuss this in due
course.

9These restrictions are made for convenience, rather than
because more general sets of gambles, or more general spaces of
gambles (infinite dimensional, non-Archimedean, etc) are not
amenable to study [31, 1].

10Note this is defined directly as an irreflexive relation, since
it doesn’t lend itself to having a reflexive part. But ϕ �ID ψ
and ψ �ID ϕ implies ϕ and ψ have the same precise expectation.
So the second condition of the definition of “satisfies” is still
reasonable in this odd case.

when CID is not empty, the restrictions it puts on
choice are reasonable.

There is a stronger dominance property we can impose
on our choice rule. Imagine if every member of the
credal committee thought that ϕ �Epr ψ. Surely
in such a case, your choice rule should respect this
unanimity. Let’s consider the relation of dominance,
�Dom, as a relation that we want our choice rule to
satisfy. Define:

�Dom=
⋂

P
�Epr

That is, the relation of dominance is the intersection
of all the relations of higher expectation. ϕ domi-
nates ψ if and only if every relation of expectation
(in your representor) ranks ϕ and least as high as ψ.
ϕ ∼Dom ψ means that the gambles have the same
expectation for each pr. One sometimes considers the
logically stronger (thus less constraining) relation of
strict dominance, which amounts to the existence of an
everywhere positive gamble ε such that ϕ �Dom ψ+ ε,
or uniform strict dominance where ε is also constant.
Since I think even weak dominance (as captured by
�Dom) is enough to make an act unchoiceworthy, I
won’t say more about this subtlety.

This motivates another important desideratum for
imprecise choice.

Non-domination: C satisfies �Dom

Note that this is a stronger condition than Interval
Dominance. That is, whenever ϕ interval dominates
ψ, ϕ dominates ψ. Put another way, �Dom⊇�ID.
This expectation-dominance relation also subsumes
another kind of dominance, namely state-wise domi-
nance. ϕ state-wise dominates ψ if, for every w ∈ Ω,
ϕ(w) ≥ ψ(w). Clearly this entails that ϕ �Dom ψ.

3.2 Contraction Consistency

Consider the following scenario. You go to a restau-
rant and see that the menu consists of Fish, Steak or
Chicken. You decide on Chicken. The waiter comes
to take your order and tells you there is no more Fish.
So you decide to have the Steak. This story seems
a little odd. Why should the availability of an op-
tion you don’t choose cause a switch in choice like the
one exhibited in the move from Chicken to Steak? It
seems like a reasonable choice rule should be somewhat
consistent under various kinds of expansion or contrac-
tion of the option set. This motivates the following
principle:

Contraction Consistency: C(A ∪ B) ⊆
C(A) ∪ C(B)
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This rule is more normally seen in one of these equiva-
lent forms:

If ϕ ∈ C(A), B ⊆ A,ϕ ∈ B then ϕ ∈ C(B) (1)
If ϕ /∈ C(B), B ⊆ A,ϕ ∈ B then ϕ /∈ C(A) (2)

So in the preceding story, C(S,C, F ) = C but
C(S,C) = S. This violates the above property. This
property is also known as Sen’s alpha condition [26, 24].
I am following [8] in calling it “contraction consis-
tency”, but it also somewhat restricts expansion of the
option set. Luce and Raiffa have a version of (2) as
their Axiom 7.

There is a property that is slightly stronger than Con-
traction Consistency that is known as Path In-
dependence:

Path Independence: C(A∪B) = C(C(A)∪C(B))

It is obvious that this entails Contraction Con-
sistency since C(X) ⊆ X for all X. In fact, Path
Independence is equivalent to Contraction Con-
sistency and the property that Sen [26] calls “ep-
silon”:

If A ⊂ B then it is not the case that C(B) ⊂ C(A)

See [26, p. 69] for a proof.

3.3 Independence

We can cash out independence as:

Independence: C(pA+(1−p)ϕ) = p C(A)+(1−
p)ϕ

Perhaps the best way to understand independence is
with an example.

Example 1: I am going to ask you to
choose c or d. Then I’m going to roll a fair
die and flip a coin of unknown bias. If the
die lands even, you gain £6 if ¬H, nothing
otherwise. If the die lands odd, c and d pay
out as set out here:

• c: Gain £10 if H, nothing otherwise
• d: Gain £2 if H, £8 otherwise

The idea is that since what you choose – c or d – doesn’t
make a difference if the die lands even, then you should
choose in order to get the better of the options when
it matters (in the odd branch of the game). One can
further justify independence in a sequential choice
setting: agents who violate independence pay to avoid
free information [20].

3.4 Union Consistency

Recall that Contraction Consistency puts a sort
of “upper bound” on C(A ∪B) by requiring that it be
a subset of C(A) ∪ C(B). Union Consistency puts
a lower bound on C(A ∪B).

Union consistency: C(A) ∩ C(B) ⊆ C(A ∪B)

This is Sen’s gamma condition. It is sometimes seen
in this equivalent form:

If ϕ ∈ C(A), ϕ ∈ C(B) then ϕ ∈ C(A ∪B) (3)

The motivation here is that if you would choose Steak
out of Steak or Fish, and you’d choose Steak out of
Steak or Chicken, then you should choose Steak when
all three options are on the menu.

3.5 Other Properties of Choice

Let’s consider some properties whose violation I don’t
consider a flaw at all.

The first property appears in many contexts. Under-
standing why I think imprecise choice rules should
be allowed to violate this property will point to an
important difference between imprecise choice and pre-
cise choice. I shall call this property “all-or-nothing
expansion consistency”. It is called 7′′ by Luce and
Raiffa and “beta” by Sen. This says that if an old
choiceworthy act is made non-choiceworthy by the
addition of new acts, then all old choiceworthy acts
are made non-choiceworthy.

All-or-nothing: If ϕ ∈ C(A) but ϕ /∈ C(A∪B)
then, for all ψ ∈ C(A), we have ψ /∈ C(A ∪B)

As Luce and Raiffa show All-or-nothing makes
sense only when you are evaluating the acts on a single
scale. Sugden [28] discusses an example where one race
car is faster and another is more manoeuvrable: the
first will win in a head to head race, but the second will
win if there are other cars on the track. Thus the “race
winning function”, if you like, does not satisfy All-
or-nothing. Such a choice function can’t be given
a strong interpretation. That is, each member of the
choice set is better than all acts outside the choice set
in some sense; but it is not the case that all members of
the choice set are equally good. They are merely good
in different ways. I claim that imprecise decision can
be a little like this, and thus that All-or-nothing
should not be required. It is a property that makes
sense only for strong choice functions. Single criterion
choice (as characterised by All-or-nothing) and the
strong interpretation of the choice set go hand in hand.

Two further properties that I don’t endorse as con-
straints on rational choice are the following:
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Mixing: C(A) ⊆ C(A∗)
Convexity: C(A)∗ ∩A = C(A)

Mixing says that if ϕ is not choiceworthy among the
mixtures of A, then ϕ should not be choiceworthy in
A itself. This seems an odd requirement of rationality:
if you are choosing among the members of A, why
should the fact that an act is not choiceworthy in some
larger set of acts be relevant? Convexity says that
mixtures of choiceworthy acts should be choiceworthy.
This property seems to be trading on the same “single-
criterion choice” idea as I discussed above.

4 Examples of Choice Functions

4.1 Non-Domination

What about just taking M�Dom as our choice rule?
That is, any acts that are not dominated are in the
choice set. It is, perhaps, too permissive a rule.

Consider the following example.

Example 2: There is a coin of unknown
bias. You are offered the choice between
these bets:
• a: win £1 if the next toss lands heads
• b: win £1 if the next ten tosses all land

heads
• b′: win £1 +ε if the next ten tosses land

heads, win £ε otherwise

It seems right thatM�Dom rules out act b. However, it
seems unfortunate that it doesn’t rule out the “almost
dominated” act b′.

Also, this rule does not satisfy the All-or-nothing
property. Here is an example of how M�Dom fails
all-or-nothing expansion consistency.

Example 3: Consider the choice between
g and h, and the choice between g, h and k.
• g: Gain £10 if H, nothing otherwise
• h: Gain nothing if H, £10 otherwise
• k: Gain £11 if H, £1 otherwise

k dominates g, so in the expanded decision problem, g
is not choiceworthy. However, h is still undominated,
so this violates All-or-nothing. As I said above,
I don’t think violating All-or-nothing is a mark
against an imprecise choice rule.

A mixture of undominated acts can be dominated (see
Table 1). Each of a1 and a2 are undominated, but
the mixture is dominated by a3. So Convexity is
not true for M�Dom . This choice rule also violates
Mixing [23].

s1 s2

a1 2 −2
a2 −2 2
a3 1 1

0.5a1 + 0.5a2 = a4 0 0

Table 1: A mixture of undominated acts can be domi-
nated

4.2 E-Admissibility

The main problem withM�Dom is that it isn’t really
discriminating enough. That is, the choice sets that
that rule generates will often contain many acts. We
would really like choice to be more constrained. Let’s
consider a more discriminating choice rule. Another
restriction of the act set – “E-admissibility” – is due to
Isaac Levi [14, 15]. An act is E-admissible if there is
some probability in your representor such that that act
maximises expectation with respect to that probability
function. E-admissible acts are the ones that some
credal committee member thinks are best (by that
member’s standard of Epr). Levi argues that you
should only choose among E-admissible acts. A first
attempt at cashing out this choice rule is:

L(A) =
⋃

pr∈P
M�Epr (A) (4)

This might be more perspicuously rephrased as:11

L(A) = {ϕ ∈ A : ∃pr ∈ P,∀ψ ∈ A,Epr(ϕ) ≥ Epr(ψ)}
(5)

The intuition is that we ask each credal committee
member to pick their favourite act(s): we then take
the collection of each of these favourites. Compare
withM�Dom where we take out all the acts where the
committee unanimously prefers some other act.

As it stands, the definition of E-admissible isn’t quite
good enough. Recall Example 2 where we had the
choice between a bet on heads and a bet on ten heads in
a row. The latter maximises expectation for pr(H) = 0
and pr(H) = 1 so it is E-admissible. This act is,
however, weakly dominated.12 To fix this, consider
M�Dom ◦L(A) where “◦” is composition of functions.
We shall call this L(A).

We know that L(A) ⊆ M�Dom(A). There are un-
dominated acts that are not E-admissible.13 So we
in fact know that L(A) ( M�Dom(A) for some A.

11This rephrasing makes it clear that non-domination and
E-admissibility differ only in the order of quantification and the
strictness of the inequality. That is, non-domination becomes:
ϕ ∈ A,∀ψ ∈ A, ∃pr ∈ P,Epr(ϕ) > Epr(ψ).

12L never contains strongly dominated acts.
13For example gamble n in Example 4 below.
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So L is more discriminating than M�Dom . Given
that E-admissibility is more discriminating and given
that non-domination is arguably too permissive (not
discriminating enough), one might think that E-
admissibility is obviously the better rule. However, L
doesn’t help solve any of the problems withM�Dom .

L violates union consistency, as can be seen from
considering Example 4.

Example 4: You are betting on a coin of
unknown bias. You can choose among these
bets:
• l: Gain £10 if H, lose 5 otherwise
• m: Lose £5 if H, gain 10 otherwise
• n: Gain 0 whatever happens

L({l, n}) = {l, n} and L({m,n}) = {m,n}, but
L({l,m, n}) = {l,m}. That is, n is choiceworthy
in both pairwise choices, but if all three options are
offered together, then n is ruled out.

Seidenfeld et al. point out that it follows from Lemma
3 of [18] that E-admissibility satisfies Mixing [23]. It
also means that if A = A∗ then L(A) = M�Dom(A).
It is also worth noting that L is not determined by
pairwise comparisons, whileM�Dom is. I don’t think
either of these features tells in favour of the rule’s
rationality.

Despite being more discriminating, E-admissibility
does not seem like an improvement on non-domination.
I doesn’t help with almost dominated acts, or with
Convexity, and it adds violations of a further intu-
itive property: Union consistency.

4.3 Valuing Acts

The standard approach to decision making with precise
probabilities is to assign to each act a number repre-
senting how much that act is valued: Epr. Let’s try to
do the same thing here: can we find some number that
represents how valuable a certain gamble is? A first
attempt at valuing acts in the imprecise case would be
to look at E . That is, consider the decision rule that
says “act to maximise the worst-case expected value”.
IsME a good decision rule? This rule is sometimes
described as “gamma-maximin” [21]. It is also the rule
that [9] advocate.14

ME does not satisfy non-domination. That is, ME
sometimes contains acts that are weakly dominated,
as Example 2 shows. The above problem isn’t just

14Their decision rule is slightly more complex in that it takes
into account the “reliability” of the functions in your representor,
but if all probabilities are equally reliable, then their rule reduces
to gamma-maximin.

a problem forME , but for any rules that focus only
on the set of expectations. For example, instead of
maximising E , consider maximising Hα(ϕ) = α E(ϕ) +
(1 − α) E(ϕ) for some real number α between 0 and
1. This is an “imprecise analogue” of the Hurwicz
criterion for choice under complete ignorance [12, 17].
This is actually a whole class of different decision rules
depending on choice of α. If α = 1 then we recover
maximise minimum expectation (ME). If a precise
α value seems arbitrary, perhaps consider looking for
acts that do well for many different values of α. [2]
suggests a rule that, effectively, amounts to preferring
ϕ to ψ just in case ϕ is better according to all values
of α. Sadly, none of these rules can avoid making
(weakly) dominated acts permissible: none of these
rules can make b inadmissible in Example 2.15 That
is, since E(a) = E(b) and E(a) = E(b), any rule that
values acts as some function of these values must treat
the two bets the same.

As well as violating the rationally compelling Non-
domination principle, theME rule also violates in-
dependence. Consider Example 1: ME chooses d over
c in the odd branch. But when you mix with the even
branch, c ends up looking better. That is, the payouts
of c and d for the “mixed” decision problem are “5 if
H, 3 otherwise” and “1 if H, 4 otherwise” respectively.

If we focus on strict dominance �SDom rather than
weak dominance �Dom, thenME(A) ⊆MSDom [30].16

4.4 Composite Rules

Since the problem withME (and similar rules) is that
it allows weakly dominated acts to be choiceworthy,
why not just compose it withM�Dom to make a better
rule? Consider ME ◦M�Dom : this is the rule that
maximises minimum expectation among the acts that
are undominated. This rule obviously satisfies Non-
domination. It still fails independence, however.

What about composingME with L? Isaac Levi, for
instance, advocated usingME as a tie-breaker among
E-admissible acts. We have seen that both choice func-
tions have problems as decision rules. The composite
rule still violates Union consistency and Indepen-
dence. Combining them in the way Levi suggests
leads to further problems. This composite rule vi-
olates Contraction Consistency, as [21] points
out.

Example 5: Consider the choice between
t, u and the choice between t, u, v.
• t: £10 if H, nothing otherwise

15Indeed, b′ is uniquely admissible forME .
16This paper also discusses several other interesting connec-

tions between imprecise choice rules.
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• u: £3 if H, £3 otherwise
• v: £−1 if H, £8 otherwise

In a choice between t and u, it is u that does best by
ME . However, adding v means that u is no longer
E-admissible and of t and v, t does better.

4.5 Aggregate Value

Perhaps we have been approaching this the wrong way,
and what we should be doing is looking for some way
to aggregate P or E to get a (precise) aggregate ex-
pected utility and maximise that in the standard way?
There is a large literature on aggregating probability
judgements [10]; might this not provide new insight
on IP decision making? First, I’m not sure that such
an approach is in the spirit of IP. Second, it isn’t clear
that such an aggregate value approach will be able to
rationalise ambiguity aversion in the Ellsberg game
[6] which is, after all, a desideratum for IP decision
making.

In one sense, we would like to have some all-things-
considered aggregate value to attach to acts. We would
like to have some notion of value that rational agents
seek to maximise, some concept of rational choice that
can be given a strong interpretation. But when your
attitudes about the expected goodness are conflicted
in the way they are in IP models, I’m not sure why
we should think that such reasonable aggregation is
possible.

We can aggregate the credal committee’s opinions
about the probabilities (P), but this doesn’t seem to
be true to the goals of IP models. We can aggregate the
credal committee’s opinions about the expected values
(E), but the previous two subsections show that this
leads to some problematic consequences. Or we can
aggregate the credal committee’s preferences (the �Epr

relations), but the choice rules we get (M�Dom ,L)
can’t be given the strong interpretation we would like.

4.6 Regret

We have seen imprecise analogues of maximin and
Hurwicz criterion rules for decision under ignorance.
What about an imprecise analogue of minimax-regret?
Consider:

R(ϕ) = −max
pr∈P

{
max
ψ∈A
{Epr(ψ)} − Epr(ϕ)

}
(6)

And consider the choice rule MR. This rule vio-
lates Union consistency and Contraction con-
sistency.17 On the other hand, it satisfies Non-

17Interestingly, in Example 4,MR chooses l out of l, n and
m out of m,n, but makes n uniquely admissible in the three
way choice, which is a very different profile of choices from L.

domination and also rules out “almost dominated”
acts like b′ in Example 2. This rule deserves further
attention, although note that it is computationally
demanding. It’s also unclear under what conditions it
is decisive.

5 Conclusion

We have explored a number of different kinds of choice
rule. None is entirely satisfactory. So how should we
act? I think we can at least take Non-domination
as a requirement on rational choice. SoM�Dom serves
to rule out some bad acts. This means that ϕ ∈
M�Dom(A) is acting as a necessary but not sufficient
condition on imprecise choice. A variety of options
for going beyond this – to attempt to find sufficient
conditions for rational choice – have failed. All the
more discriminating rules we have looked at seem to
violate one or more intuitively compelling properties
of rational choice.

We can understandM�Dom(A) as a weak kind of choice
set. That is, it is reasonable to rule out all the acts that
M�Dom rules out. But it seems like some acts that
make it into M�Dom that we would not consider to
be reasonable choices. The various attempts to come
up with a choice rule that can be given a stronger
interpretation have failed. That is, every attempt to
construct a choice rule that positively endorses all the
acts in the choice set have come up short. CID is such
a rule, but it is often empty.

In summary, rules like ME and MHα violate Non-
domination and so are not good rules. They also
violate Independence. L violates Union Consis-
tency which might be considered a problem. Levi’s
suggestion of using E to break ties among elements of
L is doubly bad: it violates Contraction Consis-
tency and Independence. In short,M�Dom seems
hard to improve on: every proposed improvement, ev-
ery more discriminating choice rule, has some flaw or
other.

What I take myself to have shown here is that we
can make some progress on the problem of imprecise
choice. It is not the case that when your credences
become imprecise, all constraint on choice falls away.
In many cases of “moderate” imprecision, the above
constraints on choice (in particular Non-domination)
will be enough to fix your choice.

When your credences are imprecise, then it’s difficult to
know how you should act. Put another way: weaken
the theory of decision and it’s not surprising that
the constraints on choice aren’t as strong. Perhaps
the conclusion to draw from this is that there is no
rationally compelling IP choice function that admits
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of a strong interpretation. Obviously, we can’t take
M�Dom to cash out all there is to rationality, since
it doesn’t rule out “almost dominated” acts like b′ in
Example 2, as we would like. But it does seem to
capture a necessary condition on rational choice. This
makes it clear that even when we expect rationality
to be silent on some questions in this area, it is not
the case that imprecise choice is unconstrained.

A Proofs

Theorem 1 If C satisfies � and C(A) is nonempty for
nonempty A, then C pairwise satisfies �.
Proof: Assume ϕ � ψ and C satisfies � and is nonempty.
Then ψ /∈ C({ϕ,ψ}). C({ϕ,ψ}) is a subset of {ϕ,ψ}, does
not contain ψ and is nonempty. Therefore C({ϕ,ψ}) =
{ϕ}.
Assume ϕ � ψ and C satisfies � and is nonempty.
Now, either ϕ � ψ and the above argument shows that
C({ϕ,ψ}) = {ϕ}, or ϕ ∼ ψ. Therefore, since C satisfies �,
ϕ ∈ C({ϕ,ψ}) if and only if ψ ∈ C({ϕ,ψ}). Since C can’t be
empty, and must be a subset of {ϕ,ψ}, C({ϕ,ψ}) = {ϕ,ψ}.
In either case, ϕ ∈ C({ϕ,ψ}) as required.

Theorem 2 (i) M� is a choice function and (ii) M�
pairwise satisfies �. (iii) If � is acyclic on A where A is
finite thenM�(A) is non-empty. (iv) Furthermore, if �
is transitive, thenM� satisfies �.
Proof: (i)M�(A) ⊆ A by definition. It is equally obvious
thatM�(M�(A)) =M�(A).

(ii) We need to show that if a � b then a ∈ M�({a, b}).
The only way a could fail to be inM�({a, b}) is if b � a.
But this is ruled out by definition of �. If a � b then
a � b, so by the above, we have that a ∈M�({a, b}), and
by definition, b /∈M�({a, b}).
(iii) Let � be acyclic on some finite A. If the size of A,
|A| = 1, then that singleton element is maximal. Assume
M�Dom (A) is non-empty for |A| ≤ n. Consider A of
size n + 1. We need to find an element ϕ ∈ M�Dom (A).
Take an arbitrary ϕ0 ∈ A. If ϕo ∈ M�Dom (A) then we
are done. Otherwise, let A0 = A \ {ϕ0}. By hypothesis,
M�Dom (A0) 6= ∅. Say ϕ∗ ∈ M�Dom (A0). If ϕ∗ is max-
imal in A then we are done. If not, then we must have
ϕ0 � ϕ∗. If ϕ0 is not maximal then there must be some
ϕ1 such that ϕ1 � ϕ0. And since � is acyclic, ϕ1 can’t
be equal to ϕ∗. This procedure will eventually pick out an
element that is maximal in A [29, Theorem A(3), p.14].

(iv) If a � b then b /∈ M�(A) by definition. Finally,
assume for contradiction that a ∼ b and a ∈ M�(A) but
b /∈ M�(A). This means there exists some c � b. But
b � a so by transitivity18 c � a, contradicting a ∈M�(A).

Theorem 3 If C satisfies � then C(A) ⊆M�(A) for all
A.
Proof: Let a ∈ C(A). Assume for contradiction that there

18Strictly speaking, we don’t really need transitivity here: we
only need that ψ ∼ ϕ and ρ � ψ imply ρ � ϕ.

is some b ∈ A such that b � a. If there were such a b, then
a would not have been in C(A) by definition of “satisfies”.
Thus ¬∃b ∈ A, b � a. This is exactly the condition required
for inclusion inM�.

For the next theorem we will need a little bit more notation.
We will use ϕ ./ ψ to mean ¬ϕ � ψ and ¬ψ � ϕ. That is,
ϕ ./ ψ if and only if the two acts are incomparable. We
will also need this fact about ./.

Lemma 1 For transitive �: if ϕ ∼ ψ and ψ ./ ρ then
ϕ ./ ρ
Proof: Assume ϕ ∼ ψ ./ ρ. Assume for contradiction
that ϕ � ρ. Then ψ ∼ ϕ � ρ which implies ψ � ρ which
contradicts our assumptions.19 Likewise for ρ � ϕ. Thus
ϕ ./ ρ.

Theorem 4 When Opt�(A) 6= ∅, and � is transitive then
Opt�(A) =M�(A).
Proof: We first show that Opt�(A) ⊆ M�(A). We then
show that if ϕ is maximal but not optimal, then no act is
optimal.

Assume ϕ ∈ Opt�(A). Assume for contradiction that there
is some ψ such that ψ � ϕ. Therefore ¬ϕ � ψ, which
contradicts our assumption. Thus ¬∃ψ ∈ A,ψ � ϕ. This
is exactly the criterion for inclusion inM�(A).

Assume now that ϕ ∈ M�(A) but, ϕ /∈ Opt�(A). For ϕ
not to be optimal, this means there is some ψ such that
¬ϕ � ψ. ϕ is maximal, so ϕ and ψ must be incomparable.
Assume there is some ρ ∈ Opt�(A). So ρ � ϕ, but since ϕ
is maximal, this must mean ϕ ∼ ρ. ρ ∼ ϕ ./ ψ, therefore
ρ ./ ψ by the above lemma. In particular ¬ρ � ψ which
contradicts our assumption. Therefore Opt�(A) is empty.
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Abstract
In the paper we consider the generalization of the conjunc-
tive rule in the theory of imprecise probabilities. Let us
remind that the conjunction rule, produced on credal sets,
gives their intersection and it is not defined if this intersec-
tion is empty. In the last case the sources of information are
called contradictory1. Meanwhile, in the Dempster-Shafer
theory it is possible to use the conjunctive rule for contra-
dictory sources of information having as a result a non-
normalized belief function that can be greater than zero at
empty set. In the paper we try to exploit this idea and in-
troduce into consideration so called generalized credal sets
allowing to model imprecision (non-specificity), conflict,
and contradiction in information. Based on generalized
credal sets the conjunctive rule is well defined for contra-
dictory sources of information and it can be conceived as
the generalization of the conjunctive rule for belief func-
tions. We also show how generalized credal sets can be
used for modeling information when the avoiding sure loss
condition is not satisfied, and consider coherence condi-
tions and natural extension based on generalized credal
sets.

Keywords. Imprecise probabilities, conjunctive rule, gen-
eralized credal sets, contradictory sources of information.

1 Introduction

In the theory of imprecise probabilities [18, 7, 1] there
are many models for describing uncertainty: credal sets,
upper and lower probabilities, lower and upper coherent
previsions, sets of desirable gambles, etc. But in any case,
we can equivalently represent the information with the help
of sets of probability measures. As one can check, up to
now there are no many works concerning the case when
the available information is contradictory, i.e. the avoiding
sure loss condition is not satisfied.

1 We will use next the term “contradictory” because the traditional
term “conflict” is also used by identifying another type of uncertainty
described by probability measures.

By the way, in evidence theory [15, 8, 16] there is a possible
way to describe contradiction based on transferable belief
model. In this model we can describe contradictory infor-
mation by assigning non-zero values to the corresponding
belief function at empty set2. In this paper we will try to
exploit this idea that leads to some generalizations of the
theory of imprecise probabilities, in particular based on this
idea it is possible to extend the conjunctive rule (C-rule)
for aggregating belief functions for more general theories
of imprecise probabilities [3, 4].

Let us notice that in the literature one can find results con-
cerning the aggregation rules for imprecise probabilities
[17, 9, 14, 13]. The rule from [17] deals with lower previ-
sions and generalizes the pooling method for aggregation
of probability measures. In [9] the aggregation rule is based
on an idea that non-conflicting information should be ag-
gregated in conjunctive manner and conflicting information
should be aggregated in disjunctive manner. In [14] the
proposed aggregation rules are based on modeling the inter-
action among expert’s opinions. Authors of [13] try to get
the aggregation rule for credal sets with properties close to
the C-rule but their rule is based on some heuristic algorith-
mic procedure.

The paper has the following structure. Sections 2 and 3
remind some definitions from the theory of monotone mea-
sures, belief functions and the theory of imprecise prob-
abilities. Then in Sections 4 and 5 we describe the basic
rules of aggregation in general theories of imprecise prob-
abilities and investigate the connection of these rules to
the combination rules in evidence theory. After that we try
to generalize the C-rule firstly (Section 6) for probability
measures, and secondly (Section 7) for general models of
imprecise probabilities using so-called generalized credal
sets. Based on generalized credal sets it is possible to model
contradiction in information and introduce analogous no-
tions and constructions as in traditional theory of imprecise
probabilities like coherence and natural extension, as shown
in Section 8.

2This statement will be clarified in the next sections.
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2 Some Definitions and Notations from the
Theory of Non-additive Measures

Let X be a non-empty finite set and let 2X be the power set
of X . We will consider set functions on the algebra 2X of
various types: monotone measures, probability measures,
lower and upper probabilities. A set function µ : 2X → [0,1]
is called

1) normalized if µ(∅) = 0 and µ(X) = 1;

2) monotone if A,B ∈ 2X and A⊆ B implies µ(A)≤ µ(B);
3) additive if µ(A)+µ(B) = µ(A∩B)+µ(A∪B) for all

A,B ∈ 2X ;

4) 2-monotone if µ(A)+µ(B)≤ µ(A∩B)+µ(A∪B) for
all A,B ∈ 2X ;

5) 2-alternating if µ(A)+µ(B)≥ µ(A∩B)+µ(A∪B) for
all A,B ∈ 2X ;

6) a monotone measure if it is monotone and normalized;

7) a probability measure if it is additive and normalized;

8) a belief function if there is non-additive set function
m : 2X → [0,1] called the basic belief assignment (bba)
such that ∑A∈2X m(A) = 1 and µ(B) = ∑A⊆B m(A).

The following operations on set functions are defined:

a) convex sum: µ = aµ1+(1−a)µ2, where a∈ [0,1], and
µ(A) = aµ1(A)+(1−a)µ2(A) for all A ∈ 2X ;

b) µ1 ≤ µ2 if µ1(A)≤ µ2(A) for all A ∈ 2X ;

c) µd is the dual of µ if µd(A) = 1−µ(A) for all A ∈ 2X ,
and A denotes the compliment of A.

Let us remind that the theory of evidence models uncer-
tainty with the help of belief functions. In this theory (e.g.
transferable belief model) we describe contradiction us-
ing non-normalized belief functions, i.e. it is possible that
Bel(∅)> 0 for belief function Bel. Let Bel be a belief func-
tion with the bba m. Then

- the set A ∈ 2X is a focal element for Bel if m(A)> 0;

- the set of all focal elements is called the body of evidence;

- Bel is called categorical if its body of evidence contains
only one focal element. Any categorical belief function
η〈B〉 with focal element B can be computed as

η〈B〉(A) =

{
1, B⊆ A,
0, otherwise.

- Bel is a probability measure iff m(A) = 0 for all A ∈
2X with |A| ≥ 2. In this paper we also consider non-
normalized probability measures P for which P(∅)> 0.

- any belief function µ has the following representation
through categorical belief functions:

Bel = ∑
B∈2X

m(B)η〈B〉.

In the sequel we will use the following notations:

• Mpr is the set of all probability measures on 2X and Mpr
be the set of all probability measures including also non-
normalized probability measures.

• Mbel and Mbel are sets of all belief functions on 2X and
the bar indicates that belief functions from Mbel may be
non-normalized.

• Mmon is the set of all monotone measures on 2X .

• M2-mon is the set of all 2-monotone measures on 2X .

• if M is a family of set functions, then we denote Md ={
µd |µ ∈M

}
. For example, Md

bel denotes the set of all
plausibility functions, which are dual to belief functions,
or Md

2-mon is the set of all 2-alternating measures on 2X .

3 Models of Imprecise Probabilities: Lower
and Upper Probabilities and Credal Sets

Assume that µ : 2X → [0,1] is a set function that gives us
lower bounds of probabilities. Then this function avoids
sure loss iff there is a probability measure P∈Mpr such that
µ ≤ P. If the avoiding sure loss condition is not fulfilled,
then the information described by µ is contradictory. Any
non-contradictory lower probability function µ defines the
non-empty set of probability measures

P(µ) =
{

P ∈Mpr|P≥ µ
}

called the credal set. Generally, a set P of probability mea-
sures is called a credal set if it is convex and closed.

Analogously the model of upper probabilities is introduced.
Let us suppose that ν : 2X → [0,1] gives us the upper
bounds of probabilities. Then this function avoids sure
loss iff there is a probability measure P ∈ Mpr such that
ν ≥ P. In this case we call an upper probability function
non-contradictory and describe it by a credal set

P(ν) =
{

P ∈Mpr|P≤ ν
}
.

We can equivalently replace the model based on lower
probabilities by the model based on upper probabilities.
For this purpose we transform any lower probability µ to
the upper probability µd . It easy to show that

{
P ∈Mpr|P≤ µd

}
=
{

P ∈Mpr|P≥ µ
}
,

i.e. the corresponding credal sets coincide.

Let us introduce also coherent lower and upper probabilities.
A non-contradictory lower probability µ is called coherent
if for any A ∈ 2X there exists P ∈ Mpr such that µ(A) =
P(A) and µ ≤ P, in other words,

µ(A) = inf{P(A)|P ∈ P(µ)} ,

where P(µ) =
{

P ∈Mpr|P≥ µ
}

.
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Analogously, a non-contradictory upper probability ν is
called coherent if for any A ∈ 2X there exists P ∈Mpr such
that ν(A) = P(A) and ν ≥ P, in other words,

ν(A) = inf{P(A)|P ∈ P(ν)} ,

where P(ν) =
{

P ∈Mpr|P≥ ν
}

.

Coherent lower probabilities and coherent upper proba-
bilities are connected with the dual relation, i.e. if µ is a
coherent lower probability then µd is the coherent upper
probability. We can also generate a coherent lower proba-
bility µ and coherent upper probability ν using a credal set
P by formulas:

µ(A) = inf{P(A)|P ∈ P} ,
ν(A) = sup{P(A)|P ∈ P} ,

where A ∈ 2X , and obviously, ν = µd in this case.

Let µ be a non-contradictory lower probability. Then we
can improve lower bounds of probabilities using the natural
extension. It is defined as

µcoh(A) = inf{P(A)|P ∈ P(µ)} ,

where A ∈ 2X . Clearly, µcoh is a coherent lower probability.

Let us remind that any credal set can be equivalently defined
with the help of lower previsions. Let K′ be a subset of the
set K of all real functions of the type f : X → R. In some
cases we assume that K′ = K. Then lower previsions on K′

are defined by the functional E : K′→ R. This functional
defines the credal set

P(E) =
{

P ∈Mpr

∣∣∣∣∀ f ∈ K′ : ∑
x∈X

f (x)P({x})≥ E[ f ]
}
.

If the credal set P(E) is empty then lower previsions do
not satisfy the avoiding sure loss condition and we say
that lower previsions contain contradiction. In some sense
lower previsions can be understood as lower bounds of
expectations of random variables in K′. The model based
on lower previsions is more general than the model based
on lower probabilities because we obtain the last model if
we assume that K′ = {1A}A∈2X , where

1A(x) =

{
1, x ∈ A,
0, x /∈ A,

is the characteristic function of the set A. We can improve
the lower bounds of expectations using the procedure called
the natural extension

E ′[ f ] = inf
{

∑
x∈X

f (x)P({x})
∣∣∣∣P ∈ P(E)

}
.

Note that this procedure is not defined if P(E) = ∅. Let
us remind that the functional E defines coherent lower
previsions if E ′[ f ] = E[ f ] for all f ∈ K′.

Analogously, upper previsions are introduced. Any func-
tional E : K′ → R can be conceived as upper previsions.
The upper previsions are not contradictory (or avoid sure
loss) iff the credal set

P(E) =
{

P ∈Mpr

∣∣∣∣∀ f ∈ K′ : ∑
x∈X

f (x)P({x})≤ E[ f ]
}
.

is not empty. We can improve the upper bounds of expecta-
tions using the natural extension:

E ′[ f ] = sup
{

∑
x∈X

f (x)P({x})
∣∣∣∣P ∈ P(E)

}
.

If E ′[ f ] = E[ f ] for all f ∈ K′, then E is a coherent lower
prevision. Let us notice that we can equivalently describe
uncertain information by lower or upper previsions. If the
functional E : K′→ R describes the lower previsions then
we can equivalently describe the same information by upper
previsions defined by

E[ f ] =−E [− f ]

for all − f ∈ K′.

4 The Conjunctive and Disjunctive Rules
for Aggregating Sources of Information

Consider n sources of information described by credal sets
P1, . . . ,Pn. Then there are several possible ways for aggre-
gating this information that depends on prior assumptions.
If we suppose that each source of information is reliable
then we can aggregate them using intersection of the corre-
sponding sets:

P = P1∩·· ·∩Pn.

This rule of aggregation is called the conjunctive rule (C-
rule). It is easy to see that if we describe credal sets with the
help of lower probability functions µ1, . . . ,µn, then C-rule
can be represented as

µ = µ1∨·· ·∨µn,

where ∨ is the maximum operation. The last formula is
justified because in this case

P(µ) = P(µ1)∩·· ·∩P(µn)

If we describe sources of information by upper probabilities
µ1, . . . ,µn, then the C-rule is clearly expressed with the
minimum operation ∧ as

µ = µ1∧·· ·∧µn

Analogously, the conjunctive rule is expressed in models
based on lower previsions Ei : K′→R, i= 1, . . . ,n, or upper
previsions E i : K′→ R, i = 1, . . . ,n, as

E = E1∨·· ·∨En, E = E1∧·· ·∧En. (1)

The generalization of the conjunctive rule for aggregating contradictory sources of information based on generalized credal sets

69



We would like to emphasize that there are other rules for
aggregation of information sources. If we know that at
least one source of information is reliable and all sources
of information are represented by credal sets P1, . . . ,Pn,
then we can use the disjunctive rule, in which the result is
the minimal credal set P that contains the corresponding
credal sets Pi, i= 1, . . . ,n. This disjunctive rule is expressed
through lower previsions Ei : K′→R, i = 1, . . . ,n, or upper
previsions E i : K′→ R, i = 1, . . . ,n, as

E = E1∧·· ·∧En, E = E1∨·· ·∨En.

The mixture rule can be used if we can evaluate the reliabil-
ity of information. Let us assume this reliability is given by
non-negative numbers ai, i = 1, . . . ,n, such that ∑n

i=1 ai = 1.
Then we can aggregate sources of information described
by credal sets Pi, i = 1, . . . ,n, as

P =

{ n

∑
i=1

aiPi

∣∣∣∣Pi ∈ Pi, i = 1, . . . ,n
}
.

The counterparts of this rule for lower previsions Ei : K′→
R, i= 1, . . . ,n, or upper previsions E i : K′→R, i= 1, . . . ,n,
are

E =
n

∑
i=1

aiE i or E =
n

∑
i=1

aiE i.

Let us notice that other possible rules of aggregation have
properties that more or less similar to the considered rules.

Let us observe that applying the C-rule is possible if the
resulting credal set is not empty. In the opposite case we say
that there is contradiction among sources of information.
Meanwhile, in evidence theory the C-rule is also applicable
if the sources of information are contradictory. In the next
section we will introduce such C-rules, considered in [4],
and give some hints about how they can be generalized in
the theory of imprecise probabilities.

5 Conjunctive Rules of Aggregation in
Evidence Theory, the Order of
Specialization

Let Bel1 = ∑A∈2X m1(A)η〈A〉 and Bel2 = ∑B∈2X m2(B)η〈B〉
be belief functions. Then the conjunctive combination rule
(C-rule)3 [10, 4] is defined by

Bel = ∑
A,B∈2X

m(A,B)η〈A∩B〉,

where m : 2X ×2X → [0,1] is such that
{

∑B∈2X m(A,B) = m1(A), A ∈ 2X ,

∑A∈2X m(A,B) = m2(B), B ∈ 2X .
(2)

3 In [4] such combination rules are called generalized Dempster-Shafer
rules.

Observe that we get the classical C-rule [8] if m(A,B) =
m1(A)m2(B) for any A,B ∈ 2X . The use of such general
rule can be explained using the interpretation of belief func-
tions through random sets. A random set ξ is a random
variable taking its values in 2X . Any such random variable
can be defined by probabilities P(ξ = A) and these prob-
abilities can be identified with values m(A) in evidence
theory. Given two random sets ξ1 and ξ2 with values in 2X .
If we assume that these random sets are independent, then

P(ξ1 = A,ξ2 = B) = P(ξ1 = A)P(ξ2 = B).

The using of the classical C-rule means that from two
sources of information described by independent random
sets ξ1 and ξ2 we obtain a new random set ξ defined by

P(ξ =C) = ∑
A∩B=C

P(ξ1 = A)P(ξ2 = B).

Thus, the generalization of the classical C-rule can be got
if we suppose that random sets ξ1 and ξ2 can be dependent.
In this case we can only guarantee that the non-negative set
function m(A,B) = P(ξ1 = A,ξ2 = B) obeys (2).

Let us notice that the C-rule is not uniquely defined and
it can be also applied in a case, when the sources of infor-
mation are contradictory. The ways of choosing optimal
conjunctive combination rules according to several justified
criteria can be found in [4]. The main conclusion from [4]
is that an optimal C-rule should be chosen among Pareto
optimal C-rules w.r.t. the partial order on belief functions
called specialization.

Let Bel1 and Bel2 be belief functions with bbas m1 and
m2. We write Bel1 � Bel2 if Bel2 can be obtained from
Bel1 using a linear contraction transform Φ : 2X × 2X →
[0,1], i.e. m2(B) = ∑A∈2X Φ(A,B)m1(A), and the set func-
tion Φ : 2X × 2X → [0,1] has the following properties:
∑B∈2X Φ(A,B)= 1 for any B∈ 2X and Φ(A,B)= 0 if B 6⊆A.
The partial order � is called specialization. It is easy to
show [11] that Bel1 � Bel2 implies Bel1 ≤ Bel2, but the op-
posite is not true in general. The main results [4] showing
the connections of C-rules and the order � are given in the
next propositions.

Proposition 1 If Bel is the result of a C-rule applied to
Bel1,Bel2 ∈ Mbel, then Bel1 � Bel and Bel2 � Bel. Fur-
thermore, each minimal element of the set

Bel(Bel1,Bel2) =
{

Bel ∈Mbel|Bel1 � Bel,Bel2 � Bel
}

w.r.t. the order � for arbitrary Bel1,Bel2 ∈ Mbel can be
obtained by a C-rule.

This result shows that the optimal choice of a C-rule should
be made to get the best approximation of the set function
max{Bel1,Bel2} and this choice should obviously be made
in the set of minimal elements of Bel(Bel1,Bel2) w.r.t. �
that can be obtained by so called Pareto optimal C-rules.
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Proposition 2 The order � is equivalent to the order ≤
on the set Mpr. In addition if Bel ≤ P for P ∈ Mpr and
Bel ∈MBel, then Bel� P. Furthermore,

Bel(A) = inf{P(A)|P ∈ P(Bel)} ,

where P(Bel) =
{

P ∈Mpr
∣∣Bel� P

}
.

Remark 1 Proposition 2 shows that in evidence theory any
belief function can be equivalently represented by P(Bel)
that may be called a generalized credal set. Such a construc-
tion with a slightly different definition will be introduced
in the next section. Clearly, the above proposition allows
us to write

P(Bel) =
{

P ∈Mpr
∣∣Bel≤ P

}
.

Let Bel1,Bel2 ∈Mbel. Then we denote by R(Bel1,Bel2) the
set of all possible belief measures that can be obtained
by C-rules applied to Bel1 and Bel2. Then the amount of
contradiction between Bel1 and Bel2 by C-rules can be
computed as

Con(Bel1,Bel2) = inf
{

Bel(∅)
∣∣Bel ∈ R(Bel1,Bel2)

}
.

Let us observe that this measure of contradiction (or con-
flict) is considered in many papers [4, 5, 6, 10], where au-
thors show that Con(Bel1,Bel2) has better properties than
a measure of contradiction based on the classical C-rule.

Proposition 3 Let P(Beli) =
{

P ∈Mpr
∣∣Beli ≤ P

}
, where

Beli ∈Mbel, i = 1,2. Then

Con(Bel1,Bel2) = inf{P(∅)|P ∈ P(Bel1)∩P(Bel2)} .

Thus, in this section we has shown that it is possible to
extend the model of non-normalized belief functions on
more general theories of imprecise probabilities using gen-
eralized credal sets, and this problem will be investigated
in the next sections.

6 The Conjunctive Rule for Probability
Measures Admitting Contradiction

Let us consider the case when we have two sources of
information described by probability measures P1 and P2.
These sources of information are absolutely contradictory
if we can divide the space X on two disjoint subsets A and B
such that P1(A) = 1 and P2(B) = 1. In other words, sources
of information support that events A and B are certain, but it
is not possible because these events are disjoint. In classical
logic false implies anything, thus we can write

P1∧P2 =
∧

Pi∈Mpr

Pi = ηd
〈X〉,

where ηd
〈X〉 describes the result of conjunction of all possi-

ble probability measures on 2X . Now we will try to general-
ize the above rule for two probability measures that are not

absolutely contradict each other. In this case we can divide
probability measures on 2 parts:

P1 = (1−a)P(1)
1 +aP(2)

1 , P2 = (1−a)P(1)
2 +aP(2)

2 ,

where a∈ [0,1], P(i)
k ∈Mpr, i = 1,2, k = 1,2, and P(1)

1 , P(1)
2

are parts of probability measures that don’t contradict each
other, i.e. P(1)

1 = P(1)
2 , and probability measures P(2)

1 , P(2)
2

are absolutely contradict each other. The value

Con(P1,P2) = a = 1− ∑
xi∈X

min{P1({xi}),P2({xi})}

is called the amount of contradiction and the above mea-
sures are defined by the following formulas:

P(1)
1 ({xi}) = P(1)

2 ({xi}) =
1

1−a
min{P1({xi}),P2({xi})},

where xi ∈X and a< 1 (if a= 1, then a measure P(1)
1 =P(1)

2
is defined arbitrary);

P(2)
1 ({xi}) =

1
a

(
P1({xi})− (1−a)P(1)

1 ({xi})
)
,

P(2)
2 ({xi}) =

1
a

(
P2({xi})− (1−a)P(1)

2 ({xi})
)
,

where xi ∈ X and a > 0 (if a = 0, then absolutely contra-
dictory measures P(2)

1 , P(2)
2 are defined arbitrary).

Example 1 Assume that X = {x1,x2,x3}. In this exam-
ple any probability measure P can be described by a
vector

(
P({x1}),P({x2}),P({x3})

)
. Let the probability

measures P1 and P2 be defined by the following vectors:
P1 = (0.4,0.2,0.4) and P2 = (0.2,0.4,0.4). Then a = 0.2,
P(1)

1 = P(1)
2 = (0.25,0,25,0.5), P(2)

1 = (1,0,0), and finally
P(2)

2 = (0,1,0).

Let us observe that measures P(2)
1 , P(2)

2 are absolutely con-
tradictory, because P(2)

1 ({x1}) = 1 and P(2)
2 ({x2}) = 1 for

disjoint sets {x1} and {x2}.

Summarizing we introduce the following definition.

Definition 1 The C-rule for probability measures P1,P2 ∈
Mpr is defined as

P1∧P2 = ∑
xi∈X

min{P1({xi}),P2({xi})}η〈{xi}〉+aηd
〈X〉,

where a = 1−∑xi∈X min{P1({xi}),P2({xi})}.
Example 2 Consider probability measures P1 and P2 from
Example 1. Then

P1∧P2 = 0.8P(1)
1 +0.2ηd

〈X〉

= 0.2η〈{x1}〉+0.2η〈{x2}〉+0.4η〈{x1}〉+0.2ηd
〈X〉.
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Let X = {x1, . . . ,xn}. In the next we will describe the con-
tradiction in information using measures of the type

P =
n

∑
i=1

aiη〈{xi}〉+a0ηd
〈X〉, (3)

where ai ≥ 0, i = 0, . . . ,n, and ∑n
i=0 ai = 1. Observe that

P ∈Mpr if a0 = 0 4, and P is understood as a contradictory
lower probability. If a0 > 0, then the value a0 gives us the
amount of contradiction. The set of all possible measures,
represented by (3), is denoted by Mcpr. Let us notice that
Mpr ⊆Mcpr.

Remark 2 Note that the set functions in Mcpr are plausi-
bility functions with bba m such that m(A) = 0 if 1 < |A|<
|X |.

It is possible to describe the C-rule with the order ≤ on
Mcpr considered as a partially ordered set.

Lemma 1 Let P1,P2 ∈ Mcpr and P1 = ∑n
i=1 aiη〈{xi}〉 +

a0ηd
〈X〉, P2 = ∑n

i=1 biη〈{xi}〉+b0ηd
〈X〉. Then P1 ≤ P2 iff ai ≥

bi, i = 1, . . . ,n.

Corollary 1 Let P1, . . . ,Pm ∈Mcpr and defined by

Pk =
n

∑
i=1

a(k)i η〈{xi}〉+a(k)0 ηd
〈X〉

for k = 1, . . . ,m, then the exact upper bound of P1, . . . ,Pm
in Mcpr is

P =
n

∑
i=1

ciη〈{xi}〉+ c0ηd
〈X〉,

where ci = min{a(1)i , . . . ,a(m)
i } for i = 1, . . . ,n, and c0 =

1−∑n
i=1 ci.

Remark 3 Corollary 1 implies that the C-rule of proba-
bility measures P1,P2 ∈ Mpr is the exact upper bound of
the set {P1,P2}. Thus, we define next the C-rule for arbi-
trary measures P1, . . . ,Pm ∈Mcpr as the exact upper bound
of the set {P1, . . . ,Pm} in Mcpr. This bound is denoted as
P1∧·· ·∧Pm.

Example 3 Let we take probability measures P1 and
P2 from Example 1, and the probability measure P3 =
(0.4,0.4,0.2), then

P1∧P2∧P3 = 0.2η〈{x1}〉+0.2η〈{x2}〉+0.2η〈{x3}〉+0.4ηd
〈X〉.

7 Generalized Upper and Lower Credal
Sets

Observe that using measures from Mcpr we can describe
contradictory and conflicting information. Let us remind
(see e.g. [12, 2] for details) that pure conflict is described
by probability measures, and the theory of imprecise prob-
abilities allows us to model conflict and non-specificity

4 Observe that if P ∈Mpr , then P = ∑n
i=1 P({xi})η〈{xi}〉.

(imprecision) in information, and non-specificity is caused
by uncertainty in choosing a “true probability measure”
among possible alternatives. If we try to describe imprecise
information with some contradiction and conflict we should
consider subsets of Mcpr. Let us observe the following. Let
P1 ∈ Mcpr, then P2 ∈ Mcpr with P2 ≥ P1 can be used for
describing the same information but with a greater amount
of contradiction. Thus, the subset P in Mcpr describing
imprecise information has to satisfy the following property:

a) P1 ∈ P, P2 ∈Mpr, P1 ≤ P2 implies that P2 ∈ P.

The next two properties are essential for the most models
of imprecise probabilities (cf. credal sets).

b) If P1,P2 ∈ P then aP1+(1−a)P2 ∈ P for any P1,P2 ∈ P
and a ∈ [0,1].

c) The set P is closed in a sense that it can be consid-
ered as a subset of Euclidean space (any P = a0ηd

〈X〉+

∑n
i=1 aiη〈{xi}〉 is a vector (a0,a1, . . . ,an) in Rn+1).

Summarizing we can introduce the following definition.
Definition 2 A subset P⊆Mcpr is called an upper gener-
alized credal set if it satisfies conditions a), b), c).

The C-rule for generalized upper credal sets can be defined
analogously as for usual credal sets.
Definition 3 Let P1, . . . ,Pm be non-empty credal sets in
Mcpr. Then the credal set P produced by the C-rule is de-
fined as P = P1∩·· ·∩Pm.

Let us introduce new concepts that help to understand this
definition. Let P be a credal set in Mcpr. A subset consisting
of all minimal elements in P is called the profile of P and
it is denoted by profile(P). Evidently, any profile uniquely
defines the corresponding credal set. If P describes infor-
mation without contradiction, then profile(P) is a credal
set in usual sense, i.e. profile(P)⊆Mpr. In particular, if we
have two credal sets P1,P2 in Mcpr with profile(Pi) ∈Mpr,
i = 1,2, then applying the C-rule gives us the profile:

profile(P1∩P2) = profile(P1)∧profile(P2).

Observe that any upper generalized credal set give us many
lower possible bounds of probabilities and each possible
value is characterized by contradiction. Let us denote the
amount of contradiction in P ∈Mcpr by Con(P). Then to
characterize the possible lower bounds of probabilities com-
puted by an upper generalized credal set P we introduce
into consideration the set function

µr(A) = inf{P(A)|P ∈ P,Con(P)≤ r} ,
where A∈ 2X and r ∈ [0,1] is the level of contradiction. The
set function µr can be interpreted as a lower probability for
the credal set P with a level of contradiction r.
Lemma 2 For any upper generalized credal set P:

µr(A) = inf{P(A)|P ∈ profile(P),Con(P)≤ r} .
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Remark 4 We can consider the generalized upper credal
sets whose profiles are credal sets in usual sense. In a case,
when profiles of upper generalized credal sets are credal
sets in usual sense, µr does not depend on r, and the con-
sidered model coincides with the model of imprecise prob-
abilities based on usual credal sets.

Example 4 Let X = {x1,x2,x3}. Then any

P = a1η〈{x1}〉+a2η〈{x2}〉+a3η〈{x3}〉+a0ηd
〈X〉

in Mcpr can be defined by the vector P = (a1,a2,a3,a0).
Consider upper generalized credal sets Pi, i= 1,2,3, whose
profiles are credal sets in usual sense:

profile(P1) = {aP1 +(1−a)P2|t ∈ [0,1]},
profile(P2) = {P3}, profile(P3) = {P4},

where

P1 = (2/3,0,1/3,0), P2 = (0,2/3,1/3,0),
P3 = (1/3,1/3,1/3,0), P4 = (1/3,1/2,1/6,0).

Let us find the profile of P1∩P2. It obviously consists of
minimal elements in the set

{
P′∧P′′|P′ ∈ profile(P1),P′′ ∈ profile(P2)

}
=

{P|P = (1/3, t,1/3,1/3− t), t ∈ [0,1/3]}∪
{P|P = (t,1/3,1/3,1/3− t), t ∈ [0,1/3]} .

The above set has only one minimal element, namely, P5 =
(1/3,1/3,1/3,0). Therefore, profile(P1∩P2) = {P5}.
Analogously, let us find the profile of P1∩P3. It consists
of minimal elements in the set

{
P′∧P′′|P′ ∈ profile(P1),P′′ ∈ profile(P3)

}
=

{P|P = (2t/3,1/2,1/6,1/3−2t/3), t ∈ [0,1/4)}∪
{P|P = (2t/3,2(1− t)/3,1/6,1/6), t ∈ [1/4,1/2]}∪
{P|P = (1/3,2(1− t)/3,1/6,2t/3−1/6), t ∈ (1/2,1]} .

The minimal elements of this set are tP6 +(1− t)P7, where
t ∈ [0,1], and

P6 = (1/6,1/2,1/6,1/6), P7 = (1/3,1/3,1/6,1/6).

Thus, profile(P1∩P3) = {tP6 +(1− t)P7|t ∈ [0,1]}.

Let us show next how it is possible to define lower bounds
of expectation. Consider first expectations w.r.t. measures
in Mcpr. If P ∈Mpr, then for any function f : X → R we
define the expectation EP( f ) as

EP( f ) = ∑
x∈X

f (x)P({x}).

We can extend the functional EP to the set of all measures
in Mcpr, using the considered interpretation of a measure

P∈Mcpr through the C-rule. Obviously, P=∧Pi∈Mpr |Pi≤PPi.
Then this C-rule is expressed through expectations EPi ,
Pi ≤ P, as (cf. formula (1))

EP =
∨

Pi∈Mpr |Pi≤P

EPi .

Lemma 3 For any P = a0ηd
〈X〉 + ∑n

i=1 aiη〈{xi}〉 and f :
X → R the value EP( f ) can be computed as

EP( f ) = a0 max
x∈X

f (x)+
n

∑
i=1

ai f (xi).

Let P be a credal set in Mcpr. We will define first the lower
expectation EP( f ) for non-negative functions f : X → R.
Let the set of all such functions be denoted by K+. Because
EP( f ) is the lower expectation, we can define this value for
any f ∈ K+ as

EP( f ) = inf
P∈P

EP( f ).

Example 5 Let P = P1∩P3, where P1∩P3 is defined in
Example 4, then

EP( f ) = min
{

EP6( f ),EP7( f )
}
,

where

EP6( f ) =
1
6

f (x1)+
1
2

f (x2)+
1
6

f (x3)+
1
6

max
xi∈X

f (xi),

EP7( f ) =
1
3

f (x1)+
1
3

f (x2)+
1
6

f (x3)+
1
6

max
xi∈X

f (xi).

Let us indicate some properties of EP on K+. In the next
we denote by R+ the set of all non-negative real numbers.
The function in K+ with values equal to a ∈ R+ is denoted
also by a. We write f1 ≤ f2 for f1, f2 ∈ K+ if f1(x)≤ f2(x)
for all x ∈ X .

Lemma 4 The functional EP on K+ has the following
properties:

1) EP(0) = 0; EP(1) = 1;

2) EP( f +a) = EP( f )+a for any f ∈ K+ and a ∈ R+;

3) EP(a f ) = aEP( f ) for any f ∈ K+ and a ∈ R+;

4) EP( f1)≤ EP( f2) for f1, f2 ∈ K+ if f1 ≤ f2.

Let us consider also the dual concept of generalized upper
credal sets. In this case we describe uncertainty by set
functions from the set Md

cpr. Any measure P in Md
cpr is

represented as

P = a0η〈X〉+
n

∑
i=1

aiη〈{xi}〉,

where ai ≥ 0, i = 0, . . . ,n, and ∑n
i=0 ai = 1, and it is con-

ceived as an upper probability. The value a0 shows the
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amount of contradiction. If a0 = 0, then P is a probability
measure. Evidently, measures from Md

cpr describe conflict
and contradiction in information and we can define the up-
per expectation EP( f ) for any f ∈ K w.r.t. arbitrary P in
Md

cpr through the Choquet integral:

EP( f ) =
∫

X
f (x)dP = a0 min

x∈X
f (x)+

n

∑
i=1

ai f (xi).

For describing conflict, contradiction and non-specificity
with the help of measures in Md

cpr, we introduce the notion
of lower generalized credal set.
Definition 4 A lower generalized credal set P is a non-
empty subset of Md

cpr with the following properties:

a) P1 ∈ P, P2 ∈Md
cpr, P1 ≥ P2 implies that P2 ∈ P.

b) if P1,P2 ∈P, then aP1+(1−a)P2 ∈P for any P1,P2 ∈P
and a ∈ [0,1].

c) P is closed set if we consider it as a subset of Eu-
clidean space (any P = a0ηd

〈X〉+∑n
i=1 aiη〈{xi}〉 is a vec-

tor (a0,a1, . . . ,an) in Rn+1).

The set of all maximal elements in a generalized lower
credal set P is called the profile of P and it is denoted by
profile(P). Emphasize that generalized lower and upper
credal sets are dual concepts, for instance, if P is a credal
set in Mcpr, then Pd is a credal set in Md

cpr; profiles of P and
Pd are also connected with the dual relation: profile(P)d =
profile(Pd); if P1, . . . ,Pm are credal sets in Mcpr, then the
expression for the C-rule is defined by the same way for
the credal sets in Mcpr and Md

cpr, and

(P1∩·· ·∩Pm)
d = Pd

1 ∩·· ·∩Pd
m.

The upper expectation EP( f ) of f ∈ K+ w.r.t. the credal
set P in Md

cpr is defined as follows:

EP( f ) = sup
P∈P

EP( f ).

It is easy to check that the functional EP obeys the same
properties as EP described in Lemma 4. The duality prop-
erty of functionals EP and EP on K+ is described in the
following lemma.
Lemma 5 EPd ( f ) = a−EP(a− f ), where P is a credal
set in Mcpr, f ∈ K+, and a = maxx∈X f (x).

Remark 5 In the next we will extend functionals EP and
EP on the set K of all real valued functions, assuming that
the property 2) from Lemma 4 is valid for functions in
K. Then for any f ∈ K the values EP( f ) and EP( f ) are
computed by

EP( f ) = EP( f )+a, EP( f ) = EP( f )+a,

where a = minx∈X f (x), and f = f − a. Clearly f ∈ K+

and there exists x ∈ X such that f (x) = 0. We will call such
functions normalized and keep the notation f (using lower
bar).

Example 6 Let us consider the lower generalized credal
set Pd = (P1∩P3)

d , where P1∩P3 is defined in Example
4. Then we can compute EPd ( f ) for any f ∈ K+ as

EPd ( f ) = max
{

EPd
6
( f ),EPd

7
( f )
}
,

where

EPd
6
( f ) =

1
6

f (x1)+
1
2

f (x2)+
1
6

f (x3)+
1
6

min
xi∈X

f (xi),

EPd
7
( f ) =

1
3

f (x1)+
1
3

f (x2)+
1
6

f (x3)+
1
6

min
xi∈X

f (xi).

Observe that for normalized functions 1
6 minxi∈X f (xi) =

0. Let us compute EPd ( f ) if f = ( f (x1), f (x2), f (x3)) =
(1,1,−3). Then minxi∈X f (xi) =−3, f = (4,4,0),

EPd
6
( f ) = EPd

6
( f )−3 =

4
6
+

4
2
+0−3 =−1

3
.

Let us notice that all properties formulated in Lemma
4 remain valid for functionals EP and EP on K. The
dual relation between EP and EP can be reformulated as
EPd ( f ) =−EP(− f ) for any credal set in Mcpr and f ∈ K.

The next lemma gives us the additional characteristic prop-
erty of EP, which, we will see later, helps us to describe
the whole set of functionals EP and EP.
Lemma 6 Let f

1
, f

2
, f

3
be normalized functions in K+

such that f
1
+ f

2
= f

3
. Then for any credal set P in Md

cpr

it is valid EP( f
1
)+EP( f

2
)≥ EP( f

3
).

Theorem 1 A functional Φ : K+→ R coincides with EP
on K+ for some credal set P in Md

cpr iff it has the following
properties:

1) Φ(0) = 0; Φ(1) = 1;

2) Φ( f +a) = Φ( f )+a for any f ∈ K+ and a ∈ R+;

3) Φ(a f ) = aΦ( f ) for any f ∈ K+ and a ∈ R+;

4) Φ( f1)≤Φ( f2) for f1, f2 ∈ K+ if f1 ≤ f2;

5) Φ( f
1
)+Φ( f

2
)≥Φ( f

3
) for any normalized functions

f
1
, f

2
, f

3
in K+ such that f

1
+ f

2
= f

3
.

8 Generalized Coherent Upper Previsions

Let K′ ⊆ K, where K is the set of all functions of the type
f : X→R, and let E : K′→R be the functional that defines
the upper previsions, that may not satisfy the avoiding
sure loss condition. Then E defines the non-empty lower
generalized credal set P in Md

cpr as follows:

P =
{

P ∈Md
cpr|∀ f ∈ K′ : EP( f )≤ E( f )

}
(4)

iff infx∈X f (x)≤ E( f ) for all f ∈ K′. Based on generalized
credal set P, we can define the natural extension of E by

E ′( f ) = sup
{

EP( f )|P ∈ P
}
= EP( f )

for all f ∈ K.
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Theorem 2 Let E : K′→ R be the functional that defines
the upper previsions. Then its natural extension E ′ : K→R
based on generalized credal sets can be computed as

E ′( f ) =

inf
{

∑
k

akE( fk)+a
∣∣∣∣∑

k
ak fk+a1≥ f , fk ∈K′,ak,a≥ 0

}
,

where f and fk are normalized functions, and E ′( f ) =
E ′( f )−b, E( fk) = E( fk)−bk, b = minx∈X f (x), and bk =
minx∈X fk(x).

9 Conclusion

In this paper we generalize the C-rule for general theories
of imprecise probabilities using the way of modeling con-
tradiction (conflict) in evidence theory. This allows us to
introduce upper and lower generalized credal sets and rep-
resent the C-rule as the intersection of corresponding gen-
eralized credal sets. The paper contains also some insights
of how this model can be used in the theory of imprecise
probabilities admitting contradiction.

Appendix5

Proof (Lemma 1) Necessity. Let P1 ≤ P2, then in particular,
P1 (X \{xi})≤P2 (X \{xi}), i= 1, . . . ,n, or equivalently, 1−ai≤
1−bi, or ai ≥ bi, i = 1, . . . ,n.

Sufficiency. Let ai ≥ bi, i = 1, . . . ,n, then

P1 =
n

∑
i=1

(
biη〈{xi}〉+(ai−bi)η〈{xi}〉

)
+a0ηd

〈X〉

≤
n

∑
i=1

(
biη〈{xi}〉+(ai−bi)ηd

〈X〉
)
+a0ηd

〈X〉 = P2.

Proof (Lemma 2) Because the set P is closed, we have P= {P∈
Mcpr|∃P′ ∈ profile(P) : P≥ P′}. This implies the required result.

Proof (Lemma 3) Because P is a plausibility function (2-alterna-
ting measure), the value EP( f ) is expressed through the Choquet
integral:

EP( f ) =
∫

X
f (x)dP = a0

∫

X
f (x)dηd

〈X〉+
n

∑
i=1

ai

∫

X
f (x)dη〈{xi}〉

= a0 max
x∈X

f (x)+
n

∑
i=1

ai f (xi).

In the last expression we use the additivity of the Choquet integral
w.r.t. the sum of measures, and also that

∫
X f (x)dη〈{xi}〉 = f (xi)

and
∫

X f (x)dηd
〈X〉 = maxx∈X f (x).

Proof (Lemma 5) Notice that the validity of EPd ( f ) = a−
EP(a− f ) for P ∈Mcpr follows from the properties of the Cho-
quet integral. By definition

EPd ( f ) = sup
Pd∈Pd

EPd ( f ) = sup
P∈P

(a−EP(a− f ))

= a− inf
P∈P

EP(a− f ) = a−EP(a− f ).

5Straightforward proofs are omitted.

Proof (Lemma 6) Because by definition the credal set P is
closed, there exists P ∈ P such that EP

(
f 3

)
= EP( f 3). Assume

that P = a0η〈X〉+∑n
i=1 aiη〈{xi}〉. Notice that in this case

EP( f k) =
n

∑
i=1

ai f k(xi), k = 1,2,3,

since minx∈X f k(x) = 0. Thus, EP( f 1)+EP( f 2) = EP( f 3). In
addition, clearly EP( f k) ≥ EP( f k), k = 1,2. This implies the
inequality from the lemma.

Proof (Theorem 1) Necessity follows from Lemma 4 (see Re-
mark 5) and Lemma 6. Let us prove sufficiency. It is sufficient
to show that for any normalized function f there is a P ∈Md

cpr
such that Φ( f ) = EP( f ) and Φ ≥ EP. Because f is normalized
there is xk ∈ X such that f (xk) = 0. Let us consider the set K′

of all functions f in K+ with f (xk) = 0. Let us notice that the
monotone functional Φ on K′ is sublinear, and by Hahn-Banach’s
Theorem there is a linear functional on K′

α( f ) =
n

∑
i=1

ai f (xi)

such that ai ≥ 0, i = 1, . . . ,n, ∑n
i=1 ai ≤ 1, α ≤ Φ and α( f ) =

Φ( f ). Obviously, we can assume that ak = 0. Introduce into con-
sideration

P = a0η〈X〉+
n

∑
i=1

aiη〈{xi}〉,

where a0 = 1−∑n
i=1 ai and show that Φ( f ) = EP( f ) and Φ ≥

EP. The equality Φ( f ) = EP( f ) is obvious. Let us show that
Φ(g) ≥ EP(g) for any g ∈ K+. Obviously, Φ(g) ≥ EP(g) iff
Φ(g)≥ EP(g). Notice that EP(g) = EP(g′), where g′(xi) = g(xi)

for i 6= k and g′(xi) = 0 otherwise. Since g′ ≤ g, we get EP(g) =
EP(g′)≤Φ(g′)≤Φ(g). The theorem is fully proved.

Proof (Theorem 2) Let us show first that functionals E and E ′

define the same credal set, i.e. the credal set P defined by (4) is
equal to

P′ =
{

P ∈Md
cpr
∣∣∀ f ∈ K : EP( f )≤ E ′( f )

}
.

The inclusion P′ ⊆ P is obvious. Let P ∈ P, then by our assump-
tion EP( fk)≤ E( fk) for fk ∈ K′ and

EP( f ) =
n

∑
i=1

P({xi}) f (xi)≤
n

∑
i=1

P({xi})
(

∑
k

ak fk(xi)+a

)

≤
n

∑
i=1

P({xi})∑
k

ak fk(xi)+a

= ∑
k

akEP( fk)+a

≤∑
k

akE( fk)+a.

Thus, P⊆ P′, i.e. P′ = P. Let us show that the functional E ′ obeys
all properties on K+ for functional Φ given in Theorem 1. It is
easy to check that properties 1), 2), 3), 5) are valid. Let us show
that the monotonicity property 4) is also satisfied. For this purpose
introduce into consideration the functional

Φ( f )= inf
{

∑
k

akE( fk)+a
∣∣∣∣∑

k
ak fk+a1≥ f , fk ∈K′,ak,a≥ 0

}

on K+. Evidently, E ′( f ) = Φ( f ) for every f ∈ K+. It is easy to
check that this functional on K+ has the following properties:

The generalization of the conjunctive rule for aggregating contradictory sources of information based on generalized credal sets

75



1) Φ(0) = 0, Φ(1)≤ 1;

2) Φ(a f ) = aΦ( f ) for any f ∈ K+ and a ∈ R+;

3) Φ( f1)≤Φ( f2) for f1, f2 ∈ K+ if f1 ≤ f2;

4) Φ( f1)+Φ( f2)≥Φ( f3) for any functions f1, f2, f3 in K+ such
that f1 + f2 = f3.

By Hahn-Banach’s Theorem for every f ∈ K+ there is a lin-
ear functional on K+, α( f ) = ∑n

i=1 ai f (xi), such that ai ≥ 0,
i = 1, . . . ,n, ∑n

i=1 ai ≤ 1, α ≤ Φ and α( f ) = Φ( f ). We will use
next this functional for proving monotonicity of E ′. Consider
an arbitrary f ,g ∈ K+ such that f ≤ g. Let f = f + c. Then in-
equality E ′( f ) ≤ E ′(g) is equivalent to E ′( f ) ≤ E ′(g′), where
g′= g−c. Obviously, E ′( f )=Φ( f )≤Φ(g′). By previous conclu-
sions, there is a linear functional α( f ) = ∑n

i=1 ai f (xi) on K+ such
that ai ≥ 0, i = 1, . . . ,n, ∑n

i=1 ai ≤ 1, α ≤ Φ and α(g′) = Φ(g′).
Let P= a0η〈X〉+ ∑n

i=1 aiη〈{xi}〉, where a0 = 1−∑n
i=1 ai. It is easy

to see that P∈P and Φ(g′)≤EP(g′)≤E ′(g′), i.e. E ′( f )≤E ′(g′)
and E ′( f )≤ E ′(g).

Thus, we prove that the functional E ′ obeys all properties from
Theorem 1. This means that it is the natural extension of E.
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Abstract
We deal with decisions under risk starting from a par-
tial preference relation on a finite set of generalized
convex lotteries, that are random quantities equipped
with a convex capacity. A necessary and sufficient
condition (Choquet rationality) is provided for its rep-
resentability as a Choquet expected utility of a strictly
increasing utility function. The restriction to concave
utility functions is discussed. Moreover, we show that
this condition, with or without the constraint of con-
cavity for the utility function, assures the extension
of the preference relation and it actually guides the
decision maker in the extension process.

Keywords. Preference, Choquet rationality, Concave
utility, Choquet expected utility.

1 Introduction

The classical axioms of the von Neumann-Morgenstern
decision theory under risk [26] assure that a preference
relation on lotteries, i.e., random quantities endowed
with a probability distribution, is representable by
an expected utility (EU). In this setting the decision
maker behaves like an expected utility maximizer.

The assumptions behind the EU theory implicitly rely
on a common probability measure which determines
the lotteries.

Nevertheless, in situations of incomplete and revisable
information, uncertainty cannot always be handled
through a probability, but it is often unavoidable to
refer to a class of probabilities and so to its lower
envelope, which is a non-additive uncertainty measure
(such as a belief function, a convex capacity or a lower
probability [8, 22, 28]).

For example, in situations like that considered in the
Ellsberg paradox [11], a convex capacity is obtained as
lower envelope of the probabilities extending a partial
probabilistic assessment. Note that, as is well-known,

a lower envelope could not be convex in general [27].
The lower envelope is indeed surely convex (actually it
is a belief function) when the probability is defined on
an algebra and it is extended to a super-algebra [7].

In the following we restrict to convex capacities, which
are used to express “objective” uncertainty on the
prizes of lotteries, thus they are assumed to be part
of the decision environment.

The decision maker is asked to specify a possibly par-
tial preference relation on the resulting generalized
convex lotteries (gc-lotteries for short). The aim is
to provide a rationality principle for the existence of
a utility function on the set of prizes whose Choquet
expected utility (CEU) represents the preference rela-
tion.

This leads to a generalization of the von Neumann-
Morgenstern decision theory under risk and imprecise
information in the spirit of [17] (see also [12, 13] and
[18] for a different generalization). Note that this set-
ting distinguishes from that of [2, 23, 16] which relies
on the Anscombe-Aumann framework, where the ca-
pacities are endogenous, i.e., they are not part of the
decision environment. The maximization of the CEU
functional consists in a maxmin criterion of choice un-
der risk and imprecise probability information. Thus,
a decision maker acting like a CEU maximizer [15, 16]
realizes a form of uncertainty aversion for decisions
under risk.

Another relevant aspect that must be recalled is that
in the classical expected utility framework, as well as
in the CEU model, it can be difficult to construct the
utility function on prizes, only by taking into account
the “few” available preferences expressed on the “few”
available lotteries. The classical methods essentially
rely on the totality of the preference relation, thus the
decision maker is often forced to make comparisons
among some lotteries that are not easy to compare
since they have nothing to do with the given problem
(for example, comparisons between risky prospects and
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certainty). Not to mention that the set of lotteries to
consider is “automatically” infinite.

In [6], referring to the EU model, a different approach
based on a “rationality principle” is proposed: it does
not need all these non-natural comparisons but, in-
stead, it can work by considering only the “few” lot-
teries and comparisons of interest. In [4, 5] a similar
approach for the CEU model has been introduced by
generalizing the usual definition of lottery in a way
to consider a random quantity endowed with a belief
function.

Here, taking the CEU model as reference, we consider
a partial preference relation on an arbitrary finite set of
gc-lotteries. The Choquet rationality principle is intro-
duced and is proven to be equivalent to the existence
of a strictly increasing utility function, whose CEU
represents the given preference relation. This principle
relies, for each gc-lottery, on a probability distribution
(namely, aggregated Möbius inversion) realizing the
lower expected utility with respect to the probabilities
dominating the convex capacity of the gc-lottery. Such
principle requires that it is not possible to obtain the
same probability distribution through the same convex
combination of the aggregated Möbius inversions of
two groups of gc-lotteries, if every gc-lottery of the
first group is not preferred to the corresponding one
of the second group, and at least a preference is strict.
Moreover, a (not necessarily unique) utility function
can be explicitly determined by solving a linear system.
It is straightforward that once a utility function has
been chosen, a complete preference relation extending
the one provided by the decision maker is induced by
the corresponding CEU functional.

Qualitative conditions are provided on the given prefer-
ence relation that, together with the Choquet rational-
ity principle, imply the existence of a strictly increasing
concave continuous (or strictly concave twice continu-
ously differentiable) utility function whose CEU rep-
resents the given preference. This allows to model the
risk aversion of the decision maker under imprecise
information.

The non-uniqueness of the utility function singled out
by the Choquet rationality principle implies that dif-
ferent complete preference relations can arise, thus any
choice of a utility function causes a loss of informa-
tion, moreover, it is not clear why one should choose a
utility function in place of another. For this reason we
deal with the extension of the preference relation in
a qualitative setting by considering the entire class of
utility functions whose CEU represents the preference
relation. This leads to an algorithm for a step by step
extension of the given preference relation which guides
the decision maker in assessing his new preferences.

The aforementioned algorithm is shown to work inde-
pendently of the concavity constraints for the utility
function.

2 Numerical Model of Reference

Let X = {x1, . . . , xn} be a finite set and denote by
℘(X) the power set ofX. We recall that a (normalized)
capacity is a function ϕ : ℘(X) → [0, 1] such that
ϕ(∅) = 0, ϕ(X) = 1 and ϕ(A) ≤ ϕ(B) when A,B ∈
℘(X) and A ⊆ B.

A capacity ϕ on ℘(X) is said convex if it satisfies the
further property for every A,B ∈ ℘(X),

ϕ (A ∪B) ≥ ϕ(A) + ϕ(B)− ϕ(A ∩B). (1)

As is well-known (see [3]) a convex capacity ϕ on ℘(X)
is completely characterized by its Möbius inversion,
defined for every A ∈ ℘(X) as

m(A) =
∑

B⊆A
(−1)|A\B|ϕ(B), (2)

and for every A ∈ ℘(X) it holds

ϕ(A) =
∑

B⊆A
m(B). (3)

The Möbius inversion of a convex capacity is a function
m : ℘(X)→ R such that m(∅) = 0,

∑
B∈℘(X) m(B) =

1, m({xi}) ≥ 0 for every xi ∈ X, and for every A ∈
℘(X) with |A| ≥ 2 and every {xi, xj} ⊆ A, it satisfies∑
{xi,xj}⊆B⊆Am(B) ≥ 0 (see [3, 2]). Notice that m

can be negative on sets of cardinality greater than 1.

Given a set X = {x1, . . . , xn} and a normalized
capacity ϕ on ℘(X) (not necessarily convex), the
Choquet integral of a function f : X → R, with
f(x1) ≤ . . . ≤ f(xn) is defined as

C
∫
f dϕ =

n∑

i=1
f(xi)(ϕ(Ei)− ϕ(Ei+1)) (4)

where Ei = {xi, . . . , xn} for i = 1, . . . , n, and
En+1 = ∅ [9].

In the classical von Neumann-Morgenstern theory [26]
a lottery L consists of a probability distribution on a
finite support XL, which is an arbitrary finite set of
prizes or consequences.

In this paper, following the idea of Jaffray [17] involv-
ing belief functions, we deal with generalized convex
lotteries, by assuming that a convex capacity ϕL is
assigned on the power set ℘(XL) of XL.
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Definition 1. A generalized convex lottery, or
gc-lottery for short, on a finite set XL is a pair
L = (℘(XL), ϕL) where ϕL is a convex capacity on
℘(XL).

Obviously, a gc-lottery L = (℘(XL), ϕL) could be
equivalently defined as L = (℘(XL),mL), where mL

is the Möbius inversion of ϕL. The following simple
gc-lottery L on XL = {x1, x2} expressed in terms of
ϕL

L =
(

{x1} {x2} XL

ϕL({x1}) ϕL({x2}) ϕL(XL)

)

has an equivalent representation through the Möbius
inversion mL of ϕL

L =
(

{x1} {x2} XL

mL({x1}) mL({x2}) mL(XL)

)
.

We notice that gc-lotteries generalize classical lotteries,
in which mL(A) = 0 for every A ∈ ℘(XL) with |A| >
1, and those introduced in [17], where mL(A) ≥ 0 for
every A ∈ ℘(XL).

Given a finite set L of gc-lotteries, let X =
⋃{XL :

L ∈ L}. Then, any gc-lottery L on XL with convex
capacity ϕL can be rewritten as a gc-lottery on X by
defining a suitable extension ϕ′L of ϕL.
Proposition 1. Let L = (℘(XL), ϕL) be a gc-lottery
on XL and mL the Möbius inversion of ϕL. Then
for any finite X ⊇ XL there exists a unique convex
capacity ϕ′L extending ϕL to ℘(X), whose Möbius in-
version m′L coincides with mL on ℘(XL) and is 0 on
℘(X) \ ℘(XL).

Note that ϕ′L on ℘(X) coincides with the inner measure
induced by ϕL on ℘(XL) and the convexity of ϕ′L
follows from a result in [28].

Given L1, . . . , Lt ∈ L, all rewritten on X, and a real
vector k = (k1, . . . , kt) with ki ≥ 0 for i = 1, . . . , n
and

∑t
i=1 ki = 1, the convex combination of L1, . . . , Lt

according to k is defined as

k(L1, . . . , Lt) =




A
t∑
i=1

kimLi(A)



A∈℘(X)\{∅}

. (5)

It is readily verified that the convex combination of
Möbius inversions mL1 , . . . ,mLt

of convex capacities
on ℘(X) is itself a Möbius inversion of a convex ca-
pacity on ℘(X).

For every A ∈ ℘(X) \ {∅}, we denote with δA the
degenerate gc-lottery on X such that mδA

(A) = 1.

3 Rational Preferences over a Set of
Generalized Convex Lotteries

Consider a set L of gc-lotteries with X =
⋃{XL :

L ∈ L} and assume that a total preorder ≤∗ is given
on X. This is a quite natural condition thinking at
elements of X as prizes. Denote with <∗ and =∗
the asymmetrical and the symmetrical parts of ≤∗,
respectively. Moreover, denote with X∗ = X/=∗ the
set of equivalence classes of elements of X according
to =∗, for which <∗ is a total strict order.

In what follows the setX is always assumed to be finite,
i.e., X = {x1, . . . , xn} with x1 ≤∗ . . . ≤∗ xn. This
implies X∗ = {[xi1 ], . . . , [xim ]} with [xi1 ] <∗ . . . <∗
[xim ], where m ≤ n. Under previous assumption,
we can define the aggregated Möbius inversion of a
gc-lottery L, for every [xij ] ∈ X∗, as

ML([xij ]) =
∑

xi∈[xij
]

∑

{xi}⊆B⊆Ei

mL(B), (6)

where Ei = {xi, . . . , xn} for i = 1, . . . , n. Note
that ML([xij ]) ≥ 0 for every [xij ] ∈ X∗ and∑m
j=1 ML([xij ]) = 1, thus ML determines a proba-

bility distribution on X∗.

The following example shows the computation of the
aggregated Möbius inversion given a gc-lottery.
Example 1. Let X = {x1, x2, x3} be totally pre-
ordered by ≤∗ as x1 =∗ x2 <∗ x3 and consider
the gc-lottery L = (℘(X),mL) where mL({x1}) =
mL({x3}) = 1

4 , mL({x2, x3}) = 1
2 and 0 otherwise.

It holds X∗ = {[x1], [x3]} with [x1] = {x1, x2} and
[x3] = {x3}, and the aggregated Möbius inversion on
X∗ corresponding to L is

ML([x1]) = mL({x1}) +mL({x1, x2})
+mL({x1, x3}) +mL(X)

+mL({x2}) +mL({x2, x3}) = 3
4 ,

ML([x3]) = mL({x3}) = 1
4 .

Let R be a possibly partial binary relation on L. For
every (L,L′) ∈ R denote by L - L′ the assertion L is
not preferred to L′. The assertion L is indifferent to L′,
denoted by L ∼ L′, summarizes the two assertions L -
L′ and L′ - L, soR determines the symmetric relation
I = {(L,L′) ∈ R : (L′, L) ∈ R}. An additional strict
preference relationR′ can be elicited by assertions such
as L′ is strictly preferred to L, denoted by L ≺ L′. Let
R∗ be the asymmetric relation formally deduced from
R, namely R∗ = R \ I.
Since the pair of relations (R,R′) represents the opin-
ion of the decision maker, it is natural to haveR′ ⊆ R∗:
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in fact, it is possible that, in the first approach to the
decision problem, the decision maker is not able to
evaluate yet whether L ≺ L′ or L ∼ L′ and he/she
expresses his/her opinion only by L - L′.

If R is total on the set of gc-lotteries L then R′ = R∗
and for every L,L′ ∈ L: L ≺ L′ or L′ ≺ L or L ∼ L′.
We call a pair (R,R′) a strengthened preference rela-
tion if ∅ 6= R′ ⊆ R and I ∩ R′ = ∅, moreover, in the
following it will be simply denoted by (-,≺).

Since the set X is totally preordered by ≤∗, it is
natural to require that the partial preference relation
(-,≺) agrees with ≤∗ on degenerate gc-lotteries δ{x},
for x ∈ X, that correspond to decisions under certainty.
For this the preference (-,≺) is asked to satisfy the
following assumption

(A0) L contains the set of degenerate gc-lotteries on
singletons L0 = {δ{x} : x ∈ X} and x ≤∗ x′ if
and only if δ{x} - δ{x′}, for x, x′ ∈ X.

Remark 1. Note that the decision maker is not re-
quired to provide comparisons among degenerate gc-
lotteries and the gc-lotteries of interest, but just to ac-
cept the set of (natural) preferences considered in con-
dition (A0). When X is not “naturally” preordered,
one can require that the restriction to L0 of the prefer-
ence relation (-,≺) given by the decision maker is a
total preorder. Then, by (A0), we can induce a total
preorder on X.

The next rationality axiom requires that it is not
possible to obtain the same probability distribution
on X∗ through the same convex combination of the
aggregated Möbius inversions of two groups of gc-
lotteries, if every gc-lottery of the first group is not
preferred to the corresponding one of the second group,
and at least a preference is strict.
Definition 2. A strengthened preference relation (-
,≺) on a set L of gc-lotteries is said to be Choquet
rational if it satisfies the following condition:

(gc-CR) For all h ∈ N and Li, L′i ∈ L with Li - L′i
(i = 1, . . . , h), if

k(ML1 , . . . ,MLh
) = k(ML′1

, . . . ,ML′
h
)

with k = (k1, . . . , kh), ki > 0 (i = 1, . . . , h) and∑h
i=1 ki = 1, then it cannot be Li ≺ L′i for any

i = 1, . . . , h.

Note that the convex combination referred to in con-
dition (gc-CR) is the usual one involving probability
distributions on X∗. Moreover, it is easily proven
that if k(L1, . . . , Lh) = k(L′1, . . . , L′h), then it also
holds k(ML1 , . . . ,MLh

) = k(ML′1
, . . . ,ML′

h
) but the

converse is generally not true.

4 Representability of Rational
Preferences over gc-Lotteries

Given a finite set of gc-lotteries L, in what follows
we assume that all gc-lotteries are rewritten as gc-
lotteries on X =

⋃{XL : L ∈ L}. We say that a
function U : L → R represents (or agrees with) (-,≺)
if, for every L,L′ ∈ L

{
L - L′ =⇒ U(L) ≤ U(L′),
L ≺ L′ =⇒ U(L) < U(L′). (7)

In analogy with [6], given (-,≺) on L, our aim is
to find a necessary and sufficient condition for the
existence of a utility function u : X → R such that the
Choquet expected utility of gc-lotteries in L, defined for
every L ∈ L as

CEU(L) = C
∫
udϕL, (8)

represents (-,≺). In particular, since X is totally
preordered by ≤∗ and CEU(δ{x}) = u(x) for every x ∈
X, we search for a strictly increasing u, i.e., satisfying,
for x, x′ ∈ X, x <∗ x′ =⇒ u(x) < u(x′).

This implies that such a u is constant over the elements
of X∗, so for L ∈ L the CEU functional reduces to

CEU(L) =
∑

[xij
]∈X∗

u(xij )ML([xij ]). (9)

Let us stress that every gc-lottery L determines a
family of probabilistic lotteries on X whose probability
distributions form the closed and convex family PL =
{P̃ : ℘(X) → [0, 1] : ϕL ≤ P̃}. The CEU functional
turns out to be the minimum of expected utilities
computed with respect to the family PL, i.e.,

CEU(L) = min
P̃∈PL

∫
udP̃ ,

(see [24]) and this expresses a kind of uncertainty
aversion of the decision maker [23, 15]. For this, a
CEU maximiser decision maker acts according to a
maxmin criterion of choice.

The following theorem shows that (gc-CR) is a nec-
essary and sufficient condition for the existence of a
strictly increasing utility function u whose Choquet
expected value on gc-lotteries represents (-,≺).
Theorem 1. Let L be a finite set of g-lotteries, X =⋃{XL : L ∈ L} = {x1, . . . , xn} and let ≤∗ be a total
preorder on X. For a strengthened preference relation
(-,≺) on L satisfying (A0) the following statements
are equivalent:

(i) (-,≺) is Choquet rational (i.e., it satisfies (gc-
CR));
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(ii) there exists a strictly increasing function u : X →
R, whose CEU functional on L represents (-,≺).

Proof. Let X∗ = X/=∗ = {[xi1 ], . . . , [xim ]}. Introduce
the collections S = {(Lj , L′j) : Lj ≺ L′j , Lj , L

′
j ∈ L}

and R = {(Gh, G′h) : Gh - G′h, Gh, G
′
h ∈ L}

with s = cardS and r = cardR. Then condi-
tion (gc-CR) is equivalent to the non-existence of
a row vector k of size (1 × s + r) with ki > 0
for at least a pair (Li, L′i) ∈ S and

∑s+r
i=1 ki =

1 such that k(ML1 , . . . ,MLs ,MG1 , . . . ,MGr ) =
k(ML′1

, . . . ,ML′s ,MG′1
, . . . ,MG′r ).

In turn, setting k = (y, z), previous condition is equiva-
lent to the non-solvability of the following linear system
(in which || · ||1 denotes the L1-norm)

S ′ :





yA+ zB = 0
y, z ≥ 0
y 6= 0
||(y, z)||1 = 1

(10)

where A = (aj) and B = (bh) are, respectively, (s×m)
and (r×m) real matrices with rows aj = ML′

j
−MLj for

j = 1, . . . , s, and bh = MG′
h
−MGh

for h = 1, . . . , r,
and y and z are, respectively, (1 × s) and (1 × r)
unknown row vectors.

By a well-known alternative theorem (see, e.g., [14]),
the non-solvability of S ′ is equivalent to the solvability
of the following system

S :
{
Aw > 0
Bw ≥ 0 (11)

where w is a (m× 1) unknown column vector. Setting
u(xi) = wj for xi ∈ [xij ] and j = 1, . . . ,m, the solution
w induces a utility function u on X which by (A0)
is strictly increasing and whose CEU functional on L
represents (-,≺).

Notice that Theorem 1 implies that condition (gc-
CR) is equivalent to the existence of a (not necessarily
unique) total relation -′ on L extending (-,≺): such
-′ is simply induced by the CEU functional once a
utility u is fixed.

Consider now the particular case in which a strength-
ened preference (-,≺) is defined on a finite set of gc-
lotteries L satisfying (A0), where X = {x1, . . . , xn} ⊂
R with ≤∗ coinciding with the usual total order ≤, for
which it holds x1 < . . . < xn. In this case we have
[xi] = {xi} for i = 1, . . . , n, so X∗ can be identified
with X and for every L ∈ L, the corresponding basic
assignment ML can be simply viewed as a probability
distribution on X.

As is well-known, the risk aversion of the decision
maker can be expressed by means of an increasing

concave utility function. In order to get a concave
utility function we consider the following assumptions,
where

L1 =
{
αiδ{xi−1} + (1− αi)δ{xi+1} : i = 2, . . . , n− 1

}

(12)
with αi = xi+1−xi

xi+1−xi−1
and, for i = 2, . . . , n− 1:

(A1) L1 ⊆ L and αiδ{xi−1} + (1− αi)δ{xi+1} ≺ δ{xi}
or αiδ{xi−1} + (1− αi)δ{xi+1} ∼ δ{xi}.

(A1*) L1 ⊆ L and αiδ{xi−1}+(1−αi)δ{xi+1} ≺ δ{xi}.

Notice that condition (A1*) implies condition (A1).
Proposition 2. Let (-,≺) be a strengthened pref-
erence relation on a finite set of gc-lotteries L with
X =

⋃{XL : L ∈ L} = {x1, . . . , xn} ⊂ R such that
x1 < . . . < xn. Assume (-,≺) satisfies (A0) and
(gc-CR) and let u be the utility function in (ii) of
Theorem 1. The following statements hold:

(i) if (A1) holds then u extends to a strictly increas-
ing concave function v ∈ C0([x1, xn]);

(ii) if (A1*) holds then u extends to a strictly increas-
ing strictly concave function w ∈ C2([x1, xn]).

Proof. If (A1) is satisfied then we have x1 < . . . < xn
and s1 ≥ . . . ≥ sn−1 where si = u(xi+1)−u(xi)

xi+1−xi
, for

i = 1, . . . , n − 1. Thus it is sufficient to take as v
the piecewise linear function connecting the points
{(xi, u(xi)) : i = 1, . . . , n}. In particular, if (A1*)
holds, we have s1 > . . . > sn−1 so the main theorem
in [10] implies that the set of points {(xi,−u(xi)) :
i = 1, . . . , n} can be interpolated by a strictly convex
function f in C2([x1, xn]) which must be strictly de-
creasing. Thus, the proof follows taking w = −f .

Assuming X ⊂ R, every gc-lottery L induces a cumula-
tive probability distribution function FL on R through
the corresponding aggregated Möbius inversion ML,
defined for every x ∈ R as

FL(x) =
∑

xi≤x
ML(xi). (13)

The function FL will be referred to as cumulative aggre-
gated Möbius inversion. It can be used to express the
following kind of second order stochastic dominance.
Proposition 3. Let (-,≺) be a strengthened pref-
erence relation on a finite set of gc-lotteries L with
X =

⋃{XL : L ∈ L} = {x1, . . . , xn} ⊂ R such that
x1 < . . . < xn. Assume (A0) and (A1) are satisfied.
If (-,≺) satisfies (gc-CR) then for every complete
preference relation -′ on L extending (-,≺) and satis-
fying (gc-CR) the following condition holds for every
L1, L2 ∈ L:
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(S2) if
∫ x
−∞ FL1(t) dt ≤

∫ x
−∞ FL2(t) dt for every x ∈

R, it cannot be L1 ≺′ L2.

Proof. For every L1, L2 ∈ L,
∫ x
−∞ FL1(t) dt ≤∫ x

−∞ FL2(t) dt for every x ∈ R is equivalent to∫ xn

x1
v(t) dFL1(t) ≥

∫ xn

x1
v(t) dFL1(t) for every increas-

ing concave utility function v on [x1, xn].

By Theorem 1, condition (gc-CR) is equivalent to the
existence of a strictly increasing utility function on X.
Every such utility function on X determines through
the corresponding CEU functional a complete pref-
erence relation on L extending (-,≺) and satisfying
(gc-CR). Moreover, statement (i) of Proposition 2
implies that the utility function on X extends to a
strictly increasing concave utility function belonging
to C0([x1, xn]).

Let u be a utility function on X determining the com-
plete preference relation -′ on L which extends (-,≺)
and satisfies (gc-CR). Let v be a strictly increasing
concave function in C0([x1, xn]) extending u. For ev-
ery L ∈ L it holds

∫ xn

x1

v(t) dFL(t) =
n∑

i=1
u(xi)ML(xi)

= C
∫
udϕL = CEU(L).

Hence,
∫ x
−∞ FL1(t) dt ≤

∫ x
−∞ FL2(t) dt for every x ∈ R

implies CEU(L1) ≥ CEU(L2) and so it cannot be
L1 ≺′ L2.

The following example shows the construction of a con-
cave utility function whose CEU functional represents
a strengthened preference relation (-,≺).
Example 2. Let X = {0, 10, 20} be a set of money
payoffs and consider the following gc-lotteries ex-
pressed in terms of their Möbius inversions

{0} {10} {20} {0, 10} {0, 20} {10, 20} X
L1 0.4 0.1 0.2 0.1 0.1 0.2 −0.1
L2 0.5 0.5 0 0 0 0 0
L3 0.2 0 0.2 0 0.6 0 0

whose corresponding aggregated Möbius inversions
(viewed as probability distributions on X) are

X 0 10 20
ML1 0.5 0.3 0.2
ML2 0.5 0.5 0
ML3 0.8 0 0.2

Consider the following strengthened preference relation
(-,≺) satisfying (A0) and (A1*), and such that

L2 ≺ L1 and L3 ≺ L1.

To prove that (-,≺) satisfies (gc-CR) we search for
a utility function u : X → R whose CEU represents
(-,≺). Setting w1 = u(0), w2 = u(10), w3 = u(20),
the following system must be solvable





0.5w1 + 0.5w2 < 0.5w1 + 0.3w2 + 0.2w3
0.8w1 + 0.2w3 < 0.5w1 + 0.3w2 + 0.2w3
w1 < w2 < w3
0.5w1 + 0.5w3 < w2

for which a solution is w1 = 0, w2 = 3 and
w3 = 4. A strictly increasing concave utility func-
tion v ∈ C0([0, 20]) extending u is the function v(x) =
(0.3x)1[0,10](x) + (0.1x + 2)1(10,20](x). A strictly in-
creasing strictly concave utility function w ∈ C2([0, 20])
extending u is w(x) = (0.4x − 0.01x2)1[0,20](x). Fig-
ure 1 shows the plots of utility functions u, v and w.

Figure 1: Plots of utility functions u, v and w

5 Extension of Choquet Rational
Preferences

In previous section it has been shown that condition
(gc-CR) is equivalent to the existence of a strictly
increasing utility function u on X, whose CEU rep-
resents (-,≺), moreover, such a u can be explicitly
determined by solving the linear system S defined
in (11). It is straightforward that once a utility u
has been chosen, a complete preference relation on
L (or on any finite superset L′ of gc-lotteries on the
same finite set X) extending (-,≺) is induced by the
corresponding CEU functional.

Nevertheless, system S has generally infinite solutions
which can give rise to possibly very different complete
preference relations, thus any choice of a utility func-
tion causes a loss of information, moreover, it is not
clear why one should choose a utility function in place
of another.
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For this reason it is preferable to face the extension
in a qualitative setting by considering the entire class
of utility functions, whose CEU represents the pref-
erence (-,≺), and suggesting to the decision maker
those pairs of gc-lotteries where all the utility functions
unanimously agree in the order induced by the corre-
sponding CEU functional. In this view, the following
Theorem 2 proves the extendibility of a Choquet ratio-
nal relation and shows how condition (gc-CR) guides
the decision maker in assessing his preferences.
Theorem 2. Let X = {x1, . . . , xn} be a finite set
with a total prorder ≤∗, L and L′ finite sets of gc-
lotteries on X, with L ⊆ L′, and (-,≺) a strengthened
preference relation on L satisfying (A0). Then if (-
,≺) satisfies condition (gc-CR) there exists a family
{-γ : γ ∈ Γ} of complete relations on L′ satisfying
(gc-CR) which extend (-,≺). Moreover, denoting
with ≺γ and ∼γ , respectively, the strict and symmetric
parts of -γ , for γ ∈ Γ, condition (gc-CR) singles out
the relations

≺?=
⋂
{≺γ : γ ∈ Γ} and ∼?=

⋂
{∼γ : γ ∈ Γ}.

Proof. Let X∗ = X/=∗ = {[xi1 ], . . . , [xim ]}. By the
proof of Theorem 1, (-,≺) satisfies condition (gc-CR)
if and only if system S defined in (11) admits a (m×1)
column vector w as solution. In turn, setting u(xi) =
wj , for xi ∈ [xij ] and j = 1, . . . ,m, we get a strictly
increasing utility function u on X whose Choquet
expected value represents (-,≺) on L. Defining for
every L,L′ ∈ L′

L -γ L′ ⇐⇒ CEU(L) ≤ CEU(L′),

we get a relation -γ on L′ which is complete and
satisfies (gc-CR) by virtue of Theorem 1. This implies
that the family {-γ : γ ∈ Γ} is not empty and all its
members are obtained varying the solution w of system
S. The correspondence between the set of solutions
and the family {-γ : γ ∈ Γ} is onto but not one-to-one,
as every positive linear transformation of a solution w
gives rise to the same relation -γ .
The relations ≺? and ∼? express, respectively, the
pairs of gc-lotteries in L′ on which all the strict ≺γ
and symmetric ∼γ parts, for γ ∈ Γ, agree. It trivially
holds that ≺? and ∼? extend the relations ≺ and ∼
obtained from (-,≺), moreover, in order to determine
≺? and ∼?, for every F,G ∈ L′ such that F ≺ G or
G ≺ F or F ∼ G does not hold, it is sufficient to test
the solvability of the three linear systems

S≺?

:
{
A′w > 0
Bw ≥ 0 S�?

:
{
A′′w > 0
Bw ≥ 0

S∼?

:
{
Aw > 0
B′w ≥ 0

where w is an unknown (m× 1) column vector, A and
B are, respectively, (s×m) and (r×m) real matrices
defined as in (10), A′ is a ((s + 1) ×m) real matrix
obtained adding to A the (s + 1)-th row a(s+1) =
MG −MF , A′′ is a ((s+ 1)×m) real matrix obtained
adding to A the (s + 1)-th row a(s+1) = MF −MG,
and B′ is a ((r + 2)×m) real matrix obtained adding
to B the (r + 1)-th row b(r+1) = MG −MF and the
(r + 2)-th row b(r+2) = MF −MG.

Depending on the solvability of systems S≺?

,S�?

,S∼?

we can have the following situations:

(a) F ≺? G if and only if S≺? is solvable and
S�?

,S∼? are not, as this happens if and only
if CEU(F ) < CEU(G) for every u given by a
solution of S;

(b) G ≺? F if and only if S�? is solvable and
S≺?

,S∼? are not, as this happens if and only
if CEU(G) < CEU(F ) for every u given by a
solution of S;

(c) F ∼? G if and only if S∼? is solvable and
S≺?

,S�? are not, as this happens if and only
if CEU(F ) = CEU(G) for every u given by a
solution of S.

In all the remaining cases, the Choquet expected utili-
ties determined by solutions of S do not unanimously
agree in ordering the pair F and G.

Remark 2. If X = {x1, . . . , xn} ⊆ R, ≤∗ coincides
with ≤ and the initial preference (-,≺) satisfies (A1)
then every total preference -γ extending (-,≺) on
L′ still satisfies it, thus also the relations ≺? and ∼?
must satisfy (A1). An analogous observation holds
for (A1*).

Relations ≺? and ∼?, determined in the proof of pre-
vious theorem, express “forced” preferences that the
decision maker has to accept in order to maintain
Choquet rationality. On the other hand, pairs of gc-
lotteries not ruled by ≺? and ∼? are subject to a choice
by the decision maker. In the latter situation, a sub-
jective elicitation is required or, in case of a software
agent [20], a suitable automatic choice criterion can
be adopted.

We stress that each choice made by the decision maker
imposes a new constraint in system S, thus the set
of utility functions whose CEU represents the current
strengthened preference (-,≺) is possibly reduced.
The present approach implicitly refers to the under-
lying set of utility functions privileging a direct treat-
ment of qualitative information through (-,≺). On
the other hand, Theorem 1 allows to actually build the
set of utility functions compatible with (-,≺) giving
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rise to a demand extrapolation for the CEU model in
the spirit of [25].

Previous discussion suggests the following Algorithm 1
which is thought to guide the decision maker in en-
larging a Choquet rational preference relation (-,≺)
to a (possibly new) pair of gc-lotteries F and G: the
extended preference is still denoted as (-,≺). In par-
ticular, Algorithm 1 returns to the decision maker
what he must do or he cannot do in order to maintain
(gc-CR).

Algorithm 1 Extension of a Choquet rational relation
function Extension((-,≺), F , G)

if S≺? and S�? are solvable then free preference
between F and G

else if S≺? is solvable and S∼? is not then it
must be F ≺ G

else if S�? is solvable and S∼? is not then it
must be G ≺ F

else if S≺? and S∼? are solvable then it cannot
be G ≺ F

else if S�? and S∼? are solvable then it cannot
be F ≺ G

else it must be F ∼ G
end function

Notice that possibly F,G ∈ L, thus previous algorithm
can be used to produce a step by step completion of
the preference relation (-,≺) on L.
Algorithm 1 requires as input a Choquet rational pref-
erence relation (-,≺) on a set of gc-lotteries L, and
two (possibly new) gc-lotteries F and G, all rewrit-
ten on X = {x1, . . . , xn} with x1 ≤∗ . . . ≤∗ xn. The
gc-lotteries in L ∪ {F,G} can be simply regarded as
Möbius inversions on ℘(X), i.e., as real (1 × q) row
vectors with q = 2n − 1. The formation of matrices
A,A′, A′′, B,B′ requires the computation of the aggre-
gated Möbius inversion ML for every L ∈ L ∪ {F,G},
which can be done in polynomial time with respect to
q.

The extension is faced through the solution of at most
three linear programming problems, whose solution has
time complexity which is polynomial inm = O(log2(q+
1)) and the digital size of the coefficients in matrices
A′, B or A′′, B or A,B′, respectively [19].

6 Where do Generalized Convex
Lotteries Come From?

One may ask how one can get a set of gc-lotteries. A
typical situation is when an algebra of events A on a
sample space S is considered and the decision maker
has to decide among acts, i.e., measurable functions

from S to a totally preordered set of prizes X as in
[21]. So, the main question is how a convex capacity
ϕ can be obtained on A.
The first answer is obviously by situations similar to
that considered in the Ellsberg paradox [11], where
the convex capacity is obtained as lower envelope of
the probabilities extending a partial probabilistic as-
sessment on A. Nevertheless, as is well-known, these
lower envelopes could not be convex in general [28].
The lower envelope ϕ is indeed surely convex (actually
it is totally monotone) when the assessment to be
extended is given on a sub-algebra of A and it must
be extended to the whole A.
Another possible situation resulting in a convex capac-
ity is when several experts assess each a probability
measure on A. Also in this case the lower probability
is unique, but it could fail convexity.

We analyse here a different situation: an expert or the
decision maker may have assigned on A only a compar-
ative binary relation E which is a comparative degree
of belief. It is well-known (see [1]) that a relation E on
a finite algebra A is representable by a convex capacity
ϕ if and only if it is a complete preorder satisfying the
monotonicity with respect to the inclusion relation

(M) for every A,B ∈ A with A ⊆ B one has A E B,

together with Wong’s condition [29]

(B) for every A,B,C ∈ A with A ⊆ B and C∩B = ∅
one has A / B =⇒ A ∪ C / B ∪ C.

When E is representable, we have in general a (pos-
sibly infinite) class of convex capacities represent-
ing it. Suppose now to have a finite family of acts
F = {f1, . . . , ft} from S to a preordered set of conse-
quences X = {x1, . . . , xn} together with a strength-
ened preference relation (-,≺) on F . Now, for every
ϕ representing E we can construct a unique family
L = {Li : fi ∈ F} of gc-lotteries and transport (-,≺)
on L. We can have one of the following situations:

1. for every ϕ representing E the preference relation
(-,≺) on L violates (gc-CR);

2. for every ϕ representing E the preference relation
(-,≺) on L satisfies (gc-CR);

3. for some ϕ representing E the preference relation
(-,≺) on L satisfies (gc-CR) and for the others
ϕ, (-,≺) violates it.

Notice that for every ϕ representing E and such that
(-,≺) satisfies (gc-CR), we obtain a particular class
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of utility functions {uϕ} on X. Every pair (ϕ, uϕ)
represents the same preference relation (-,≺), never-
theless, as proved in the following example, different
choices of ϕ can produce different extensions of (-,≺)
to new gc-lotteries.
Example 3. Let S = {s1, s2} be a finite set of states
of nature and X = {x1, x2, x3} a finite set of prizes,
totally preordered by ≤∗ as x1 <

∗ x2 <
∗ x3. Consider

the set of acts F = {f1, . . . , f5} on S and ranging on
X, defined as

S s1 s2
f1 x1 x3
f2 x2 x1
f3 x2 x2
f4 x2 x3
f5 x3 x1

Consider on ℘(S) the total preorder E with strict part
C, such that ∅ C {s2} C {s1} C S. This relation (triv-
ially) satisfies the necessary and sufficient conditions
for the existence of a convex capacity ϕ : ℘(S)→ [0, 1]
representing E, i.e., such that A E B if and only
if ϕ(A) ≤ ϕ(B), for every A,B ∈ ℘(S) (see [1]).
Obviously ϕ is not unique: every convex capacity ϕ
representing E is such that ϕ(∅) = 0, ϕ({s1}) = α,
ϕ({s2}) = β and ϕ(S) = 1, with 0 < β < α < 1 and
α + β ≤ 1. For fixed α and β, we get a set L of
gc-lotteries corresponding to F .
Introduce the preference relation (-,≺) on L such that

L1 ≺ L2 ≺ L3 ≺ L4.

In particular, assuming condition (A0), for a strictly
increasing utility function u : X → R we have

CEU(L1) = (1− β)u(x1) + βu(x3),
CEU(L2) = (1− α)u(x1) + αu(x2),
CEU(L3) = u(x2),
CEU(L4) = (1− β)u(x2) + βu(x3),
CEU(L5) = (1− α)u(x1) + αu(x3).

Let ϕ1 and ϕ2 be the convex capacities on ℘(S) repre-
senting E and such that ϕ1({s1}) = 2

5 , ϕ
2({s1}) = 4

5 ,
and ϕ1({s2}) = ϕ2({s2}) = 1

5 .

Simple computations show that both using ϕ1 and ϕ2,
the preference relation (-,≺) among the corresponding
gc-lotteries satisfies (gc-CR), so in both cases there
exists a strictly increasing utility function whose CEU
functional on L represents (-,≺).

The aim now is to extend the preference (-,≺) to
the pair L4 and L5. If ϕ1 is used, then simple
computations show that for every strictly increasing

uγ : X → R whose CEU represents (-,≺), the corre-
sponding total preorder -γ on L is such that L5 ≺γ L4,
and so L5 ≺? L4 according to Theorem 2.

On the other hand, if ϕ2 is used we get that the decision
maker is completely free to express his/her preference
among L4 and L5 as there are utilities uγ : X → R
such that L4 ≺γ L5 or L4 ∼γ L5 or L5 ≺γ L4.

7 Conclusions

A feature of the present approach to decisions under
risk is the possibility to deal with a partial preference
relation assessed on a finite set of gc-lotteries.

Under conditions analogous to those of the classical
von Neumann-Morgenstern’s theory, i.e., when a com-
plete preference relation is given over the set of all
gc-lotteries on X, the representability of the prefer-
ence relation by a CEU functional coincides with the
requirement that two gc-lotteries having the same ag-
gregated Möbius inversion are indifferent and between
the resulting equivalence classes the preference relation
satisfies the von Neumann-Morgenstern’s axioms.

In the same setting, the results in this paper to-
gether with Theorem 4.13 in [5] imply that, un-
der the Archimedean axiom of the von Neumann-
Morgenstern’s theory, a decision maker behaving ac-
cording to (gc-CR) accepts all the von Neumann-
Morgenstern’s axioms and judges indifferent the gc-
lotteries with the same aggregated Möbius inversion.

Acknowledgements

This work was partially supported by GNAMPA -
INdAM and by the Italian Ministry of Education, Uni-
versity and Research funding of Research Projects
of National Interest (PRIN 2010-11) under grant
2010FP79LR_003

References

[1] Capotorti, A., Coletti, G., Vantaggi, B.: Non
additive ordinal relations representable by lower
or upper probabilities. Kybernetika, 34(1), 79–90
(1998).

[2] Chateauneuf, A., Cohen, M.: Choquet expected
utility model: a new approach to individual be-
havior under uncertainty and social choice welfare.
Fuzzy Meas. and Int.: Th. and App., pp. 289–314,
Heidelberg: Physica (2000).

[3] Chateauneuf, A., Jaffray, J.Y.: Some characteri-
zations of lower probabilities and other monotone

Decisions under risk and partial knowledge modelling uncertainty and risk aversion

85



capacities through the use of Möbius inversion.
Math. Soc. Sci., 17, 263–283 (1989).

[4] Coletti, G., Petturiti, D., Vantaggi, B.: Choquet
expected utility representation of preferences on
generalized lotteries. IPMU 2014, Part II, CCIS
443, A. Laurent et al. (Eds.), pp. 444–453 (2014).

[5] Coletti, G., Petturiti, D., Vantaggi, B.: Rational-
ity principles for preferences on belief functions.
Accepted in Kybernetika.

[6] Coletti, G., Regoli, G.: How can an expert system
help in choosing the optimal decision?. Theory and
Decisions, 33(3), 253–264 (1992).

[7] Coletti, G., Scozzafava, R., Vantaggi, B.: Inferen-
tial processes leading to possibility and necessity.
Information Sciences, 245, 132–145 (2013).

[8] Dempster, A.P.: Upper and Lower Probabilities
Induced by a Multivalued Mapping. Ann. of Math.
Stat., 38(2), 325–339 (1967).

[9] Denneberg, D.: Non-additive Measure and Integral.
Theory and Decision Library: Series B, Vol. 27,
Kluwer Academic, Dordrecht, Boston (1994).

[10] Egerland, W.O.: Convex interpolation of convex
data. Report no. 1952, USA BRL (1972).

[11] Ellsberg, D.: Risk, Ambiguity and the Savage
Axioms. Quart. Jour. of Econ., 75, 643–669 (1961).

[12] Gajdos, T., Tallon, J.M., Vergnaud, J.C.: Deci-
sion making with imprecise probabilistic informa-
tion, J. of Math. Ec., 40(6), 647–681 (2004).

[13] Gajdos, T., Hayashi, T., Tallon, J.M.,
Vergnaud, J.C.: Attitude toward imprecise
information, J. of Ec. Th., 140(1), 27 – 65 (2008).

[14] Gale, D.: The Theory of Linear Economic Models.
McGraw Hill (1960).

[15] Gilboa, I., Schmeidler, D.: Maxmin expected
utility with non-unique prior. J. of Math. Econ.,
18(2), 141–153 (1989).

[16] Gilboa, I., Schmeidler, D.: Additive representa-
tions of non-additive measures and the Choquet
integral. Ann. of Op. Res., 52, 43–65 (1994).

[17] Jaffray, J.-Y.: Linear utility theory for belief
functions. Op. Res. Let., 8 (2), 107–112 (1989).

[18] Quiggin, J.: A Theory of Anticipated Utility. J.
of Ec. Beh. and Org., 3, 323–343 (1982).

[19] Papadimitriou, C.H., Steiglitz, K.: Combinatorial
Optimization: Algorithms and Complexity. Dover,
New York (1998).

[20] Russell, S., Norvig, P.: Artificial Intelligence: A
Modern Approach. Second edition. Prentice Hall,
Upper Saddle River (2003).

[21] Savage, L.: The foundations of statistics. Wiley,
New York (1954).

[22] Shafer, G.: A Mathematical Theory of Evidence.
Princeton University Press (1976).

[23] Schmeidler, D.: Subjective probability and ex-
pected utility without additivity. Econometrica,
57(3), 571–587 (1989).

[24] Schmeidler, D.: Integral representation without
additivity. Proc. of the Am. Math. Soc., 97(2),
255–261 (1986).

[25] Varian, H.R.: The Nonparametric Approach to
Demand Analysis Econometrica, 50(4), 945–973
(1982).

[26] von Neumann, J., Morgenstern, O.: Theory of
Games and Economic Behavior. Princeton Univer-
sity Press (1944).

[27] Walley, P.: Statistical reasoning with imprecise
probabilities. Chapman & Hall, London (1991).

[28] Walley, P.: Coherent lower (and upper) proba-
bilities. Technical Report n. 22, Department of
Statistics, University of Warwick (1981).

[29] Wong, S.K.M., Yao, Y.Y., Bollmann, P.,
Bürger, H.C.: Axiomatization of Qualitative Belief
Structure. IEEE Trans. on Sys., Man and Cyb.,
21(4), 726–734 (1991).

G. Coletti, D. Petturiti, & B. Vantaggi

86



Some Remarks on
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Abstract

Sets of lexicographic probabilities and sets
of desirable gambles share several features,
despite their apparent differences. In this pa-
per we examine properties of marginalization,
conditioning and independence for sets of lex-
icographic probabilities and sets of desirable
gambles.

1 Introduction

The standard theory of probabilities is widely used to
represent situations that display uncertainty. In that
theory, events form a field, and probabilities are real-
valued, non-negative, and countably additive. There
are many variants of this Kolmogorovian theory of
probabilities [8, 10, 21, 29, 32], including proposals
that abandon the real scale and focus on infinitesimal
probabilities [16] or on lexicographic probabilities [3].
Other departures from probability theory attempt to
represent imprecision in numeric values [33, 34]. For
instance, the theory of credal sets uses sets of proba-
bility measures as its basic entities [20]. Yet another
departure from probability theory is the theory of sets
of desirable gambles [35]. Matters become even more
involved if one allows a language with negation and
conjunction of desirability statements [27].

The purpose of this paper is to examine some proper-
ties of sets of lexicographic probabilities and of sets
of desirable gambles. We present these formalisms
through a hopefully illuminating analysis, emphasiz-
ing their close connection (Section 2). Because both
lexicographic probabilities and sets of desirable gam-
bles represent the same sort of preference orderings,
by studying one of them, we obtain insights about the
other; perhaps contentious concepts and drawbacks
can be clarified by such a study.

Sections 3 to 6 examine features of marginalization
and conditioning. We first compare lexicographic and

full conditional probabilities, and show they are not as
similar as usually suggested by the literature. We then
examine convexity, non-uniqueness and independence,
always together with marginalization and conditioning.
Several of the properties discussed here are well-known,
but still they may be somewhat surprising as a whole,
and call for further study concerning these formalisms.

2 Lexicographic Probabilities and
Sets of Desirable Gambles

In this paper we only deal with finite objects, so that
complications arising from infinity are entirely ignored.
We assume there is a finite set of states, denoted by Ω,
and that every subset of Ω is an event. A gamble is a
function from states to real numbers. If Ω contains n
states, a gamble can be thought of as an n-dimensional
point. Hence we will treat sets of gambles as subsets
of <n.
The plan for this section is to emphasize the relation-
ship between sets of lexicographic probability measures
and sets of desirable gambles. Previously, Couso and
Moral have studied this relationship in some restricted
cases [5], and Quaeghebeur has dealt with this rela-
tionship in considerable detail [24, 25]. Most of the
following discussion touches on topics that may be
familiar to readers with background on imprecise prob-
abilities.

Probabilities are often justified and derived by assum-
ing axioms about preferences [1, 11, 30]. To simplify
matters, we always take preferences over the set of all
gambles. A popular way to do so is to take a prefer-
ence relation � between gambles, such that f � g is
interpreted as “f is preferred to g”. Suppose � is a
(strict) partial order, meaning that it is irreflexive and
transitive [11], and that � satisfies a monotonicity con-
dition: if f(ω) > g(ω) for all ω, then f � g. Suppose
additionally that it satisfies an “independence condi-
tion” such as: for any α ∈ (0, 1] and any f , g, h, we
have f � g if and only if αf+(1−α)h � αg+(1−α)h.
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In this case the set of gambles that are preferred to
the zero gamble is a cone that completely represents
�. Suppose one assumes that this cone is open, an
assumption that encodes an “Archimedean condition”
on � [31]. One then obtains the following represen-
tation: there is a unique maximal convex set K of
probability measures such that f � g if and only if
∀P ∈ K : EP[f ] > EP[g]. Such a set of probability
measures is called a credal set. Note that a preference
profile may be completely characterized by more than
one credal set, but there is a unique maximal credal
set that offers such a representation, and this credal
set is convex.

Suppose that � is such that absence of preference is
an equivalence (reflexive, transitive, symmetric); we
then say that � is a strict weak order [11]. If � is a
strict weak order, the credal set K is a singleton, so we
obtain the usual representation by a single probability
measure [11].

One might consider replacing the monotonicity condi-
tion by the following one: if f(ω) ≥ g(ω) for all ω and
f(ω) > g(ω) for some ω, then f � g. Following Blume
et al., we refer to this property as admissibility [3,
Definition 4.1]. Note that a standard probability mea-
sure may fail to represent admissibility (if P(ω) = 0,
differences on this ω do not matter).

2.1 Lexicographic Probabilities

Now suppose � is a strict partial order that satisfies
the “independence condition” and admissibility, but no
Archimedean condition. We then obtain a representa-
tion using lexicographic probabilities. A lexicographic
probability measure is simply a sequence of standard
probability measures [P0, . . . ,PK ], and the represen-
tation is of the form: f � g if and only if there is
[P0, . . . ,PK ] such that

[EP1 [f ] , . . . ,EPK
[f ]] >L [EP1 [g] , . . . ,EPK

[g]] ,

where >L denotes lexicographic comparison (for a, b ∈
<K , a >L b iff aj > bj for some j ≤ K and ai = bi for
1 < i < j).

To produce the representation of � in terms of lexico-
graphic probability measures, note that � can always
be extended to a total order �∗ over gambles, such
that �∗ satisfies the “independence condition” [31,
Theorem 1] and admissibility. Every �∗ can be repre-
sented by a lexicographic linear utility [12, Chapter 4],
and this lexicographic linear utility can be expressed
as the expected value of a lexicographic probability
measure (using the arguments by Blume et al. [3,
Theorem 3.1]). Also the set of all extensions of �, and
consequently � itself, can be represented by a unique
maximal convex set of lexicographic linear utilities

H T
layer 0 α (1− α)
layer 1 γ (1− γ)

Table 1: Lexicographic probabilities; α, γ ∈ (0, 1).

[31, Theorem 2]. If � is a strict weak order, the set
of lexicographic linear utilities collapses to a single
lexicographic probability measure [12, Chapter 4].

Consider a lexicographic probability measure
[P0, . . . ,PK ]. Then Pi is called the ith layer of the
lexicographic probability measure. One important
fact is that each Pi is only unique up to linear
combinations of P0, . . . ,Pi that assign positive weight
to Pi [3, Theorem 3.1]. So in fact there is no intrinsic
uniqueness in the lexicographic representation, as
emphasized in the following example.

Example 1 Consider the lexicographic probability
measure in Table 1, where each row contains a layer.
The question is whether a gamble f such that f(H) =
a and f(T ) = b is preferred to the zero gamble. Using
the first layer, E[f ] = 0 only if aα = −b(1− α), so we
might focus on the question of whether the gamble
(1−α,−α) is desirable or not. As the next layer gives
value γ −α to this gamble, we only need to determine
whether γ > α or γ < α to fix all preferences (if γ = α,
the second layer can be discarded). �

Admissibility requires each event to have positive prob-
ability with respect to at least one layer. This follows
from the fact that any indicator function is nonnega-
tive and positive for at least one ω; hence any indicator
function if preferred to zero, and consequently for any
event there is a probability measure that assigns it
positive probability.

2.2 Sets of Desirable Gambles

For all preference orderings already discussed, axioms
about preferences guarantee that f � g if and only
if f − g � 0. As noted already, we can then capture
the preference relation by the set of gambles that
are preferred to the zero gamble. This latter set is
called the set of desirable gambles generated by the
preference relation. But we can also start with sets of
desirable gambles, properly axiomatized, and obtain
preferences from them. For instance, here is a set of
axioms that has been proposed for sets of desirable
gambles [35]: a set of desirable gambles D is coherent
if the zero gamble is not in D; if all f such that f ≥ 0
and f 6= 0 are in D; if for any λ > 0 and any f ∈ D,
we have λf ∈ D; and if for any f, g ∈ D, we have
f + g ∈ D. To obtain preferences from a given set of
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desirable gambles, just say that f � g if and only if
f − g ∈ D. By doing so, one notes that irreflexivity
follows from the condition that the zero gamble is not
in D. Note also that admissibility follows from the
second condition: if f(ω) ≥ g(ω) for all ω and f(ω) >
g(ω) for some ω, then f � g. Finally, transitivity
and the independence condition follow from the other
axioms. Hence a coherent set of desirable gambles
can be completely represented by a (unique maximal
convex) set of lexicographic linear utilities. From now
on, every set of desirable gambles is assumed coherent,
so we drop the qualifier “coherent” whenever possible.

2.3 Marginalization and Conditioning

Now consider a pair of random variables X and Y
defined over Ω.

Marginalization of lexicographic probability measures
is usually understood in a layer-wise fashion [14]. That
is, if [P0, . . . ,PK ] are the layers of a lexicographic
probability measure, then the marginal for X is a
lexicographic probability measure where each layer is
a probability measure over ΩX with value (for X at
x)

∑
ω:X(ω)=x Pi(ω).

Given a set of desirable gambles D, the marginal set of
desirable gambles for X, denoted by D(X), is simply
the set of all desirable gambles in D that are functions
of X. For instance, if Ω is the Cartesian product
of the set of values of X and the set of values of
Y , respectively ΩX and ΩY , then the Y -marginal
D(Y ) is {g : g is a function of Y and g ∈ D}, with the
understanding that g ∈ D means that the cylindrical
extension of g belongs to D [26].

It should be apparent that marginalization means the
same thing both for sets of desirable gambles and sets
of lexicographic probability measures, given appropri-
ate interpretation. If one starts with a set of desirable
gambles, generates a set of lexicographic probability
measures, marginalizes the latter, and generates the
corresponding set of desirable gambles, one reaches
the marginal of the original set of desirable gambles.

Conditioning of lexicographic probability measures
has also received a layer-wise definition by Blume
et al. [3]. That is, if we again have the lexicographic
probability measure [P0, . . . ,PK ], then conditioning on
A yields [P0(·|A), . . . ,PK′(·|A)], where each layer that
assigns positive probability to A is processed through
Bayes rule, and all other layers are discarded. This
sort of layer-wise Bayes rule is actually derived from
preferences, as follows. From a preference relation
�, obtain conditional preference given A, denoted
by �A, by saying that f �A g if and only if Af �
Ag [3, Definition 2.1]. Then �A is represented by a
conditional lexicographic probability measure as just

defined [3, Theorem 4.3].1

Given a set of desirable gambles D and an event A,
the conditional set of desirable gambles D|A is simply
{f : IAf ∈ D}, where IA denotes the indicator function
of A [26]. In fact, by using de Finetti’s convention
where an event and its indicator function are denoted
by the same symbol, we have [35]:

D|A = {f : Af ∈ D}.

But this is clearly equivalent to representing the pref-
erences Af � Ag. That is, both conditional lexico-
graphic probability measures and conditional sets of
desirable gambles represent the same operation.

In short, sets of (admissible) lexicographic probability
measures and (coherent) sets of desirable gambles
are equivalent representations for preferences under
uncertainty.

3 Full Conditional Probabilities:
Not Really

One of the attractive features of lexicographic probabil-
ities and sets of desirable gambles is the fact that condi-
tioning is well defined for any nonempty conditioning
event (because every event has positive probability
in some layer). Thus it is not surprising that lexi-
cographic probability measures have been connected
with the theory of full conditional probabilities [8, 19],
because the latter also offers conditioning on every
nonempty event.

In fact, there are some recurring themes in the connec-
tion between lexicographic and full conditional prob-
abilities [3, 15, 16]. On the one hand, the structure
of full conditional probabilities can be understood
through lexicographic probabilities, and full condi-
tional probabilities can be justified using the axioms
of lexicographic probabilities. On the other hand, full
conditional probabilities can be treated as if they were
a class of lexicographic probabilities that are easy to
specify, interpret, and handle. We now examine to
which extent these intuitions are valid.

3.1 A Brief Review

To recap, a full conditional probability P : B×(B\∅)→
<, where B is a Boolean algebra, is a two-place set-
function such that for every event H 6= ∅ [9]:
(1) P(H|H) = 1;
(2) P(G|H) ≥ 0 for all G;
(3) P(G1 ∪G2|H) = P(G1|H) + P(G2|H) whenever

1Note that Blume et al. actually assumes that preference re-
lations are reflexive, but their analysis of conditional probability
is not affected by that.
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G1 ∩G2 = ∅;
(4) P(G1 ∩G2|H) = P(G1|G2 ∩H) × P(G2|H) when-
ever G2 ∩H 6= ∅.
Whenever the conditioning event H is equal to Ω, we
suppress it and write the “unconditional” probability
P(G).

The theory of coherent probabilities advocated by de
Finetti adopts full conditional probabilities, and offers
a justification for them that is based on betting (in fact
de Finetti’s original arguments were later formalized
by Holzer [17] and Regazzini [28]). It should be noted
that similar (but more general) axioms have been
proposed by Renyi [29] and Popper [23]; there are also
variants of those theories that we do not discuss for
the sake of space.

Example 2 Take a coin with heads (H), tails (T ), a
sharp edge (S), and a blunt edge (B). We can have
P(H) = P(T ) = 1/2, hence P(S) = P(B) = 0, but still
P(B|S ∪B) = 2/3. �

A full conditional probability can always be repre-
sented as a sequence of standard probability measures
P0, . . . ,PK [3, 4, 16, 19]. To obtain this representation,
we must partition Ω into several events L0, . . . , LK .
Take L0 to be the set of elements of Ω that have
positive unconditional probability. Then take L1 to
be the set of elements of Ω that have positive prob-
ability conditional on Ω\L0. And then take Li, for
i ∈ {2, . . . ,K}, to be the set of elements of Ω that
have positive probability conditional on Ω\ ∪i−1

j=0 Lj .
The event Li denotes the support of the layer Pi of the
full conditional probability. The layer number of layer
Pi is i. For nonempty G, denote by LG the support
of the first layer such that P(G|LG) > 0. We then
have P(G|H) = P(G|H ∩ LH) [2, Lemma 2.1a]. Note
that some authors use a different terminology, using
instead the sequence ∪Kj=iLj rather than Li [4, 19].

Example 3 In Example 2, we have two layers. The
first consists of H and T , with associated probabilities
P0(H) = P0(T ) = 1/2. The second layer consists
of S and B, with associated probabilities 2P1(S) =
P1(B) = 2/3. �

3.2 Admissibility and Marginalization

Given the results enumerated in the previous section,
it is natural to think that full conditional probabil-
ities are just instances of lexicographic probability
measures. However, strictly speaking, full conditional
probabilities cannot pose as admissible lexicographic
probabilities, as the theory of full conditional probabil-
ities does not satisfy admissibility. For instance, con-
sider the gamble f such that f(H) = f(T ) = f(S) = 0,

f(B) = 1 in Example 2. Computing expected value
in the usual way with respect to this full conditional
probability, we obtain zero; as far as preferences are
to be extracted from expected values, this gamble is
indistinguishable from the zero gamble. But if we were
to interpret the layers of the full conditional probabil-
ity as the layers of a lexicographic probability measure,
then f � 0.

To obtain admissibility in actual decisions, one might
use lexicographic expected values with respect to layers
of a full conditional probability whenever necessary.
For instance, in the previous paragraph one might
say that f � 0 by looking at all layers of the full
conditional probability. However, matters become
even more delicate when we look at marginalization.

Example 4 Consider two variables X and Y , each
with values {0, 1, 2}. Take a full conditional proba-
bility over (X,Y ) with two layers (layer numbers are
indicated by subscripts):

Y = 0 Y = 1 Y = 2
X = 0 (1/5)0 (1/5)0 (1/5)0
X = 1 (1/5)0 (1/4)1 (1/4)1
X = 2 (1/5)0 (1/4)1 (1/4)1

We have marginal probabilities for X: P(X = 0) =
3P(X = 1) = 3P(X = 2) = 3/5. These marginal prob-
abilities characterize a full conditional probability with
a single layer. For this marginal full conditional proba-
bility, the gamble f(X) such that f(0) = −1, f(1) = 1,
f(2) = 2 has expected value equal to zero.

So, with respect to the marginal full conditional prob-
abilities for X, there is not much to say about f ; it
is just indistinguishable from the zero gamble. There
are no deeper layers to look at because the marginal
full conditional probability does not assign zero prob-
ability to any event. So, there is no way to produce a
lexicographic comparison if we first produce the full
conditional probability that is the marginal of X.

However, as f can be obviously viewed as a function
of X and Y , its expected value can be computed
with respect to the joint full conditional probability.
But now we see that we can have a lexicographic
comparison: the expected value of f with respect to
the second layer is 3/2, hence f � 0.

That is, marginalization of full conditional probabili-
ties loses information concerning layers, information
that is needed if we were to compute lexicographic
expected values. If we were to treat full conditional
probabilities as lexicographic probabilities, we would
need to have marginal full conditional probabilities
that carry some extra information.

Indeed, if we took the joint full conditional probability
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in our example as a lexicographic probability measure
to begin with, and then marginalized it, we would ob-
tain the following marginal lexicographic probabilities:

X = 0 X = 1 X = 2
(3/5)0 (1/5)0, (1/2)1 (1/5)0, (1/2)1

With respect to this marginal lexicographic probability
measure, we obtain f � 0, as we must. �

So, if we wish to preserve admissibility by using lexi-
cographic expectation with respect to full conditional
probabilities, then the marginal of a full conditional
probability must actually be represented as a lexi-
cographic probability measure. The message is that
lexicographic probabilities (and sets of desirable gam-
bles) do offer conditioning on events of probability zero,
but their solution is different from the one offered by
full conditional probabilities. Lexicographic proba-
bilities may be a representation for full conditional
probabilities, but both behave differently.

4 Convexity?

When we adopt sets of lexicographic probability mea-
sures (or equivalently sets of desirable gambles), we
seem to have convexity at hand. First, a set of de-
sirable gambles is a convex object. Second, a strict
ordering with independence and admissibility can be
represented uniquely by a maximal convex set of lexi-
cographic linear utilities.

However, convexity deserves further scrutiny. Again,
it is useful to start this discussion with full conditional
probabilities. Typically one assumes that, conditional
on an event A, the set of probability measures K(·|A)
is convex [34]. But a set of full conditional proba-
bilities cannot always be convex [13, 22], even if all
probabilities are positive:

Example 5 Suppose Ω = {ω1, ω2, ω3}, P1(ω1) =
P1(ω2) = P1(ω3) = 1/3 and P2(ω1) = 2P2(ω2) =
2P2(ω3) = 1/2. Build the convex combination
Pα = αP1 + (1 − α)P2. There is no α ∈ (0, 1)
such that Pα(ω1|ω1 ∪ ω3) = 2(α − 3)/(α − 9) is
equal to αP1(ω1|ω1 ∪ ω3) + (1 − α)P2(ω1|ω1 ∪ ω3) =
α/2 + 2(1 − α)/3. That is, Pα cannot be a convex
combination of the functions P1 and P2. �

Consider a preference � that can be extended to at
least two orders, the former encoded by lexicographic
linear utility u1 and the latter by lexicographic linear
utility u2. On the one hand, any convex combina-
tion of these lexicographic linear utilities generates
the same preference profile [31]. On the other hand,
admissibility allows us to normalize each utility in the

lexicographies, so as to obtain lexicographic probabil-
ity measures [3]. However, suppose we wish to both
normalize and do convex combinations. Apparently,
matters are simple:

Example 6 Consider Ω = {ω1, ω2, ω3}, α, β ∈ (0, 1),
and lexicographic probability measures LP1 and LP2:

ω1 ω2 ω3
LP1(ωi) (α)0 (1− α)0 11

ω1 ω2 ω3
LP2(ωi) (1)0 (β)1 (1− β)1

Their half-half convex combination is:

ω1 ω2 ω3
((1 + α)/2)0 ((1− α)/2)0,

(β/2)1 (1− β/2)1

As a digression: LP1 and LP2 have disjoint layers, so
they could be representations for full conditional prob-
abilities. But their convex combination is certainly
not the representation of a full conditional probability
as the supports of the layers are not disjoint. �

The convex combination of lexicographic probability
measures works perfectly if all lexicographic proba-
bility measures involved in the convex combination
have the same number of layers. But suppose that
modeling decisions have built two preference orderings
with distinct depths; what to do?

Example 7 Consider Ω = {ω1, ω2, ω3}, α, β, γ ∈
(0, 1), all distinct, and lexicographic probability mea-
sures:

ω1 ω2 ω3
LP1(ωi) (α)0, (1− α)0,

11
(γ)2 (1− γ)2

ω1 ω2 ω3
LP2(ωi) (1)0

(β)1 (1− β)1

Note that LP1 reproduces Example 1, with one addi-
tional intervening layer. In fact LP1 defines a total
order over gambles. And LP2 appeared in the previ-
ous example; for LP2 there are gambles that get zero
expectation with respect to all layers (for instance,
h(ω1) = 0, f(ω2) = 1− β, f(ω3) = −β).
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Consider LP1/2, a half-half combination of LP1 and
LP2. If we operate layer-wise,

ω1 ω2 ω3
LP1/2(ωi) (1 + α/2)0, ((1− α)/2)0,

(β/2)1 (1− β/2)1
(γ/2)2 ((1− γ)/2)2

This is not a very satisfying result as probabilities in
the last layer do not add up to one. �

One possible way to avoid the difficulties in this last
example is always represent � as a collection of total
orders, all of which have the same depth. Indeed, the
sets of lexicographic utilities by Seidenfeld et al. [31]
are explicitly built from all such total orders, hence this
sort of modeling decision makes sense conceptually.

However, there is a significant inconvenience. Suppose
we wish to represent a set of preference orderings,
some of which do display absence of preference. For
instance, the ordering generated by LP2 does display
absence of preferences (there are gambles that are
not preferred nor dispreferred to the zero gamble).
To represent such an ordering using total orders, we
may need to introduce (possibly many) layers and
measures that are apparently useless. To understand
this, consider again LP2: to represent the strict weak
order generated by LP2 using total orders, we might
use a set consisting of two lexicographic probability
measures:

ω1 ω2 ω3
LP3(ωi) (1)0

(β)1 (1− β)1
(δ1)2 (1− δ1)2

ω1 ω2 ω3
LP4(ωi) (1)0

(β)1 (1− β)1
(δ2)2 (1− δ2)2

It is particularly annoying that there is great lati-
tude in selecting the probability values: as long as
(δ1 − β)(δ2 − β) < 0, we have the desired strict weak
order collectively represented by LP3 and LP4 (and
their convex combinations, if desired). The lack of
control over the representation, given the ordering, is
apparent.

One might look for alternative approaches. For in-
stance, we might define the convex combination of two
lexicographic probability measures so that a final nor-
malization step is applied to each layer. Another pos-
sibility: adopt lexicographic “probability” measures
that are not normalized below the first layer, and allow
convex combinations without further concern. What-
ever the solution, it seems that convexity deserves

further analysis when applied to sets of lexicographic
probability measures.

To a great extent, this discussion does not affect the
theory of sets of desirable gambles. However, in prac-
tice one may be interested in representations for sets
of desirable gambles that are based on probability
values. When such representations are needed, the
challenges in mixing sets of lexicographic probabilities
and convexity are bound to surface.

5 Non-Uniqueness and Weakness

Some of the discussion in Section 3 concentrated on
the fact that, given joint probabilities, marginals may
not carry all necessary information. Now consider
the reverse situation; that is, we have marginal and
conditional lexicographic probabilities, and we wish to
construct a joint lexicographic probability measure out
of them. We find this not to be an easy problem. In
fact, matters are difficult already for full conditional
probabilities [6], as the next example shows. (Again,
we resort to subscripts to indicate layer numbers.)

Example 8 Consider two binary variables X and
Y . Suppose P(X = 0) = 1 and P(Y = 0|X = 0) =
P(Y = 0|X = 1) = 1 (that is, the conditional probabil-
ity of Y given X is actually not affected by X). The
following joint full conditional probabilities:

Y = 0 Y = 1
X = 0 10 11
X = 1 12 13

Y = 0 Y = 1
X = 0 10 12
X = 1 11 13

satisfy all marginal and conditional assessments. �

The fact that marginal and conditional assessments
cannot always uniquely characterize a joint full con-
ditional probability has been noted before [6, 18]. In
fact, one should take this phenomenon to suggest that
as long as statistical modeling employs full conditional
probabilities, one should not abide by any axiom that
enforces uniqueness of probability values.

Lexicographic probabilities suffer from the same lack
of uniqueness, only they suffer more deeply down their
layers. Consider the following example.

Example 9 Suppose we have two variables X and
Y , each with values {0, 1, 2}. Consider the following
marginal assessments

X = 0 X = 1 X = 2
(1/2)0 (1/2)0, (1/2)1 (1/2)1

and the following conditional assessments (for Y given
X)
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Y = 0 Y = 1 Y = 2
X = 0 (1/2)0 (1/2)0,

(1/2)1 (1/2)1
X = 1 (1/2)0, (1/2)0

(1/2)1 (1/2)1
X = 2 (1/2)0 (1/2)0

11

There are many possible joint lexicographic probability
measures that are compatible with these assessments.
One possibility:

Y = 0 Y = 1 Y = 2
X = 0 (1/4)0 (1/4)0, (1/4)1 (1/4)1
X = 1 (1/4)1, (1/4)0, (1/4)1, (1/4)0,

(1/4)3 (1/4)2, (1/4)3 (1/4)2
X = 2 (1/4)2 (1/2)3 (1/4)2

Another possible joint lexicographic probability mea-
sure is obtained, for instance, by exchanging the second
and third layers of this latter lexicographic probability
measure. But we can be more creative still, by adding
layers in various ways; for instance, consider the fol-
lowing joint lexicographic probability measure, with
eight layers, that satisfies all assessments. Here we use
the notation (α)i:j to indicate that value α appears
in all layers between layer i (inclusive) and layer j
(inclusive).

Y = 0 Y = 1 Y = 2
X = 0 (1/4)0:1 (1/4)0:3 (1/4)2:3
X = 1 (1/4)1, (1/4)0:7 (1/4)0, (1/4)2,

(1/4)3 (1/4)4:7
X = 2 (1/4)4, (1/2)5, (1/4)4,

(1/4)6 (1/2)7 (1/4)6

We can produce many more joint lexicographic proba-
bilities by combining marginal and conditional layers
in various ways. �

To emphasize how information is lost through marginal-
ization, consider one more example.

Example 10 Consider the following joint lexico-
graphic probability measure.

Y = 0 Y = 1 Y = 2
X = 0 10 (1/3)1 (3/8)2
X = 1 (1/6)1 (1/6)1 (1/8)2
X = 2 (1/6)1 (1/2)2 (1/2)3
X = 3 (1/6)1 (1/2)3 14

To obtain the marginal lexicographic probability mea-
sure for Y , marginalize for each layer. We get
[1, 0, 0] for the first layer, [1/2, 1/2, 0] for the second,
[0, 1/2, 1/2] for the third, [0, 1/2, 1/2] for the fourth,

and [0, 0, 1] for the fifth. Note that the third and
fourth layers collapse in the marginal; hence the “rela-
tive depth” of the fifth layer is lost.

One can interpret these facts as indicating that, once
lexicographic probabilities are adopted, uniqueness
of joint probabilities should be abandoned. So, one
should be prepared to use sets of lexicographic proba-
bilities (and the corresponding sets of desirable gam-
bles) from the outset. This is a nice thought for anyone
interested in imprecise and indeterminate probabili-
ties; however, one can also interpret these examples as
suggesting that marginalization and conditioning are
quite weak when applied to lexicographic probabilities
(and sets of desirable gambles). Consider this. If we
start with a joint lexicographic probability measure,
then its marginal and conditional probabilities contain
some useful information, but not all the information
needed to rebuild the joint. Specifically, we do not
have information concerning which layers of marginal
and conditional probabilities should be combined to-
gether to produce the joint. Similarly, if we start with
marginal and conditional lexicographic probabilities,
we do not have all the information to build a single
joint. Should we really have all this indeterminacy?

6 Independence

In this section we briefly comment on the concept of
independence in the context of lexicographic probabil-
ities. To do so, first we must agree on what “indepen-
dence” means here.

One might try to define independence by requiring the
joint to be a product of the marginals. But a little
reflection suggests this not to be easy: because a lexi-
cographic probability does not fundamentally change
if we transform linearly its layers, one can destroy an
“independence” just by rewriting its terms through
linear transformations. It seems wiser to define in-
dependence as a property of the preference orderings
that are implied by conditional and marginal probabil-
ities. This sort of definition is proposed by Blume et al.
[3]. They use conditional preferences, denoted by �A
(Section 2), as follows. Variables X and Y are indepen-
dent when we have, first, [f1(X) �{Y=y1} f2(X)] ⇔
[f1(X) �{Y=y2} f2(X)] for any f1, f2, y1, y2, and sec-
ond, the same condition with X and Y exchanged.2
A stronger condition is [7]: X and Y are independent
when [f1(X) �{Y=y} f2(X)] ⇔ [f1(X) � f2(X)] for
any f1, f2, y, and second, the same condition with X
and Y exchanged. These concepts of independence fail

2The fact that X and Y are independent does not guaran-
tee any factorization of lexicographic probabilities. Blume et
al. show that even hyperreal representations of lexicographic
probabilities fail to factorize under their definition [3].
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W = 0, Y = 0 W = 1, Y = 0 W = 0, Y = 1 W = 1, Y = 1
X = 0 (1/2)0 (1/2)0 (1)2 (1)3
X = 1 (1/2)1 (1/2)1 (1/2)4 (1/2)4

Table 2: Lexicographic probabilities in Example 11.

the Decomposition property [7]; that is, we may find
that X and (W,Y ) are independent but still X and
W are not independent. An even stronger concept of
independence has been proposed [7]: X and Y are inde-
pendent when [f1(X) �B f2(X)]⇔ [f1(X) � f2(X)]
for any f1, f2, and any set B of values of Y , and
second, the same condition with X and Y exchanged.
But this fails the Contraction property [7]: we may
have X and Y independent, and W and X indepen-
dent given any value of Y , and yet X and (W,Y ) fail
to be independent. Failure of these properties reveal
weaknesses of existing concepts and deserve further
debate. Moreover, such concepts of independence do
not guarantee a unique joint lexicographic measure
for given marginals (consider again Example 8; X and
Y are independent and there is no uniqueness). How-
ever, the purpose of this section is not to insist on
these facts, but rather to examine a point that seems
particularly hard to handle.

Example 11 Suppose we have three binary variables,
W , X and Y , and joint lexicographic probabilities in
Table 2. If we look at the marginal probabilities for
(X,Y ), we see thatX and Y are independent according
to all definitions above. Indeed, the preferences on
(X,Y ) are represented by:

Y = 0 Y = 1
X = 0 (1)0 (1)2
X = 1 (1)1 (1)3

However, there is something intuitively strange about
this independence. If we observe {Y = 0}, the differ-
ence between {X = 0} and {X = 1} is a single “jump”
between layers. We might interpret that {X = 1}
is infinitesimally smaller than {X = 0}. But given
{Y = 1}, the jump between them is twice as big as
we go down two layers of the joint distribution. The
interpretation should be that, given {Y = 1}, {X = 1}
is infinitesimally smaller than some event that is in-
finitesimally smaller than {X = 0}. In a sense, one
feels that the marginal for (X,Y ) should be

Y = 0 Y = 1
X = 0 (1)0 (1)2
X = 1 (1)1 (1)4

Now if all we had were these marginal lexicographic
probabilities, it would be difficult to argue that X and

Y should be considered independent, because there
are different jumps given distinct conditioning events.
But lexicographic probabilities do not let us keep the
jumps between layers intact. In fact there seems to be
no way to extract such differences in relative depth of
layers by looking at preferences that only involve X
and Y ; by the same token, there seems to be no way
to extract such differences from the corresponding set
of desirable gambles. �

7 Discussion

This paper discussed properties of sets of lexicographic
probability measures and sets of desirable gambles.
Most of the discussion actually dealt with lexicographic
probabilities and sets of them. However, any conclu-
sions we reach for these objects should be easily trans-
ferred to the equivalent language of sets of desirable
gambles. Even though sets of desirable gambles avoid
some of the non-uniqueness inherent to lexicographic
probabilities, most examples in this paper could also
be expressed through sets of desirable gambles. More-
over, even if one wishes to focus on sets of desirable
gambles, at some point their natural representation
as lexicographic probabilities must be considered, and
then the features of lexicographic probabilities must
be properly understood.

In many ways, sets of desirable gambles offer an at-
tractive formalism to handle uncertainty. We basically
have to deal with cones of gambles; these are linear
structures with clear geometric appeal. But this sim-
plicity may be illusory; even though the geometry
is simple, matters get complicated when we wish to
represent in detail operations such as marginalization
and conditioning. By playing with sets of desirable
gambles and sets of lexicographic probabilities, we can
better understand both operations.

To summarize, we have started by emphasizing the link
between lexicographic probabilities and sets of desir-
able gambles. We have then examined the connection
between lexicographic probabilities and full conditional
probabilities; this connection seems to be weaker than
sometimes assumed in the literature. We have em-
phasized the fact that modeling with full conditional
probabilities and lexicographic probability measures
leads one to deal with non-uniqueness of probability
values. The move to non-uniqueness led us to con-
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sider differences between full conditional probabilities
and lexicographic probabilities concerning convexity.
And we have examined some challenges in interpret-
ing independence for lexicographic probabilities (and
consequently for sets of desirable gambles).
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Abstract
A credal network associates a directed acyclic graph
with a collection of sets of probability measures. Usu-
ally these probability measures are specified through
several tables containing probability values. Here
we examine the complexity of inference in Boolean
credal networks when probability measures are speci-
fied through formal languages, by extending a frame-
work we have recently proposed for Bayesian networks.
We show that sub-Boolean and relational logics lead
to interesting complexity results. In short, we explore
the relationship between language and complexity in
credal networks.

Keywords. Credal networks, Propositional logic, Re-
lational logic, Complexity, Data complexity.

1 Introduction

A credal network represents a set of probability distri-
butions through a directed acyclic graph and an associ-
ated set of “local” credal sets [1, 6]. Usually these local
credal sets are specified using tables containing proba-
bility values, possibly with some additional constraints
between them. In practice, any elicitation strategy
must adopt some specification language in which to
encode probability assessments. For instance, one may
allow inequalities such as P(A) ≥ 1/2, or perhaps
interval-valued assessments such as P(A) ∈ [3/5, 7/10];
of course, one may have a specification language with
propositions and Boolean operators, or even relations
and quantifiers.

In this paper we study properties of credal networks as
parameterized by specification languages. We look at
the balance of expressivity for specification languages
and the complexity of inferences. We concentrate
on Boolean variables, and focus on a particular se-
mantics for credal networks (the semantics of “strong
extensions”). To investigate the interplay between
expressivity and complexity, we extend a framework

we have recently developed to study the complexity of
Bayesian networks [9].

We start with some necessary background in Section 2.
We discuss our framework in Section 3, in particular
looking at propositional languages. Sections 4 and 5
examine relational languages.

2 Credal networks and their strong
extensions

In this paper every possibility space Ω is finite; a
random variable is simply a function from Ω into the
reals, and we consider only random variables taking
on two values, 1 (meaning “true”) and 0 (meaning
“false”). A set of probability measures is called a
credal set [18]. We abuse language by referring to
sets of probability distributions, and also to sets of
probability mass functions, as credal sets. A set of
distributions for a variable X is denoted by K(X).
Given a credal set, for any event A we have its lower
and upper probabilities, denoted by P(A) and P(A)
respectively: P(A) = inf P(A) and P(A) = supP(A).
In this paperW , X, Y and Z denote random variables,
while A and B denote events or propositions.

A conditional credal set is obtained by applying Bayes
rule to each possible distribution in a credal set; we
also refer to sets of conditional distributions and con-
ditional mass functions as conditional credal sets. We
adopt regular conditioning; that is, K(X|A) is the set
of all conditional distributions that are obtained from
distributions such that P(A) > 0 [30]. We denote by
K(X|Y ) the set containing a credal set K(X|Y = y)
for each possible value of Y . The sets K(X|Y ) are
separately specified when there is no constraint on
the conditional set K(X|Y = y1) that is based on the
properties of K(X|Y = y2), for any y2 6= y1. For
events A and B, we define lower and upper condi-
tional probabilities: P(A|B) = infP:P(B)>0 P(A|B) and
P(A|B) = supP:P(B)>0 P(A|B).
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Given some marginal and conditional credal sets, an
extension of these sets is a joint credal set with the
given marginal and conditional credal sets.

A credal network consists of a directed acyclic graph
where each node is a random variable Xi, together
with a set of constraints on probability values. The
graph is assumed to encode independence relations
amongst variables, and the constraints convey the
probabilistic assessments. The independence relations
are given by a Markov condition, soon to be explained.
Such a structure is useful as a representation for be-
liefs, opinions, and statistical summaries that may be
available when modeling a particular problem. For
instance, suppose we have five variables, representing
say economic indicators:

X1 X2 X3

X4 X5

Here we have that X1 and X2 are parents of X4; like-
wise, X3 and X4 are parents of X5. The parents of
Xi are denoted by pa(Xi). The meaning of the graph
is conveyed by the Markov condition: every Xi is in-
dependent of its nondescendants nonparents given its
parents. So, X5 is independent of X1 and X2 given X3
andX4. Hence by drawing the graph we are expressing
our belief that, conditional on X3 and X4, no infor-
mation about X1 and X2 can change our assessments
on X5.

To continue the example, we may have some con-
straints on probabilities. Even though one is
free to impose say P(X1 = 0|X4 = 1) ≥ 2/3 and
P(X3 = 1 ∧X2 = 0) ≤ 1/2, usually applications con-
strain assessments to a few simple forms [1, 6]. Typi-
cally we have each variable Xi associated with sepa-
rately specified sets K(Xi|pa(Xi)). When every credal
set K(Xi|pa(Xi) = π) is a singleton, the resulting
model is equivalent to a Bayesian network.

Once assessments are given, we can construct their
joint extension; that is, we can construct a credal
set consisting of those joint distributions that satisfy
the assessments. We have some freedom here, for
we can interpret the “independence relations” in the
Markov condition in various ways. There are sev-
eral concepts of independence that apply to credal
sets [7]; we might for instance consider extensions
that interpret the Markov condition through epis-
temic irrelevance [11]. In this paper we adopt the
most common concept of independence for credal sets;
namely, we adopt strong independence: X and Y are
strongly independent given Z if K(X,Y |Z = z) is the

convex hull of a set of distributions that factorize;
that is, if any p(X,Y |Z = z) in this latter set satisfies
p(X,Y |Z = z) = p(X|Z = z) p(Y |Z = z).

We are always interested in the largest extension
that satisfies given assessments and independence re-
lations. We refer to such extensions, when strong
independence is adopted, as strong extensions. Our
results are also valid if one adopts complete in-
dependence, provided one always keeps the inter-
est in the largest possible extension: X and Y
are completely independent given Z if any proba-
bility mass p(X,Y |Z = z) in K(X,Y |Z = z) satisfies
p(X,Y |Z = z) = p(X|Z = z) p(Y |Z = z). To simplify
the presentation, we focus only on strong independence
and strong extensions.

Given a credal network (graph and assessments) and its
resulting extension, we are interested in computing con-
ditional upper probabilities such as P(X1 = 0|X2 = 1).

3 A Framework for Complexity
Analysis

We now extend a framework for complexity analysis
that we have recently developed for Bayesian net-
works [9], so as to include probability intervals. The
basic idea is to restrict assessments to two simple forms
that are inspired by probabilistic rules [22, 26] and
structural models [21]. The framework lets one move
down to sub-Boolean constructs and up to relations
and quantifiers. In the context of credal networks
and strong extensions, our framework is valuable as
it imposes some regularity into the specification, for
instance automatically implying that all local credal
sets are separately specified. So, it offers a combina-
tion of flexibility and restraint that should be useful
in practical elicitation scenarios.

We will refer to existing complexity classes in our re-
sults. To recap, the class PP consists of those problems
that can be solved by a nondeterministic polynomially-
bounded Turing machine where the acceptance condi-
tion is that more than half of computation paths accept
[20]. And NPPP consists of those problems that can be
solved by a nondeterministic polynomially-bounded
Turing machine with an oracle that solves PP deci-
sion problems [19]. In proofs we use reductions from
E-MAJSAT, an NPPP-complete problem [19]. The
E-MAJSAT decision problem is: given a pair (φ, k)
where φ is a Boolean sentence with n propositions,
and k ∈ [1, n] is an integer, is there an assignment
of the first k propositions such that the majority of
assignments to the remaining propositions satisfies φ?

Returning to the specification framework: Consider a
set of atomic propositions, A1, . . . , An, and take the
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X1

X2 X3

X4 X5

P(X1 = 1) ≥ 1/2
P(X2 = 1) ∈ [1/4, 1/3] P(X3 = 1) = 1/5

X4 ⇔ X1 ∧X2 X5 ⇔ X3 ∧X4

Figure 1: A simple credal network.

set Ω of 2n truth assignments. Associate a binary
variable Xi with atomic proposition Ai, such that
Xi(ω) = 0 when Ai is false, and Xi(ω) = 1 when
Ai is true, for ω ∈ Ω. Our credal networks are to be
specified over X1, . . . , Xn; to simplify the presentation,
we equate atomic propositions and their associated
variables. That is, we write propositional sentences
containing variables and their assignments, and we
write probabilities for propositional sentences.

We assume that a directed acyclic graph is given, where
each node is a variable X, and that each variable X
is associated with either:

• an equivalence X ⇔ F (Y1, . . . , Ym), or

• a probabilistic assessment P(X = 1) ∈ [α, β],

where F is a formula on propositions Y1, . . . , Ym that
are parents of X, and where α and β are nonnega-
tive rationals in [0, 1]. We call the former a logical
assessment, and the latter a probabilistic assessment.

By adopting this restricted syntax, the graph is ac-
tually redundant. One can simply give a set of as-
sessments, and as long as there are no cycles in the
specification, the graph can be then constructed out
of the assessments.

Note that we avoid direct assessments of conditional
probability. First, such an assessment may essen-
tially create negation (by imposing P(X = 1|Y = 1) =
P(X = 0|Y = 0) = 0); we wish to control the use of
negation. Second, by avoiding conditional probabili-
ties we do not need to start by discussing conditioning
on events that can have probability zero, a discussion
that is always difficult for the novice [8].

To illustrate the framework, consider the specification
in Figure 1. One might interpret this network as
follows: X4 is a health condition that is identified with
the conjunction of two risk factors, and X5 is an illness
that depends probabilistic on X4, with X3 acting as
“inhibitor”.

The strong extension of this credal network is sim-
ply the convex hull of all extreme Bayesian networks,
where an extreme Bayesian network is obtained by

taking extreme (upper or lower) probabilities [12, 13].
Hence we have eight possible configurations of vari-
ables, and four extreme joint probability distributions.
For instance, one such distribution assigns probability
1/2 to {X1 = 1} and probabilty 1/4 to {X2 = 1}, while
another distribution assigns probability 1 to {X1 = 1}
and probability 1/4 to {X2 = 1}.
Denote by C(L) the set of credal networks that can be
produced through the framework above, with formulas
F from a language L (a language L is simply a set of
well-formed formulas). Then INFd(L) denotes the set
of decision problems that yield YES if P(Q|E) > γ for
an assignment Q, a conjunction E of assignments, a
rational γ ∈ [0, 1], and a credal network in C(L), and
NO otherwise [10]. The set E is the evidence; we focus
only on conjunctions of assignments, and leave for the
future the study of more general languages in which to
express evidence. To simplify the statement of some
results, we denote by INFd

+(L) the decision problems
defined as in INFd(L), with the additional constraint
that all assignments are “positive” (that is, variables
are only set to true).

Denote by Prop(∧,¬) the language of well-formed
propositional sentences with conjunction and negation.
First note that Prop(∧,¬) can specify any distribution
over variables X1, . . . , Xn that can be specified by a
Bayesian network over these variables. To see why,
suppose we have a Bayesian network over X1, . . . , Xn.
Consider first a variable X with two parents Y1 and
Y2. Impose:

X ⇔ (¬Y1 ∧ ¬Y2 ∧ Z00) ∨ (¬Y1 ∧ Y2 ∧ Z01)∨
(Y1 ∧ ¬Y2 ∧ Z10) ∨ (Y1 ∧ Y2 ∧ Z11) ,

where Zab are fresh binary variables (that do not
appear anywhere else), associated with assessments
P(Zab = 1) = P(X = 1|Y1 = a, Y2 = b). Obviously we
can always produce disjunction using conjunction and
negation, so ∨ appears as syntactic sugar in this latter
expression. Now for a variable X with many parents,
we just repeat this structure, by taking into account
any possible configuration of parents. The marginal
distribution of X1, . . . , Xn is exactly the distribution
specified by the original Bayesian network.

By allowing interval-valued assessments in our frame-
work, we obtain a similar result for credal networks:
Prop(∧,¬) allows us to specify any (separately speci-
fied) strong extension over variables X1, . . . , Xn. To
see why, suppose we have a separately specified credal
network over X1, . . . , Xn. Consider again a vari-
able X with two parents Y1 and Y2, and suppose
K(X|Y1, Y2) is such that each K(X|Y1 = a, Y2 = b)
has two extreme points, p0(X|Y1 = a, Y2 = b) and
p1(X|Y1 = a, Y2 = b). Introduce fresh variables Wab
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and Zabc, and let

X ⇔
∨

a∈{0,1}
b∈{0,1}
c∈{0,1}

(Y1 = a)∧(Y2 = b)∧(Wab = c)∧(Zabc = 1),

and assessments P(Zabc = 1) = pc(X = 1|Y1 = a, Y2 =
b) and P(Wab = 1) ∈ [0, 1]. This encodes the desired
local, separately specified, credal sets. The idea is
that a and b select a particular configuration of Y1 and
Y2, while c selects a particular extreme point of the
corresponding local credal set (and then Zabc carries
the appropriate probability value). By repeating this
structure to take into account any configuration of
parents of X, we construct a joint credal set whose
marginal is the strong extension of the original credal
network (note that we may have to use additional
variables with the same role as Wab, in case we have
more than two extreme points per credal set).

Given the generality of Prop(∧,¬), we have that
INFd(Prop(∧,¬)) is NPPP-complete [10]. Now consider
a more restricted language: denote by Prop(∧, (¬)) the
language that uses only conjunction and atomic nega-
tion (defined as negation that can appear only before
a proposition that is associated with a probabilistic
assessment). Note that the credal network in Figure
1 belongs to C(Prop(∧, (¬))). We know that inference
within Prop(∧, (¬)) for Bayesian networks is polyno-
mial as long as evidence is “positive” [9]. Somewhat
surprisingly, this result applies to credal networks:

Theorem 1 INFd
+(Prop(∧, (¬))) can be solved in

polynomial time.

Proof. Consider first a network with just conjunction,
and consider a query Q = {XQ = 1}. Note first that
if a node X appears in Q or in E, then its ascendants
must all be set to true. So we first add to E all
ascendants of nodes originally in E; also, if a node has
all parents set to true, then it must be true and can
be added to E, so we repeat this until no more nodes
can be added to E. Now if any descendant of XQ is in
the evidence, then XQ is necessarily true, so we have
P(Q|E) = P(Q|E) = 1. So, either we have evidence
assigned to a descendant of XQ, and then the solution
is immediate, or all descendants are barren nodes that
can be discarded. So, to proceed we suppose that XQ

has no descendants. Now continue by d-separation.
Collect all nodes that are ascendants of XQ; these are
d-connected to XQ. Now suppose one of these nodes,
say W , points both to an ascendant of XQ, and to a
non-ascendant, say Y , of XQ. Now if Y is not in E,
then it is a barren node that must be discarded. And
if Y is in E, then W itself must be in E, hence Y is
to be discarded. For instance, consider Figure 2, and
suppose {Y = 1} is the evidence. Then W , Z and W ′

XQ

X1

X2 X3 W ′

W

Y

Z

Figure 2: Network in Theorem 1.

are set to true, and we can discard them, as the path
emanating from XQ through W is blocked. Once we
have discarded all nodes that are not required for our
computation, we are left with an “inverted” tree whose
root is XQ, and where each leaf is either a node set to
true, or a node associated with a probability interval.
Denote by X1, . . . , Xm the nodes that are not set to
true in this tree; we can then writeXQ ⇔ X1∧· · ·∧Xm.
So we have P(XQ|E) =

∏m
i=1 P(Xi); in fact, we also

have that P(XQ|E) =
∏m

i=1 P(Xi). To complete the
proof, suppose that atomic negation is allowed, so
some variables appear negated. We can run the same
procedure already described, with the novelty that we
cannot have X ∧ ¬X in the final expression (if that
happens, the evidence is inconsistent). �
It seems unlikely that polynomial-time inference can be
obtained with other languages for Boolean credal net-
works, as several simple changes to Prop(∧, (¬)) move
us into higher complexity.1 Consider: even though
INFd

+(Prop(∧, (¬))) belongs to P, INFd(Prop(∧, (¬)))
does not (as it is PP-hard already when all proba-
bility intervals are singletons [9]). Also, if we move
from INFd

+(Prop(∧, (¬))) to INFd
+(Prop(∧,¬)), then

clearly we obtain NPPP-completeness. Finally, we
might move to INFd

+(Prop(∧,∨, (¬))) by adding dis-
junction. In doing so, again we move away from
polynomial-time behavior, as the following result
shows.

Theorem 2 INFd
+(Prop(∧,∨, (¬))) is NPPP-com-

plete.

Proof. Consider an E-MAJSAT problem specified by
(φ, k). We can code φ in CNF within Prop(∧,∨, (¬)).
For a given k, we can associate the first k variables
Xi with assessments P(Xi) ∈ [0, 1], and the remaining
variables Xj with assessments P(Xj) = 1/2. We can
then produce a network where each proposition is a
root node, and all other nodes are either conjunctions
or disjunctions of their parents. This network has size
polynomial on the input. Denote by Q an assignment

1But note that if network topology is constrained to polytrees,
then polynomial behavior is obtained by the 2U algorithm
[13]. Hence, by suitably restricting the topology, we still get
tractability.
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for the leaf node that yields the final conjunction in
the CNF. By deciding whether P(Q) > 1/2, we solve
the E-MAJSAT problem. �
To close this section, we comment on an additional
type of assessment that one might allow, namely, as-
sessments where material implication is used instead
of equivalence. For instance, suppose that in our pre-
vious example we change the logical assessment for X5
to

X5 ← X3 ∧X4.

A sensible semantics here might be to consider every
possible probability measure compatible with this log-
ical constraint; that is, the assessment should mean
P(A5|A3 ∧A4) = 1 and P(A5|¬(A3 ∧A4)) ∈ [0, 1].
This suggests that if we are willing to contemplate
assessments based on material implication, we should
be willing to entertain interval probabilities from the
outset. We leave such a discussion for the future,
noting here that existing languages such as Poole’s
Independent Choice Logic (ICL) [23] do have mate-
rial implication in the syntax, but often adopt special
semantics to guarantee sharp probabilities.

4 Relational Credal Networks

Many phenomena in real life depict repetitive pat-
terns. For instance, social networks involve many
individuals, several of which may share common char-
acteristics. Epidemiological events may also bring
together similar individuals; temporal sequences mod-
eled by hidden Markov models often display similarities
across time steps. There are indeed several formalisms
that capture repetition in Bayesian network fragments
[15, 16, 24, 25]. The simplest strategy is to allow ran-
dom variables to be parameterized; for instance, we
might extend the specification in the previous section
as follows:

P(X1(x) = 1) ≥ 1/2, (1)
P(X2(x) = 1) ∈ [1/4, 1/3], (2)

P
(
X3(x, y) = 1

)
= 1/5, (3)

X4(x)⇔ X1(x) ∧X2(x), (4)
X5(x, y)⇔ X3(x, y) ∧X4(x). (5)

At this point we can simply refer to x, y, . . . as log-
ical variables, and to X1(x), X2(x), X3(x, y) as rela-
tions. Again we write sentences that mix variables and
Boolean operators. We say that X(x1, . . . , xk), where
each xi is either a logical variable or an individual, is
an atom. An atom with no logical variable is a ground
atom.

We can then extend our specification framework as
follows.

We assume that a directed acyclic graph is given, where
each node is a relation, and that every k-ary relation
X is associated with either:

• a logical assessment

X(x1, . . . , xk)⇔ F (x1, . . . , xk, Y1, . . . , Ym),

where F is a formula with free logical variables
x1, . . . , xk, and possibly with other logical vari-
ables that are bound, and where each Yi is either
a relation or an individual; or

• a probabilistic assessment

P(X(x1, . . . , xk) = 1) ∈ [α, β],

where α and β are nonnegative rationals in [0, 1].

We assume that our languages consist of subsets of
function-free first-order logic (referred to as FFFO).
Hence we allow existential and universal quantifiers in
our syntax.

Concerning the semantics, as often happens when
one moves from sharp to interval probabilities, there
is more than one way to interpret assessments. In
our setting, there are two sensible semantics for well-
formed specifications, as we now discuss.

We assume that we have a set D, the domain. In
this paper every domain is finite, with N elements.
Every individual refers to an element of the domain.
We will always adopt the rigidity assumption that
is common in probabilistic logic [3]; that is, we will
always assume that the interpretation of individuals
is constant across interpretations for a fixed domain.
That is, the individual Ann is always mapped to the
same element of D, whatever the interpretation of
relations. Hence our individuals can be identified
with elements of the domain, and given labels such as
1, 2, . . . , N .

For instance, suppose we take assessments (1)–(5), and
a domain with two individuals, say Ann and Bob, re-
spectively denoted by a and b. We have several ground
atoms: X1(a), X1(b), X2(a), X2(b), X3(a, a), X3(a, b),
and so on. Consider a graph where each ground atom
is a node, and where an edge is inserted between two
nodes if an edge was present between the relations. In
our example, we obtain the graph in Figure 3. Note
that grounding produced two disjoint graphs in this
case. However, suppose we keep assessments (1)–(4),
but we turn X5 into a unary relation such that:

X5(x)⇔ ∀y : X3(x, y) ∧X4(y). (6)

Then grounding takes us to Figure 4.
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X1(a)

X2(a)

X3(a, a) X3(a, b)

X4(a)

X5(a, a)

X5(a, b)

X1(b) X2(b)

X3(b, a) X3(b, b)

X4(b)

X5(b, a)

X5(b, b)

Figure 3: Grounding assessments (1)–(5) with respect
to domain D = {a, b}.

X1(a)

X2(a)

X3(a, a) X3(a, b)

X4(a) X5(a)

X1(b) X2(b)

X3(b, a) X3(b, b)

X4(b) X5(b)

Figure 4: Grounding assessments (1)–(4) and (6) with
respect to domain D = {a, b}.

So far, our procedure to produce a single grounded
graph out of the logical assessments and a fixed domain
seems uncontroversial. Now consider the probability
assessments; for instance, take

P(X1(x)) ∈ [1/2, 1].

What does it mean? Does it mean that

• for each γ ∈ [1/2, 1],

∀x ∈ D : P(X1(x)) = γ

is a possible assessment, or that

• for each x ∈ D,

P(X1(x)) = γ

is a possible assessment for each γ ∈ [1/2, 1]?

The difference between these two interpretations is sub-
stantial, even though both share the same grounded
graph (for given N). In the first interpretation the
assessments are viewed as a set of relational Bayesian
networks. That is, each selection of probability val-
ues defines a relational Bayesian network, that itself
can be grounded into a Bayesian network given a
domain. For assessments (1)–(5), we have 4 extreme
Bayesian networks that are generated given D = {a, b};
we have for instance an extreme Bayesian network
where P(X1(a)) = P(X1(b)) = 1/2, and also we have
a Bayesian network where P(X1(a)) = P(X1(b)) = 1

(but we do not have P(X1(a)) = 1/2 and P(X1(b)) =
1). In the second interpretation the assessments di-
rectly yield a credal network with separately specified
local credal sets. In our example, the latter semantics
yields grounded assessments

P(X1(a) = 1) ≥ 1/2,P(X2(b) = 1) ≥ 1/2,

P(X2(a) = 1) ∈ [1/4, 1/3], . . . ,P(X3(b, b) = 1) = 1/5,
and there are 16 extreme Bayesian networks given
D = {a, b}.
We will refer to a set of well-formed assessments as
a relational credal network. When the first semantics
is adopted, we say that the relational credal network
has coupled parameters; when the latter semantics
is used, we say the relational network has decoupled
parameters. To simplify the language, we often refer
to coupled relational credal networks and decoupled
relational credal networks.

5 The Complexity of Relational
Languages

We can now consider inference problems for selected
relational languages L. The input to our inference
problems is a relational credal network, evidence, and
the size of the domain, denoted by N . We assume
that the arity of all relations is bounded.

Domain size N can be given either in binary or unary
encoding. In computational terms, binary encoding
for N implies that almost every calculation requires
exponential effort (as there may be exponentially long
numbers in the output) [9]. For this reason, it makes
sense to assume that N is specified in unary notation.
So, we denote by INFd(L) and by INFd

+(L) respec-
tively the decision problems for language L, as before,
for unary N , where the query Q is an assignment to a
grounded atom, and evidence E is a set of assignments
for grounded atoms (evidence is understood as the
conjunction of those assignments). Recall that all re-
lations have bounded arity (and the bound is known).
Note that for relatively simple languages we already
have NPPP-complete inference, from the results for
propositional languages (Section 3).

Consider then function-free first-order logic (we refer
to it by FFFO). The following result is not surprising:

Theorem 3 INFd
+(FFFO) is NPPP-complete both for

decoupled and for coupled relational credal networks.

Proof. For pertinence, ground the relational credal net-
work into a credal network specified using Prop(∧,¬).
Inference in the grounded credal network is a NPPP-
complete problem. For hardness, note that a domain
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with a single individual can already define an arbitrar-
ily complex credal network. �
To obtain more insightful results concerning complex-
ity, we have previously proposed an analysis with
respect to data complexity and to domain complex-
ity [9]. We have started such an analysis for relational
Bayesian networks, and we now present results for
relational credal networks.

We refer to the complexity of computing a conditional
probability, given a relational credal network, evidence
(a set of assignments), and an integer N (the size of the
domain in unary notation), as the combined complexity.
Theorem 3 deals with combined complexity. We refer
to the complexity of computing a conditional probabil-
ity, for a fixed relational network, when evidence and
N are inputs, as the data complexity. And we refer to
the complexity of computing a conditional probability,
for a fixed relational network and fixed evidence, when
N is the input, as the domain complexity.2

When we focus on relational Bayesian networks, the
data complexity of FFFO is PP-complete [9]. So the
combined and data complexities are identical for re-
lational Bayesian networks as far as first-order logic
is concerned. For relational credal networks the data
complexity depends on the semantics, as we now show:
as often happens when one moves from sharp to inde-
terminate probabilities, concepts that collapse in the
former case do not collapse in the latter case, and we
must deal with more nuanced scenarios.

We use DINFd(L) to indicate the data complexity of re-
lational credal networks specified through language L.
We can state our main results:

Theorem 4 DINFd(FFFO) is NPPP-complete for de-
coupled relational credal networks.

Proof. For decoupled relational credal networks, perti-
nence to NPPP is easy (even the combined complexity is
in NPPP by Theorem 3). To prove hardness, we adapt
the proof for a similar result for Bayesian networks [9].
Take an E-MAJSAT problem with pair (φ, k), where
φ is in CNF with m clauses, each one of them with
three literals (for each clause, we refer to the “left”
literal, the “middle” literal, and the “right” literal).
Suppose propositions are A1, . . . , An. If the number
of clauses m is smaller than n, then add trivial clauses
such as A1 ∨ A1 ∨ ¬A1 until m = n. These clauses
do not change the output of MAJSAT. If instead
n < m, then add fresh propositions An+1, . . . , Am.
These propositions do not change the output of MAJ-

2Data and domain complexity are respectively related to
the existing notions of lqe-liftability and liftability [17, 28];
lqe-liftability means that data complexity is polynomial, and
liftability means that domain complexity is polynomial.

SAT. Introduce unary relations sat(x) and choice(x);
impose P(sat(x)) = 1/2, P(choice(x)) ∈ [0, 1]. The
idea is that sat(x) refers to proposition Ax for x ∈
{k + 1, . . . , n}, while choice(x) refers to proposition
Ax for x ∈ {1, . . . , k}. Introduce binary relations
auxsat

ij (x, y) and auxchoice
ij (x, y), where i can be either

left, middle, and right, while j can be either + or
−. Adopt P

(
auxsat

ij (x, y)
)

= P
(

auxchoice
ij (x, y)

)
= α for

some α ∈ (0, 1); the specific value of α will not matter.
To be concrete, adopt α = 1/2. Also, introduce aux-
iliary relations literali(x) where i can be left, middle,
right. Impose

literali(x)⇔ (∃y : auxsat
i+(x, y) ∧ sat(y))

∨ (∃y : auxsat
i−(x, y) ∧ ¬sat(y))

∨ (∃y : auxchoice
i+ (x, y) ∧ choice(y))

∨ (∃y : auxchoice
i− (x, y) ∧ ¬choice(y)).

Introduce unary relation clause(x) and impose

clause(x)⇔ literalleft(x)∨ literalmiddle(x)∨ literalright(x).

Finally, introduce query and

query⇔ ∀x : clause(x).

Take N = n; given our previous discussion we have
n = m. Individuals are referred as {1, . . . , N} and
have a dual purpose, indexing both propositions and
clauses.

Take evidence E as follows. For the ith clause, suppose
the left literal is Aj . If j > k, set auxsat

left+(i, j) to
true, and all other auxsat

left+(i, y) to false; also set all
auxsat

left−(i, y) to false, all auxchoice
left+ (i, y) to false, and all

auxchoice
left− (i, y) to false. If instead i ≤ k, set auxchoice

left+ (i, j)
to true, and all other auxchoice

left+ (i, y) to false; also set all
auxchoice

left− (i, y) to false, all auxsat
left+(i, y) to false, and all

auxsat
left−(i, y) to false.

Suppose instead that for the ith clause the left literal
is ¬Aj ; follow the previous paragraph, but exchange +
and −. Repeat similarly for middle and right literals,
but using middle and right as appropriate. Finally,
decide whether P(query(1) = 0) > 1/2. If YES, the E-
MAJSAT problem is accepted, if NO, it is not accepted.
Hence we have the desired reduction. �

Theorem 5 DINFd(FFFO) is PP-complete for cou-
pled relational credal networks.

Proof. For coupled relational credal networks, PP-
hardness is obtained by encoding any E-MAJSAT
problem with k = 0 in the previous proof, and noting
that MAJSAT is a PP-complete problem [27]. To
prove pertinence to PP, we will use the fact that PP is
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closed under union, a celebrated result in complexity
theory [4]. Take a fixed relational credal network and
note that there is a fixed number (possibly large) of
relational Bayesian networks that can be generated
by selecting each one of the possible endpoints of
probability intervals. Each one of these M relational
Bayesian networks specifies a set of strings, consisting
of those strings containing N and associated evidence,
such that the inference problem yields YES if a string
is accepted. That is, we have M sets of accepted
strings, and our problem is: given a string with N and
evidence, accept it if any one of thoseM sets of strings
contains it. But note that each set of strings defines
a PP decision problem (the problem of accepting the
strings), as each relational Bayesian network can be
grounded into a polynomially larger Bayesian network,
and inference can be conducted in the latter network.
So our main problem is to consider a set of strings
that is the union of the M set of strings; because PP
is closed under union, the main problem is in PP as
well. �
As noted previously, PP is the class of problems that
can be solved by “majority” Turing machines with a
polynomial bound; they are usually related to count-
ing problems [20]. And NPPP is the class of problems
that can be solved by a nondeterministic Turing ma-
chine with a polynomial bound, with the “help” of an
oracle that returns the solution PP given problems.
Intuitively, we should expect the latter problems to be
significantly more taxing than the former (but current
literature does not seem to have a result on whether
they are different or not).

6 Conclusion

We have explored the balance of expressivity and com-
plexity in Boolean credal networks. We have recently
proposed a framework for such an analysis, geared
to Bayesian networks [9]; this paper is a first step in
extending the framework to credal networks.

We have discussed both propositional and relational
languages, and for relational languages we have studied
combined and data complexities. Theorem 1 reveals a
class of credal networks that admits polynomial infer-
ence, a property shared by few other classes [10]; the
result is surprising in that it reproduces the polyno-
mial character of Bayesian networks under the same
language. And in the opposite direction, Theorems 4
and 5 show distinctions between Bayesian and credal
networks, as in the latter there is more than one rea-
sonable semantics to choose from, and the choice does
have an impact on complexity. Surprisingly, for cou-
pled relational credal networks the data complexity is
identical to the data complexity of relational Bayesian

networks.

Perhaps the most compelling aspect of our frame-
work is the number of questions it raises. Consider
a simple fact. It is usually assumed that one can
arbitrarily choose between computing an upper or
a lower probability, as they are directly related by
P(A|B) = 1 − P(Ac|B) [29]. But if a language does
not have negation, it may not be possible to formulate
P(Ac|B) as a query, and it may then be harder to
produce a lower probability than an upper probability.
This sort of phenomena can only be explored when we
pay attention to languages. In fact, the key difference
between Bayesian and credal networks is the language
that is used to express assessments.

There are many languages to explore concerning the
complexity of credal networks. There are several frag-
ments of function-free first-order logic that are widely
used, such as monadic logic [5]; there are guarded
fragments and description logics such as DL-Lite, EL,
ALC [2]; there are also languages based on second-
order logic and various modal logics. For all these
logical languages, one can ask combined and data
complexity, not only for inference, but also for other
problems of common interest such as maximum a pos-
teriori configurations (MAP). All such problems await
detailed investigation.
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Abstract
We prove a game-theoretic version of the strong law of
large numbers for submartingale differences, and use this
to derive a pointwise ergodic theorem for discrete-time
Markov chains with finite state sets, when the transition
probabilities are imprecise, in the sense that they are only
known to belong to some convex closed set of probability
measures.

Keywords. Imprecise probabilities, lower expectation,
pointwise ergodic theorem, imprecise Markov chain, game-
theoretic probability

1 Introduction

In Ref. [2], de Cooman and Hermans made a first attempt
at laying the foundations for a theory of discrete-event (and
discrete-time) stochastic processes that are governed by sets
of, rather than single, probability measures. They showed
how this could be done by connecting Walley’s [1991] the-
ory of coherent lower previsions with ideas and results from
Shafer and Vovk’s [2001] game-theoretic approach to prob-
ability theory. In later papers, de Cooman et al. [5] applied
these ideas to finite-state discrete-time Markov chains, in-
spired by the work of Hartfiel [6]. They showed how to
do efficient inferences in, and proved a Perron–Frobenius-
like theorem for, so-called imprecise Markov chains, which
are finite-state discrete-time Markov chains whose trans-
ition probabilities are imprecise, in the sense that they are
only known to belong to a convex closed set of probability
measures—typically due to partial assessments involving
probabilistic inequalities. This work was later refined and
extended by Hermans and de Cooman [7] and Škulj and
Hable [15].

The Perron–Frobenius-like theorems in these papers give
equivalent necessary and sufficient conditions for the un-
certainty model—a set of probabilities—about the state Xn
to converge, for n→ +∞, to an uncertainty model that is
independent of the uncertainty model for the initial state
X1.

In Markov chains with ‘precise’ transition probabilities, this
convergence behaviour is sufficient for a pointwise ergodic
theorem to hold, namely that:

lim
n→+∞

1
n

n

∑
k=1

f (Xk) = E∞( f ) almost surely

for all real functions f on the finite state set X , where
E∞ is the limit expectation operator that the expectation
operators En for the state Xn at time n converge to pointwise,
independently of the initial model E1 for X1, according to
the classical Perron–Frobenius Theorem.1

The aim of the present paper is to extend this result to a
version for imprecise Markov chains; see Theorem 11.

How do we mean to go about this? In Section 2, we explain
what we mean by imprecise probability models: we extend
the notion of an expectation operator to so-called lower (and
upper) expectation operators, and explain how these can
be associated with (convex and closed) sets of expectation
operators.

In Section 3, we explain how these generalised uncertainty
models can be combined with event trees to form so-called
imprecise probability trees, to produce a simple theory of
discrete-time stochastic processes. We show in particular
how to combine local uncertainty models associated with
the nodes in the tree into global uncertainty models (global
conditional lower expectations) about the paths in the tree,
and how this procedure is related to sub- and supermartin-
gales. We also indicate how it extends and subsumes the
(precise-)probabilistic approach.

In Section 4 we prove a very general strong law of large
numbers for submartingale differences in our imprecise
probability trees. Our pointwise ergodic theorem will turn
out to be a consequence of this in the particular context of
imprecise Markov chains. We briefly explain what impre-
cise Markov chains are in Section 5: how they are special

1Actually, much more general results can be proved, for functions f
that do not depend on a single state only, but on the entire sequence of
states; see for instance Ref. [8, Chapter 20]. In this paper, we will focus
on the simpler version.
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cases of imprecise probability trees, how to do efficient
inference for them, and how to define Perron–Frobenius-
like behaviour. We also explore the influence of time shifts
on the global (conditional) lower expectations, and discuss
stationarity and its relation with Perron–Frobenius-like be-
haviour.

In Section 6 we show that there is an interesting identity
between the time averages that appear in our strong law of
large numbers, and the ones that appear in the pointwise
ergodic theorem. The discussion in Section 7 first focusses
on a number of terms in this identity, and investigates the
convergence of these terms for Perron–Frobenius-like im-
precise Markov chains. This allows us to use the identity to
prove our version of the pointwise ergodic theorem, whose
significance we discuss briefly in Section 8.

2 Basic Notions from Imprecise
Probabilities

Let us begin with a brief sketch of a few basic definitions
and results about imprecise probabilities. For more details,
we refer to Walley’s [16] seminal book, as well as more
recent textbooks [1, 13].

Suppose a subject is uncertain about the value that a vari-
able Y assumes in a non-empty set of possible values Y . He
is therefore also uncertain about the value f (Y ) a so-called
gamble—a bounded real-valued function— f : Y → R on
the set Y assumes in R. We will also call such an f a
gamble on Y when we want to make explicit what variable
Y the gamble f is intended to depend on. The subject’s
uncertainty is modelled by a lower expectation2 E, which
is a real functional defined on the set G (Y ) of all gambles
on the set Y , satisfying the following basic so-called co-
herence axioms:

LE1. E( f )≥ inf f for all f ∈ G (Y );

LE2. E( f +g)≥ E( f )+E(g) for all f ,g ∈ G (Y );

LE3. E(λ f ) = λE( f ) for all f ∈ G (Y ) and real λ ≥ 0.

One—but by no means the only3—way to interpret E( f )
is as a lower bound on the expectation E( f ) of the gamble
f (Y ). The corresponding upper bounds are given by
the conjugate upper expectation E, defined by E( f ) :=
−E(− f ) for all f ∈ G (Y ). It follows from the coherence
axioms LE1–LE3 that

LE4. inf f ≤ E( f )≤ E( f )≤ sup f for all f ∈ G (Y );

LE5. E( f ) ≤ E(g) and E( f ) ≤ E(g) for all f ,g ∈ G (Y )
with f ≤ g;

2In the literature [16, 1, 13], other names, such as coherent lower
expectation, or coherent lower prevision, have also been given to this
concept.

3See Refs. [16, 10, 13] for other interpretations.

LE6. E( f +µ) = E( f )+µ and E( f +µ) = E( f )+µ for
all f ∈ G (Y ) and real µ .

Lower and upper expectations will be the basic uncertainty
models we consider in this paper.

The indicator IA of an event A—a subset of Y —is the
gamble on Y that assumes the value 1 on A and 0 outside
A. It allows us to introduce the lower and upper probab-
ilities of A as P(A) := E(IA) and P(A) := E(IA), respect-
ively. They can be seen as lower and upper bounds on the
probability P(A) of A, and satisfy the conjugacy relation
P(A) = 1−P(Y \A).

When the lower bound E coincides with the upper bound E,
the resulting functional E := E = E satisfies the defining
axioms of an expectation:

E1. E( f )≥ inf f for all f ∈ G (Y );

E2. E( f +g) = E( f )+E(g) for all f ,g ∈ G (Y );

E3. E(λ f ) = λE( f ) for all f ∈ G (Y ) and real λ .

When Y is finite, E is trivially the expectation associated
with a (probability) mass function p defined by p(y) :=
P({y}) = P({y}) for all y ∈Y , because it follows from the
expectation axioms that then E( f ) = ∑y∈Y f (y)p(y); see
for instance also the detailed discussion in Ref. [13].

With any lower expectation E, we can always associate the
following convex and closed4 set of compatible expectation
operators:

M(E) := {E : (∀ f ∈ G (Y ))E( f )≤ E( f )≤ E( f )}, (1)

and the properties LE1–LE3 then guarantee that

E( f ) = min{E( f ) : E ∈M(E)}
E( f ) = max{E( f ) : E ∈M(E)}

for all f ∈ G (Y ). (2)

In this sense, an imprecise probability model E can always
be identified with a closed convex set M(E) of compatible
‘precise’ probability models E.

3 Discrete-Time Finite-State Imprecise
Stochastic Processes

We consider a discrete-time process as a sequence of vari-
ables, henceforth called states, X1, X2, . . . , Xn, . . . , where
each state Xk is assumed to take values in a non-empty finite
set Xk.

4The ‘closedness’ is associated with the weak* topology of pointwise
convergence [16, Section 3.6].
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3.1 Event Trees, Situations, Paths and Cuts

We will use, for any natural k ≤ `, the notation Xk:` for the
tuple (Xk, . . . ,X`), which can be seen as a variable assumed
to take values in the product set Xk:` := ×`

r=kXr. We de-
note the set of all natural numbers (without 0) by N, and let
N0 := N∪{0}.
We call any x1:n ∈X1:n for n ∈ N0 a situation and we de-
note the set of all situations by Ω♦. So any situation is a
finite string of possible values for the consecutive states,
and if we denote the empty string by �, then in particular,
X1:0 = {�}. � is called the initial situation. We also use
the generic notations s, t or u for situations.

An infinite sequence of state values is called a path, and we
denote the set of all paths—also called the sample space—
by Ω. Hence

Ω♦ :=
⋃

n∈N0

X1:n and Ω :=×∞
r=1Xk.

We will denote generic paths by ω . For any path ω ∈ Ω,
the initial sequence that consists of its first n elements is
a situation in X1:n that is denoted by ωn. Its n-th element
belongs to Xn and is denoted by ωn. As a convention, we
let its 0-th element be the initial situation ω0 = ω0 = �.
The possible realisations ω of a process can be represented
graphically as paths in a so-called event tree, where each
node is a situation; see Figure 1.

We write that sv t, and say that s precedes t or that t follows
s, when every path that goes through t also goes through
s. The binary relation v is a partial order, and we write
s@ t whenever sv t but not s = t. We say that s and t are
incomparable when neither sv t nor t v s.

A (partial) cut U is a collection of mutually incomparable
situations, and represents a stopping time. For any two cuts
U and V , we define the following sets of situations:

[U,V ] :={s ∈Ω♦ : (∃u ∈U)(∃v ∈V )uv sv v}
[U,V ) :={s ∈Ω♦ : (∃u ∈U)(∃v ∈V )uv s@ v}
(U,V ] :={s ∈Ω♦ : (∃u ∈U)(∃v ∈V )u@ sv v}
(U,V ) :={s ∈Ω♦ : (∃u ∈U)(∃v ∈V )u@ s@ v}.

When a cut U consists of a single element u, then we will
identify U = {u} and u. This slight abuse of notation will
for instance allow us to write [u,v] = {s ∈Ω♦ : uv sv v}
and also (U,v) = {s ∈ Ω♦ : (∃u ∈U)u @ s @ v}. We also
write U @V if (∀v∈V )(∃u∈U)u@ v. Observe that in that
case U ∩V = /0. In particular, s AU when there is some
u ∈U such that sA u, or in other words if [U,s) 6= /0.

A process F is a map defined on Ω♦. A real process is a
real-valued process: it associates a real number F (x1:n) ∈
R with any situation x1:n. It is called bounded below if there
is some real B such that F (s)≥ B for all situations s ∈Ω♦.

a

(a,a)

(a,a,a)

(a,a,b)

(a,b)

(a,b,a)

(a,b,b)

b

(b,a)

(b,a,a)

(b,a,b)

(b,b)

(b,b,a)

(b,b,b)

X1:1

X1:2

X1:3

Figure 1: The (initial part of the) event tree for a process
whose states can assume two values, a and b, and can
change at time instants n = 1,2,3, . . . Each node in the
tree corresponds to a situation. Also depicted are the re-
spective sets of situations (cuts) X1:1, X1:2 and X1:3 where
the states at times 1, 2 and 3 are revealed.

A gamble process D is a process that associates with any
situation x1:n a gamble D(x1:n) ∈ G (Xn+1) on Xn+1. It is
called uniformly bounded if there is some real B such that
|D(s)| ≤ B for all situations s ∈Ω♦. With any real process
F , we can always associate a gamble process ∆F , called
the process difference. For every situation x1:n, the gamble
∆F (x1:n) ∈ G (Xn+1) is defined by5

∆F (x1:n)(xn+1) := F (x1:n+1)−F (x1:n)

for all xn+1 ∈Xn+1.

We will denote this more succinctly by ∆F (x1:n) =
F (x1:n ·)−F (x1:n), where the ‘·’ represents the generic
value of the next state Xn+1.

Conversely, with a gamble process D , we can associate a
real process I D , defined by

I D (x1:n) :=
n−1

∑
k=0

D(x1:k)(xk+1)

for all n ∈ N0 and x1:n ∈X1:n.

Clearly, ∆I D = D and F = F (�)+I ∆F .

5Our assumption that Xn+1 is finite is crucial here because it guaran-
tees that ∆F (x1:n) is bounded, which in turn implies that it is indeed a
gamble.
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Also, with any real process F we can associate the path-
averaged process 〈F 〉, which is the real process defined
by:

〈F 〉(x1:n) :=

{
0 if n = 0
1
nF (x1:n) if n > 0

for all n ∈ N0 and x1:n ∈X1:n.

3.2 Imprecise Probability Trees, Submartingales and
Supermartingales

The standard way to turn an event tree into a probability tree
is to attach to each of its nodes, or situations x1:n, a local
probability model Q(·|x1:n) for what will happen immedi-
ately afterwards, i.e. for the value that the next state Xn+1
will assume in Xn+1. This local model Q(·|x1:n) is then an
expectation operator on the set G (Xn+1) of all gambles
g(Xn+1) on the next state Xn+1, conditional on observing
X1:n = x1:n.

In a completely similar way, we can turn an event tree into
an imprecise probability tree by attaching to each of its
situations x1:n a local imprecise probability model Q(·|x1:n)
for what will happen immediately afterwards, i.e. for the
value that the next state Xn+1 will assume in Xn+1. This
local model Q(·|x1:n) is then a lower expectation operator
on the set G (Xn+1) of all gambles g(Xn+1) on the next
state Xn+1, conditional on observing X1:n = x1:n. This is
represented graphically in Figure 2.

a

(a,a)

(a,a,a)

(a,a,b)

(a,b)

(a,b,a)

(a,b,b)

b

(b,a)

(b,a,a)

(b,a,b)

(b,b)

(b,b,a)

(b,b,b)

Q(·|�)

Q(·|a)

Q(·|b)

Q(·|a,a)

Q(·|b,b)

Q(·|b,a)

Q(·|a,b)

Figure 2: The (initial part of the) imprecise probability tree
for a process whose states can assume two values, a and b,
and can change at time instants n = 1,2,3, . . .

In a given imprecise probability tree, a submartingale M
is a real process such that Q(∆M (x1:n)|x1:n) ≥ 0 for all
n ∈ N0 and x1:n ∈X1:n: all submartingale differences have

non-negative lower expectation. A real process M is a
supermartingale if −M is a submartingale, meaning that
Q(∆M (x1:n)|x1:n) ≤ 0 for all n ∈ N0 and x1:n ∈X1:n: all
supermartingale differences have non-positive upper expect-
ation. We denote the set of all submartingales for a given
imprecise probability tree by M—whether a real process
is a submartingale depends of course on the local uncer-
tainty models. Similarly, the set M :=−M is the set of all
supermartingales.

In the present context of probability trees, we will also
call variable any function defined on the so-called sample
space—the set Ω of all paths. When this variable is real-
valued and bounded, we will also call it a gamble on Ω.
When it is extended real-valued, meaning that it assumes
values in the set R∗ := R∪{−∞,+∞}, we call in an exten-
ded real variable. An event A in this context is a subset of
Ω, and its indicator IA is a gamble on Ω assuming the value
1 on A and 0 elsewhere. With any situation x1:n, we can
associated the so-called exact event Γ(x1:n) that X1:n = x1:n,
which is the set of all paths ω ∈Ω that go through x1:n:

Γ(x1:n) := {ω ∈Ω : ωn = x1:n}.

For a given n ∈ N0, we call a variable ξ n-measurable if it
is constant on the exact events Γ(x1:n) for all x1:n ∈X1:n,
or in other words, if it only depends on the values of the
first n states X1:n. We then use the obvious notation ξ (x1:n)
for its constant value ξ (ω) on all paths ω in Γ(x1:n).

With a real process F , we can associate in par-
ticular the following extended real variables
liminfF and limsupF , defined for all ω ∈ Ω by
liminfF (ω) := liminfn→∞ F (ωn) and limsupF (ω) :=
limsupn→∞ F (ωn). If liminfF (ω) = limsupF (ω) on
some path ω , then we also denote the common value there
by limF (ω) = limn→∞ F (ωn).

3.3 Going from Local to Global Belief Models

So far, we have associated local uncertainty models with an
imprecise probability tree. These represent, in any situation
x1:n, beliefs about what will happen immediately afterwards,
or in other words about the step from x1:n to x1:n Xn+1.

We now want to turn these local models into global ones:
uncertainty models about which entire path ω is taken in the
event tree, rather than which local steps are taken from one
situation to the next. We use the following expression for
the global lower expectation conditional on the situation s:

E( f |s) := sup{M (s) : M ∈M, limsupM ≤ f on Γ(s)},
(3)

and for the conjugate global upper expectation conditional
on the situation s:

E( f |s) := inf{M (s) : M ∈M, liminfM ≥ f on Γ(s)},
(4)
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where f is any extented real variable on Ω, and s ∈Ω♦ any
situation. We use the simplified notations E = E(·|�) and
E = E(·|�) for the (unconditional) global models, associ-
ated with the initial situation �.

Our reasons for using these so-called Shafer–Vovk–Ville
formulae6 are fourfold.

First of all, they are formally very closely related to the ex-
pressions for lower and upper prices in Shafer and Vovk’s
game-theoretic approach to probabilities, see for instance
Refs. [11, Chapter 8.3], [12, Section 2] and [14, Section 6.3].
This allows us to import and adapt, with the necessary care,
quite a number of powerful convergence results from that
theory, as we shall see in Section 4. Moreover, Shafer and
Vovk (see for instance Refs. [11, Proposition 8.8] and [14,
Section 6.3]) have shown that they—or rather their restric-
tions to gambles—satisfy our defining properties for lower
and upper expectations in Section 2, which is why we are
calling them lower and upper expectations.

Secondly, we gather from Proposition 1 and Corollary 2
that the expressions (3) and (4) coincide for n-measurable
gambles on Ω with the formulae derived in Ref. [2] as the
most conservative7 global lower and upper expectations
that extend the local models—see Corollary 3.8

Proposition 1. For any situation x1:m ∈ Ω♦ and any n-
measurable extended real variable f , with n,m ∈ N0 such
that n≥ m:

E( f |x1:m) = sup{M (x1:m) : M ∈M and

(∀xm+1:n ∈Xm+1:n)M (x1:n)≤ f (x1:n)}
E( f |x1:m) = inf{M (x1:m) : M ∈M and

(∀xm+1:n ∈Xm+1:n)M (x1:n)≥ f (x1:n)}.

Corollary 2. For any situation x1:m ∈ Ω♦ and any n-
measurable extended real variable f , with n,m ∈ N0 such
that n≥ m:

E( f |x1:m) = sup{E(g|x1:m) : g ∈ G (X1:n) and

(∀xm+1:n ∈Xm+1:n)g(x1:n)≤ f (x1:n)}
E( f |x1:m) = inf{E(g|x1:m) : g ∈ G (X1:n) and

(∀xm+1:n ∈Xm+1:n)g(x1:n)≥ f (x1:n)}.

Corollary 3. Consider n ∈ N0 and x1:n ∈ Ω♦. Then for
any (n + 1)-measurable gamble g on Ω: E(g|x1:n) =

6We give this name to these formulae because Glenn Shafer and Vladi-
mir Vovk first suggested them, based on the ideas of Jean Ville; see the
discussion of Ville’s Theorem in Ref. [11, Appendix 8.5].

7By more conservative, we mean associated with a larger set of precise
models, so pointwise smaller for lower expectations, and pointwise larger
for upper expectations.

8We have also shown in recent, still unpublished work that in a more
general context—where Xk takes values in a possibly infinite set Xk—for
arbitrary gambles on Ω they are the most conservative global models
that extend the local ones and satisfy additional conglomerability and
continuity properties.

Q(g(x1:n ·)|x1:n) and E(g|x1:n) = Q(g(x1:n ·)|x1:n). Also, for
any (n+1)-measurable extended real variable f :

E( f |x1:n) = sup{Q(h|x1:n) : h ∈ G (X) and h≤ f (x1:n ·)}
E( f |x1:n) = inf{Q(h|x1:n) : h ∈ G (X) and h≥ f (x1:n ·)}.

Thirdly, it is (essentially) the expressions in Proposition 1
that we have used in Refs. [5, 7, 15] for our studies of
imprecise Markov chains, which we report in Section 5. The
main result of the present paper, Theorem 11 in Section 7,
will build on the ergodicity results proved in those papers.

Fourthly, it was also shown in Ref. [2] that the expressions
in Proposition 1 have an interesting interpretation in terms
of (precise) probability trees. Indeed, we can associate with
an imprecise probability tree a (usually infinite) collection
of (so-called compatible) precise probability trees with the
same event tree, by associating with each situation s in the
event tree some arbitrarily chosen precise local expectation
Q(·|s) that belongs to the convex closed set M(Q(·|s)) of
expectations that are compatible with the local lower ex-
pectation Q(·|s). For any n-measurable gamble f on Ω, the
global precise expectations in the compatible precise prob-
ability trees will then range over a closed interval whose
lower and upper bounds are given by the expressions in
Proposition 1.

And finally, Shafer and Vovk have shown [11, Chapter 8]
that when the local models are precise probability mod-
els, these formulae (3) and (4) lead to global models that
coincide with the ones found in measure-theoretic prob-
ability theory. This implies that the results we shall prove
below, subsume, as special cases, the classical results of
measure-theoretic probability theory.

4 A Strong Law of Large Numbers for
Submartingale Differences

We now discuss and prove two powerful convergence res-
ults for the processes we have defined in the previous sec-
tion.

We call an event A null if P(A) = E (IA) = 0, and strictly
null if there is some test supermartingale T that converges
to +∞ on A, meaning that:

limT (ω) = +∞ for all ω ∈ A.

Here, a test supermartingale is a supermartingale with
T (�) = 1 that is moreover non-negative in the sense that
T (s)≥ 0 for all situations s ∈Ω♦. Any strictly null event
is null, but null events need not be strictly null [14].

Proposition 4. Any strictly null event is null, but not vice
versa.9

9For the null and strictly null events to be the same, it is necessary to
consider supermartingales that may assume extended real values, as is
done in Refs. [14, 12]. We see no need for doing so here.
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In this paper, we shall use the ‘strict’ approach, and prove
that events are strictly null—and therefore also null—by
actually showing that there is a test supermartingale that
converges to +∞ there.

As usual, an inequality or equality between two variables
is said to hold (strictly) almost surely when the event that
it does not hold is (strictly) null. Shafer and Vovk [11, 14]
have proved the following interesting result, which we shall
have occasion to use a few times further on. It can be
seen as a generalisation of Doob’s supermartingale conver-
gence theorem [19, Sections 11.5–7] to imprecise probabil-
ity trees.

Theorem 5 ([14, Section 6.5] Supermartingale conver-
gence theorem). Let M be a supermartingale that is
bounded below. Then M converges strictly almost surely
to a real variable.

We now turn to a very general version of the strong law of
large numbers. Weak (as well as less general) versions of
this law were proven by one of us in Refs. [3, 2]. It is this
law that will, in Section 7, be used to derive our version of
the pointwise ergodic theorem. Its proof is based on a tried-
and-tested method for constructing test supermartingales
that goes back to an idea in Ref. [11, Lemma 3.3].

Theorem 6 (Strong law of large numbers for submartingale
differences). Let M be a submartingale such that ∆M is
uniformly bounded. Then liminf〈M 〉 ≥ 0 strictly almost
surely.

5 Imprecise Markov Chains

We are now ready to apply what we have learned in the
previous sections to the special case of (time-homogeneous)
imprecise Markov chains. These are imprecise probability
trees where (i) all states Xk assume values in the same
finite set Xk = X , called the state space, and (ii) all local
uncertainty models satisfy the so-called Markov condition:

Q(·|x1:n) = Q(·|xn) for all situations x1:n ∈Ω♦, (5)

meaning that these local models only depend on the last
observed state; see Figure 3.

We refer to Refs. [5, 7, 15] for detailed studies of the be-
haviour of these processes. We restrict ourselves here to
a summary of the existing material that is relevant for the
present discussion of ergodicity.

From now on, we start using a convenient notational device
often encountered in texts on stochastic processes: when we
want to indicate which states a process or variable depends
on, we indicate them explicitly in the notation. Thus, we use
for instance the notation F (X1:n) to indicate the ‘uncertain’
value of the process F after the first n time steps, and write
f (Xn) for a gamble that only depends on the value of the
n-th state.

a

(a,a)

(a,a,a)

(a,a,b)

(a,b)

(a,b,a)

(a,b,b)

b

(b,a)

(b,a,a)

(b,a,b)

(b,b)

(b,b,a)

(b,b,b)

Q(·|�)

Q(·|a)

Q(·|b)

Q(·|a)

Q(·|b)

Q(·|a)

Q(·|b)

Figure 3: The (initial part of the) imprecise probability
tree for an imprecise Markov process whose states can
assume two values, a and b, and can change at time instants
n = 1,2,3, . . .

We can use the local uncertainty models to introduce a
(generally non-linear) transformation T of the set G (X)
of all gambles on the state space X . The so-called lower
transition operator of the imprecise Markov chain is given
by:

T : G (X)→ G (X) : f 7→ T f ,

where T f is the gamble on X defined by

T f (x) := Q( f |x) for all x ∈X .

The conjugate upper transition operator T is defined by
T f := −T(− f ) for all f ∈ G (X). In particular, TI{y}(x)
is the lower probability to go from state value x to state
value y in one time step, and TI{y}(x) the conjugate upper
probability. This seems to suggest that the lower/upper
transition operators T are generalisations of the concept
of a Markov transition matrix for ordinary Markov chains.
This is confirmed by the following result, proved in Ref. [5,
Corollary 3.3] as a special case of the so-called Law of
Iterated (Lower) Expectations [2, 11]. If, for any n ∈N, we
denote by En( f ) the value of the (global) lower expectation
E ( f (Xn)) of a gamble f (Xn) on the state Xn at time n, then

En( f ) = E1(T
n−1 f ), with T n−1 f := TT . . .T︸ ︷︷ ︸

n−1 times

f ,

and where, of course, E1 = Q(·|�) is the marginal local
model for the state X1 at time 1. In a similar vein, for any
n ∈ N0, T nI{y}(x) is the lower probability to go from state
value x to state value y in n time steps, and T nI{y}(x) the
conjugate upper probability.
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We can formally call lower transition operator any trans-
formation T of G (X) such that for any x ∈X , the real
functional T x on G (X), defined by T x( f ) := T f (x) for
all f ∈ G (X), is a lower expectation—satisfies the coher-
ence axioms LE1–LE3. The composition of any two lower
transition operators is again a lower transition operator. See
Ref. [5] for more details on the definition and properties of
such lower transition operators, and Ref. [4] for a mathem-
atical discussion of the general role of these operators in
imprecise probabilities.

We call an imprecise Markov chain with lower transition
operator T Perron–Frobenius-like if for all f ∈ G (X), the
sequence of gambles T n f converges pointwise to a constant
real number, which we shall then denote by EPF( f ).

The following result was proved in Ref. [5, Theorem 5.1],
together with a simple sufficient (and quite weak) condition
on T for a Markov chain to be Perron–Frobenius-like: there
is some n ∈N such that minT nI{y} > 0 for all y ∈X , or in
other words, all state values can be reached from any state
value with positive upper probability in (precisely) n time
steps. More involved necessary and sufficient conditions
were given later in Refs. [7, 15]; see also Theorem 8(iv)
further on.

Proposition 7 ([5]). The imprecise Markov chain with
lower transition operator T is Perron–Frobenius-like if
and only if there is some real functional E∞ on G (X) such
that for any initial model E1 and any f ∈ G (X), it holds
that En( f ) = E1(T n−1 f )→ E∞( f ). Moreover, in that case
the functional E∞ is a lower expectation on G (X), called
the stationary lower expectation, it coincides with EPF, and
it is the only lower expectation that is T -invariant in the
sense that E∞ ◦T = E∞.

6 An Interesting Equality in Imprecise
Markov Chains

We now prove an interesting equality for imprecise Markov
chains, which will be instrumental in proving our pointwise
ergodic theorem in the next section.

Consider, for any f ∈ G (X), the corresponding gain pro-
cess W [ f ], defined by, for any n ∈ N:

W [ f ](X1:n) := [ f (X1)−E1( f )]

+
n

∑
k=2

[ f (Xk)−T f (Xk−1)], (6)

the corresponding average gain process 〈W 〉[ f ], defined
by:

〈W 〉[ f ](X1:n)

:=
1
n

[
[ f (X1)−E1( f )]+

n

∑
k=2

[ f (Xk)−T f (Xk−1)]

]
, (7)

and the ergodic average process A [ f ], defined by:

A [ f ](X1:n) :=
1
n

n

∑
k=1

[ f (Xk)−Ek( f )]. (8)

We can let these processes be 0 in the initial situation �—
the choice is immaterial. Now observe that, for any n ∈ N
and any f ∈ G (X):

n−1

∑̀
=0
〈W 〉[T ` f ](X1:n)

=
1
n

n−1

∑̀
=0

[
T ` f (X1)−E1(T

` f )
]

+
1
n

n−1

∑̀
=0

n

∑
k=2

[
T ` f (Xk)−T `+1 f (Xk−1)

]
, (9)

and moreover

n−1

∑̀
=0

n

∑
k=2

[
T ` f (Xk)−T `+1 f (Xk−1)

]

=
n−1

∑̀
=0

n

∑
k=2

T ` f (Xk)−
n−1

∑̀
=0

n

∑
k=2

T `+1 f (Xk−1)

=
n−1

∑̀
=0

n

∑
k=2

T ` f (Xk)−
n

∑̀
=1

n−1

∑
k=1

T ` f (Xk)

=
n

∑
k=2

f (Xk)+
n−1

∑̀
=1

(
T ` f (Xn)+

n−1

∑
k=2

T ` f (Xk)

)

−
n−1

∑
k=1

T n f (Xk)−
n−1

∑̀
=1

(
T ` f (X1)+

n−1

∑
k=2

T ` f (Xk)

)

=
n

∑
k=2

f (Xk)+
n−1

∑̀
=1

T ` f (Xn)−
n−1

∑
k=1

T n f (Xk)−
n−1

∑̀
=1

T ` f (X1)

=
n

∑
k=1

f (Xk)+
n

∑̀
=1

T ` f (Xn)−
n

∑
k=1

T n f (Xk)−
n−1

∑̀
=0

T ` f (X1),

and if we substitute this back into Equation (9), we find,
after getting rid of the cancelling terms, recalling that
E1(T ` f ) = E`+1( f ), and reorganising a bit, that:

A [ f ](X1:n) =
n−1

∑̀
=0
〈W 〉[T ` f ](X1:n)+

1
n

n

∑
k=1

T n f (Xk)

− 1
n

n

∑̀
=1

T ` f (Xn). (10)

This is an important relationship between the ergodic aver-
age and the average gain. We now intend to show that under
certain conditions the remaining terms on the right-hand
side essentially cancel out for large enough n.
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7 Consequences of the
Perron–Frobenius-like Character

Let us associate with a lower transition operator T the
following (weak) coefficient of ergodicity [15, 7]:

ρ(T) := max
x,y∈X

max
h∈G1(X)

|Th(x)−Th(y)|= max
h∈G1(X)

‖Th‖v,

where G1(X) := {h ∈ G (X) : 0 ≤ h ≤ 1}, and where for
any h∈G (X), its variation (semi)norm is given by ‖h‖v :=
maxh−minh. If we define the following distance between
two lower expectation operators E and F [15]:

d(E,F) = max
h∈G1(X)

|E(h)−F(h)|,

then it is not difficult to see [using LE3, LE4 and LE6] that
0≤ d(E,F)≤ 1, and that for any f ∈ G (X):

|E( f )−F( f )| ≤ d(E,F)‖ f‖v. (11)

Škulj and Hable [15] have proved the following results,
which will turn out to be crucial to our argument.
Theorem 8 ([15]). Consider lower transition operators S
and T , and two lower expectations Ea and Eb on G (X).
Then the following statements hold:

(i) 0≤ ρ(T)≤ 1.

(ii) ρ(ST) ≤ ρ(S)ρ(T) and therefore ρ(T n) ≤ ρ(T)n

for all n ∈ N.

(iii) d(EaT ,EbT)≤ d(Ea,Eb)ρ(T).

(iv) The lower transition operator T is Perron–Frobenius-
like if and only if there is some r ∈ N such that
ρ(T r)< 1.

Indeed, they allow us to derive useful bounds for the
various terms on the right-hand side of Equation (10).
For any non-negative real number a we denote by bac =
max{n ∈ N0 : n≤ a} the largest natural number that it still
dominates—its integer part.
Proposition 9. Let T be a Perron–Frobenius-like lower
transition operator, with invariant lower expectation E∞,
and let r be the smallest natural number such that ρ :=
ρ(T r)< 1. Let Ea and Eb be any two lower expectations
on G (X). Then for all f ∈ G (X), `1, `2 ∈ N0:

∣∣Ea(T
`1 f )−Eb(T

`2 f )
∣∣≤ ‖ f‖vρb

min{`1 ,`2}
r c. (12)

As a consequence, for all f ∈ G (X), `,`1, `2 ∈ N0 and
k,k1,k2 ∈ N:

∣∣T ` f (Xk)−E∞( f )
∣∣≤ ‖ f‖vρb

`
r c, (13)

∣∣Ea(T
` f )−E∞( f )

∣∣≤ ‖ f‖vρb
`
r c, (14)

∣∣T ` f (Xk)−Eb(T
` f )
∣∣≤ ‖ f‖vρb

`
r c, (15)

∣∣T `1 f (Xk1)−T `2 f (Xk2)
∣∣≤ ‖ f‖vρb

min{`1 ,`2}
r c. (16)

Proposition 10. Consider an imprecise Markov chain with
initial—or marginal—model E1 and lower transition op-
erator T . Assume that T is Perron–Frobenius-like, with
invariant lower expectation E∞, and let r be the smallest
natural number such that ρ := ρ(T r)< 1. Then the follow-
ing statements hold for all f ∈ G (X), ` ∈ N0 and n ∈ N:

(i) |〈W 〉[T ` f ](X1:n)| ≤ ‖ f‖vρb
`
r c.

(ii) limn→∞
1
n ∑n

k=1 T n f (Xk) = E∞( f ).

(iii) limn→∞
1
n ∑n

`=1 T ` f (Xn) = E∞( f ).

(iv) limn→∞
1
n ∑n

k=1 Ek( f ) = E∞( f ).

We can now state our main result.

Theorem 11 (Pointwise ergodic theorem). Consider an im-
precise Markov chain with initial—or marginal—model E1
and lower transition operator T . Assume that T is Perron–
Frobenius-like, with invariant lower expectation E∞. Then
for all f ∈ G (X):

liminfA [ f ]≥ 0 strictly almost surely,

and consequently,

liminf
n→∞

1
n

n

∑
k=1

f (Xk)≥ E∞( f ) strictly almost surely.

8 Conclusions and Discussion

We have proved a version of the pointwise ergodic theorem
for imprecise Markov chains involving functions of a single
state. It does not seem very difficult to extend this result to
involve functions of a finite number of states, but it is still
a subject of current research whether it can be extended to
gambles that depend on the entire state trajectory, and not
just on a finite number of states.

Our version subsumes the one for (precise) Markov chains,
because there E∞( f ) = E∞( f ) = E∞( f ) and therefore

E∞( f ) = E∞( f )≥ limsup
n→∞

1
n

n

∑
k=1

f (Xk)

≥ liminf
n→∞

1
n

n

∑
k=1

f (Xk)

≥ E∞( f ) = E∞( f )

strictly almost surely,

implying that 1
n ∑n

k=1 f (Xk) converges to E∞( f ) (strictly)
almost surely. In our more general case, however, we cannot
generally prove that there is almost sure convergence, and
we retain only almost sure inequalities involving limits
inferior and superior, as is also the case for our strong law
of large numbers for submartingale differences. Indeed,

G. de Cooman, J. De Bock, & S. Lopatatzidis

114



that such convergence should not really be expected for
imprecise probability models was already argued by Walley
and Fine [17].

Ergodicity results for Markov chains are quite relevant for
applications in queuing theory, where they are for instance
used to prove Little’s Law [18], or ASTA (Arrivals See
Time Averages) properties [9]. We believe the discussion
in this paper could be instrumental in deriving similar prop-
erties for queues where the probability models for arrivals
and departures are imprecise.
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Abstract
Let (Ω, d) be a metric space where Ω is a set with posi-
tive and finite Hausdorff outer measure in its Hausdorff
dimension and let B be a partition of Ω. The coherent
upper conditional prevision defined as the Choquet
integral with respect to its associated Hausdorff outer
measure is proven to satisfy the disintegration property
and the conglomerative principle on every partition.

Keywords. Coherent upper conditional previsions,
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1 Introduction

In Walley [21, 6.8] full conglomerability is required
as a rationality axiom for a coherent upper prevision
since it assures that it can be coherently extended
to coherent conditional previsions for any partition
B of Ω. If the partition B represents an experiment
that could be performed it is necessary to update
the unconditional upper prevision after observing a
set B of B. Coherent upper conditional prevision
is coherent with the unconditional prevision if the
following conglomerability principle is satisfied: if a
random variable X is B-desirable, i.e. we have a
disposition to accept X for every set B in the partition
B, then X is desirable. If there is no coherent way
of updating the initial prevision after learning the
outcome of the experiment the upper prevision, which
represents our knowledge, is unreasonable.

For linear unconditional prevision full conglomerability
is equivalent to the disintegration property introduced
by Dubins [10] which is a generalization to the class of
all bounded random variables of the conglomerative
principle, introduced by de Finetti [2, p.99], [3] for
probabilities.

Coherent upper conditional previsions are function-
als on a linear space of bounded random variables
satisfying the axioms of separate coherence.

Coherent upper conditional previsions cannot always
be defined as an extension of conditional expectation
of measurable random variables defined by the Radon-
Nikodym derivative, according to the axiomatic defini-
tion. It occurs because one of the defining properties
of the Radon-Nikodym derivative, that is to be mea-
surable with respect to the σ-field of the conditioning
events, contradicts a necessary condition for coherence
(Doria [8, Theorem 1]). So the necessity to find a new
mathematical tool in order to define coherent upper
conditional previsions arises. Since conditional expec-
tation defined by the Radon-Nikodym derivative may
fail to be coherent, it is important to prove that the
price of coherence is not to lose disintegrability that is
a property satisfied by conditional expectation in the
axiomatic definition.

The relation between conglomerability and countable
additivity has been investigated in Walley [21, section
6.9] and Schervish, Seidenfeld and Kadane [18]. In [18]
it has been proven that when an additive probability P
is defined at least on a σ-field and it assumes infinitely
many different values then it is fully conglomerable if
and only if it is countably additive on every partition
of Ω. It means that we can find examples of merely
additive probabilities defined on a field, that is not
a σ-field, that assume only finitely many values and
that are conglomerable with respect to a given parti-
tion (see Scozzafava [19, Example 5.5.], and Walley
[21, Example 6.6.4]). But since every merely finitely
additive probability defined on a field can be extended
to a σ-field and to the power set, we have that every
extension of this kind of probability to a σ-field is
not fully conglomerable, since it fails conglomerability
with respect to some countable partitions. In Kadane,
Schervish and Seidenfeld [12, Example 6.1] it is proven
that for non-countable partitions countable additivity
of the unconditional probability is not a sufficient con-
dition to assure that it is coherent with the conditional
probability.

Examples of non-conglomerable linear previsions are
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given in Walley [21, 6.6.6, 6.6.7].

Consequences of failure of conglomerability are investi-
gated in decision making where non-conglomerability
of finitely additive probabilities leads to a violation
of the decision-theoretic principle of admissibility as
proven in Kadane, Schervish and Seidenfeld [12]. More-
over failure of conglomerability has consequence in
sequential decision problems (Kadane, Schervish and
Seidenfeld [13]).

In the paper of Miranda, Zaffalon and de Cooman
[14] it is shown that the natural extension of assess-
ment after imposing conglomerability, does not yield
in general the conglomerable natural extension.

In Doria [8], [7], [5] a new model of coherent upper
conditional previsions defined by Hausdorff outer mea-
sures is proposed in a metric space. Coherent upper
and lower conditional probabilities are obtained when
only 0-1 valued random variables are considered.

Let (Ω, d) be a metric space and let B be a partition of
Ω. For each B ∈ B denote by s the Hausdorff dimen-
sion of B and let hs be the Hausdorff s-dimensional
outer measure, which is called Hausdorff outer mea-
sure associated with the coherent upper conditional
prevision P (X|B). For every bounded random vari-
able X a coherent upper conditional prevision P (X|B)
is defined ([8], [7]) by the Choquet integral with re-
spect to its associated Hausdorff outer measure if the
conditioning event has positive and finite Hausdorff
outer measure in its Hausdorff dimension. Otherwise
if the conditioning event has Hausdorff outer measure
in its Hausdorff dimension equal to zero or infinity it
is defined by a 0-1 valued finitely, but not countably,
additive probability.

In this paper coherent upper conditional and uncon-
ditional previsions are proven to satisfy the disinte-
gration property and the conglomerative principle on
every partition B of Ω if Ω is set with positive and
finite Hausdorff outer measure in its Hausdorff dimen-
sion t. It occurs because Hausdorff outer measures
are submodular and every random variable and ev-
ery constant are comonotonic so that the Choquet
integral with respect to the t-dimensional Hausdorff
outer measure is equal to the Choquet integral with
respect to an additive measure, which agrees with the
t-dimensional Hausdorff outer measure on the class of
the ht- measurable sets [4, Proposition 10.1].

The paper is organized as follows. In Section 2 the
model of coherent upper conditional previsions de-
fined with respect to Hausdorff outer measure and its
properties are recalled. Moreover a characterization of
measurable sets is given in terms of natural extensions
and every set B belonging to a partition of Ω is proven

to be measurable with respect to the coherent upper
conditional probabilities P (·|B) and P (·|Ω).

Let P (X|B) be the random variable equal to P (X|B)
if ω ∈ B. In Section 3 the given coherent upper
conditional prevision P (X|B) is proven to satisfy the
disintegration property on every partition B of Ω if
Ω is a set with positive and finite outer measure in
its Hausdorff dimension and X is a monotone random
variable. The random variables X and P (X|B) are
proven to be comonotonic so that the Choquet integral
of X + P (X|B) is additive.

In Section 4 the given upper coherent conditional pre-
vision P (X|B) is proven to satisfy the disintegration
property and the conglomerative principle on every
partition B of Ω if Ω is a set with positive and finite
Hausdorff outer measure in its Hausdorff dimension.
A sufficient condition is given such that the Choquet
integral of X + P (X|B) is additive.

2 Coherent Upper Conditional
Previsions Defined by the Choquet
Integral with respect to Hausdorff
Outer Measure

Let (Ω, d) be a metric space and let F be the Borel
σ-field, which is the σ-field generated by the open sets
of the metric topology, induced by the metric d. Let
B be a partition of Ω.

A bounded random variable is a function X : Ω→ <
and L(Ω) is the class of all bounded random variables
defined on Ω; for every B ∈ B denote by X|B the
restriction of X to B and by sup(X|B) the supremum
value that X assumes on B. Let L(B) be the class
of all bounded random variables X|B and let IB the
indicator function of the set B, that is IB(ω) = 1 if
ω ∈ B and IB(ω) = 0 if ω /∈ B.

For every B ∈ B coherent upper conditional previsions
P (·|B) are functionals, defined on L(B), satisfying the
axioms of separate coherence [21].
Definition 1. Separately coherent upper conditional
previsions are functionals P (·|B) defined on L(B),
such that the following conditions hold for every X
and Y in L(B) and every strictly positive constant λ:

1) P (X|B) ≤ sup(X|B);

2) P (λX|B) = λP (X|B) (positive homogeneity);

3) P (X + Y )|B) ≤ P (X|B) + P (Y |B) (subadditiv-
ity);

4) P (IB |B) = 1.

S. Doria

118



Definition 2. Given a partition B and a random vari-
able X ∈ L(Ω) a coherent upper conditional prevision
P (X|B) is a random variable on Ω equal to P (X|B)
if ω ∈ B. The random variable P (X|B) is separately
coherent if all the P (X|B) are separately coherent.

Suppose that P (X|B) is a coherent upper condi-
tional prevision on L(B) then its conjugate coherent
lower conditional prevision is defined by P (X|B) =
−P (−X|B). Let K be a linear space contained
in L(B); if for every X belonging to K we have
P (X|B) = P (X|B) = P (X|B) then P (X|B) is called
a coherent linear conditional prevision (de Finetti [2])
and it is a linear, positive functional on K.

Moreover P (X|B) is dominated on K by the subaddi-
tive, positively homogeneous functional P (X|B) and
for the Hahn-Banach Theorem (see Rudin [17, Theo-
rem 3.2]) it can be extended to a linear functional on
L(B) dominated by P (X|B). The following extension
theorem holds (see also Regazzini [15]):
Theorem 1. Let P be a coherent upper prevision
on L(B) and let P be a coherent linear prevision on
a linear space K ⊆ L(B) such that P (X) ≤ P (X)
∀X ∈ K. Then there exists a linear extension P ∗ of
P to L(B) such that P ∗(X) = P (X) ∀X ∈ K and
P ∗(X) ≤ P (X) ∀X ∈ L(B).

The unconditional coherent upper prevision P =
P (·|Ω) is obtained as a particular case when the con-
ditioning event is Ω.

An upper prevision is a real-valued function defined
on some class of bounded random variables K ⊆ L(B).
A necessary and sufficient condition for an upper pre-
vision P to be coherent is to be the upper envelope of
linear previsions defined on L(B), i.e. there is a class
M of linear previsions on L(B) such that [21, 3.3.3]

P =sup{P (X) : P ∈M ;X ∈ K} .

The supremum is actually attained by some dominated
linear prevision.

Let P be an upper prevision on an arbitrary domain
K such that the class M(P ) of all linear previsions
defined on L(Ω) and dominated by P on K, is non-
empty. The maximal extension of P to L(B), denoted
by E, is called [21, 3.1.1] the natural extension of P .
Moreover P is coherent on K if and only if its natural
extension E agrees with P on K.

Coherent upper conditional probabilities are obtained
when only 0-1 valued random variables are considered.

If P is a countably additive probability defined on a
σ-field S ⊂ ℘(Ω) its natural extensions, defined on
all subsets of Ω, are the inner and outer measures
generated by it [21, Theorem 3.1.5], that is

E(A) = inf {P (B) : B ⊃ A;B ∈ S} , A ∈ ℘(Ω)

E(A) = sup {P (B) : B ⊂ A;B ∈ S} , A ∈ ℘(Ω).
Definition 3. A subset A of Ω is called measurable
with respect to a coherent upper conditional probability
P (·|B) defined on ℘(B) if it decomposes every subset
of B additively, that is if

P (E|B) = P ((A ∩ E)|B) + P ((Ac ∩ E)|B)

for all sets E ⊆ B.

The class of all measurable sets of Ω is a field and
P (·|B) is additive on it [4, Proposition 2.5].

If P (·|B) is subadditive and continuous from below
then the class of all measurable sets of Ω is a σ-field
and P (·|B) is countably additive on it [4, Proposition
2.6].

Let P (·|B) be an additive coherent conditional prob-
ability on a field S ⊂ ℘(B), then the class of all
measurable sets with respect to P (·|B) coincides with
the class of sets such that the outer and inner measure
are equal. [4, Proposition 2.9].

A characterization of measurable sets can be given in
terms of natural extensions.
Proposition 1. Let P (·|B) be a coherent upper con-
ditional probability such that its restriction P (·|B) to
a σ-field S is a countably additive coherent conditional
probability. A subset A of Ω is measurable with respect
to P (·|B) if and only if E(A|B) = E(A|B).

A functional Γ : L(B) → < can be represented as
Choquet integral with respect to a coherent upper
conditional probability µ on ℘(B) if Γ(X) =

∫
Xdµ

∀X ∈ L(B). Then Γ(IA) = µ(A). For every x ∈ < let
{X|B > x} = {ω ∈ B : X(ω) > x}.
Since X is a bounded random variable thus there
exist a constant k such that X̃ = X + k ≥ 0 and the
decreasing distribution function of X̃ with respect to
µ is G

µ,X̃
(x) = Gµ,X(x − k) = µ {X|B > x− k} for

every real number x [4, Proposition 4.1].

The Choquet integral [4] of a bounded random variable
X with respect to µ is defined by

∫
Xdµ =

∫ +∞

0
G
µ,X̃

(x)dx.

Let S be a class properly contained in ℘(Ω) and µ a
coherent upper conditional probability on S. Denoted
by µ∗ and µ∗ respectively the outer and inner set
functions generated by µ, a random variable X is
called upper-µ-measurable [4] if Gµ∗,X(x) = Gµ∗,X(x)
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except on a µ-null set, that is equivalent to require that
all the upper level sets ]x,+∞[ are µ∗-measurable.

X is called upper S-measurable if it is upper µ-
measurable for any monotone set function on S; more-
over if the sets {ω ∈ Ω : X(ω) > x} belong to S for
every x ∈ < then X is S-measurable.

If Ω is finite and µ defined on a field S, denote by
A1, ..., An the atoms of S, which are the minimal el-
ements of S − �. If the atoms Ai are enumerated
so that xi = X(Ai) are in in descending order, i.e.
x1 ≥ x2 ≥ ... ≥ xn and xn+1 = 0 the Choquet integral
with respect to µ is given by

∫
Xdµ =

∑n
i=1(xi − xi+1)µ(Si)

where Si = A1 ∪A2... ∪Ai , and xn+1 = 0.
Definition 4. A coherent upper conditional proba-
bility µ is submodular or 2-alternating if for every
A,E ∈ ℘(B)

µ((A ∪ E)|B) + µ((A ∩ E)|B) ≤ µ(A|B) + µ(E|B).

In Doria [5], [8] a new model of coherent upper condi-
tional probability based on Hausdorff outer measures
(see Rogers [16] and Falconer [11]) is introduced.

Let δ > 0 and let s be a non-negative number. The
diameter of a non empty set U of Ω is defined as
|U | = sup {d(x, y) : x, y ∈ U} and if a subset A of Ω is
such that A ⊆ ⋃i Ui and 0 < |Ui| ≤ δ for each i, the
class {Ui} is called a δ-cover of A.

The Hausdorff s-dimensional outer measure of A, de-
noted by hs(A), is defined on ℘(Ω), the class of all
subsets of Ω, as

hs(A) = limδ→0 inf
∑+∞
i=1 |Ui|

s

where the infimum is over all δ-covers {Ui}.
The Hausdorff dimension of a set A, dimH(A), is
defined as the unique value, such that

hs(A) = +∞ if 0 ≤ s < dimH(A),

hs(A) = 0 if dimH(A) < s < +∞.

We can observe that if 0 < hs(A) < +∞ then
dimH(A) = s (the converse is not true). In any metric
space a finite non-empty subset A of Ω has positive and
finite counting measure h0 so the Hausdorff dimension
of a finite set is 0.

Hausdorff s-dimensional outer measures are submod-
ular, continuous from below and their restriction on
the Borel σ-field is countably additive.

Theorem 2. [8, Theorem 2] Let m be a 0-1 valued
finitely additive, but not countably additive, probability
on ℘(B) such that a different m is chosen for each B.
Then for each B ∈ B the functionals P (X|B) defined
on L(B) by

P (X|B) = 1
hs(B)

∫
B
Xdhs if 0 < hs(B) < +∞

and by

P (X|B) = m(XB) if hs(B) = 0,+∞

are separately coherent upper conditional previsions.

Coherent upper conditional probabilities are obtained
when only indicator functions of events are considered.
Theorem 3. [8, Theorem 3] Let m be a 0-1 valued
finitely additive, but not countably additive, probability
on ℘(B) such that a different m is chosen for each B.
Thus, for each B ∈ B, the function defined on ℘(B)
by

P (A|B) = hs(AB)
hs(B) if 0 < hs(B) < +∞

and by

P (A|B) = m(AB) if hs(B) = 0, +∞

is a coherent upper conditional probability.

A fuzzy measure (also called a capacity) µ on ℘(B) is
a set function such that µ(B) = 1, µ(�) = 0, µ(A) ≤
µ(E) if A ⊆ E, i.e. a fuzzy measure is a monotone set
function such that µ(B) = 1, µ(�) = 0.

If B ∈ B is a set with positive and finite Haus-
dorff outer measure in its Hausdorff dimension s, the
fuzzy measure µ∗B defined for every A ∈ ℘(B) by
µ∗B(A) = hs(AB)

hs(B) is a coherent upper conditional proba-
bility, which is submodular, continuous from below and
such that its restriction to the Borel σ-field is a Borel
regular countably additive probability. Moreover the
coherent upper conditional probability µ∗B = hs(AB)

hs(B)
is translation invariant.

The coherent upper unconditional probability P = µ∗Ω
defined on ℘(Ω) is obtained for B equal to Ω.
Theorem 4. Let B be a partition of Ω. Every B ∈ B,
is a measurable set with respect to P (·|B).

Proof. Let P (·|B) the restriction, to the σ-field of the
hs- measurable sets, of the coherent upper conditional
probability P (·|B) defined in Theorem 3. For every
B ∈ B, with positive and finite Hausdorff outer mea-
sure in its Hausdorff dimension, P (·|B) is the natural
extension of the countably additive probability P (·|B).
Then by the conjugacy property we have
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P (B|B) = P (Ω|B)− P (Bc|B) = P (B|B).

So by Proposition 1, the set B is measurable with
respect to P (·|B).

For every B ∈ B with Hausdorff outer measure equal
to zero or infinity in its Hausdorff dimension P (·|B)
is a 0− 1 valued additive probability so by Definition
3 B is measurable with respect to P (·|B). �
Theorem 5. Let Ω be a set with positive and finite
Hausdorff measure in its Hausdorff dimension t. Then
for every partition B there is at most a countable
subclass B∗ of B of sets B with positive upper coherent
probability µ∗Ω.

Proof Since Ω is a set positive and finite Hausdorff
outer measure in its Hausdorff dimension t, we have
that the restriction µΩ(·) = ht(·)

ht(Ω) to the σ-field of ht-
measurable sets, of the upper conditional probability
defined in Theorem 3, is a countably additive prob-
ability. Moreover since Hausdorff outer measure are
regular for each B ∈ B there is a ht-measurable set
B′ such that B ⊂ B′ and ht(B) = ht(B′) so for every
partition B there is at most a countable subclass B∗
of B of sets B with positive upper coherent probability
µ∗Ω. �
Theorem 6. Let Ω be a set with positive and finite
Hausdorff measure in its Hausdorff dimension t and
let B be a Borel countable partition of Ω. Then the
random variable P (X|B) is ht-measurable.

Proof The random variable P (X|B) is ht-measurable
if the sets

{
ω ∈ Ω : P (X|B) ≥ x

}
are ht-measurable

for every x ∈ <. Since the random variable P (X|B)
is B-measurable, i.e. constant on the sets B, and B
is a Borel countable partition of Ω, for every x ∈ <
the sets

{
ω ∈ Ω : P (X|B) ≥ x

}
are countable unions

of ht-measurable sets B , so they are ht-measurable.
�

3 Conglomerability and
Disintegration Property of
Coherent Upper Conditional
Prevision Defined by Hausdorff
Outer Measure

In this section coherent upper conditional previsions
defined as in Theorem 2, are proven to satisfy the con-
glomerability axiom and the disintegration property
on every partition and for every monotone random
variable.

Walley [21, 6.3] discusses when an unconditional lower
prevision P is coherent with the lower conditional
prevision P (·|B).

Definition 5. P and P (·|B) defined on L(Ω) are
called coherent if and only if the following conditions
hold for every X in L(Ω) and B ∈ B:

P (
∑
B∈B IB(X − P (X|B)) ≥ 0

(Conglomerative axiom)
and

P (IB(X − P (X|B)) = 0
(Generalized Bayes Rule).

In some special cases coherence of P and P (·|B) can
be characterized by simpler conditions. In particular
in Walley [21, section 6.5.3 and section 6.5.7 ] it has
been proven that if P and P (·|B) are respectively
linear unconditional and conditional previsions on the
class of all bounded random variables and P (·|B) are
separately coherent, then P and P (·|B) are coherent
if and only if the following conglomerative property is
satisfied P (X) = P (P (X|B)).

The notion of disintegrability given by Dubins [10] can
be extended to coherent upper conditional previsions.
Definition 6. A coherent upper conditional prevision
P (X|B) is disintegrable with respect to a partition B
if the following equality is satisfied for every bounded
variable X ∈ L(Ω)

P (X) = P (P (X|B)).
Definition 7. A coherent upper conditional prevision
P (X|B) is defined to be conglomerative with respect to
a partition B of Ω if the following condition is satisfied:
for every bounded variable X ∈ L(Ω)

P (X|B) ≥ 0 implies P (X) ≥ 0.
Definition 8. Two random variables X and Y ∈ L(Ω)
are comonotonic on Ω if and only if ∀ω1, ω2 ∈ Ω

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0.

A class C of random variables is comonotonic if and
only if each pair of functions in C is comonotonic.

Let µ be a coherent upper probability which is is sub-
modular and defined on ℘(Ω) and let C be a comono-
tonic class of random variables. By Proposition 10.1
of [4] for any random variable X ∈ C there exists an
additive set function α on ℘(Ω), which agree with µ
on the σ-field of µ-measurable sets, such that

∫
ΩXdµ =

∫
ΩXdα

Example 1. Let Ω = {ω1, ω2, ω3, ω4} and let P1
and P2 be two finitely additive probabilities defined
by P1(ωi) = µ∗Ω(ωi) = 1

4 for i=1,...,4 and P2(ω1) =
P2(ω2) = 1

8 , P2(ω3) = 1
2 , P2(ω4) = 1

4 . Let µ be
the submodular coherent upper probability defined on
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℘(Ω) by the upper envelope of P1 and P2, i.e. µ(A) =
maxj=1,2 Pj(A) for A ∈ ℘(Ω) and let µ be the coher-
ent lower probability defined by µ(A) = minj=1,2 Pj(A)
for A ∈ ℘(Ω). Let consider the comonotonic random
variables X and Y defined by

X(ω1) = 0, X(ω2) = 1, X(ω3) = 2, X(ω4) = 3 and

Y (ω1) = 0, Y (ω2) = 1, Y (ω3) = 3, Y (ω4) = 4.

We have that
∫
Xdµ =

∫
XdP2 = 15

8 ,
∫
Y dµ =

∫
Y dP2 = 21

8 .

Moreover, by Proposition 10.1 of [4], for any other
increasing random variable Z ∈ L(Ω) we have that
∫
Zdµ =

∫
ZdP2.

By coherence of the lower probability µ we have
∫
Xdµ =

∫
XdP1 = 3

2 and
∫
Y dµ =

∫
Y dP1 = 2

and by the asymmetry of the Choquet integral for every
increasing random variable Z ∈ L(Ω) we have that
∫

(−Z)dµ = −
∫
Zdµ.

Let I(Ω) be the class of all increasing random variables
on Ω.
Theorem 7. Let X ∈ L(Ω) be a monotone random
variable, then X and P (X|B) are comonotonic.

Proof Let consider X ∈ I(Ω). Let Y (ω) = P (X|B).
We have to prove that ∀ω1, ω2 ∈ Ω

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0.

If ω1, ω2 ∈ B then X and P (X|B) are comonotonic
since P (X|B) is constant on the atoms of the partition
B so that

Y (ω1)− Y (ω2) = P (X|B)− P (X|B) = 0.

If ω1 < ω2 and ω1 ∈ B1 and ω2 ∈ B2 since X is
increasing and P (X|B) is separately coherent we have

infB1 X ≤ P (X|B1) ≤ supB1 X ≤ infB2 X ≤
P (X|B2).

So ∀ω1, ω2 ∈ Ω with ω1 < ω2

X(ω1) ≤ X(ω2) implies P (X|B1) ≤ P (X|B2).

So that X and P (X|B) are comonotonic.�
In the next theorem sufficient conditions are given
such that the coherent upper conditional prevision de-
fined in Theorem 2 satisfies the disintegration property
on every partition and for every monotone random
variable.
Theorem 8. Let Ω be a set with positive and finite
Hausdorff outer measure in its Hausdorff dimension t

and let B be a partition of Ω. Then for every mono-
tone X ∈ L(Ω) the coherent upper conditional previ-
sion P (X|B), defined as in Theorem 2, satisfies the
disintegration property, i.e.

P (X) = P (P (X|B)).

Proof We prove the theorem for X ∈ I(Ω). Let Ω be a
set with positive and finite Hausdorff outer measure in
its Hausdorff dimension t then the coherent upper un-
conditional prevision is defined as the Choquet integral
with respect to µ∗Ω(·) = ht(·)

ht(Ω) . Let I(Ω) be the class
of all increasing random variables on ℘(Ω). Since ht
is submodular and defined on ℘(Ω) by [4, Proposition
10.1] for any random variable X ∈ I(Ω) there exists
an additive set function α on ℘(Ω), which agrees with
ht on the σ-field of ht-measurable sets, such that

∫
ΩXdh

t =
∫

ΩXdα.

By Theorem 5 there is at most a countable subclass B∗
of B of sets B with positive upper coherent probability
µ∗Ω. By Theorem 7 X and P (X|B) are comonotonic
so the disintegration property is satisfied for every
partition B since the following equalities hold:

P (P (X|B)) = 1
ht(Ω)

∫

Ω
P (X|B)dht

= 1
ht(Ω)

∫

Ω
P (X|B)dα

=
∑

B∈B∗

(
1

ht(B)

∫

B

Xdht
)
ht(B)
ht(Ω)

= 1
ht(Ω)

∑

B∈B∗

∫

B

Xdht

= 1
ht(Ω)

∑

B∈B∗

∫

B

Xdα

= 1
ht(Ω)

∫

Ω
Xdα

= 1
ht(Ω)

∫

Ω
Xdht = P (X).�

Theorem 9. Let Ω be a set with positive and finite
Hausdorff outer measure in its Hausdorff dimension t
and let B be a partition of Ω. Then for every monotone
X ∈ L(Ω) we have
∫

Ω(X + P (X|B))dht =
∫

ΩXdh
t +
∫

Ω P (X|B)dht.

Proof By Theorem 7 we have that X and P (X|B)
are comonotonic so that the Choquet integral of their
sum in additive.
∫

Ω(X + P (X|B))dht =
∫

ΩXdh
t +
∫

Ω P (X|B)dht.�
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4 Full Conglomerability

In this section the coherent upper conditional previ-
sion P (X|B) is proven to satisfy the disintegration
property with respect to every partition B if Ω is a
set with positive and finite Hausdorff outer measure
in its Hausdorff dimension.
Theorem 10. Let Ω be a set with positive and finite
Hausdorff outer measure in its Hausdorff dimension
t. Thus the coherent conditional prevision P (X|B)
satisfies the disintegration property on every partition
B of Ω.

Proof. Ω is a set with with positive and finite Hausdorff
outer measure in its Hausdorff dimension t so that the
restriction µΩ(·) = ht(·)

ht(Ω) = α(·)
ht(Ω) to the σ-field of the

ht-measurable sets, of the upper unconditional prob-
ability defined in Theorem 3, is a countably additive
probability. Moreover by Theorem 5 for every parti-
tion B, there is at most a countable subclass B∗ of B
of sets B with positive upper coherent probability µ∗Ω.

Since every random variable X and every constant c
in L(Ω) are comonotonic, we consider the two comono-
tonic classes C =

{
P (X|B), c

}
and C1 = {X, c} so

that by Proposition 10.1 of [4] there exist two additive
set functions α, and α’ on ℘(Ω), which agree with ht
on the σ-field of ht-measurable sets, such that

∫
Ω P (X|B)dht =

∫
Ω P (X|B)dα′

and
∫
B
Xdht =

∫
Ω IBXdh

t =
∫

Ω IBXdα =
∫
B
Xdα.

Then for every random variable X ∈ L(Ω) the disin-
tegration property is satisfied for every partition B
since the following equalities hold:

P (P (X|B)) = 1
ht(Ω)

∫

Ω
P (X|B)dht

= 1
ht(Ω)

∫

Ω
P (X|B)dα′

=
∑

B∈B∗

(
1

ht(B)

∫

B

Xdα

)
ht(B)
ht(Ω)

= 1
ht(Ω)

∑

B∈B∗

∫

B

Xdα

= 1
ht(Ω)

∫

Ω
Xdht = P (X).�

Remark. If X ∈ L(Ω) is not monotone then X and
P (X|B) are not comonotonic so that the additivity of
the integral

∫
Ω(X + P (X|B))dht does not hold. Since

ht is submodular by the Subadditive Theorem we have
∫

Ω(X + P (X|B))dht ≤
∫

ΩXdh
t +
∫

Ω P (X|B)dht

In the following theorem a sufficient condition for the
additivity of the Choquet integral with respect to ht
of the random variable X + P (X|B) is given.
Theorem 11. Let Ω be a set with positive and finite
Hausdorff outer measure in its Hausdorff dimension t
and let B be a Borel countable partition of Ω. Thus
∫

Ω(X + P (X|B))dht =
∫

ΩXdh
t +
∫

Ω P (X|B)dht

Proof. Since B is a countable partition, by Theorem
6, we have that the random variable P (X|B) is ht-
measurable. So [4, Corollary 10.2] we have
∫

Ω(X + P (X|B))dht =
∫

ΩXdh
t +
∫

Ω P (X|B)dht.�

In the next theorem we prove that the coherent up-
per unconditional prevision defined as in Theorem 2
satisfies the conglomerability principle.
Theorem 12. Let Ω be a set with positive and finite
Hausdorff outer measure in its Hausdorff dimension
t and let B be a partition of Ω. Then for every X ∈
L(Ω) the coherent upper conditional prevision P (X|B),
satisfies the conglomerability principle, i.e.

P (X|B) ≥ 0 implies P (X) ≥ 0.

Proof By the coherence of the unconditional upper
prevision P defined in Theorem 2 we have that if

P (X|B) ≥ 0⇒ P (P (X|B)) ≥ 0.

Moreover from Theorem 10 the disintegration property
is satisfied, that is P (X) = P (P (X|B)).

So we have P (X|B) ≥ 0 implies P (P (X|B)) =
P (X) ≥ 0.�
In the following example [10] unconditional and condi-
tional probabilities are given such that they are not
coherent. It occurs because they satisfy the Gener-
alized Bayes Rule but not the conglomerative axiom.
The previous results can be applied to show that the
coherent unconditional and conditional previsions de-
fined with respect to Hausdorff outer measures are
coherent.
Example 2. Let Ω = [0, 1]2 and let E be a subset of
Ω such that P (E) = P (Ec) = 1

2 . Let B be a countable
partition of Ω such that for each Bn ∈ B
P (EBn) = 1

2n+1 and P (EcBn) = ε
2n+1 with ε > 0 so

that P (Bn) = 1+ε
2n+1 .

The Generalized Bayes Rule holds since for each Bn ∈
B P (E|Bn) = P (EBn)

P (Bn) = 1
1+ε while the conglomerative

axiom does not hold since

P (P (E|Bn)) =
∑

Bn∈B

1
1 + ε

P (Bn)

= 1
1 + ε

6= 1
2 = P (E).
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If coherent unconditional and conditional probabilities
are defined as in Theorem 3, they are proven to be
coherent.

Let P (·) = µΩ(·) = h2(·)
h2(Ω) the unconditional countably

additive probability defined on the σ-field of the h2-
measurable subsets. Let E be a h2-measurable subset
of Ω such that P (E) = P (Ec) = 1

2 and let B be a
countable partition of Ω such that for each Bn ∈ B we
have P (Bn) = h2(Bn)

h2(Ω) > 0.

The Generalized Bayes Rule and the conglomerative
axiom hold since for each Bn ∈ B

P (E|Bn) = P (EBn)
P (Bn) = h2(EBn)

h2(Bn)
and

P (P (E|Bn)) =
∑

Bn∈B

h2(EBn)
h2(Bn) P (Bn)

= h2(E)
h2(Ω) = P (E|Ω) = P (E).

The last equalities hold since the Hausdorff 2-
dimensional measure h2 is countably additive.

Let Ω be an uncountable set with positive and finite
Hausdorff outer measure in its Hausdorff dimension.

In Walley [21, Example 6.9.6] it is proven that when
Ω is uncountable a countably additive probability P
defined on a σ-field of subsets of Ω can extended to a
fully conglomerable lower prevision taking the natural
extension of P .
Definition 9. A coherent lower prevision P on L(Ω)
is called B-conglomerable when it satisfies the axiom:
if X ∈ L(Ω) and B1, B2, ... are distinct sets in B such
that P (Bn) > 0 and P (BnX) ≥ 0 for all n ≥ 1 then
P (
∑∞
n=1BnX) ≥ 0.

Definition 10. A coherent lower prevision on L(Ω)
is called fully conglomerable if it is B-conglomerable
on every countable partition B of Ω. This holds if and
only if [21, 6.8.1] P satisfies the axiom:

if X ∈ L(Ω) and B is a countable partition of Ω such
that P (B) > 0 and P (BX) ≥ 0 for all B ∈ B then
P (X) ≥ 0

In the next theorem the unconditional upper previ-
sion defined as in Theorem 2 is proven to be fully
conglomerable if Ω is an uncountable set with positive
and finite Hausdorff outer measure in its Hausdorff
dimension.
Theorem 13. Let Ω be an uncountable set with posi-
tive and finite Hausdorff outer measure in its dimen-
sion s. Let P (·|Ω) be the restriction of the upper con-
ditional probability defined in Theorem 3 to the Borel

σ-field F of subsets of Ω. Then the upper conditional
prevision P (·|Ω) defined on L(Ω) as in Theorem 2 is
fully conglomerable.

Proof. Since every Hausdorff s-dimensional outer mea-
sure is countably additive on the Borel σ-field F of Ω
and Ω is a set with positive and finite Hausdorff outer
measure in its dimension s thus P (A|Ω) = hs(A)

hs(Ω) is a
countably additive probability on F. The lower condi-
tional prevision P (·|Ω) defined as in Theorem 2 is the
natural extension of P to L(Ω) where Ω is an uncount-
able set thus [21, 6.9.6] P (·|Ω) is fully conglomerable.
From the conjugacy property P (X|Ω) = −P (−X|Ω)
we have that the upper conditional prevision is fully
conglomerable. �
If Ω has Hausdorff outer measure in its Hausdorff
dimension equal to zero or infinity then the upper
conditional previsions defined as in Theorem 3 do not
satisfy the disintegration property as shown by the
following example.
Example 3. Let Ω = N , A = {2n, n ∈ N} and let
B be the partition whose elements are the sets Bn =
{2n− 1, 2n} for n ∈ N. If upper conditional previsions
are defined as in Theorem 3 and X is the indicator
function of A we have that

P (X|Bn) = 1
h0(Bn)

∫
Bn

Xdh0 = 1
2 ;

P (P (X|Bn)) =
∫

Ω
1
2dm = 1

2

P (X|Ω) = m(·|Ω) = m(A).

Since m is a 0-1 valued finite probability measure the
disintegration property is not satisfied because m(A) 6=
1
2 .

In [9] the notions of equivalent and indifferent random
variables given B are proposed.
Definition 11. Two random variables X and Y ∈
L(B) are equivalent given B if P (X|B) = P (Y |B).

A weak order on L(B) is a complete reflexive and
transitive binary relation on L(B). Let X and Y be
two bounded random variables belonging to L(B).
Definition 12. We say that X is preferable to Y given
B , i.e. X � Y given B if and only if

P ((X − Y )|B) > 0

and X and Y are indifferent given B, i.e. X ≈ Y
given B if and only if

P ((X − Y )|B) = P ((Y −X)|B) = 0.

By Theorem 8 a bounded random variable X is equiv-
alent to P (X|B), moreover, by Theorem 9, X and
P (X|B) are indifferent with respect to the ordering
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represented by the coherent upper prevision P (·|Ω)
if X is monotone or, by Theorem 11, if B is a Borel
countable partition.

5 Conclusions

In this paper a coherent upper conditional prevision,
defined as the Choquet integral with respect to its as-
sociated Hausdorff outer measure, is proven to satisfy
the disintegration property and the conglomerative
principle on every partition B of a metric space (Ω, d)
where Ω is a set with positive and finite Hausdorff
outer measure in its Hausdorff dimension. This result
is due to the fact that Hausdorff outer measures are
submodular and continuous from below and a ran-
dom variable and a constant are always comonotonic.
Submodularity of Hausdorff outer measures implies
that the Choquet integral with respect to Hausdorff
outer measure of every random variable is equal to the
integral with respect to an additive measure, which
agrees with it on the σ-field of measurable sets. By
the given results a random variable X is equivalent to
the random variable P (X|B) and X and P (X|B) are
indifferent given Ω with respect to the ordering repre-
sented by P (·|Ω) if X is monotone or if B is a Borel
countable partition. A future aim of this research is
to investigate the consequences in decision theory of
the results proven in this paper.
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Abstract
Let (Ω, d) be a metric space and let B be a partition
of Ω. For every set B of B with positive and finite
Hausdorff outer measure in its Hausdorff dimension,
a coherent conditional measure of risk is defined as
the Choquet integral with respect to Hausdorff outer
measure. Two risks are defined to be s-independent
if the atoms of the classes generated by their weak
upper level sets are s-independent. The given notion
permits to capture dependence between risks that are
stochastically independent according to the axiomatic
definition. Two risks which are surjective and injective
are proven to be s-dependent and a sufficient condition
is given such that s-independent simple risks satisfy the
factorization property of their joint coherent measures
of risk.

Keywords. Coherent conditional measures of risk,
Hausdorff outer measures, Choquet integral, stochastic
dependence.

1 Introduction

Partial knowledge is a natural interpretation of con-
ditional probability. This interpretation can be for-
malized in a different way in the axiomatic approach
(see Billingsley [2]) and in the subjective approach
(de Finetti [3], [4], Regazzini [19], Walley [21]), where
conditional probability is respectively defined by the
Radon-Nikodym derivative or by the axioms of coher-
ence. In both cases conditional probability is obtained
as the restriction of conditional expectation or condi-
tional prevision to the class of indicator functions of
events. For a comparison between the two different
approaches see Doria [6]. In the axiomatic approach
conditional expectation is defined with respect to a σ-
field G of conditioning events by the Radon-Nikodym
derivative while in the subjective approach proposed
by Walley conditional prevision is defined with re-
spect to a partition B; the definitions of conditional
expectation and coherent linear conditional prevision

can be compared when the σ-field G is generated
by the partition B. In particular, given a probability
space (Ω,F, P ), let G be equal or contained in the
σ-field generated by a countable class S of subsets of
F and let B be the partition of the atoms generated
by the class S. Denote Ω’ = B, P (A|B) the class of
all P (A|B) with B ∈ B and ϕB the function from Ω
to Ω’ that associates to every ω ∈ Ω the atom B of
the partition B that contains ω. Then we have that
P (X|G) = P (X|B) ◦ ϕB for every random variable
∈ L(B) [15, p.262].

Let F and G be two σ-fields of subsets of Ω with G
contained in F and let X be an integrable random
variable on (Ω,F, P ). Let P be a probability measure
on F; define a measure ν on G by ν(G) =

∫
G
XdP .

This measure is finite and absolutely continuous with
respect to P . So there exists a function, the Radon-
Nikodym derivative denoted by E[X|G], defined on Ω,
G-measurable, integrable and satisfying the functional
equation

∫

G

E[X|G]dP =
∫

G

XdP with G in G.

This function is unique up to a set of P -measure zero
and it is a version of the conditional expected value.

If X is the indicator function of any event A belonging
to F then E[X|G] = E[A|G] = P [A|G] is a version
of the conditional probability.

In Doria [8], [10], [11], [12] it has been proven that con-
ditional expectation, defined by the Radon-Nikodym
derivative may fail to be coherent and a new model
of coherent conditional previsions, based on Hausdorff
outer measures, has been introduced.

In [2, Example 33.11] it is shown that the interpre-
tation of conditional probability in terms of partial
knowledge breaks down in certain cases. A probability
space (Ω,F, P ) can be used to represent a random phe-
nomenon or an experiment whose outcome is drawn
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according to the probability given by P . Partial infor-
mation about the experiment can be represented by a
sub σ-field G of F in the following way: an observer
does not know which ω has been drawn but he knows
for each H ∈ G, if ω belongs to H or if ω belongs to
Hc. A sub σ-field G of F can be identified as partial
information about the random experiment, and, fixed
A in F, conditional probability can be used to repre-
sent partial knowledge about A given the information
on G.

A concept related to the definition of conditional prob-
ability is stochastic independence for events and for
random variables based on the factorization property
([2, p.48]). In particular two random variables are
stochastically independent, in the axiomatic approach,
if the σ-fields generated by them are independent. As
a consequence we obtain that for independent random
variables the joint distribution is equal to the product
of the marginal distributions.

In a probability space (Ω, F, P ), if partial informa-
tion is represented by a sub σ-field G and conditional
probability is defined by the Radon-Nykodim deriva-
tive, denoted by P [A|G], by the standard definition
[2, p.52] we have that an event A is independent from
the σ-field G if it is independent from each H ∈ G,
that is P [A|G] = P (A) with probability 1.

If G = {Ω,�} then P [A|G](ω) = P (A) for every
A ∈ F and for every ω ∈ Ω.

Example 1 Let Ω = [0,1], let F be the Borel σ-field
of [0,1] and let P be the Lebesgue measure on F. Let
G be the sub σ-field of sets that are either count-
able or co-countable. Then P (A) is a version of the
conditional probability P [A|G] defined by the Radon-
Nikodym derivative because P (G) is either 0 or 1 for
evey G ∈ G. So an event A is independent from the in-
formation represented by G and this is a contradiction
according to the fact that the information represented
by G is complete since G contains all singletons of Ω.

In the subjective approach the concept of epistemic
independence with respect to upper and lower proba-
bilities has proposed by Walley [21]. It is based on the
notion of irrelevance; given two events A and B, we say
that B is irrelevant to A when P (A|B) = P (A|Bc)=
P (A) and P (A|B) = P (A|Bc) = P (A).

The events A and B are epistemically independent
when B is irrelevant to A and A is irrelevant to B. As
a consequence of this definition we can obtain that the
factorization property P (AB) = P (A)P (B), which
constitutes the standard definition of independence
for events, holds both for P = P and P = P . In a
continuous probabilistic space (Ω, F, P ), where Ω is
equal to [0,1]n and the probability is usually assumed

equal to the Lebesgue measure on Ω, we have that the
finite, countable and fractal sets (i.e. the sets with
Hausdorff dimension non- integer) have probability
equal to zero. For these sets the standard definition of
independence, given by the factorization property, is
always satisfied since both members of the equality are
zero. In Theorem 6 of [9] we prove that an event B is
always irrelevant, according to the definition of Walley,
to an event A if dimH(A) < dimH(B) < dimH(Ω)
and A and B have positive and finite Hausdorff outer
measures in their dimensions; moreover if A and B
are disjoint then they are epistemically independent.
Thus logical independence is not a necessary condition
for epistemic independence.

To avoid these problems the notions of s-irrelevance
and s-independence with respect to upper and lower
conditional probabilities assigned by a class of Haus-
dorff outer and inner measures are proposed to test
independence ([7], [8], [9]). The definitions of s-
independence and s-irrelevance are based on the fact
that epistemic independence and irrelevance must be
tested for events A and B, such that they and their
intersection AB, have the same Hausdorff dimension.

In this paper coherent conditional measures of risk are
defined equal to coherent upper conditional previsions
defined by Hausdorff measures when the conditioning
event has positive and finite Hausdorff outer measure
in its Hausdorff dimension. The notion of s-irrelevance
and s-independence for risks, represented by bounded
random variables, are proposed to capture dependence.

2 Coherent Conditional Measures of
Risk Defined by the Choquet
Integral with respect to Hausdorff
Outer Measures

Let (Ω, d) be a metric space and let B be a partition of
Ω. For every B ∈ B with positive and finite Hausdorff
outer measure in its Hausdorff dimension s a coherent
conditional measure of risk is defined by the Choquet
integral with respect to Hausdorff outer measure hs.

2.1 Coherent Upper Conditional Previsions
Defined by the Choquet Integral with
respect to Hausdorff Outer Measures

A risk or bounded random variable is a function X :
Ω→ < and L(Ω) is the class of all bounded random
variables defined on Ω. For every B ∈ B denote by
X|B the restriction of X to B and by sup(X|B) the
supremum value that X assumes on B. Let L(B) be
the class of all bounded random variablesX|B. Denote
by IA the indicator function of any event A ∈ ℘(B),
i.e. IA(ω) = 1 if ω ∈ A and IA(ω) = 0 if ω ∈ Ac.
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Let δ > 0 and let s be a non-negative number. The
diameter of a non empty set U of Ω is defined as
|U | = sup {d(x, y) : x, y ∈ U} and if a subset A of Ω is
such that A ⊆ ⋃i Ui and 0 < |Ui| ≤ δ for each i, the
class {Ui} is called a δ-cover of A.

The Hausdorff s-dimensional outer measure of A, de-
noted by hs(A), is defined on ℘(Ω), the class of all
subsets of Ω, as

hs(A) = lim
δ→0

inf
+∞∑

i=1
|Ui|

s

.

where the infimum is over all δ-covers {Ui} of the set
A.

For the definition of Hausdorff outer measure and its
basic properties see Rogers [20] and Falconer [14].

The Hausdorff dimension of a set A, dimH(A), is
defined as the unique value, such that

hs(A) = +∞ if 0 ≤ s < dimH(A),
hs(A) = 0 if dimH(A) < s < +∞.

If 0 < hs(A) < +∞ then dimH(A) = s (the converse
is not true). In any metric space a finite non-empty
subset A of Ω has positive and finite counting measure
h0 so the Hausdorff dimension of a finite set is 0.

We assume that the Hausdorff dimension of the empty-
set � is −∞ so that no set has Hausdorff dimension
equal to the Hausdorff dimension of the empty-set.

Hausdorff s-dimensional outer measures are submodu-
lar, continuous from below and their restrictions to the
Borel σ-field which is the σ-field generated by open
sets of the metric topology, induced by the metric d,
are countably additive.

If B ∈ B is a set with positive and finite Hausdorff
outer measure in its Hausdorff dimension s the mono-
tone set function µ∗B is defined for every A ∈ ℘(B) by
µ∗B(A) = hs(AB)

hs(B) .

If X is a bounded random variable thus there exists
a constant k such that X̃ = X + k ≥ 0 and the
decreasing distribution function of X̃ with respect to
µ∗B is G

µ∗
B
,X̃

(x) = Gµ∗
B
,X(x−k) = µ∗B {X|B > x− k}

for every real number x [5, Proposition 4.1].

The Choquet integral [5] of a bounded random variable
X with respect to µ∗B is defined by
∫
Xdµ∗B =

∫ +∞

0
µ∗B
{
ω ∈ B : X̃(ω) ≥ x

}
dx

= 1
hs(B)

∫ +∞

0
hs {ω ∈ B : X(ω) ≥ x} dx.

If B is finite then µ∗B is the counting measure defined
on the field ℘(B). If the atoms Ai are enumerated
so that xi = X(Ai) are in in descending order, i.e.
x1 ≥ x2 ≥ ... ≥ xn and xn+1 = 0 the Choquet integral
with respect to µ is given by

∫
Xdµ =

n∑

i=1
(xi − xi+1)µ∗Ω(Si)

where Si = A1 ∪A2... ∪Ai , and xn+1 = 0.

In [12] a model of coherent upper conditional prevision
based on Hausdorff outer measure has been defined.

Theorem 1 Let m be a 0-1 valued finitely additive,
but not countably additive, probability on ℘(B) such
that a different m is chosen for each B. Then for each
B ∈ B denote by s the Hausdorff dimension of B and
by hs the Hausdorff s-dimensional outer measure. The
functionals P (X|B) defined on L(B) by

P (X|B) = 1
hs(B)

∫

B

Xdhs if 0 < hs(B) < +∞

and by

P (X|B) = m(XB) if hs(B) = 0,+∞

are separately coherent upper conditional previsions.

Definition 1 Given a partition B of Ω and a ran-
dom variable X ∈ L(Ω) a coherent upper conditional
prevision P (X|B) is a random variable on Ω equal to
P (X|B) if ω ∈ B. The random variable P (X|B) is
separately coherent if all the P (X|B) are separately
coherent.

Definition 2 Given a partition B of Ω and a random
variable X ∈ L(Ω), X is B-measurable if it is constant
on the sets of the partition B.

By Definition 1 the random variable P (X|B) is B-
measurable since it is constant on the atoms of the
partition B.

2.2 Coherent Conditional Measures of Risk

Coherent measures of risk are introduced in Artzener
et al. [1] to manage risks.

Correspondence between the concepts of upper previ-
sion and coherent measure of risk has been underlined
by Pelessoni and Vicig [17] and Maaß [16].

In Pelessoni and Vicig [18] risk measures have been
interpreted as coherent conditional previsions.

In this section, given a set B ∈ B with positive and
finite Hausdorff outer measure in its Hausdorff dimen-
sion s, a coherent conditional measure of risk ρ(·|B)
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is defined as the Choquet integral with respect to
Hausdorff outer measure hs.

The advantage to define coherent measures of risk
by Hausdorff outer measures is that they can be rep-
resented as Choquet integral since Hausdorff outer
measures are submodular (see Doria [13, Proposition
1]); moreover coherent measures of risk defined with re-
spect to Hausdorff outer measures are comonotonically
additive and continuous from below (see Theorem 2).

Definition 3 A coherent conditional measure of risk
ρ(·|B) is a functional on L(B) such that the following
axioms are satisfied for every X,Y ∈ L(B) and strictly
positive λ:

(i) monotonicity X ≤ Y implies ρ(X|B) ≤ ρ(Y |B);

(ii) translation invariance ρ(X + h|B) = ρ(X|B) + h;

(iii) subadditivity ρ(X + Y |B) ≤ ρ(X|B) + ρ(Y |B)

(iv) positive homogeneity ρ(λX|B) = λρ(X|B)

Two risks X and Y ∈ L(B) are comonotonic if,

(X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0 ∀ω1, ω2 ∈ B.

Definition 4 A coherent conditional measure of risk
ρ(·|B) on L(B) is

(v) comonotonically additive if and ρ(X + Y |B) =
ρ(X|B) + ρ(Y |B) for every comonotonic risks X
and Y ;

(vi) continuous from below if limn→∞ρ(Xn|B) =
ρ(X|B) if Xn is an increasing sequence of risks
∈ L(B) converging to X.

In [12] it has been proven that if B is a set with positive
and finite Hausdorff outer measure in its Hausdorff
dimension, the coherent upper conditional prevision
defined in Theorem 1 is comonotonically additive and
continuous from below. So the following result holds:

Theorem 2 Let B ∈ B be a set with positive and
finite Hausdorff outer measure in its Hausdorff dimen-
sion s, i.e. 0 < hs(B) < +∞; the functional ρ(·|B)
defined on L(B) by

ρ(X|B) = P (X|B) = 1
hs(B)

∫

B

Xdhs

is a coherent conditional measure of risk, which is
comonotonically additive and continuous from below.

3 S-Independence for Risks

In Doria [7], [8], [9] the notions of s-irrelevance and s-
independence with respect to conditional probabilities
assigned by a class of Hausdorff dimensional measures
have been introduced.

Definition 5 Let Ω be a set with positive and finite
Hausdorff outer measure in its Hausdorff dimension
and let E and F ∈ ℘(Ω). E and F are s-independent
if the following conditions hold

(s1) dimHE = dimHF = dimHE ∩ F ,

(s2) P (E|F ) = P (E|F c) = P (E),

P (E|F ) = P (E|F c) = P (E),

(s3) P (F |E) = P (F |Ec) = P (F ),

P (F |E) = P (F |Ec) = P (F ),

F is s-irrelevant to E if conditions s1) and s2) hold
and E is s-irrelevant to F if the conditions s1) and
s3) hold.

We can observe that the notion of s-irrelevance is not
symmetric, that is E can be s-irrelevant to F because
conditions (s1) and (s2) hold but F is not s-irrelevant
to E since condition (s3) does not hold.

In the sequel we assume that Ω is a set with positive
and finite Hausdorff outer measure in its Hausdorff
dimension.

In [8, Theorem 4] the following result is proven:

Corollary 1 If E is s-irrelevant to F then P satisfies
the factorization property, i.e. P (E ∩F ) = P (E)P (F )

Theorem 3 Let F ∈ ℘(Ω) then F and Ω are s-
independent if and only if dimH(F ) = dimH(Ω).

Proof. If E is equal to Ω conditions (s1), (s2), (s3)
become

(s1 ) dimH(Ω) = dimH(F ),

(s2 ) P (Ω|F ) = P (Ω|F c) = P (Ω),

P (Ω|F ) = P (Ω|F c) = P (Ω),

(s3 ) P (F |Ω) = P (F ),

P (F |Ω) = P (F ).

Since conditions (s2), (s3) are always satisfied then Ω
and F are s-independent if and only if dimH(Ω) =
dimH(F ). �
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Remark 1 The previous result permits to put in ev-
idence dependence between events. In fact, accord-
ing to the axiomatic definition of stochastic indepen-
dence, given a probability space (Ω,F, P ) and the σ-
field G = {�,Ω}, if conditional probability is de-
fined by the Radon-Nikodym derivative we have that
P (F |G) = P (F ) ∀F ∈ F, that is any event F is
independent from G.

If Ω is a finite set and F is a non-empty set ∈ ℘(Ω), Ω
and F are s-independent since any non-empty finite
set has Hausdorff dimension equal to 0.

We extend the notions of s-irrelevance and s-
independence to risks. Let S be a subclass of ℘(Ω)
closed under intersection. The atoms of S are the
minimal sets with respect to inclusion in S − {�}.

Definition 6 Let S = {Ci}i∈N be a countable class,
the constituents of S are the sets C =

⋂
i∈N C̃i where

C̃i = Ci or C̃i = Cci .

Definition 7 The partition C(S) generated by a
countable class S ⊆ ℘(Ω) is the partition of its con-
stituents.

Definition 8 The σ-field generated by a class S ⊆
℘(Ω) is the smallest σ-field σ(S) containing S.

In [15, Proposition 4.30] the following result has been
proved.

Proposition 1 Let S be a countable class of subsets
of Ω and G a σ-field such that the class of the con-
stituents C(S) ⊆ G ⊆ σ(S). The atoms of G are the
constituents of S.

Remark 2 If (Ω, d) is the Euclidean metric space
the σ-field generated by the class {[x,+∞);x ∈ <} is
the Borel σ-field, which can be also generated by the
countable class {[x,+∞);x ∈ Q}. The class of the
singletons {x} in < is contained in the Borel σ-field
but it does not generate it. So the Borel σ-field is
countably generated.

Definition 9 Let X ∈ L(Ω). The partition B(X)
generated by the random variable X is the partition
of the non-empty constituents generated by the count-
able class S =

{
X−1[x,+∞);x ∈ Q

}
. It is countably

generated.

Proposition 2 We have that

B(X) =
{
X−1 {x} ;x ∈ <

}
− {�} .

Example 2 Let X = IA be the indicator function of

a set A ⊆ Ω, then

X−1[x,+∞) = Ω if x ≤ 0,
X−1[x,+∞) = A if 0 < x ≤ 1,
X−1[x,+∞) = � if x > 1.

Thus S =
{
X−1[x,+∞);x ∈ <+} = {Ω, A,�} and

the class of atoms S(X) generated by the random vari-
able X is S(X) = {A}. The partition generated by
the random variable X is is B(X) = C(S) − {�} =
{A,Ac}

Definition 10 Two classes of events S1 and S2 are
s-independent if for every E ∈ S1 and F ∈ S2 the
events E and F are s-independent.

The class S2 is s- irrelevant to the class S1 if for every
E ∈ S1 and every F ∈ S2 F is s-irrelevant to E.

The class S1 is s-irrelevant to the class S2 if for every
E ∈ S1 and every F ∈ S2 E is s-irrelevant to F .

Definition 11 Given a risk X the class of the weak
upper level sets of X is

{
X−1 {x} ;x ∈ <

}
. Let X and

Y ∈ L(Ω) be two risks and let S(X) and S(Y ) be the
classes of atoms generated respectively by the class of
the weak upper level sets of the risks X and Y . Then

• X and Y are s-independent if S(X) and S(Y ) are
s-independent;

• Y is s-irrelevant to X if S(Y ) is s-irrelevant to
S(X);

• X is s-irrelevant to Y if S(X) is s-irrelevant to
S(Y ).

Example 3 Let Ω = [0, 1], let E = [0; 1
3 ], E1 = [ 2

3 ; 1]
E2 = [ 1

3 ; 2
3 ] and let X and Y ∈ L(Ω) be two risks

defined by Y (ω) = K and X(ω) = 1 if ω ∈ E, X(ω) =
2 if ω ∈ E1 and X(ω) = 0 if ω ∈ E2 .

Then

X−1[x,+∞) = Ω if x ≤ 0,
X−1[x,+∞) = E ∪ E1 if 0 < x ≤ 1,
X−1[x,+∞) = E1 if 1 < x ≤ 2,
X−1[x,+∞) = � if x > 2.

So S(X) = {E1} and S(Y ) = {Ω}. By Theorem 3 E1
and Ω are s-independent since dimHE1 = dimHΩ = 1
so that X and Y are s-independent.

Theorem 4 Let X = IA and Y = IE be the indicator
functions of two sets A,E ⊆ Ω, then Y is s-irrelevant
to X if and only if E is s-irrelevant to A.
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Proof. By Definition 11 Y is s-irrelevant to X if and
only if S(Y ) is s-irrelevant to S(X). Since S(Y ) = {E}
and S(X) = {A} then Y is s-irrelevant to X if and
only if E is s-irrelevant to A.�

Remark 3 S-independence of the indicator functions
of two events A and E does not imply s-independence
of the indicator functions of their complements because
the classes of atoms respectively generated by X = IA
and Y = IE do not contain the sets Ac and Ec. It
is the main difference with the standard definition of
independence, according to which two random variables
are independent if and only if the σ-field generated by
them are independent. Since the σ-fields generated
by IA and by IAc are equal to σ(X) = {Ω, A,Ac,�}
and the σ-fields generated by IE and IEc are equal
to σ(Y ) = {Ω, E,Ec,�}, independence of IA and IE
implies that IAc and IEc are independent.

In [9, Theorem 9] it has been proven that curves filling
the space like Peano curve and Hilbert curve are s-
independent, so that by Definition 5 and Theorem 4
the indicator functions of curves filling the space are
s-independent.

Example 4 Let Ω = [0, 1] and let X and Y ∈ L(Ω)
be two risks defined by Y (ω) = K and X(ω) = 1 if
ω ∈ Q ∩ [0, 1] and X(ω) = 0 otherwise.

Then

X−1[x,+∞) = Ω if x ≤ 0,
X−1[x,+∞) = Q ∩ [0, 1] if 0 < x ≤ 1,
X−1[x,+∞) = � if x > 1.

We have that S(X) = {Q ∩ [0, 1]} and S(Y ) = {Ω}.
By Theorem 3 Q ∩ [0, 1] and Ω are s-dependent since

dimHQ ∩ [0, 1] = 0 6= 1 = dimHΩ

and so X and Y are s-dependent.

According to the axiomatic definition of stochastic
independence X and Y are independent since the σ-
field G(Y ) generated by Y is G(Y ) = {Ω,�} so that
P [A|G(Y )] = P (A) with probability 1 for every A
belonging to the σ-field generated by X.

Theorem 5 Let X,Y ∈ L(Ω) and let B(X) and B(Y )
be the partitions generated by them. A sufficient con-
dition for s-irrelevance of Y to X is that B(Y ) is
s-irrelevant to B(X).

Proof. The class of atoms is contained in the partition
generated by a random variable, that is S(X) ⊆ B(X)
and S(Y ) ⊆ B(Y ) ∀X,Y ∈ L(Ω), so if B(Y ) is s-
irrelevant to B(X) it implies that S(Y ) is s-irrelevant
to S(X). �

Theorem 6 Let X,Y ∈ L(Ω). A necessary condition
for s-irrelevance of Y to X is that, for every E ∈ S(X),
for every F ∈ S(Y ) and ω ∈ F the following equality
holds

P (E|B(Y ))(ω) = P (E|F ) = P (E)

Proof. Let Y be s-irrelevant to X; then by conditions
s2) and s3) of Definition 4 we have that P (E|F ) =
P (E) for every E ∈ S(X) and F ∈ S(Y ), that is for
ω ∈ Ω with ω ∈ F

P (E|B(Y ))(ω) = P (E|F ) = P (E). �

Lemma 1 Let X,Y ∈ L(Ω) be two risks such that X
is B(Y )-measurable then ∀E ∈ S(X) we have that IE
is B(Y )-measurable.

Proof. Since X is B(Y)-measurable, the sets of the
partition B(X) =

{
X−1(x);x ∈ <

}
are union of sets

belonging to B(Y) and for every E ∈ B(X) the in-
dicator function IE is B(Y )-measurable. Moreover
S(X) ⊆ B(X) so the Lemma is proven.�

Theorem 7 Let X,Y ∈ L(Ω) such that X is B(Y )-
measurable and S(X) 6= {Ω} and S(Y ) 6= {Ω}. Then
Y is s-relevant to X.

Proof. SinceX is B(Y )-measurable by the coherence of
P [21, property (f), p. 292 ] we have P (X|B(Y )) = X.

Let B ∈ B(Y ), for every ω ∈ Ω with ω ∈ B we have

P (X|B(Y ))(ω) = P (X|B) = X(ω).

Since X is B(Y )-measurable by Lemma 1, for ev-
ery E ∈ B(X) the indicator function IE is B(Y )-
measurable so that

P (IE |B(Y )) = IE

so, since S(X) ⊆ B(X) and S(X) 6= {Ω}, the nec-
essary condition for s-irrelevance of Y to X given in
Theorem 6 is not satisfied and Y is s-relevant to X.�
The previous theorem does not hold if S(X) = {Ω} or
S(Y ) = {Ω}.

Example 5 Let Ω = {ω1, ω2, ω3} and let X,Y ∈
L(Ω) such that X(ω1) = 1, X(ω2) = 2, X(ω3) = 3
and Y (ωi) = 1 for i = 1, ..., 3. Then

X−1[x,+∞) = Ω if x ≤ 1,
X−1[x,+∞) = {ω2, ω3} if 1 < x ≤ 2,
X−1[x,+∞) = {ω3} if 2 < x ≤ 3,
X−1[x,+∞) = � if x > 3.
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and

Y −1[x,+∞) = Ω if x ≤ 1,
Y −1[x,+∞) = � if x > 1.

So we have that S(X) = {ω3} and S(Y ) = {Ω}
and by Definition 11 and Theorem 3 X and Y are
s-independent since dimH {ω3} = 0 = dimHΩ.

Proposition 3 Let X,Y ∈ L(Ω) such that X(ω) = k
and Y (ω) = h for every ω ∈ Ω Then X and Y are
s-independent.

Proof. X and Y are constant thus S(X) = S(Y ) =
{Ω} and by Definition 11 X and Y are s-independent.�

Example 6 Let X,Y ∈ L(Ω) such that B(Y ) is the
partition of singletons of Ω and S(X) 6= {Ω}. Then
Y is s-relevant to X since X is B(Y )-measurable and
from Theorem 7 we have that Y is s-relevant to X.

4 Dependent Risks

In this section sufficient conditions for s-dependence
for risks are given. Surjective strictly monotone risks
are proven to be s-dependent and every risk is proven
to be s-dependent on a bijective risk.

Theorem 8 Let X and Y ∈ L(Ω) be two risks and
let S(X) and S(Y ) be the classes of atoms generated
respectively by the class of the weak upper level sets
of the risks X and Y . If there exist A ∈ S(X) and
F ∈ S(Y ) such that dimHA 6= dimHF then X and Y
are s-dependent.

Proof. Let A ∈ S(X) and F ∈ S(Y ) such that
dimHA 6= dimHF so A and F are s-dependent since
condition s1) of Definition 5 is not satisfied. Thus
the classes S(X) and S(Y ) are s-dependent and by
Definition 10 X and Y are s-dependent. �

Example 7 Let ([0, 1], d) be the Euclidean metric
space and let X,Y ∈ L(Ω) be two risks defined by
X(ω) = 1 if 0 < ω < 1

2 , X(ω) = 2 if ω = 1
2

and X(ω) = 0 otherwise, Y (ω) = 1 if 0 < ω < 1
2 ,

Y (ω) = 1
2 if ω ≥ 1

2 ;

So we have

X−1[x,+∞) = Ω if x ≤ 0,

X−1[x,+∞) = [0, 1
2 ] if 0 < x ≤ 1,

X−1[x,+∞) =
{

1
2

}
if 1 < x ≤ 2,

X−1[x,+∞) = � if x > 2,

and

Y −1[x,+∞) = Ω if x ≤ 1
2 ,

Y −1[x,+∞) = [0, 1
2 ] if 1

2 < x ≤ 1,

Y −1[x,+∞) = � if x > 1.

Thus S(X) =
{{ 1

2
}}

and S(Y ) =
{

[0, 1
2 ]
}

and by
Theorem 8 the risks X and Y are s-dependent. We
can observe that the events belonging to S(X) and
S(Y ) satisfy the factorization property with respect
to µ∗Ω, which is the Lebesgue measure h1 since the
Hausdorff dimension of Ω = [0, 1] is 1. In fact the
following equalities hold:

h1(
{

1
2

}
)h1([0, 1

2 ]) = 0 = h1(
{

1
2

}
∩ [0, 1

2 ]).

Theorem 9 Let ([0, 1], d) be the Euclidean metric
space and let X,Y ∈ L(Ω) be two risks such that
Y is bijective. Then X ad Y are s-dependent.

Proof. Since Y is bijective, the partition generated
by Y is B(Y ) =

{
Y −1 {x} ;x ∈ <

}
− {�}, that is

the partition of singletons of [0, 1]. So for any risk
X condition (s1) of Definition 5 is not satisfied for
every F ∈ S(X), then we have that X and Y are
s-dependent. �

Corollary 2 Let ([0, 1], d) be the Euclidean metric
space and let X,Y ∈ L(Ω) be two surjective and strictly
monotone random variables. Then X and Y are s-
dependent.

Proof. Since X and Y are surjective and strictly mono-
tone the partition generated by them is the parti-
tion of singletons of [0,1]; from the fact that strictly
monotonicity implies injectivity by Theorem 9 X is
s-relevant to Y and Y is s-relevant to X; so X and Y
are s-dependent.�

Theorem 10 Let Ω = {ω1, ω2, ..., ωn} and let X,Y ∈
L(Ω) be two risks such that Y : {ω1, ω2, ..., ωn} →
{x1, x2, ..., xn} is injective. Then X and Y are s-
dependent.

Proof. Since Y is surjective if and only if it is in-
jective, so the partition generated by Y is B(Y ) ={
Y −1 {x} ;x ∈ <

}
− {�}, that is the partition of sin-

gletons of Ω. So for any risk X condition (s1) of
Definition 5 is not satisfied for every F ∈ S(X), then
we have that X and Y are s-dependent. �
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5 Joint Coherent Conditional
Measure of Risk

Let X and Y be two risks belonging to L(Ω). In this
section the joint measure of risk ρ(X,Y ) of X and Y
is defined and some properties are proven.

Definition 12 Let X and Y be two risks belonging
to L(Ω) and let B(X) be the partition generated by X.
The coherent upper conditional prevision of Y given
X, denoted by P (Y |X)(ω) is the random variable on
Ω defined by

P (Y |X)(ω) = P (Y |B(X)) = P (Y |B)

if ω ∈ B and B ∈ B(X).

Moreover if B has positive and finite Hausdorff outer
measure in its Hausdorff dimension s the coherent
conditional measure of risk ρ(Y |X) of Y given X is
defined by

ρ(Y |X) = P (Y |B(X)) = P (Y |B) =
∫

B

Y dµ∗B .

If Y is B(X)-measurable (i.e. it is constant on the
sets of B(X)) then P (Y |X) = Y .

Given a risk X let A = X−1(A′) be the inverse image
of A′ for every Borelian set A′ of <.

Definition 13 Given a risk X ∈ L(Ω) and denoted
by t the Hausdorff dimension of Ω, the coherent upper
probability PX induced by X on < is defined by

PX(A′) = P (A) = ht {ω ∈ Ω : X(ω) ∈ A′}
ht(Ω)

for every Borelian set A′ of <.

Definition 14 Let Ω be a set with positive and finite
Hausdorff outer measure in its Hausdorff dimension t.
Given two risks X,Y ∈ L(Ω) the joint coherent upper
probability P (X,Y ) induced by the pair (X,Y ) on <×<
is defined by

P (X,Y )(A′ ×B′)
= P (A ∩B)

= ht {ω ∈ Ω : (X(ω), Y (ω)) ∈ A′ ×B′}
ht(Ω)

for every pair of Borelian sets A′ and B′ of <.

Definition 15 Given two risks X,Y ∈ L(Ω) such
that the Hausdorff dimension of the inverse image
A = X−1(A′) is s and 0 < hs(A) < +∞ the joint

coherent upper probability P (X,Y )|X given X is defined
by

P (X,Y )|X((A′ ×B′)×A′)
= P ((A ∩B)|A)

= hs {ω ∈ Ω : (X(ω), Y (ω)) ∈ A′ ×B′}
hs(A)

for every pair of Borelian sets A′ and B′ of <.

Definition 16 Given two risks X,Y : Ω −→ < and
a partition B of Ω let B ∈ B be a set with positive
and finite Hausdorff outer measure in its Hausdorff
dimension s; the joint coherent conditional measure of
risk ρ((X,Y )|B) is defined by

ρ((X,Y )|B)

=
∫

B

P (X,Y )dµ
∗
B

=
∫
hs {ω ∈ B : (X(ω), Y (ω)) ∈ A′ ×B′}

hs(B) dx.

6 Properties of s-Independent Risks

In this section the relation between s-independence
and the factorization of the joint distribution P (X,Y )
into the product of the marginal distributions PX and
PY is investigated.

According to the axiomatic definition two random
variables X and Y are independent if and only if
σ(X) and σ(Y ), the σ-fields generated by them, are
independent. Since the σ-field generated by a random
variable X is the smallest σ-field with respect to which
X is measurable, it contains the inverse image of all
Borelian sets of <. So if the random variables X and
Y are independent then the joint distribution is equal
to the product of the marginal distributions.

S-independence of risk X and Y does not imply that
the joint distribution P (X,Y ) is equal to the product
of the marginal PX and PY . It occurs because s-
independence between risks implies that the factoriza-
tion property holds only for the atoms (i.e. minimal ses
with respect to the inclusion) of the classes generated
by the weak upper level sets of X and Y (see Corollary
1) and not for all sets of the σ-fields generated by X
and Y .

In the next theorem a sufficient condition is given to
assure that the joint distribution of two simple risks is
equal to the product of their marginal distributions.

Theorem 11 Let Ω be a set with positive and finite
Hausdorff outer measure in its Hausdorff dimension
and let X and Y ∈ L(Ω) be two simple risks such
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that the partition B(Y ) is s-irrelevant to the partition
B(X). Then

ρ(XY ) = P (XY ) = P (X)P (Y ) = ρ(X)ρ(Y ).

Proof. Let X and Y be simple risks. Let A1, ..., An
the atoms of B(X) and B1, ..., Bm the atoms of B(Y )
where the atoms Ai and Bj are enumerated so that
xi = X(Ai) for i = 1, ..., n and yj = Y (Bj) for j =
1, ...m are in descending order, i.e. x1 ≥ x2 ≥ ... ≥ xn
with xn+1 = 0 and y1 ≥ y2 ≥ ... ≥ ym with ym+1 = 0.

Thus X =
∑n
i=1 xiIAi and Y =

∑m
j=1 xjIBj and since

B(Y ) is s-irrelevant to B(X) by Corollary 1 we have
that

µ∗Ω(Ai ∩Bj) = µ∗Ω(Ai)µ∗Ω(Bj).

The coherent upper probability µ∗Ω is submodular and
since the random variable Z = XY and any constant c
are comonotonic we consider the class C = {XY, c} so
that by Proposition 10.1 of [5] there exists an additive
set function α on ℘(Ω) which agrees with µ∗Ω on the
class of µ∗Ω-measurable sets (and so on the atoms of
B(X) and on the atoms of B(Y )) such that

∫

Ω
XY dµ∗Ω =

∫

Ω
XY dα

=
n∑

i=1

m∑

j=1
xiyjα(IAi

IBj
)

=
n∑

i=1

m∑

j=1
xiyjµ

∗
Ω(IAi

IBj
).

Thus the following equalities hold

ρ(XY ) = P (XY ) =
∫
XY dµ∗Ω

=
n∑

i=1

m∑

j=1
xiyjµ

∗
Ω(IAi

IBj
)

=
n∑

i=1

m∑

j=1
xiyjµ

∗
Ω(Ai ∩Bj)

=
n∑

i=1
xiµ
∗
Ω(Ai)

m∑

J=1
yjµ
∗
Ω(Bj)

= P (X)P (Y ) = ρ(X)ρ(Y ). �

Corollary 3 Let B ∈ B be a set with positive and
finite Hausdorff outer measure in its Hausdorff dimen-
sion and let X|B and Y |B ∈ L(B) be two simple risks
such that B(Y |B) is s-irrelevant to B(X|B). Then

ρ(XY |B) = P (XY |B)
= P (X|B) · P (Y |B) = ρ(X|B)ρ(Y |B).

The next example shows that s-independence of two
risks X and Y does not imply s-independence of X|B
and Y |B where B is a set with positive and finite
Hausdorff outer measure in its Hausdorff dimension
belonging to a partition B of Ω.

Example 8 Let X and Y ∈ L(Ω) be the two s-
independent risks defined in Example 3 and let B =
[0, 2

3 ]. Since S(X|B) =
{ 2

3
}
and S(Y |B) = B then by

Theorem 8 X|B and Y |B are s-dependent.

7 Conclusions

Two risks X and Y are s-independent if the atoms of
the classes generated by their weak upper level sets are
s-independent. A crucial difference with respect to the
axiomatic definition of independence for random vari-
ables is that s-independence of the indicator functions
of two events does not imply s-independence of the
indicator functions of their complements. Moreover
s-independence for risks does not imply the factor-
ization of the joint distribution into the product of
the marginal distributions. In the model, different
experiences of two decision makers are represented by
different conditioning events with different Hausdorff
dimension and this produces two different measures
of risk for the same random variable. This allows us
to mathematically represent the fact that different
decision makers can retain certain actions more risky
or less risky according to their own experiences or the
information that they hold. That is to say what is
for one a disadvantage for another person could be
considered a convenient choice .
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Abstract
The paper addresses the evaluation of upper and lower
probabilities induced by functions of an imprecise random
variable. Given a function g and a family Xλ of random
variables, where the parameter λ ranges in an index set
Λ, one may ask for the upper/lower probability that g(Xλ )
belongs to some Borel set B. Two interpretations are inves-
tigated. In the first case, the upper probability is computed
as the supremum of the probabilities that g(Xλ ) lies in B.
In the second case, one considers the random set generated
by all g(Xλ ), λ ∈ Λ, e.g. by transforming Xλ to standard
normal as a common probability space, and computes the
corresponding upper probability. The two results are dif-
ferent, in general. We analyze this situation and highlight
the implications for Monte Carlo simulation. Attention is
given to efficient simulation procedures and an engineering
application is presented.

Keywords. Upper and lower probabilities, imprecise ran-
dom variables, random sets, propagation of uncertainty
through a function, Monte Carlo simulation.

1 Introduction

Methods of imprecise probability have increasingly at-
tracted interest in the engineering community, see e.g. the
recent survey article [3]. In most industrial applications,
engineering structures are described by black box input-
output models, given by large computer programs. To
evaluate probabilities of output quantities, Monte Carlo
simulation is the method of choice. Computational effort
is aggravated, if the input variables are imprecise random
variables (or even random fields) with set-valued parame-
ters.

The present paper is motivated by recent papers on simu-
lation of random sets [16, 17] and on simulation of upper
and lower probabilities in engineering reliability [2]. These
papers raise the question what is the appropriate model of
imprecision and what are cost-saving ways of simulating
the output quantities. The key issue is to keep the number

of required evaluations of the expensive input-output map
as low as possible. Suppose the imprecision of the input is
described in terms of a family of random variables. Two in-
terpretations of resulting lower and upper probabilities are
at hand: the first one by taking infima and suprema over the
probabilities generated by the individual members of the
family, the second one by first forming random sets based
on the family and then evaluating the lower and upper prob-
ability as belief and plausibility (see e.g. [4]). In general,
the results differ. The second question is the appropriate
simulation method in the two cases.

In civil engineering, the use of random sets on continuous
probability spaces goes back at least to [20], see also the
text book [4] and the survey in [15]. Various alternative
approaches to simulation of random sets have been pro-
posed in recent years [1, 14, 22, 21]. The employed notion
of imprecise probability is of course crucial. This paper
focusses on the two limiting cases given by a family of ran-
dom variables versus the random set generated by it. Once
the random set is given, other ways of generating upper and
lower probabilities are known: by means of all measurable
selections of the random set, by means of measurable se-
lections of the measures living on the focal elements, or by
means of its core (the set of probabilities dominated by the
upper probability of the random set). For these notions we
refer to [5, 11, 12] as well as the exhaustive comparison in
[6] (see also the remarks in Section 3 of the paper).

The paper is organized as follows. In Section 2, the set-up
is explained and sufficient conditions are given making the
formation of a random set possible. Section 3 is devoted to
comparing the two versions of lower and upper probabil-
ities and to stating conditions under which they coincide.
Section 4 presents an engineering example, which is used
in the subsequent sections for the purpose of illustration.
Section 5 addresses issues of simulating random sets and
the corresponding lower/upper probabilities, while Section
6 addresses the issue of simulation for lower/upper proba-
bilities derived from families of random variables. Section
7 contains a summary and conclusions.
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2 The Set-Up

The issue of the paper is how to evaluate and to simulate
a function of an imprecise random variable. To fix the
notation, let Λ be an index set. Consider a family of random
variables {Xλ : λ ∈ Λ}, defined on some probability space
(Ω,Σ,m). At fixed λ ∈ Λ, the random variable Xλ may be
univariate or multivariate, with values in some Rn. Further,
let g : Rn→ R be a continuous function.

We wish to investigate lower and upper probabilities in-
duced by the family of random variables g(Xλ ), λ ∈ Λ.
From a probabilistic point of view, the function g could
be suppressed, because Yλ = g(Xλ ) is again a family of
random variables. However, in the applications we have
in mind, the function g will be an input-output map of a
complex system, for which we want to compute the output
distribution. Using Monte Carlo simulation, large sam-
ples of g(Xλ ) should be computed. While generating large
samples of the input is computationally inexpensive, the
evaluation of the function g might be very expensive. As
mentioned, a focus of the paper will be on devising simu-
lation methods of low computational cost. For this reason,
the function g will play a role in Sections 4 to 6. One could
also consider more generally parametrized functions of the
form g(λ ,Xλ ). For the initial probabilistic analysis, we
drop mentioning the function g and consider families of
real valued random variables.

Let (Ω,Σ,m) be the basic probability space, which we
assume to be complete. Let {Xλ}λ∈Λ be a family of random
variables Xλ : Ω→ R : ω → Xλ (ω). Then the probability
of a Borel set B ∈B(R) for a fixed random variable Xλ is

P(Xλ ∈ B) =
∫

Ω

1Xλ (ω)∈B dm(ω) (1)

where

1E =

{
1 if event E occurs,
0 otherwise,

(2)

denotes the indicator function of an event E. Modeling
uncertainty by a family {Xλ}λ∈Λ of random variables, it is
natural to define lower and upper probabilities:

Definition 1 For a family {Xλ}λ∈Λ of random variables,
the lower probability P and the upper probability P are
given by

P(B) = inf
λ∈Λ

P(Xλ ∈ B) = inf
λ∈Λ

∫

Ω

1Xλ (ω)∈B dm(ω), (3)

P(B) = sup
λ∈Λ

P(Xλ ∈ B) = sup
λ∈Λ

∫

Ω

1Xλ (ω)∈B dm(ω), (4)

where B⊂ R is a Borel set.

On the other hand, it is also natural to construct a random
set based on the family {Xλ}λ∈Λ of random variables. To
this end, we define the set-valued map X : Ω→ R by

X(ω) = {Xλ (ω) : λ ∈ Λ}. (5)

By definition, this set-valued map X is a random set, pro-
vided the upper inverses

X−(B) = {ω ∈Ω : X(ω)∩B 6=∅} (6)

are measurable subsets of Ω for every Borel set B. Then
the same holds also for the lower inverses

X−(B) = {ω ∈Ω : X(ω)⊂ B}. (7)

These lower and upper inverses lead to lower and upper
probabilities based on the random set X:

Definition 2 For a random set X, the lower probability P
˜and the upper probability P̃ is defined by

P
˜
(B) =m(X−(B)) =

∫

Ω

1X(ω)⊆B dm(ω), (8)

P̃(B) =m(X−(B)) =
∫

Ω

1X(ω)∩B6=∅ dm(ω). (9)

We will show in the next section that

P
˜
≤ P ≤ P ≤ P̃ (10)

with equality only in special cases, but first we give suffi-
cient conditions so that X generated by the family {Xλ}λ∈Λ
is a random set.

Theorem 1 Let a family {Xλ}λ∈Λ of random variables be
given. Assume that Λ is a compact subset of a metric space
and that the maps λ → Xλ (ω) are continuous for each
fixed ω ∈Ω. Then

(a) the set-valued map X defined by

X(ω) = {Xλ (ω) : λ ∈ Λ} (11)

is a compact random set;

(b) the map 1B : ω → supλ∈Λ1Xλ (ω)∈B is measurable;

(c) the map 1B : ω → infλ∈Λ1Xλ (ω)∈B is measurable;

where B is a Borel set.

Proof. (a) As a compact subset of a metric space, Λ is sepa-
rable. Take a countable dense subset of parameter values
λk in Λ. From the continuity assumption, it follows that the
sequence {Xλk

(ω) : k = 1,2,3, . . .} is dense in X(ω) for
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every fixed ω . (That is, it is a Castaing representation.) Let
B be an open set. Then the set

X−(B) = {ω ∈Ω : X(ω)∩B 6=∅} (12)
= {ω ∈Ω : there is k such that Xλk

(ω) ∈ B}
=

⋃

k

{ω ∈Ω : Xλk
(ω) ∈ B}

is measurable as a countable union of measurable sets.
(The individual sets are measurable, because each Xλ is a
random variable.) The fundamental measurability theorem
(see e.g. [13]) implies that X−(B) is measurable for every
Borel set B. In addition, X(ω) is the continuous image of a
compact set. Thus X is a compact random set.

(b) Considering 1B, we observe the equivalence

1B(ω) = sup
λ∈Λ

1Xλ (ω)∈B = 1 (13)

⇐⇒ ∃λ ∈ Λ : Xλ (ω) ∈ B ⇐⇒ X(ω)∩B 6=∅.

Thus X−(B) = 1
−1
B ({1}). Since 1B takes only the two

values 0 and 1, this proves that 1B is measurable.

(c) For 1B we have

1B(ω) = inf
λ∈Λ

1Xλ (ω)∈B = 1 (14)

⇐⇒ ∀λ ∈ Λ : Xλ (ω) ∈ B ⇐⇒ X(ω)⊆ B

which leads to X−(B) = 1
−1
B ({1}). The same arguments

as in (b) yield the measurability of 1B. �

3 Comparison Results

The purpose of this section is to prove the chain of inequal-
ities formulated in Eq. (10), exhibit some circumstances
when they are equal and illustrate the behavior by means
of simple examples.

Theorem 2 Let {Xλ}λ∈Λ be a family of random variables
according to the assumptions of Theorem 1 and let X be the
random set induced by this family together with the map
X(ω) = {Xλ (ω) : λ ∈ Λ}. Then it holds

P
˜
≤ P ≤ P ≤ P̃ (15)

for the lower and upper probabilities in Def. 1 and 2.

Proof. For the upper probabilities of a Borel set B we have

P(B) = sup
λ∈Λ

P(Xλ ∈ B) = sup
λ∈Λ

∫

Ω

1Xλ (ω)∈B dm(ω) (16)

≤
∫

Ω

sup
λ∈Λ

1Xλ (ω)∈B dm(ω) =
∫

Ω

1B dm(ω)

=
∫

Ω

1X(ω)∩B 6=∅ dm(ω) = P̃(B)

using Eq. (13). Together with Eq. (14) we get

P(B) = inf
λ∈Λ

P(Xλ ∈ B) = inf
λ∈Λ

∫

Ω

1Xλ (ω)∈B dm(ω) (17)

≥
∫

Ω

inf
λ∈Λ

1Xλ (ω)∈B dm(ω) =
∫

Ω

1B dm(ω)

=
∫

Ω

1X(ω)⊆B dm(ω) = P
˜
(B)

for the lower probabilities. �
Remark. Let

M(P̃) = {P : P(A)≤ P̃(A), A ∈ Σ} (18)

be the set of all probability measures dominated by the
upper probability P̃ induced by the random set X. Further
let

P(X) = {PX : X ∈ S(X)} (19)

be the set of all probability measures generated by the
measurable selections

S(X) = {X : Ω→ R measurable : X(ω) ∈ X(ω)} (20)

of the random set X. In [5, 11, 12] these two sets P(X)
and M(P̃) are investigated and it is proven that the relation
P(X)⊆M(P̃) holds and that we have P(X) =M(P̃) under
certain conditions.

In our case the random variables X ∈ {Xλ}λ∈Λ are mea-
surable selections of the random set X but in general
not all of the selections in S(X). That means we have
{Xλ}λ∈Λ ⊆ S(X) and the following relations

P(B) = sup
λ∈Λ

P(Xλ ∈ B) = sup
X∈{Xλ }λ∈Λ

PX (B)

︸ ︷︷ ︸
family of random variables

≤

≤ sup
X∈S(X)

PX (B)

︸ ︷︷ ︸
all measurable selections

≤ sup
P∈M(P̃)

P(B)

︸ ︷︷ ︸
dominated probabilities

= P̃(B)

for the upper probabilities and vice versa for the lower
probabilities.

Example 1 Let (Ω,Σ,m) = (R,B(R),m) be the probabil-
ity space with probability measure

m(B) =
∫

R

1ω∈B
1√
2π

e−ω2/2 dω, B ∈B(R). (21)

On the one hand, the family {Xλ}λ∈Λ of random variables
is given by

{X(µ,σ)}(µ,σ)∈Λ, Λ = [µ,µ]× [σ ,σ ], σ > 0 (22)

where
X(µ,σ)(ω) = σω +µ. (23)
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This means that X(µ,σ) ∼N(µ,σ2) is a Gaussian random
variable parameterized by (µ,σ). In particular, we have
X(0,1) ∼N(0,1) and X(0,1)(ω) = ω .

On the other hand, the random set X is generated by the
set-valued map

X(ω) = {Xλ (ω) : λ ∈ Λ}. (24)

In this case, X(ω) is an interval [X(ω),X(ω)] with lower
bound

X(ω) = inf
µ∈[µ,µ]
σ∈[σ ,σ ]

X(µ,σ)(ω) =

{
σω +µ ω < 0,
σω +µ ω ≥ 0,

(25)

and upper bound

X(ω) = sup
µ∈[µ,µ]
σ∈[σ ,σ ]

X(µ,σ)(ω) =

{
σω +µ ω < 0,
σω +µ ω ≥ 0.

(26)

As a specific example, we determine the lower and upper
probabilities P(B) and P(B) given Λ = [−0.5,2]× [1,2]
and B = [1,2.5]. For the family {X(µ,σ)}(µ,σ)∈Λ of random
variables we get

P(B) = inf
(µ,σ)∈Λ

P(X(µ,σ) ∈ B) = P(X(−0.5,1) ∈ B) (27)

= 0.065457,

P(B) = sup
(µ,σ)∈Λ

P(X(µ,σ) ∈ B) = P(X(1.75,1) ∈ B)

= 0.546745,

cf. Fig. 1 where the probability P(X(µ,σ) ∈ [1,2]) on Λ is
visualized as a contour plot. The maximum probability is
achieved at parameter values (µ,σ) = (1.75,1) (4) and the
minimum probability at (−0.5,1) (5).

P
(X

(µ
,σ
)
∈
[1
,2
])

σ
∈
[1
,2
]

µ ∈ [−0.5,2]
0 1 2

0.2

0.4

1

1.5

2

Figure 1: Set Λ = [−0.5,2] × [1,2] and probabilities
P(X(µ,σ) ∈ [1,2]) visualized as a contour plot.

In Fig. 2 the random set X (gray area) corresponding to
the above family of random variables, the bounds X, X, a
single random variable X(1.5,1.3) ∈ {X(µ,σ)}(µ,σ)∈Λ and the
focal set X(ω) at ω = 1 are depicted.

X

X
(ω

) X(ω)

XX

X(1.5,1.3)

ω = 1
-4 -2 0 2 4 6

−1

0

1

2

3

4

Figure 2: Random set X, bounds X and X, a single random
variable X(1.5,1.3) and a focal set X(ω).

To compute the lower and upper probabilities P
˜
(B) and

P̃(B) we need the lower and upper inverses. The lower in-
verse X−(B) is the empty set, because there are no focal sets
X(ω) which are subsets of B = [1,2.5]. The upper inverse
X−(B) is the interval [−1,3], cf. Fig. 3 where the random
set X and the set B are depicted. In addition, some of the
focal sets X(ω), ω ∈ X−(B), with non-empty intersection
with B are visualized as vertical lines. For comparison, the
random variables X(−0.5,1) and X(1.75,1) resulting in P(B)
and P(B) are plotted as well.

X

B

X(1.75,1)

X(− 1
2 ,1)

X
(ω

)

ω
−1 0 3

1

2.5

Figure 3: Set B = [1,2.5], random set X, random variables
X(1.75,1) and X(− 1

2 ,1)
resulting in P(B) and P(B). The verti-

cal lines are focal sets with non-empty intersection with B
leading to P̃(B).

Then the lower and upper probabilities are easily obtained:

P
˜
(B) =m(X−(B)) =m(∅) = 0 (28)
≤ 0.065457 = P(B),

P̃(B) =m(X−(B)) =m([−1,3]) = Φ(3)−Φ(−1) (29)

= 0.839994≥ 0.546745 = P(B)

where Φ(ω) =m((−∞,ω]) denotes the Gaussian cumula-
tive distribution function.
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In the following theorem we present special cases where
P
˜
(B) = P(B) and/or P̃(B) = P(B) holds for a fixed Borel

set B. Since we are interested in probabilities P(g(X)≤ 0),
we focus on sets B of type (−∞,b].

Theorem 3 Let {Xλ}λ∈Λ be a family of random variables,
Λ a compact subset of a metric space and assume that the
maps λ → Xλ (ω) are continuous for each fixed ω ∈ Ω.
Further let X(ω) = {Xλ (ω) : λ ∈ Λ} and denote the lower
and upper bounds by

X(ω) = minX(ω) and X(ω) = maxX(ω). (30)

(a) If there is a λ ∈ Λ such that 1Xλ (ω)∈B = 1B(ω) m-
almost everywhere, then we have P(B) = P

˜
(B).

If there is a λ ∈ Λ such that 1Xλ (ω)∈B = 1B m-almost
everywhere, then we have P(B) = P̃(B).

(b) Let B = (−∞,b]. If there is a λ∗ ∈ Λ such that
X−1

λ∗ (B) = X
−1
(B), then we have P(B) = P

˜
(B).

If there is a λ∗∈Λ such that X−1
λ∗ (B) = X−1(B), then

we have P(B) = P̃(B).

(c) Let B= (−∞,b]. If there is a λ∗ ∈Λ such that Xλ∗ =X,
then we have P(B) = P

˜
(B).

If there is a λ∗∈Λ such that Xλ∗ = X, then we have
P(B) = P̃(B).

(d) Let B = (−∞,b], (Ω,Σ,m) = (R,B(R),m) and Λ×
R → R : (λ ,ω) → Xλ (ω) continuous and strictly
monotonically increasing (decreasing) in the ω-
direction, then P(B) = P

˜
(B) and P(B) = P̃(B).

Proof. (a) It follows directly from the Eqs. (16) and (17) in
the proof of Theorem 2.

For the further proof we use that X−(B) = X
−1
(B) and

X−(B) = X−1(B) holds for a set of the form B = (∞,b].

(b) Let B = (−∞,b]. Then

P
˜
(B) =m(X−(B)) =m(X

−1
(B)) =m(X−1

λ∗ (B)) (31)

=
∫

Ω

1Xλ∗ (ω)∈B dm(ω)≥ P(B)

and

P̃(B) =m(X−(B)) =m(X−1(B)) =m(X−1
λ∗ (B)) (32)

=
∫

Ω

1Xλ∗ (ω)∈B dm(ω)≤ P(B).

(c) It is a special case of (b). E.g., if there is a λ∗∈Λ such
that Xλ∗ = X, then it follows that X−1(B) = X−1

λ∗ (B).

(d) Let B = (−∞,b] and (λ ,ω)→ Xλ (ω) continuous and
strictly monotonically increasing in the ω-direction. In this
case the bound X is continuous and strictly monotonically
increasing in ω . (Assume X(ω1) ≥ X(ω2) for ω1 < ω2.
Then it follows from Eq. (30) that there is a λ such that
X(ω2) =Xλ (ω2). This leads to the contradiction Xλ (ω1)≥
X(ω1)≥ Xλ (ω2).)

There are three cases:

(i) Case b < X. Then X−1(B) = ∅, P̃(B) = m(∅) = 0
and P(B) = 0.

(ii) Case b>X. Then X−1(B) =R, P̃(B) =m(R) = 1.
Further, P(B) = 1. Indeed, take any ω ∈ R. Then
there is λ ∈ Λ such that X(ω) ≤ Xλ (ω) < b and by
strict monotonicity X(ω)≤ Xλ (ω)< b for all ω ≤ ω .
This implies P(B)≥m((∞,ω]). Since ω is arbitrary,
we get P(B) = 1 for ω → ∞.

(iii) Case b ∈ X(R). Then there is an ω∗ ∈ R such that
X(ω∗) = b.

In case (iii) we have on the one hand

X((−∞,ω∗])⊆ (−∞,b] (33)

because of the strict monotonicity of X and on the other
hand for the complement of (−∞,ω∗]

X((ω∗,∞))∩ (−∞,b] =∅ (34)

which means that X−1((−∞,b]) = (−∞,ω∗].

Further there is a λ∗ ∈ Λ such that X(ω∗) = b = Xλ∗(ω
∗)

because of Eq. (30). This and the monotonicity of Xλ∗ ≥ X

leads to

Xλ∗((−∞,ω∗])⊆ (−∞,b], (35)
Xλ∗((ω

∗,∞))∩ (−∞,b] =∅,

X−1
λ∗ ((−∞,b]) = (−∞,ω∗]

and this in turn leads to the assumption

X−1
λ∗ ((−∞,b]) = X−1((−∞,b]) (36)

of case (b). In particular, we get ω∗ = X−1(b) = X−1
λ∗ (b)

and P(B) = P̃(B) =m((−∞,ω∗]).

By the same arguments one can prove for the lower
probabilities that P(B) = P

˜
(B) =m((−∞,ω∗]) with ω∗ =

X
−1
(b) = X−1

λ∗ (b) and the results for decreasing functions
(λ ,ω)→ Xλ (ω) as well. �
Remark on Theorem 3c. If there is a λ∗ ∈ Λ such that
Xλ∗ = X, then we have FXλ∗ = FX for the cumulative distri-
bution functions and therefore

P̃((−∞,b])) = FX(b) = FXλ∗ (b) = P((−∞,b]). (37)

The relation FXλ∗ = FX means in the notion of p-boxes [7],
that one of the distribution functions FXλ , λ ∈ Λ, coincides
with the upper envelope F = FX, cf. [7], of the p-box.
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Example 2 We continue with Example 1. Here we want
to compute the lower and upper probabilities for the set
B = (−∞,b].

Since (µ,σ ,ω)→ X(µ,σ)(ω) = σω +µ , σ > 0, is contin-
uous and a strictly monotonically increasing function in ω ,
we can apply Theorem 3 (d).

First we determine the inverses of X and X (cf. Eqs. (25)
and (26)):

X−1(x) =




(x−µ)/σ = X−1

(µ,σ)
(x) x < µ,

(x−µ)/σ = X−1
(µ,σ)

(x) x≥ µ,
(38)

and

X
−1
(x) =

{
(x−µ)/σ = X−1

(µ,σ)
(x) x < µ,

(x−µ)/σ = X−1
(µ,σ)

(x) x≥ µ.
(39)

Now let again Λ = [µ,µ]× [σ ,σ ] = [−0.5,2]× [1,2] and
B = (−∞,b] = (−∞,2.5]. Then 2.5≥ µ ≥ µ which means
that we have to take the second parts of Eqs. (38) and (39)
to determine the lower and upper probabilities:

P
˜
((−∞,b]) = P((−∞,b]) =m((−∞,X

−1
(b)]) (40)

=m((−∞,ω∗]) = Φ(X−1
(2,2)(2.5)) = Φ(0.25)

= 0.598706,

P̃((−∞,b]) = P((−∞,b]) =m((−∞,X−1(b)]) (41)

=m((−∞,ω∗]) = Φ(X−1
(−0.5,1)(2.5)) = Φ(3)

= 0.998650

with b = 2.5, ω∗ = X
−1
(b) = 0.25 and ω∗ = X−1(b) = 3,

see also Fig. 4.

X

B

X(2,2) X(− 1
2 ,1)

X
(ω

)

ω∗=X−1
(2,2)(2.5)=

1
4 ω∗=X−1

(− 1
2 ,2)

(2.5)=3

2.5

Figure 4: Set B = (−∞,b] = (−∞,2.5], random set X, ω∗,
ω∗, random variables X(2,2) and X(− 1

2 ,1)
resulting in P(B)

and P(B). The vertical lines are focal sets with non-empty
intersection with B leading to P̃(B) = P(B).

4 Numerical Example

As a simple engineering example we consider a beam of
length L= 3 m supported on both ends and additionally bed-
ded on a spring, cf. Fig. 5. The values of the beam rigidity
EI = 1 kNm2, of the elastic limit moment Myield = 21 kNm
and of the load f (ξ ) = q = 100 kN/m are deterministic, but
the value of the spring constant x (in our notation for the
variables of the function g) is assumed to be uncertain.

The beam will fail in the case where the value of limit
state function g depending on the spring constant x is less
or equal to 0. This means that we are interested in the
failure probability P(g(X)≤ 0) where the random variable
X describes the uncertainty of the spring constant.

In this example the limit state function g is given as

g(x) = Myield− max
ξ∈[0,3]

|M(ξ ,x)| (42)

= Myield−
qL2

4
max

(
(1− c(x))2

2
,c(x)− 1

2

)

with c(x) = 5x/(384EI/L3 + 8x), see Fig. 5 and [9]. Ob-
viously this function is cheap to evaluate. Nevertheless
we will apply the strategies for handling time consuming
functions g as described in the following sections.

g(
x)

spring constant x
15 20 25 30 35 40 45

−2

0

2

Figure 5: Beam bedded on a spring and deterministic limit
state function g depending on the spring constant.

We model the uncertainty of the spring constant by a fam-
ily {X(µ,σ)}(µ,σ)∈Λ of random variables X(µ,σ) ∼N(µ,σ2)
and, alternatively, by the induced random set X. For this
purpose, we simply continue with the set-up of Example 1.
However, the set Λ is now given by

Λ = [µ,µ]× [σ ,σ ] = [20,30]× [0.5,3]. (43)

In the following sections the function g, the family of ran-
dom variables as defined above and the corresponding ran-
dom set will be used to exemplify the simulation techniques
presented.
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5 Simulation of Random Sets

First, let us recall how the propagation of random set data
through a map is accomplished. Let g : Rn → R be a
continuous function and X(ω), ω ∈ Ω be a random set.
The image set G(ω) = g(X(ω)), ω ∈ Ω, where g(X(ω))
is the set of values the function y = g(x) attains when x
ranges in X(ω) is a random set. Computational aspects
of random sets have been discussed at many places, see
e.g. the references in [3]. In our context, the principles
of Monte Carlo simulation of random sets of the form
g(X(ω)) = g({Xλ (ω) : λ ∈ Λ}) have to be explained.

We assume that Λ is a compact subset of a metric space
and that the maps λ → Xλ (ω) are continuous for each
fixed ω ∈ Ω. Then G(ω) = g(X(ω)) is contained in a
random interval [G(ω),G(ω)], where G(ω) = ming(X(ω))

and G(ω) = maxg(X(ω)). Suppose we wish to compute
its upper and lower distribution functions F(y) and F(y).
Note that

F(y) = P
(
(−∞,y]∩ [G,G] 6=∅

)
= P

(
G≤ y

)
= FG(y),

the cumulative distribution function of the random variable
G. Similarly,

F(y) = P
(
[G,G]⊂ (−∞,y]

)
= P

(
G≤ y

)
= FG(y).

Recall that g(X(ω)) = {g(Xλ (ω))) : λ ∈ Λ}. Thus, in
order to compute G(ω) and G(ω), an optimization problem
has to be solved that determines the smallest and the largest
value of the set {g(Xλ (ω))) : λ ∈ Λ}. This leads to the
following algorithm for computing the upper distribution
function F(x).

• Generate a sample ω1, . . . ,ωNsamp random elements of
Ω, distributed according to m .

• For each ωn, estimate G(ωn)=ming(Xλ (ωn)) by min-
imization with respect to λ ∈ Λ.

• The empirical distribution function of the sample
{G(ωn) : n = 1, . . . ,Nsamp} is an approximation to
F(y).

In order to compute the respective minima and maxima, the
parameter set should be discretized into λ1, . . . ,λNgrid . The
algorithm requires Ngrid ·Nsamp evaluations of the function g.
Generally, this is too expensive for large scale applications.
Computational cost can be saved by suitably approximating
the input-output function g by a surrogate model. For such
an approximation, two levels are at hand:

Ω
Xλ−→ Rn g−→ R.

There are two possibilities to construct a surrogate model:
either by a surrogate model g̃ of the map g : Rn → R or
by a family of stochastic surrogate models of the maps

Ω→ g ◦ Xλ . Both approaches start with a set of collo-
cation points x j, j = 1, . . . ,Ncoll in Rn, together with the
corresponding function values y j = g(x j). This requires
Ncoll evaluations of the input-output function g. In the first
approach, the functions g̃◦Xλ have to be simulated for λ
belonging to a grid of representative parameter values λi,
i = 1, . . . ,Ngrid. Each Xλi has a different probability distri-
bution. If a Monte Carlo sample of size Nsamp is desired,
this still requires Ngrid ·Nsamp evaluations of the function g̃.
We will show below that reweighting technique can reduce
the computational cost to Nsamp evaluations.

We first discuss the second approach. Here the collocation
points are pulled back to Ω as follows: For each λi and x j,
define a collocation point in Ω by ωi j = X−1

λi
(x j). Clearly,

y j = g(Xλi(ωi j)) for every i. Fitting a surrogate model g̃i
for each i, based on the data (ωi j,g j), j = 1, . . . ,Ncoll is
computationally inexpensive. Typically, when Ω =Rm and
the measure dm(ω) is absolutely continuous with respect
to Lebesgue measure, one may use orthogonal polynomials
with respect to the measure dm(ω) (Hermite expansion
in the Gaussian case) and then compute the coefficients by
weighted regression through the data.

At fixed ω , the lower bound G(ω) of the focal set G(ω) can
simply be estimated by the smallest value among the g̃i(ω),
i = 1, . . . ,Ngrid. Repeating this procedure for a sample
ω1, . . . ,ωNsamp produces a Monte Carlo sample {G(ωn) :
n = 1, . . . ,Nsamp} which can be used to estimate the desired
upper distribution function F(y), and similarly for the lower
distribution function F(y).

This approach requires Ncoll evaluations of the expensive
full model and Nsamp evaluations of the inexpensive sur-
rogate model. Details of the procedure can be found in
[16]; further information on the construction of stochastic
surrogate models is in [10].

Remarks. (a) In case Xλ are Gaussian variables with
λ = (µ,σ) and Ω = R with the standard Gaussian density,
we simply have Xλ (ω) = µ+σω and X−1

λi
(x) = (x−µ)/σ .

The same procedure can be applied to a non-Gaussian fam-
ily Xλ by transforming it to standard Gaussian space, i.e.,
Xλ (ω) = F−1

λ (Φ(ω)) where Fλ and Φ denote the cumula-
tive distribution functions of Xλ and of a standard normal
variable, respectively.

(b) Some indications on multivariate families Xλ are in
order. We consider the case of an n-dimensional Gaus-
sian variable Xλ ∼ N

(
µ(λ ),S(λ )

)
with mean µ(λ ) and

covariance S(λ ), both assumed to depend continuously on
a possibly multidimensional parameter λ . Performing the
Cholesky factorization S(λ ) = C(λ )C(λ )T, the random
variables Xλ can be realized as Xλ = C(λ )Y where Y is an
n-dimensional standard Gaussian variable. The procedure
outlined above can be applied in the same way, employing
n-dimensional Hermite polynomials.

Imprecise random variables, random sets, and Monte Carlo simulation

143



In this framework, finite dimensional discretizations of
Gaussian random fields can be accommodated as well, ei-
ther using the Cholesky factorization or – equivalently – a
truncated Karhunen-Loève expansion.

Example 3 We continue with our engineering example.
Due to its small size, we may use the full model without
constructing a surrogate model.

Let the grid points (µi,σ j) with

µi = 20,21, . . . ,30 and σ j = 0.5,1,1.5, . . . ,3 (44)

define a grid on Λ = [µ,µ]× [σ ,σ ] = [20,30]× [0.5,3].
Then a focal set [G(ω),G(ω)] of the random set G at ω is
approximated by

G(ω)≈min
i, j

g◦X(µi,σ j)(ω), (45)

G(ω)≈max
i, j

g◦X(µi,σ j)(ω).

We approximate the upper probability of failure of the beam
by means of Monte Carlo simulation:

P̃(g≤ 0) =
∫

R

1G(ω)∩(−∞,0]6=∅ dm(ω) (46)

=
∫

R

1G(ω)≤0 dm(ω)

≈
Nsamp

∑
k=1

1G(ωk)≤0 ·
1

Nsamp
= 0.358.

where ω1, . . . ,ωNsamp is a standard normally distributed sam-
ple.

In Fig. 6 the random set G and one of the functions which
are generating G, namely g◦X(24,2), are depicted. Further in
Fig. 7 a sample of focal sets G(ωk), k = 1, . . . ,Nsamp, is visu-
alized. Counting the focal sets with non-empty intersection
with (−∞,0] leads to the upper probability P̃(g≤ 0).

G

g◦X(24,2)

G

G

g(
X (

µ i
,σ

j)
(ω

k)
)

ω
−4 −2 0 2 4

−1

0

1

2

Figure 6: Random set G, g◦X(24,2) (one of the transforma-
tions of g), lower and upper bounds G and G.
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Figure 7: Random set G and focal sets G(ωk) for sample
ω1, . . . ,ωNsamp visualized as vertical lines.

6 Simulation of Families of Random
Variables

In this section we show how to simulate families of random
variables and how to save computational cost applying
sample reweighting techniques.

We shortly present the ideas of resampling: Let v be a
measurable function (later on an indicator function 1g(x)≤y),
fX > 0 the strictly positive density function of a random
variable X and fY > 0 the strictly positive density of a
random variable Y . Then, for the random variable X we
have the approximation

∫

R

v(x) fX (x) dx ≈
Nsamp

∑
k=1

v(xk) ·
1

Nsamp
(47)

of the integral where x1, . . . ,xNsamp is a sample distributed
according to X together with weights 1/Nsamp. Similarly,
for Y we get

∫

R

v(x) fY (x) dx ≈
Nsamp

∑
k=1

v(yk) ·
1

Nsamp
(48)

where now y1, . . . ,yNsamp is a sample distributed as Y with
weights 1/Nsamp. In this version, replacing the density
function fX by fY needs new samples and new function
evaluations v(yk).

Alternatively, applying sample reweighting, we have
∫

R

v(x) fY (x) dx =
∫

R

v(x) · fY (x)
fX (x)

· fX (x) dx (49)

≈
Nsamp

∑
k=1

v(xk) ·
fY (xk)

fX (xk)

1
Nsamp

using the original sample x1, . . . ,xNsamp , but now with new
weights

wk :=
fY (xk)

fX (xk)

1
Nsamp

(50)

instead of the uniform weights 1/Nsamp.
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Our goal is to approximate probabilities P(g(Xλ )≤ y) by
means of Monte Carlo simulation using only one sample
for all Xλ , λ ∈ Λ.

As a first step, we start with the generation of a sample
x1, . . . ,xNsamp . This sample may be distributed as one of our
random variables Xλ , λ ∈Λ. But a better choice is a “basic”
distribution covering a greater range than a distribution
of a single Xλ , λ ∈ Λ, does. In our example with the
family {X(µ,σ)}(µ,σ)∈Λ of Gaussian random variables, this
can be achieved by using an appropriate high variance
σ2
∗ > σ2 and µ∗ = (µ + µ)/2 for generating a Gaussian

sample x1, . . . ,xNsamp ∼N(µ∗,σ2
∗ ). In general we say that

this “basic” sample is distributed as a random variable X∗.

As a second step, we compute all function values g(xk),
k = 1, . . . ,Nsamp, of the limit state function, either directly
evaluating g or using a surrogate model g̃.

As a third step, we have to perform a reweighting of the
sample generated above, since we need samples distributed
according to certain random variables Xλ . These weights
for a given Xλ are obtained by

wk(λ ) =
fXλ (xk)

fX∗(xk)

1
Nsamp

. (51)

Now we are able to approximately compute probabilities
P(g(Xλ ) ≤ y) for different random variables Xλ without
additional function evaluations of g:

P(g(Xλ )≤ y)≈
Nsamp

∑
k=1

1g(xk)≤y ·wk(λ ). (52)

For the computation of the upper/lower probabilities we use
a grid of representative parameter values λi as mentioned in
the previous section, estimate the probabilities P(g(Xλi)≤
y) at the grid points λi by means of Monte Carlo simulation
as in Eq. (52) and take the maximum/minimum value as an
approximation:

P(g≤ y) = sup
λ∈Λ

P(g(Xλ )≤ y)≈ max
i=1,...,Ngrid

P(g(Xλi)≤ y)

≈ max
i=1,...,Ngrid

N

∑
k=1

1g(xk)≤y ·wk(λi), (53)

P(g≤ y)≈ min
i=1,...,Ngrid

N

∑
k=1

1g(xk)≤y ·wk(λi). (54)

Example 4 Again, we continue with the engineering ex-
ample.

We approximately compute the failure probability
P(g(X(µ,σ)) ≤ 0) of the beam for a fixed pair (µ,σ) ∈ Λ
using either Monte Carlo simulation in the space of the
variables of the limit state function g, Eq. (57), or in the

standard normal space, Eq. (56):

P(g(X(µ,σ))≤ 0) =
∫

R

1g(X(µ,σ)(ω))≤0 dm(ω) (55)

≈
Nsamp

∑
k=1

1g(X(µ,σ)(ωk))≤0 ·wk(µ,σ) (56)

≈
Nsamp

∑
k=1

1g(xk)≤0 ·wk(µ,σ) (57)

where
X(µ,σ)(ωk) = σωk +µ = xk (58)

and in the reverse direction

ωk = X−1
(µ,σ)(xk) = (xk−µ)/σ . (59)

The weights are given by

wk(µ,σ) =
fX(µ,σ)

(xk)

fX∗(xk)

1
Nsamp

(60)

where the sample x1, . . . ,xNsamp is distributed according
X∗ ∼N(25,62) for Nsamp = 100000.

In the next step we have to compute

P(g≤ 0) = sup
(µ,σ)∈Λ

P(g(X(µ,σ))≤ 0) (61)

which is approximated using grid points (µi,σ j) with

µi = 20,21, . . . ,30 and σ j = 0.5,1,1.5, . . . ,3. (62)

The probabilities P(g(X(µi,σ j))≤ 0) at these grid points are
computed as in Eq. (52) and depicted in Fig. 8. Then we
simply take the maximum of all these probabilities similar
to Eq. (53) and obtain the result

P(g≤ 0)≈max
i, j

P(g(X(µi,σ j))≤ 0)≈ 0.221 (63)

which is the upper probability of failure of the beam con-
sidered.

Comparing this result with the result in Section 5 it holds
that 0.221≈ P(g≤ 0)≤ P̃(g≤ 0)≈ 0.358.

P
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( µ
,σ
))
≤

0)
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Figure 8: Failure probability P(g(x(µ,σ))≤ 0) computed at
grid points (µi,σ j).
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7 Summary and Conclusions

We have discussed two interpretations of upper and lower
probabilities, given a family of random variables. The
random set approach is supported by the availability of
a rich theory as well as various recent applications, e.g.
[16, 17, 18, 19]. The approach based directly on the family
of random variables has been favored e.g. in [2]. We have
shown here that the latter approach gives tighter bounds,
i.e., smaller probability intervals, in general. For both
approaches, cost saving simulation methods have been pre-
sented. We hope that the paper stimulates further research
into the computational aspects of imprecise probability.
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Abstract
This paper deals with the derivation of a probabilistic
parametric model from interval or fuzzy data using
the maximum likelihood principle. In contrast with
classical techniques such as the EM algorithm, that
define a precise likelihood function by averaging inside
each imprecise observations, our approach presupposes
that each imprecise observation underlies a precise one,
and that the uncertainty that pervades its observation
is epistemic, rather than representing noise. We define
an interval-valued likelihood function and apply robust
optimisation methods to find a safe plausible estimate
of the statistical parameters. The resulting density has
a standard deviation that is large enough to cover the
imprecision of the observations, making a pessimistic
assumption on dispersion. This approach is extended
to fuzzy data by optimizing the average of lower likeli-
hoods over a collection of data sets obtained from cuts
of the fuzzy intervals, as a trade off between optimistic
and pessimistic interpretations of fuzzy data. The
principles of this method are compared with those of
other existing approaches to handle incompleteness of
observations, especially the EM technique.

Keywords. Possibility theory, fuzzy intervals, maxi-
mum likelihood, robust optimisation, epistemic uncer-
tainty

1 Introduction

Interval observations, and more generally, set-valued
ones, do not always refer to the same situation [1].
Intervals may either represent exact observations of
items taking the form of intervals (for instance, the
daily min-max temperature ranges across one year),
or, on the contrary, imprecise observations of precise
quantities. In the first situation, interval data are a
special kind of functional data where observations lie
in a space of characteristic functions equipped with
the suitable metric structure, enabling precise statis-
tical parameters to be derived [18]. In this paper we

are interested in the statistical analysis of data when
observations are imprecise, more specifically, when we
only know that the precise values of observations are
restricted by intervals or fuzzy intervals. This kind of
fuzzy interval is an epistemic set [1] which attaches to
each value the possibility that it is the true observed
value (unreachable for the observer). Under the epis-
temic approach, the expected value and the variance
of a set of fuzzy intervals are fuzzy intervals [2].

This paper presents a general iterative approach to
compute estimates of the parameters of a density func-
tion under imprecise observations, where the lack of
precision is an epistemic rather than an aleatory phe-
nomenon. To estimate the quality of parameters of
the underlying precise random process, we use the
maximum likelihood principle. Nevertheless, under
imprecise observations, the likelihood function itself
becomes imprecisely appraised too and is thus interval-
valued. In this paper we adopt a pessimistic point of
view and maximize the lower bound of the likelihood
function, with a view to obtain a robust probability
density whose standard variation accounts for poten-
tially extreme variability across imprecision intervals.

The paper is organized as follows. In Section 2, we
propose an algorithm that evaluates minimal and max-
imal bounds for the likelihood function. Then, we
formulate the estimation problem for interval data as
a robust optimization problem, which consists in max-
imizing the minimal expected likelihood. We study
the cases of unimodal and Gaussian distributions. In
Section 3, we define an extension of this approach to
fuzzy interval data. Especially we discuss how to de-
fine a likelihood function for fuzzy interval data. In the
literature, a classical approach to handling incomplete
data in estimation is the famous EM algorithm [3].
It considers that the likelihood function is a precise
function, even if observations are imprecise. In Sec-
tion 4 we briefly discuss the difference between the
two approaches, as well as the optimistic counterpart
of ours.
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2 Interval Uncertainty

Before solving the problem with fuzzy intervals, we fo-
cus on the problem with classical intervals. Firstly, we
present a general framework for handing uncertainty
on observations whatever the parametrized family of
distributions. Secondly, we present an algorithm to
solve the problem for unimodal density distributions.
Finally, we study the case of normal density distribu-
tions.

2.1 General Framework

Let {xi : i ∈ N} with |N | = n, be a set of precise
observations. To evaluate the quality of the parameters
of the distribution that represents these observations,
the usual approach is to define a likelihood measure
f(xi|θ) for each piece of data. Note that f(xi|θ) can
be understood as the possibility that the generation
process for xi is based on the parameter value θ [4].
The density function with vector of parameters θ and
independent observations {xi : i ∈ N} takes the form
of a product of likelihood functions:

L =
∏

i∈N
f(xi|θ) (1)

A standard criterion to define the parameters of the
density function is the maximization of this likelihood
function

max
θ

∏

i∈N
f(xi|θ) (2)

Under uncertainty, observations are of limited preci-
sion, and take the form of intervals xi ∈ [xi, xi],∀i ∈ N .
Let Γ = [x1, x1]× ...× [xn, xn] be the set of possible
n-tuples of observations, we call selections. Namely,
the selection X ∈ Γ with X = (x1, ..., xn) is a possible
realization of the imprecise observation Γ. Fixing the
parameter θ, one may argue that, in the spirit of [1],
if observations are imprecise, the likelihood evaluation
should become imprecise too, that is, L(θ) ∈ [L;L]
with L and L respectively defined by:

• Lower likelihood

L(θ) = min
X∈Γ

∏

i∈N
f(xi|θ). (3)

• Upper likelihood

L(θ) = max
X∈Γ

∏

i∈N
f(xi|θ). (4)

To find robust solutions that cover potential variability,
we can determine the parameter value (denoted by

θRob) which maximizes the lower likelihood. It can be
formulated as a robust optimization problem:

max
θ

min
X∈Γ

∏

i∈N
f(xi|θ) (5)

This is equivalent to the log-likelihood problem:

max
θ

min
X∈Γ

∑

i∈N
ln(f(xi|θ)) (6)

2.2 Resolution Method

In this section, we propose an algorithm that evaluates
the lower and upper bounds of the likelihood function
for given parameters θ for a density function under the
form (1). For a given data vector X∗ = (x∗1, ..., x∗n),
the log-likelihood function

∑
i∈N

ln(f(x∗i |θ)) is supposed
to be convex with θ and to have a derivative.

Assumption 1 ∃xm ∈ R such that f(x∗i |θ) is an in-
creasing function on ] − ∞, xm] and decreasing on
[xm,+∞[.

If the distribution is unimodal, xm is the mode of the
distribution.

2.2.1 Determining Upper and Lower
Likelihood Functions

Note that the upper and lower likelihoods are of the
form f(X|θ) for someX ∈ Γ. Moreover, from Property
1, we know that for a given parameter value θ, the
minimum of function f(xi|θ), where xi ∈ [xi, xi], is
attained at the boundary of the domain (xi = xi or
xi = xi). It is called a worst case selection. This is
not true for the best case selection obtained from the
upper likelihood. Since the observations are assumed
to be independent, the solution of problems (3) (worst
case Xw for L(θ)) and (4) (best case Xb for L(θ)) can
be computed using the following rules:

if xm ∈]−∞;xi[ then
{
xwi = xi

xbi = xi
(7)

if xm ∈]xi;∞[ then
{
xwi = xi

xbi = xi
(8)

if xm ∈ [xi;xi] then





xbi = xm

xwi = xi if f(xi|θ) > f(xi|θ),
xi otherwise.

(9)
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2.2.2 Computing Robust Parameters

The worst case selection Xw(θ) ∈ Γ is the one that
minimizes the lower likelihood (L) with parameter θ.
If the density function is unimodal, it follows that the
maximum likelihood problem comes down to discrete
optimisation, that is we can restrict the selections of
observations to extreme selections Xw ∈ Γdis, with
Γdis = {x1, x1} × ... × {xn, xn}, the set of extreme
assignments of xi. Using Lagrange relaxation, problem
(5) can be transformed into the following problem:

h∗ = max
θ

∑

X∈Γdis

λX × (
∑

i∈N
ln(f(xi|θ))) (10)

where the Lagrange coefficients λX respect the condi-
tions

∀X ∈ Γdis, λX =





1 if hmin =
∑
i∈N

ln(f(xi|θ))

0 otherwise
(11)

hmin being the minimal value of the log-likelihood over
the selections:

hmin = min
X∈Γdis

∑

i∈N
ln(f(xi|θ)) (12)

Proposition 1 Expression (10) gives the optimal so-
lution of the problem (5) if the Lagrange coefficients
λX ,∀X ∈ Γdis satisfy the conditions (11).

Proof: Note that if the Lagrange coefficients respect
the conditions (11), the expression (10) is equivalent
to h∗ = max

θ
k×( min

X∈Γdis

∑
i∈N

ln(f(xi|θ))) where k is the

number of functions
∑
i∈N

ln(f(xi|θ)) that intersect at

the maximum; it is the number of Lagrange coefficients
λX = 1. Hence, the optimal solution of the previous
expression (10) is the same as the optimal solution
of problem h∗ = max

θ
min
X∈Γdis

∑
i∈N

ln(f(xi|θ))) which is

equivalent to the problem (5) �
To solve problem (10), we use an iterative algorithm
(Algorithm 1), which is an adaptation of the Uzawa
method [5] to our problem.

Nevertheless the number of extreme selections is equal
to 2n. So we construct an iterative algorithm for solv-
ing problem (5) based on iterative relaxation scheme
for min-max problems proposed in [6] and developed
for min-max regret linear programming problems with
an interval objective function [7, 8] coupled with Uzawa
method.

Let RX-ROB be the problem (10) with a given set
of assignments Γ∗dis ⊆ Γdis. Obviously, the maximal
cost h∗ of problem RX-ROB over the discrete assign-
ment set Γ∗dis is an upper bound on the maximal cost

Algorithm 1: A robust solution under a set of discrete
scenarios
Input: Initial parameters k = 0, λ0

X , the set of
selections Γdis, and a convergence tolerance
parameter ρ > 0.

Output: An optimal solution θRob,hRob
Step 1. Compute θk the optimal solution of problem
(10) using λkX , X ∈ Γdis
Step 2. If ∀X ∈ Γdis the condition (11) is satisfied,
then output θk, hmin and STOP.
Step 3. Compute the λk+1

X :
if hmin =

∑
i∈N

ln(f(xi|θk+1) then λk+1
X = 1 else

decrease the Lagrange parameter using
λk+1
X = max(0, λkX − ρ× (

∑
i∈N

ln(f(xi|θk+1)− hmin))

Step 4. k := k + 1, and go to Step 1.

of problem (6). Our algorithm (Algorithm 2) starts
with zero upper bound UB = 0 and initial parame-
ters θ∗ (for instance the optimal parameter for the
assignment of the mid-points of intervals) and empty
discrete scenario set, Γ∗dis = ∅. At each iteration, a
worst case assignment Xw for θ∗ is computed using
rules (7, 8) and (9). Clearly, L(θ∗) is an upper bound
of L(θRob). If a termination criterion is fulfilled (usu-
ally L(θ∗) ≤ UB−ε, ε > 0 is a given constant) then the
algorithm stops with an optimal robust parameter θ∗.
Otherwise the worst case selection Xw is added to Γ∗dis.
Next the updated problem (RX-ROB) is solved to
obtain a better candidate θ∗ for an optimal solution
to (5) and a new upper bound UB = hmin, based on
Γ∗dis. Since set Γ∗dis is updated during the course of
the algorithm, the computed values are upper bounds
that form a nonincreasing sequence of values. Then, a
new iteration is started.

Algorithm 2: Finding optimal robust parameters.
Input: Observations xi = [xi;xi],∀i ∈ N , initial

parameters θ∗, a convergence tolerance
parameter ε > 0.

Output: An optimal robust parameter θRob
Step 0. k := 0, UB := 0, Γ∗dis := ∅.
Step 1. θk := θ∗.
Step 2. Compute a worst case selection Xw for θk by
solving problem (3) using rules (7), (8), (9). Then let
h =

∑
i∈N

ln(f(xwi |θ))

Step 3. If (h ≤ UB − ε) then output θk and STOP.
Step 4. k := k + 1.
Step 5. Xk := Xw, Γ∗dis := Γ∗dis ∪ {Xk}
Step 6. Compute an optimal solution θ∗ by
Algorithm 1, using Γ∗dis; then set UB = hmin and go
to Step 1.
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2.3 The Case of Normal Distributions

We suppose that the random variable follows a normal
distribution:

f(x|(µ, σ)) = 1
σ
√

2π
e
−

(x− µ)2

2σ2 . (13)

Upper and lower likelihoods can be reformulated into

L(µ, σ) = min
X∈Γ

∏

i∈N

1
σ
√

2π
e
−

(xi − µ)2

2σ2 . (14)

L(µ, σ) = max
X∈Γ

∏

i∈N

1
σ
√

2π
e
−

(xi − µ)2

2σ2 . (15)

2.3.1 Determining the Upper and Lower
Likelihoods

The lower log-likelihood in the case of normal distri-
butions becomes:

ln(L(µ, σ)) = −(Nln(σ2)
2 + 1

σ2 max
X∈Γ

∑
i∈N

(xi − µ)2)

Likewise, the upper log-likelihood in the case of normal
distributions becomes:

ln(L(µ, σ)) = −(Nln(σ2)
2 + 1

σ2 min
X∈Γ

∑
i∈N

(xi − µ)2)

In this case the mode xm = µ∗ is the mean, and
since the normal distribution is symmetric, the general
equations (7, 8) and (9) that compute the worst and
the best case selections become respectively:

if µ∗ ∈]−∞;xi[ then
{
xwi = xi

xbi = xi
(16)

if µ∗ ∈]xi;∞[ then
{
xbi = xi

xwi = xi
(17)

if µ∗ ∈ [xi;xi] then




xbi = µ∗

xwi = xi if (xi − µ∗)2 > (xi − µ∗)2,

xi otherwise
(18)

It follows that the complexity for evaluating the lower
and the upper likelihoods is O(n).

2.3.2 Computing Robust Parameters

We can further decompose the problem of finding
robust parameters into a sequence of two problems:

• first find the robust optimal µrob, solving the
problem

ROBN,µ : min
µ

max
X∈Γ

∑
i∈N

(xi − µ)2
(19)

• and then compute the robust optimal σrob. We
get the variance around µrob using the optimal
selection Xw obtained at the previous step:

ROBN,σ : σrob =

√ ∑
i∈N

(xw
i
−µrob)2

n

(20)

Let us now focus on the problem ROBN,µ. Let µ =
1
n

∑
i∈N

xi and µ = 1
n

∑
i∈N

xi.

Proposition 2 The optimal solution µrob of the prob-
lem ROBN lies in [µ, µ].

Proof Suppose ∃µrob < µ. We have two cases. The
first one is: the selection Xw associated to µrob is the
same as the one for µ. We also know that, if µrob < µ

then
∑
i∈N

(xi − µrob)2 >
∑
i∈N

(xi − µ)2, since ∀X ∈ Γ,

the optimal value µop ∈ [µ, µ], that contradicts the
assumption that µrob is the optimal robust solution.

The second case is Xw = Xw
µ + δ where Xw

µ is the
worst case selection induced by µ and δ is a vec-
tor of non-negative values. So

∑
i∈N

(xwi − µrob)2 >
∑
i∈N

(yi − µrob)2 and yi = (Xw
µ )i. We know that if

µrob < µ then
∑
i∈N

(xi − µrob)2 >
∑
i∈N

(xi − µ)2. Hence,
∑
i∈N

(xwi −µrob)2 >
∑
i∈N

(yi−µ)2, which contradicts the

assumption that µrob is the optimal robust solution.
The proof for the upper bound is similar. �
In the following Algorithm 3, we use the derivative

d(
∑
i∈N

(xi − µ)2)

dµ
= 2nµ− 2

∑

i∈N
xi

.

Theorem 1 Algorithm 3 finds the optimal robust pa-
rameter µrob.

Proposition 3 The complexity of computing the op-
timal robust solution µrob and σrob is O(n.ln(|µ|)
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Algorithm 3: Finding optimal robust parameters for
normal distribution.
Input: Observations [xi;xi],∀i ∈ N , a convergence

tolerance parameter ε > 0.
Output: An optimal robust parameter µRob
Step 0. k := 0, a = µ, b = µ.
Step 1. Compute a worst case selection Xw

c for the
value c = 1

2 (a+ b).
Step 2. Compute the value D = 2nµ− 2

∑
i∈N

xi for

the worst case selection Xw
c

Step 3. If D < 0 then a := c, else b := c.
Step 4. If a− b > ε then go to Step 1 else return
1
2 (a+ b) and STOP.

Proof: The major part of one iteration of the di-
chotomy algorithm is spent computing the worst case
selection, which is O(n). Since the dichotomy algo-
rithm is O(ln(|µ|)) where |µ| depends on the width of
the interval [µ, µ] and the precision parameter ε, the
complexity of Algorithm 3 is O(n.ln(|µ|)). And since
σrob is directly computed from µrob, the complexity of
computing the optimal robust solution µrob and σrob
is O(n.ln(|µ|)). �

2.3.3 Robust Solution vs. Maximal Variance

The robust solution can be understood as the param-
eter µ that minimizes the maximal possible variance
under uncertainty (across all scenarios compatible with
the interval data). Note that the problem ROBN,µ
is a relaxation of the problem of maximization of the
variance of interval data [9]:

max
X∈Γ

∑

i∈N
(xi −

∑

i∈N
xi/n)2 (21)

since, in the latter, µ =
∑
i∈N

xi/n, while in problem

ROBN,µ, µ is an independent variable. Let (σmax)2 be
the maximal variance in problem (21). An imprecise
probability solution to the estimation problem could
be the set of normal distributions with µ ∈ [µ, µ]
and σ = σmax. However the robust solution has the
following property:

Proposition 4 σrob ≥ σmax

Proof: It is enough to notice that

n(σmax)2 = max
X∈Γ

min
µ

∑

i∈N
(xi − µ)2

≤ min
µ

max
X∈Γ

∑

i∈N
(xi − µ)2 = n(σrob)2 �

Assume there is a single worst case solution Xw in
problem ROBN,µ. In that case, the minimum is at-

tained for the mean value µrob =
∑
i∈N

xwi /n, hence

σrob = σmax. The maximal variance solution is then
robust. However if there are several worst case solu-
tions Xw

j , j = 1, . . . k in problem ROBN,µ, µrob is the
intersection point of k parabolas

fj(µ) =
∑

i∈N
(xwji − µ)2,

while the maximal variance corresponds to the max-
imal ordinate of the minima of each parabola whose
abscissa is

µj =
∑

i∈N
xwji/n.

So the robust solution is a kind of compromise between
extreme data selections, and is more pessimistic than
the maximal variance solution.

3 Fuzzy Interval Uncertainty

We now use a more refined modeling of uncertainty
pervading the observations. They are modeled by
fuzzy intervals x̃i,∀i ∈ N .

3.1 Selected Notions of Possibility Theory

A fuzzy interval Ã is a fuzzy set in R whose member-
ship function µÃ is normal, quasi concave and upper
semicontinuous. Usually, it is assumed that the sup-
port of a fuzzy interval is compact. The main property
of a fuzzy interval is the fact that all its α-cuts, that is,
the sets Ã[α] = {x : µÃ(x) ≥ α}, α ∈ (0, 1], are closed
intervals. We will assume that Ã[0] is the smallest
closed set containing the support of Ã. So, every fuzzy
interval Ã can be represented as a family of closed
intervals Ã[α] = [a[α], a[α]], parametrized by the value
of α ∈ [0, 1].

Let us now recall the possibilistic interpretation of
fuzzy intervals. Possibility theory [10] is an approach
to handle incomplete information and it relies on two
dual measures: possibility and necessity, which express
plausibility and certainty of events. Both measures
are built from a possibility distribution. Let a fuzzy
interval Ã be attached with a single-valued variable a
(an uncertain real quantity). The membership func-
tion µ

Ã
is understood as a possibility distribution,

πa = µ
Ã
, which describes the set of more or less plau-

sible, mutually exclusive values of the variable a. It
can encode a family of probability functions [11]. In
particular, a degree of possibility can be viewed as
the upper bound of a degree of probability [11]. The
value of πa(v) represents the possibility degree of the
assignment a = v, i.e. Π(a = v) = πa(v) = µ

Ã
(v),

where Π(a = v) is the possibility of the event that a
will take the value of v. In particular, πa(v) = 0 means
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that a = v is impossible and πa(v) = 1 means that
a = v is fully plausible. Equivalently, it means that
the value of a belongs to an α-cut Ã[α] with confidence
(or degree of necessity) 1− α. It can be viewed as a
random set defined by a multi-mapping from the unit
interval equipped with Lebesgue measure to intervals
consisting of cuts Ã[α] [14]. Discrete approximations
of π can also be viewed as random sets (m,F )π, with
nested focal sets Ei and masses m(Ei), such that:

{
Ei = {x ∈ R|π(x) ≥ αi}
m(Ei) = αi − αi−1

(22)

The possibility distribution is then approximated by:
π′(x) =

∑
x∈Ei

m(Ei) [12].

3.2 Fuzzy Interval Datasets

A fuzzy interval data set is a collection of fuzzy in-
tervals x̃i, i = 1 . . . , N whose membership functions
are regarded as possibility distributions πi restricting
the values of the xi’s. The xi’s are stochastically in-
dependent but their uncertainties are non-interactive.
We have thus extended the scenario set Γ from in-
tervals (see Section 2) to the fuzzy case and now Γ̃
is a fuzzy set of scenarios with membership function
µΓ̃(X) = π(X), X ∈ Rn. The value of π(X) stands
for the possibility of the event that scenario X ∈ Rn
has occurred. Hence, the possibility distributions as-
sociated with the observations xi, forming the vector
X, induce the following possibility distribution over
all assignments in X ∈ Rn (see [13]):

π(X) = min
i=1,...,n

πi(xi). (23)

We see at once that the α-cuts of Γ̃ for every α ∈
[0, 1] are such that: Γ̃[α] = {X : π(X) ≥ α} =
[x−[α]

1 , x
+[α]
1 ] × · · · × [x−[α]

T , x
+[α]
T ], from (23) and the

definition of α-cut. Notice that Γ̃α, α ∈ [0, 1], is the
Cartesian product containing all selections (scenarios)
whose possibility of occurrence is not less than α.

3.3 Formulations of Likelihood under Fuzzy
Observations

In this section, we extend the definition of interval
likelihood to the case of fuzzy intervals. There are
several ideas that can be implemented to bring the
fuzzy interval maximal likelihood problem back to a
standard interval problem:

1. The simplest one is to turn fuzzy intervals into
intervals by taking the interval mean [14], the Au-
mann integral I(x̃i) =

∫ 1
0 [x−[α]

i , x
+[α]
i ]dα. How-

ever, one may then wonder why to start with
fuzzy intervals in the first place.

2. Alternatively, we can solve the interval maximum
likelihood problem for each α-cut, which would
provide a set of possible solutions. If we remember
that the fuzzy interval can also be interpreted in
terms of subjective uncertainty, whereby 1− α is
the degree of certainty that [x−[α], x+[α]] contains
the actual observation x, the optimal parameter
θ∗α obtained from applying the interval approach
to the α-cuts {[x−[α]

i , x
+[α]
i ] : i = 1, . . . , n} can

be interpreted as the robust value of the model
parameter corresponding to certainty 1−α, which
can be viewed as a degree of pessimism of the
solution. Indeed, if α = 1 we take an optimistic
view on the precision of the data, while if α = 0,
we assume the data is very imprecise and we try to
be robust in the face of large interval uncertainty.

3. Yet another approach consists in considering all
cuts of all fuzzy data x̃i namely,

{[x−[α]
i , x

+[α]
i ] : i = 1, . . . , n, α ∈ [0, 1]}

as an equivalent set of interval data. In practice,
this data set can be approximated using a finite
set of cuts using equation (22). This approach
considers the set of fuzzy data as a convex set
of probabilities, induced by a random set in the
spirit of Couso and Sanchez [15]. Indeed, the fuzzy
data set is viewed as equivalent to a set of inter-
vals generated as follows: Picking i at random in
{1, . . . , n} and picking an α-cut at random ([0, 1]
is equipped with Lebesgue measure), obtaining
the interval [x−[α], x+[α]].

All above approaches are amenable to a solution via
the above proposed algorithms. These methods can
be considered as somewhat extreme, as the first one
does away with gradual membership, the second is
difficult to use in practice (how to choose the best
cut), and the third one considers two cuts of the same
fuzzy observations as equivalent to two cuts each from
a different observation, or in other words, fuzzy ob-
servations are the result of grouping together nested
interval observations. Our next approach is a kind of
trade-off between these views. Here we rely not on the
mean interval of each fuzzy interval separately, but on
the average of interval likelihoods obtained from all
data sets Γ̃α, α ∈ [0, 1].

3.4 The Average Robust Estimation
Problem

We define a mean interval likelihood as follows:
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Definition 1 The mean interval likelihood under
fuzzy observations is [

∫
α∈[0,1] L

αdα,
∫
α∈[0,1] L

α
dα].

It can be approximated using a finite set of cuts using
equation (22) and the average likelihood can then be
expressed as:

[
k∑

j=1
m(Γ̃αj )Lαj ,

k∑

j=1
m(Γ̃αj )Lαj ] (24)

The estimation of minimal and maximal likelihood
under fuzzy observations can then be computed using
the formulae (7, 8) and (9) ∀i ∈ N, ∀j = 1, .., k.

This average interval likelihood approach can be
viewed as a balanced solution between working with
the cores of the fuzzy intervals and their supports,
while not letting cuts of a single fuzzy interval play
the same role as cuts of different fuzzy intervals.

In the context of fuzzy information, the average robust
problem can be formulated as follows:

Lrob = max
θ

k∑

j=1
m(Γ̃αj ) min

X∈Γ̃α
j

∑

i∈N
ln(f(xi|θ)) (25)

The reader may object to this formulation, as it seems
that we give up our pessimistic point of view on inter-
val data. However, it is not straightforward to define
pessimism in a simple way in the face of fuzzy intervals.
Indeed, fuzzy intervals carry two dimensions of pes-
simism, horizontal and vertical. On the one hand, the
vertical dimension pertains to the choice of a cut of a
fuzzy interval. Taking a cut at level 1, is optimistic in
the sense that it is a narrow plausible range. Taking
the support is safe but perhaps yields too imprecise an
interval. On the other hand, the horizontal dimension
(which end of the cut to choose ?) is the one at work
in our approach to interval data, leading to take a
pessimistic view on variance in the presence of impre-
cision. The approach proposed here achieves a global
trade-off between vertical optimism and pessimism,
and retains a pessimistic horizontal view.

3.4.1 The General Case

For simplicity we assume the discretisation of the
membership set is such that ∀j = 1, .., k,m(Γ̃αj ) = 1/k
(equidistant cuts).

Proposition 5 The problem (25) can be reformulated
as follows,

h∗ = max
θ

k∑

j=1

∑

X∈Γ̃
αj
dis

λ
αj
X × (

∑

i∈N
ln(f(xi|θ))) (26)

under the conditions: ∀X ∈ Γdis,

λ
αj
X =





1
nαj

if h∗ =
∑
i∈N

ln(f(xi|θ)),

0, otherwise,
(27)

where nαj is the number of non-zero coefficients λαjX .

In fact, nαj is the number of functions
∑
i∈N

ln(f(x[α]
i |θ))

that intersect at the maximum.

Proof: Note that if the Lagrange coefficients respect
the conditions (27), the expression (26) is equivalent

to h∗ = max
θ

k∑
j=1

nαj
nαj
× ( min

X∈Γdis

∑
i∈N

ln(f(xi|θ))). Hence,

the optimal solution of the previous expression (26) is
the same as the optimal solution of problem (25). �
We can also generalize Algorithms 1 and 2 to the case
of fuzzy observations by modifying Step 3 of Algorithm
1. This step becomes, for all X ∈ Γ̃αjdis:

• if hminj =
∑
i∈N

ln(f(xi|θ)), then λk+1,αj
X = 1

nαj

• else λ
k+1,αj
X = max(0,min(λk,αjX , 1

nαj
) −

ρ(
∑
i∈N

ln(f(xi|θk+1)− hminj )).

And Step 2 of Algorithm 2 must be used to find the
worst case selection for each j = 1, .., k.

3.4.2 The Case of Normal Distributions

In the case of fuzzy observations, the optimal mean
µ∗ belongs to the set of means µ for scenarios with
α = 0.

Proposition 6 The optimal value of the mean µ of
the problem ROBN is µrob ∈ [µ[0], µ[0]] with µ[0] =
1
n

∑
i∈N

xi
[0] and µ[0] = 1

n

∑
i∈N

xi
[0]

To generalize Algorithm 3 to fuzzy observations, Step 1
becomes: Compute the worst case selection Xw

j ,∀j =
1, .., k for the value c = 1

2 (a+ b). And the derivative

of the likelihood function becomes 2nkµ− 2
k∑
j=1

∑
i∈N

xki

Proposition 7 The complexity of computing the op-
timal robust solution µrob and σrob is O(n.k.ln(|µ[0]|).

It is the same complexity as in the interval case but
increased by a factor k (the number of cuts of the
fuzzy intervals used in the algorithm).
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4 Related Works

In the literature, a definition of likelihood under incom-
plete observations have been proposed by Dempster et
al. [3]. This is the basis of the classical EM algorithm.
Applied to our interval observations, it comes down to

Definition 2 The likelihood of θ under one imprecise
observation (x ∈ [x;x]) is L(θ, [x;x]) = P ([x;x]|θ) =∫
x∈[x;x] f(x|θ) dx.

The problem (5) is replaced by

max
θ

P (Γ|θ) = max
θ

∏

i∈N
Pi([xi, xi]|θ) (28)

The EM method relies on the choice of an initial proba-
bility density, then compute averages over the intervals
[xi, xi], which provides a precise dataset from which
another density is obtained via maximal likelihood,
and the process starts again until convergence.

However, this approach is often presented as handling
latent unobserved variables, or missing values, not
especially interval-valued observations. Namely, the
authors using the EM algorithm rather present the
framework as one with two kinds of variables: X , a set
of observed variables with precise realizations x and Z
a set of non-observed variables, while here we consider
a set of incomplete observations of the same variable.
In the setting of the EM algorithm, an incomplete
observation is thus of the form x ×Dom(Z), where
Dom is short for domain. In other words, observations
are set-valued, but form a partition of Dom(X ∪ Z)
into disjoint classes. So, moving from X to X ∪ Z
corresponds to a change in granularity, whereby the
second space is finer and the first can be viewed as
a partition of the second. In such a situation, it
sounds natural to consider that the likelihood f(x|θ) is
equated to the integral

∫
Dom(Z) f(x× z|θ)dz (because

the data Z is supposed to be missing at random, i.e.,
f(x|θ) = f(x|z, θ)). Insofar as one is only interested
in events in the algebra formed by the coarse partition,
the formulation of the likelihood function as in the
EM approach is justified.

Recently, the EM algorithm has been generalized by
Denoeux [16] to the case of data taking the form of
mass functions of belief functions, and he also uses a
scalar likelihood function defined as a weighted average
of the EM likelihood:

Definition 3 The likelihood of of a single imprecise
observation xi described by a belief function with mass
function mi bearing on intervals [xj ;xj ] is L(θ,m) =∑
jm([xj ;xj ])L(θ, [xj ;xj ]).

Note that this definition also applies to fuzzy interval
data viewed as consonant belief functions, and thus
leads to yet another extension of maximum likelihood
estimation to fuzzy data, studied by Denoeux [17].

In the case of interval-valued observations viewed as im-
precise data (dealt with in our paper), the formulation
of likelihood after the EM algorithm looks question-
able.

On the one hand, there seems to be no point averaging
the probabilities f(xi|θ) over the interval [xi;xi], as if
computing the frequency of this event from a sample
space. Indeed, each observation [xi;xi] is a disjunctive
set, one value of which is the real (unique) realization
xi. This defect in observing the xi’s leads to possibilis-
tic uncertainty about the actual probability of their
realizations (knowing θ), better expressed by the in-
terval likelihood function [L;L]. It contrasts with the
problem of computing a frequency P ([x;x]|θ) based
on a collection of precise observations. In the latter
case, all observations inside [x;x] have been observed
(it is a conjunctive set). In contrast, each interval
[xi, xi] is the incomplete description of a single precise
observation xi. The EM approach seems to interpret
the equal possibility of all values in [x;x] as being
an equal probability, or at least, it seems to admit
the existence of a random process generating precise
values inside this interval. In the case of latent or
unobserved variables, it makes sense if they are indeed
driven by an unobserved random process. But this is
not our assumption in the case of interval uncertainty.

On the other hand, the overlapping nature of the inter-
val valued data makes it hard to assume the existence
of auxiliary random processes inside each interval,
while if the incomplete observations partition the sam-
ple space, this assumption may look more natural.

Besides, Definition 2 does not generalize the definition
of likelihood in the context of perfect observations,
since under this definition, the likelihood of precise
values is 0.

Here we view the intervals as describing epistemic un-
certainty bearing on the observations that stem from a
random process generating precise (even if grossly ob-
served) data. Another option could be to assume that
there is a second random process generating the inter-
vals surrounding the outcomes of the first one. This
purely aleatory view of imprecise observations is also
at work in the trend on fuzzy random variables after
Puri and Ralescu where they are interpreted as stan-
dard random variables whose images are functions [18].
However in this case, there would be three random
variables, say x, u > 0, v > 0, such that the observed
intervals are realizations of the form [x−u, x+v]. Then

R. Guillaume & D. Dubois

154



we could rightfully define the likelihood function:

P ([xi, xi]|θ) =
∫

x
i
=x−u,xi=x+v

P (x, u, v|θ)dxdudv

and apply the EM algorithm. However, here we con-
sider the uncertainty pervading the observations xi is
not aleatory at all, it is just sheer lack of information
due to the coarseness of the observation tool, and the
width of the interval surrounding the xi’s is supposedly
not generated by a random process.

More recently, Hüllermeier [19] proposed an approach
similar to ours for simultaneously optimizing a model
and disambiguating the (interval-valued) data. He
presents the approach in terms of minimizing a loss
function, and applies it to regression and classification
problems. However, his idea comes down to maxi-
mizing the product of upper likelihoods in our set-
ting, while our proposal, more in the spirit of robust
optimisation, takes a pessimistic view on imprecise
observations. Note that our approach also leads to
disambiguating the data, albeit taking an opposite
view, covering potential dispersion of the actual data,
as testified by the use of extreme selections induced
by rules (7, 8, 9).

Let us compare the two approaches on a simple case
with two interval observations x1 ∈ [20, 30] and x2 ∈
[30, 40]. The result of minimizing the loss function
(maximizing the upper likelihood) is x1 = 30, x2 =
30 so µ = 30 and σ = 0. In contrast, the robust
approach applied to normal distributions will select
the values x1 = 20, x2 = 40 so µ = 30 and σ = 10. The
Hüllermeier approach can be understood as the fusion
of information items x ∈ [20, 30] and x ∈ [30, 40],
privileging the common parts, which is optimistic,
while our approach tends to assume the information
could be very dissonant, with a variance equal to 100.
See [20] for more comments along this line on the
optimistic approach. Note that the EM approach on
this case would maximise the product

LEM (θ) = P ([20, 30]|θ) · P ([30, 40]|θ).

Using normal distributions, it would lead to the opti-
mistic solution of Hüllermeier (a Dirac measure at 30)
to ensure LEM = 1. Note that the algorithm, assum-
ing the initial distribution is fixed through the choice
of θ0, will compute the expectations x̂1 and x̂2 inside
their intervals, and perform a likelihood maximization
using these precise expectations as new data, based on
the product of densities, getting a new value θ1, and
so on. This process will tend to shrink the expected
interval [x̂1, x̂2]. However if the support of the current
symmetric distribution lies inside [20, 40], LEM (θ) will
remain constant (0.25) and jumps to 1 for the Dirac
function on 30.

A natural issue is whether in the case of missing data,
one may replace them by the whole range of the ran-
dom variable, say an interval [a, b], or not. This is
immaterial for the EM algorithm applied to our setting
as P ([a, b]|θ) = 1 in any case. So, in our setting, the
EM algorithm would just neglect missing observations,
whether unsuccessful experiments are carried out or
not. On the contrary, in our approach, it makes a
difference, as can be seen in the next example.

Consider the case when the range of x is [0, 200], 10
precise observations at 100 were made and the result
of one experiment could not be properly observed, so
its value lies in [0,200]. The mean value is µ = 100 for
the three approaches including the robust one, but the
resulting distribution is the Dirac for the optimistic
solution of Hüllermeier and the EM approach while
the σ value of the robust approach is around 30 (not
excluding a maximal deviation from 100 in the failed
experiment). If now we have 10 precise observations
at 100 and 10 completely imprecise ones modelled
by [0,200]. The solution returned by the optimistic
approach of Hüllermeier and the EM approach will
still be a Dirac measure at 100 while the σ value of the
robust approach becomes close to 70. In our approach,
the imprecision of observations directly impacts the
variance of the identified density. So, unsuccessful
observations are not treated as observations not yet
carried out. Whether this distinction is meaningful or
not in all situations is a matter of debate.

More generally, in the case (perhaps unlikely in prac-
tice) where the dataset consists of overlapping intervals,
it is clear that any density function with support inside
the intersection of the intervals will ensure that the EM
likelihood function LEM = 1 in (28) since each term
has probability 1 in the product (the same remark ap-
plies if one maximizes the upper likelihood). However
our method will give a density whose standard devi-
ation reflects the width of the uncertainty intervals.
In this case, though, using a possibility measure to
represent the data may sound more appropriate than
a density that turns incompleteness into variability.

5 Conclusion

In this paper we propose to propagate the epistemic
interval uncertainty pervading a data set over to the
estimation of the likelihood. Then we propose an it-
erative algorithm which finds parameter values that
maximize the lower likelihood values among all data
sets compatible with the interval observations, under
not too restrictive conditions on the density function.
We have studied the case of normal distribution and
have shown that the computation of optimal mean and
variance can be achieved efficiently. As perspectives,
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first we plan to compute robust parameter estima-
tions for other classical distributions. In particular,
the algorithm that finds optimal solutions can be im-
proved taking into account the specificities of density
functions (as for the normal distribution in this pa-
per). Another perspective is the study of robust linear
regression under imprecise observations. Finally, an
experimental validation step will be useful to compare
our results to those obtained by optimizing upper like-
lihoods, and methods in the style of the EM algorithm.
This approach will be applied to the determination of
robust production plans under ill-known demand mod-
elled by fuzzy intervals, in the production engineering
environment.
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Abstract
Efficient computations with probabilistic multidimen-
sional models are made possible if the respective proba-
bility measure (distribution) is in the form of a decom-
posable model. Some of the advantageous properties
of these models are based on the fact that factorization
and conditional independence coincide. It means that
a decomposable multidimensional model can be assem-
bled (composed) from its low-dimensional marginals
with the help of an operator of composition, which
introduces conditional independence relations among
the variables.

The problem arises when we also want to apply these
ideas in Dempster-Shafer theory of evidence, because
two different operators of composition have been in-
troduced in literature. The present paper serves as
a survey of results on these two operators, recollects
their common properties and differences, and tries to
find a proper role for each of them.

Keywords. Factorization, conditional indepen-
dence, combination, composition, decomposable
model, IPFP.

1 Introduction

In every textbook dealing with Bayesian network the-
ory there inevitably appears a basic theorem saying
that in probability theory, factorization and condi-
tional independence coincide. To express this property
more exactly (and simultaneously in its simplest ver-
sion), consider a probability measure π defined on
a finite three-dimensional Cartesian product space
X× Y× Z. Then

π(a) · π↓{Z}(a↓{Z})
= π↓{X,Z}(a↓{X,Z}) · π↓{Y,Z}(a↓{Y,Z}) (1)

for all a ∈ X × Y × Z, if and only if there exist two
functions

φ : X× Z −→ R+,

ψ : Y× Z −→ R+,

such that
π(a) = φ(a↓{X,Z}) · ψ(a↓{Y,Z}) (2)

for all a ∈ X× Y× Z.

The equality (1) says that for probability measure π
variables X and Y are conditionally independent given
variable Z, and equality (2) expresses the fact that
measure π factorizes with respect to cover {X×Z,Y×
Z}.
The importance of the factorization stems from the
fact that it describes formal conditions under which it
is possible to represent a multidimensional Bayesian
network with a reasonable number of parameters (con-
ditional probabilities) and to design computationally
tractable inference procedures. On the other hand, the
concept of conditional independence is comprehensible
to users. Thus, verification of the formal conditions
for factorization is made possible by the very fact
that these two concepts coincide in probability theory.
Namely, expressing a probability distribution in a fac-
torized form is equivalent to introducing a conditional
independence relation among the variables. And to
verify the model, the users should consider whether
the introduced conditional independence relations are
justifiable (or at least acceptable).

Trying to uncover a similar relationship between fac-
torization and conditional independence in Dempster-
Shafer theory of evidence, one easily comes to the con-
clusion that conditional independence coincides with
the factorization of commonality functions, which are,
unfortunately, completely illegible to users. This is
one of the reasons why we will focus on factorization
of basic probability assignments in this paper. We will
show that the notions of conditional independence and
factorization (of basic probability assignments) corre-
spond to two composition operators studied previously,
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in ISIPTA paper [8].

The present paper, which is in fact a synthesis of
known results about the two operators of composition
in D-S theory, is organized as follows. In the next
section the necessary notions and notation are intro-
duced. Section 3 is devoted to the properties of the
composition operators and uncovers their pros and
cons from the point of view of their computational
complexity. In Section 4 we describe (using a simple
example) how to make some computations with belief
functions tractable. The basic idea is the same as the
one used for computations with Bayesian networks.
We will show how to represent multidimensional be-
lief functions in the form of decomposable models, for
which we will employ both the studied operators of
composition. Section 5 explains the role of one of the
operators in computation of conditionals.

2 Basic Notions and Notation

In this paper we consider a finite set of finite valued
variables N = {X1, X2, . . . , Xn}; Xi denotes the set
of states of variable Xi. XN = X1 × X2 × . . . × Xn
denotes a finite multidimensional space of states of
variables N , and its subspaces1 (for all K ⊆ N) are
denoted by

XK =×i∈KXi.

For a state x = (x1, x2, . . . , xn) ∈ XN its projection
into subspace XK is denoted by x↓K = (xi,i∈K), and
for a ⊆ XN

a↓K = {y ∈ XK : ∃x ∈ a, x↓K = y}.

Symbol 2a denotes the set of all nonempty subsets
of a. By a join of two sets a ⊆ XK and b ⊆ XL we
understand a set

a ./ b = {x ∈ XK∪L : x↓K ∈ a & x↓L ∈ b}.

Realize that if K and L are disjoint, then a ./ b =
a × b, if K = L then a ./ b = a ∩ b, and, generally,
for c ⊆ XK∪L, c is a subset of c↓K ./ c↓L, which may
be proper. This is why we will often use the symbol

2XK./L = {c ⊆ XK∪L : c 6= ∅ & c = c↓K ./ c↓L}.

Let us mention that sets c ∈ 2XK./L are called
Z-layered rectangles in [2].

In what follows it will be important to realize that car-
dinality of 2XK./L , though growing exponentially with
|XK∪L|, is much smaller than |2XK∪L |. For example,

1In our examples we will use a simplified notation. In-
stead of a correct notation for a subset of variables, say,
K = {X1, X3, X7} we will use just K = {1, 3, 7}.

for binary variables

|X{1,2,3}| = 8,
|2X{1,2,3} | = 255,
|2X{1,2}./{2,3} | = 99,

and for ternary variables

|X{1,2,3}| = 27,
|2X{1,2,3} | = 134 217 727,
|2X{1,2}./{2,3} | = 124 999.

2.1 Belief Functions

The role played in probability theory by probability
measures (or probability distributions), is played by
belief functions in Dempster-Shafer theory. It is well
known [14] that these functions can be equivalently
represented in several ways. In this paper we will use
just basic probability assignments, and commonality
functions.

Basic probability assignment (bpa) on XK is a function

µ : 2XK −→ R.

Though most authors require this function to be non-
negative and normalized, in this paper we accept the
more general approach of Shenoy [15], who does not
restrict the class of considered functions and says that
bpa is proper if this function is non-negative, and
further says that it is normal if

∑

a⊆XK

µ(a) = 1.

Nevertheless, not even in this paper will we consider
all possible functions. When speaking about a bpa we
will always assume that its corresponding commonality
function (comf), which is a function on XK defined
for each nonempty a ⊆ XK

θ(a) =
∑

b⊇a
µ(b), (3)

is strictly positive. Recall that this transformation
of bpas into comfs is unique, and that a bpa can be
reconstructed from its comf using the following formula
(Möbius transform – see [14])

µ(a) =
∑

b⊇a
(−1)|b\a|θ(b), (4)

for all nonempty a ⊆ XK . This enables us to call comf
θ proper (normal) if the corresponding bpa is proper
(normal).

a ∈ 2XK is said to be a focal element of bpa µ if
µ(a) 6= 0. Quite often, the list of focal elements and
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the respective values of bpa are used for belief function
representation. However, as we will see later, it does
not mean that a belief function may be represented by
the list of values of the respective comf on the focal
elements, because comfs are quite often positive also
for non-focal elements. The exceptions are so-called
probabilistic (some authors call them Bayesian) belief
functions, for which all focal elements are singletons
(the cardinality of each focal element is one), and, as
it can be immediately seen from Formula (3), µ = θ.

The last notion introduced in this section is that of
dominance. Consider two bpas µ1 and µ2 defined on
the same XK . We say that µ1 dominates µ2 (and
write µ1 � µ2) if all focal elements of µ2 are also focal
elements of µ1, i.e., if

µ1(a) = 0 =⇒ µ2(a) = 0

for all a ∈ 2XK .

2.2 Combination

An important notion in D-S theory is the notion of
combination ⊕, usually called Dempster’s rule of com-
bination.

Definition 1 Consider two arbitrary bpas µ1 on XK
and µ2 on XL (K 6= ∅ 6= L). A combination µ1 ⊕ µ2
is defined as follows:
if c ∈ 2XK./L then

(µ1 ⊕ µ2)(c) = α−1
∑

a⊆XK ,b⊆XL:a./b=c
µ1(a) · µ2(b)

where α is a normalization constant

α =
∑

d∈2XK./L

∑

a⊆XK ,b⊆XL:a./b=d
µ1(a) · µ2(b),

and (µ1 ⊕ µ2)(c) = 0 for all c ∈ 2XK∪L \ 2XK./L .

It is well known (e.g., [14]) that Dempster’s rule of
combination can also be (even more elegantly) defined
with the help of the respective comfs. Namely, if
θ1, θ2 correspond to µ1, µ2, respectively, then the comf
corresponding to µ1 ⊕ µ2 is

(θ1 ⊕ θ2)(c) = θ1(c↓K) · θ2(c↓L)∑
d∈2XK∪L

(−1)|d|+1 θ1(d↓K) · θ2(d↓L) .

The introduced operator of combination models a be-
lief update. So, it is not surprising that this operator is
not idempotent, which means that, generally, µ⊕µ 6= µ.
Indeed, when hearing the same piece of information
from two independent sources we get more convinced
about its currency.

The reader can easily verify the non-idempotence of
Dempster’s rule of combination on a simple bpa µ with
two focal elements: µ(a) = 1

3 , µ(b) = 2
3 . Namely, the

resulting bpa µ⊕ µ has, naturally, the same two focal
elements

(µ⊕ µ)(a) = 1
5 , (µ⊕ µ)(b) = 4

5 .

Contrary to the belief update, when assembling a
global knowledge from its local pieces we need a tool
that is idempotent. If the local pieces of knowledge
are consistent, each of them should be preserved un-
changed in its global representation. Using a math-
ematical terminology, we can also say that in this
case we are looking for a join extension of the local
pieces. And this is the goal for which the operator
of composition introduced in the following section is
designed.

2.3 Operators of Composition

In this paragraph we introduce two composition op-
erators. Definition 2 is based on Dempster’s rule of
combination and its equivalence to (normalized) multi-
plication of the respective comfs. As we showed above,
this operation is not idempotent; we thus have to avoid
double counting of contributions on the overlapping
subspace. In other words, we have to ensure that each
piece of local information is considered only once (for
details see [15] or [9]). Such a removal of information
is performed by an operation inverse to Dempster’s
rule of combination (division of the respective comfs).
Notice that Definition 2 is described with the help of
comfs while Definition 3 makes use of bpas. Nonethe-
less, because of the one-to-one correspondence between
bpas and comfs both these operators are naturally ex-
tended to both bpas and comfs. Note that Definition 2
is from [9], and Definition 3 first appeared in [10].

Definition 2 Consider two arbitrary bpas, µ1 on XK
and µ2 on XL (K 6= ∅ 6= L) and assume that µ↓K∩L2 �
µ↓K∩L1 . Let θ1 and θ2 be the respective comfs. A
composition θ1

d. θ2 is defined for each nonempty c ⊆
XK∪L by the following formula:

(θ1
d. θ2)(c)

=





α−1 θ1(c↓K)·θ2(c↓L)

θ↓K∩L
2 (c↓K∩L)

if θ↓K∩L2 (c↓K∩L) > 0,

0 otherwise,

where α is a normalization constant defined as

α =
∑

d∈2XK∪L :θ↓K∩L
2 (d↓K∩L)>0

(−1)|d|+1 θ1(d↓K)·θ2(d↓L)

θ↓K∩L
2 (d↓K∩L)

.
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Definition 3 Consider two normal bpas, µ1 on XK
and µ2 on XL (K 6= ∅ 6= L). A composition µ1

f. µ2
is defined for each nonempty c ⊆ XK∪L by one of the
following expressions:

(i) if µ↓K∩L2 (c↓K∩L) > 0 and c ∈ 2XK./L then

(µ1
f. µ2)(c) = µ1(c↓K) · µ2(c↓L)

µ↓K∩L2 (c↓K∩L)
;

(ii) if µ↓K∩L2 (c↓K∩L) = 0 and c = c↓K × XL\K then

(µ1
f. µ2)(c) = m1(c↓K);

(iii) in all other cases, (µ1
f. µ2)(c) = 0.

Having two operators of composition, quite a natural
question arises: why do we need both of them? The
operators differ in many aspects. As we will discuss
in the next section, each of them has different compu-
tational complexity and different semantics. Even so,
the answer to the previous question is not straightfor-
ward; in fact, information found throughout this entire
paper should help readers form their own opinions.

To simplify the following exposition, let us make two
conventions. First, whenever we use symbol . then
the respective assertion holds for both the defined
operators d. and f. . Second, to avoid frequent
repetition of the condition on dominance of arguments
required in the definition of d. , and the requirement
of normality needed in the definition of f. , whenever
the operators are used in the following text, we will
assume that the necessary conditions under which the
respective operator is defined are fulfilled.

3 Properties of Operators of
Composition

Both the operators of composition introduced in the
preceding section comply with the properties expected
from composition. These properties were originally
proven for probability theory in [6], and later also for
Shenoy’s Valuation-Based systems (VBS) in [9], from
which it follows that all of them hold for D-S theory.

Theorem 1 Suppose µ1, µ2 and µ3 are bpas on XK ,
XL, and XM , respectively. Then the following state-
ments hold:

1. (Domain): µ1 . µ2 is a bpa on XK∪L.

2. (Composition preserves first marginal): (µ1 .
µ2)↓K = µ1.

3. (Reduction:) If L ⊆ K then, µ1 . µ2 = µ1.

4. (Non-commutativity): In general, µ1 . µ2 6= µ2 .
µ1.

5. (Commutativity under consistency): If µ1 and µ2
have a common marginal on XK∩L, i.e., µ↓K∩L1 =
µ↓K∩L2 , then µ1 . µ2 = µ2 . µ1.

6. (Non-associativity): In general, (µ1 . µ2) . µ3 6=
µ1 . (µ2 . µ3).

7. (Associativity under special condition I): If
K ⊃ (L ∩ M) then, (µ1 . µ2) . µ3 =
µ1 . (µ2 . µ3).

8. (Associativity under special condition II): If
L ⊃ (K ∩ M) then, (µ1 . µ2) . µ3 =
µ1 . (µ2 . µ3).

9. (Stepwise combination): If (K ∩ L) ⊆ M ⊆ L

then, (µ1 ⊕ µ↓M2 ) . µ2 = µ1 ⊕ µ2.

10. (Stepwise composition): If (K ∩ L) ⊆ M ⊆ L

then, (µ1 . µ
↓M
2 ) . µ2 = µ1 . µ2.

11. (Exchangeability): If K ⊃ (L ∩M) then, (µ1 .
µ2) . µ3 = (µ1 . µ3) . µ2.

12. (Simple marginalization): If (K∩L) ⊆M ⊆ K∪L
then, (µ1 . µ2)↓M = µ↓K∩M1 . µ↓L∩M2 .

13. (Irrelevant combination): If M ⊆ K \ L then,
µ1 . (µ2 ⊕ µ3) = µ1 . µ2.

From the formal point of view, the main difference be-
tween d. and f. is in their computational complexity.
We need not subject them to a detailed and precise
complexity analysis, because the difference is visible
at the first sight.

3.1 Computational Complexity

Let us start with a simpler task. Consider the for-
mulae in Definition 3, which give direct instructions
for how to compute the composition f. . To compute
µ1

f. µ2, it is necessary to find out all of its focal el-
ements c ∈ 2XK∪L and compute the respective value
(µ1

f. µ2)(c). Therefore, the computational complex-
ity of this process is linear in the number of those
c ∈ 2XK∪L that must be checked to determine whether
they are focal elements. There are two direct ways
in which to do it. One is based on the fact that all
focal elements of µ1

f. µ2 are from 2XK./L . So, we
can generate all the elements of 2XK./L , which is, as
we said (and illustrated) in Section 2, substantially
smaller than 2XK∪L .

The other, quite often more efficient, possibility is
based on the fact that for all focal elements c ∈ 2XK∪L

of µ1
f. µ2 the following two conditions must hold

simultaneously
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(1) µ1(c↓K) 6= 0;

(2) either µ2(c↓L) 6= 0, or c↓L = c↓K∩L × XL\K .

This means that the number of potential focal elements
of µ1

f. µ2 cannot exceed the product of two numbers:
the number of focal elements of µ1 and the number of
focal elements of µ2. In the case when the considered
belief functions are represented by the lists of their
focal elements, these numbers are usually limited.

For operator d. the situation is different. Regardless
of the fact that the number of focal elements is also lim-
ited, namely, by |2XK./L |, one can hardly expect that it
would be possible to find an algorithm whose compu-
tational complexity would be linear in the number of
(potential) focal elements. This pessimistic statement
holds for Dempster’s rule of combination (each value
of µ1 ⊕ µ2 is computed as a summation), the more it
holds for µ1

d. µ2. To the best of our knowledge, up
to now, no other way to compute µ1

d. µ2 has been
known than to convert the composed bpas into comfs,
and afterward carry out the computations described in
Definition 2. However, even for bpa µ1 with a limited
number of focal elements, the number of those c ∈ 2XK

for which θ1(c) > 0 holds may be very high. Let us
illustrate the situation on an extreme (but appearing
in practice) situation.

3.2 Example

Consider bpas µ1 and µ2 on XK , XL, respectively, and
assume they define lower probabilities on the respective
subspaces, i.e., their focal elements are only singletons
plus the whole XK for µ1, and singletons plus the
whole XL for µ2. It means that µ1 has no more than
|XK | + 1 focal elements, and µ2 has no more than
|XL|+ 1 focal elements.

However, one can immediately see from Formula (3)
that any of the corresponding comfs θ1, θ2 may easily
be positive for all the elements of 2XK , 2XL , respec-
tively. It means that when computing θ1

d. θ2 we have
to compute the respective values for all c ∈ 2XK∪L .

Computation of µ1
f. µ2 is different in this example.

If µ↓K∩L2 � µ↓K∩L1 then the resulting bpa µ1
f. µ2

has the same property as µ1 and µ2: its focal elements
are only singletons plus the whole XK∪L (this is true
because for the considered bpas case (ii) of Definition 3
can never assign a value different from 0). If µ↓K∩L2 6�
µ↓K∩L1 , i.e., for some b ∈ XK∩L, µ↓K∩L2 (b) = 0 and
µ↓K∩L1 (b) 6= 0, then the number of focal elements
c ∈ XK∪L, for which c↓K∩L = b does not exceed

|{a ∈ XK : a↓K∩L = b}|,
and therefore we see that the number of focal elements
of µ1

f. µ2 cannot exceed |XK∪L|+ 1.

3.3 Factorization

As a direct consequence of Properties 2 and 5 in Theo-
rem 1, one can see that if two bpas µ1 and µ2 (assume
again they are defined on XK and XL, respectively)
have a common marginal (i.e., µ↓K∩L1 = µ↓K∩L2 ), then
both µ1

d. µ2 and µ1
f. µ2 are common extensions of

µ1 and µ2. Generally, these two extensions differ from
each other: each of them has its own semantics.

From the point of view of this paper it is important to
say that d. reflects the notion of conditional indepen-
dence in the sense used by Shafer [14] and Shenoy [15].
More precisely, µ↓K∪L = µ↓K d. µ↓L2 holds if and only
if variables K \ L and L \ K are for the considered
belief function (bpa µ) conditionally independent given
variables K ∩ L.
The semantics of the fact that µ↓K∪L = µ↓K f. µ↓L2
is different. Namely, it is a direct consequence of
Lemma 3 in [16] that µ↓K∪L = µ↓K f. µ↓L if and only
if µ↓K∪L factorizes with respect to a couple {K,L} in
the sense of the following definition.

Definition 4 Consider bpa µ on XM , and two subsets
of variables K,L ⊂M . We say that µ factorizes with
respect to {K,L} if

(a) µ↓K∪L(c) = 0 for all c ∈ (2XK∪L \ 2XK./L), and

(b) there exist two functions

φ : XK −→ R,
ψ : XL −→ R,

such that

µ↓K∪L(c) = φ(c↓XK ) · ψ(c↓XL)

for all c ∈ 2XK./L .

As we already said above, µ1
d. µ2 and µ1

f. µ2 gen-
erally differ from each other. Nevertheless, there are
special situations in which they coincide. For example,
it is easy to show that these compositions coincide
when K ∩ L = ∅, or when the composed bpas are
probabilistic. Nevertheless, note that specification of
necessary and sufficient conditions under which the
two operators coincide has remained an open problem
for several years.

4 Decomposable Models

By decomposable probability distributions we under-
stand the distributions whose conditional dependence
structures can be well depicted with the help of so-
called decomposable graphs [11]. The latter is an impor-
tant class of graphs that were introduced in graph the-
ory under several different names (triangulated graphs,
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chordal graphs – see [13]). One of the characteristic
properties of these graphs is that their cliques can
be ordered to meet the so-called running intersection
property (see below).

In general, by decomposable models we understand
multidimensional measures/distributions/valuations
that can be decomposed, and thereafter reconstructed
from a system of its marginals without loss of informa-
tion, and the structure of the system of marginals can
be depicted with the help of a decomposable graph.
The latter condition is equivalent to the requirement
that the marginals can be ordered to meet the running
intersection property. The purpose of such decomposi-
tion is twofold. One reason is to decrease the number
of necessary parameters representing the multidimen-
sional model. The other reason is to decrease the
computational complexity of the procedures that pro-
cess this model (e.g., when used for inference). As a
rule, these two goals are mutually connected. Usually,
the fewer parameters necessary to define a model, the
more efficient the computational procedures will be.

Let us also apply this general idea to bpas in D-S
theory. Consider a multidimensional bpa µ on XN . Let
{K1,K2, . . . ,Km} be a cover of N (i.e., ∪mi=1Ki = N)
meeting the running intersection property (RIP):

∀i = 2, . . . ,m ∃j < i : (K1 ∪ . . . ∪Ki−1) ∩Ki ⊆ Kj .

We say that µ is a decomposable model with structure
{K1,K2, . . . ,Km} if

µ = µ↓K1 . µ↓K2 . . . . . µ↓Km . (5)

Since the operator of composition is not associative,
we must explain how to interpret the right hand side
of Formula (5): whenever the order of operators is not
specified by parentheses, they are performed from left
to right, i.e.,

µ↓K1 . µ↓K2 . . . . . µ↓Km

=
(
. . . (µ↓K1 . µ↓K2) . . . . . µ↓Km−1

)
. µ↓Km .

As we used the general symbol ., the reader certainly
understands that, in principal, either of the operators
d. and f. can be used. This is why we will use the
notions of d-decomposability and f-decomposability
when we need to stress which of the two operators of
composition is being applied.

The following property of decomposable models in
VBS framework was proven in [9], and therefore it
also holds for the considered decomposable models in
D-S theory: If Kj1 ,Kj2 , . . . ,Kjm

is a permutation of
K1,K2, . . . ,Km such that it also meets RIP, then

µ↓K1 . µ↓K2 . . . . . µ↓Km

= µ↓Kj1 . µ↓Kj2 . . . . . µ↓Kjm .

Let us conclude this section by highlighting that in
this paper we restrict our attention only to sequential
models, i.e., the distributions that can be expressed in
the form of Formula (5). For the properties of more
general compositional models see [12].

4.1 Marginal Problem Example

Perhaps the best way to illustrate both advantages and
problems connected with computations on decompos-
able models is to consider a real (maximally simplified)
task. Let µ1, . . . , µ4 be four bpas on X{1,2}, X{2,3},
X{3,4}, X{1,4}, respectively. The goal is to find a bpa
µ∗ on X{1,2,3,4} such that all µi are its marginals.

To the best of our knowledge, there is no better way to
solve this problem than to apply Iterative Proportional
Fitting Procedure (IPFP) [4, 3], which proceeds as
follows:

I Define bpa λ(c) := 1
|2X{1,2,3,4} |

for all nonempty
c ⊆ X{1,2,3,4}

II Repeat the following cycle (four steps) until the
procedure converges:

(i) λ := µ1 . λ,
(ii) λ := µ2 . λ,
(iii) λ := µ3 . λ,
(iv) λ := µ4 . λ.

We dealt with this procedure previously in ISIPTA
contribution [8] where we showed that

(a) for both operators d. and f. it holds that if the
procedure converges then all bpas µ1, . . . , µ4 are
marginals of the resulting bpa (more precisely of
the limit bpa, to which the procedure converges);

(b) if there exists a bpa having all four bpas µ1, . . . , µ4
for its marginals then the procedure with f. con-
verges;

(c) it may happen that the procedure with d. does
not converge even if there exists a bpa having all
four bpas µ1, . . . , µ4 for its marginals.

These results give a hint that using IPFP with f.
should be preferred to d. ; in fact, f. is computa-
tionally less demanding and the convergence of the
procedure is guaranteed by the existence of a single
join extension of the given marginal.

Nevertheless, let us note that, regardless whether d.
or f. is used, the procedure cannot be applied to
multidimensional bpas because at each step we have to
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compute all |2XN | values when computing bpa λ. Even
in the considered simple four-dimensional case it means
that we have to compute |2X{1,2,3,4} | values (which
equals 65 535 for binary, and 43 046 720 for ternary
variables), by which bpa λ (or the respective comf, in
case d. is used) is defined. In analogy to computation
within the probabilistic framework [5], a principal
simplification can be achieved when representing the
computed bpa λ in the form of a decomposable model.

When computing on decomposable models, the gen-
eral approach starts with finding a RIP cover of
N that is a coarsening of (K1,K2, . . . ,Km). In
the considered example it means that we look for
a RIP cover of {1, 2, 3, 4} that is a coarsening of
{{1, 2}, {2, 3}, {3, 4}, {1, 4}}. This property is met
by {{1, 2, 3}, {1, 3, 4}} (the other possibility would be
{{1, 2, 4}, {2, 3, 4}}). Thus, we will consider a decom-
posable model

λ = λ1 . λ2,

where λ1 = λ↓{1,2,3} and λ2 = λ↓{1,3,4}. This type of
representation of the four-dimensional pba λ claims a
formal change of step II of the above described IPFP
algorithm; each step of the cycle is split into two
simpler steps – see the modified algorithm below.

However, if we decide to decrease computational com-
plexity of the presented algorithm by the decomposi-
tion of the computed bpa, we must be ready to face
new problems that do not appear in the probabilistic
framework. Namely, in D-S theory the “uniform” bpa
(i.e., the initial bpa that is assigned in step I of the
algorithm) is not decomposable. The reader can see
it immediately from the fact that in the considered
example, decomposable bpas have only focal elements
from 2X{1,2,3}./{2,3,4} , which contains only 9 999 sets
out of 65 535 from 2X{1,2,3,4} . Therefore, in the consid-
ered four-dimensional example, when applying IPFP
to the considered decomposable models we also have
to modify the initializing step I. So, for the consid-
ered example we are getting the following modified
algorithm.

I Define bpas:
λ1(c) := 1

|2|X{1,2,3}| for all c ∈ 2X{1,2,3} ,
λ2(c) := 1

|2|X{1,3,4}| for all c ∈ 2X{1,3,4} .

II Repeat the following cycle (eight steps) until the
procedure converges:

(i) λ1 := µ1 . λ1,
(ii) λ2 := λ

{1,3}
1 . λ2,

(iii) λ1 := µ2 . λ1,
(iv) λ2 := λ

{1,3}
1 . λ2,

(v) λ2 := µ3 . λ2,

(vi) λ1 := λ
{1,3}
2 . λ1,

(vii) λ2 := µ4 . λ2,

(viii) λ1 := λ
{1,3}
2 . λ1.

(Let us note that it does not matter that λ1, λ2 de-
fined in the initializing step of the algorithm may be
inconsistent. The only condition we have to guarantee
is that λ1 . λ2 is positive for all c ∈ 2X{1,2,3}./{2,3,4} .)

The achieved simplification is obvious. Although we
have to perform twice as many steps in one cycle when
considering the simple decomposable model as we do
in the general case, we only compute 255 numbers
at each step for binary variables instead of 65 535.
Naturally, the computational savings for ternary vari-
ables would be even more progressive. So, at this
point, the question remains (it will be discussed in
the next section) whether it is preferable to consider
d-decomposable or f-decomposable models.

Before leaving the example let us set right one theo-
retical issue about this modified algorithm. Recalling
the results from the last ISIPTA paper, we said (see
point (b) above) that the algorithm with f. con-
verges if there exists a bpa having all µ1, . . . , µ4 for
its marginals. This holds because the general IPFP
algorithm is initialized with bpa λ, which is positive
on 2X{1,2,3,4} , and therefore it dominates all bpas on
X{1,2,3,4}. It is just a question of going through the
proof of the assertion guaranteeing convergence of the
IPFP procedure in [8], to show that, for the decom-
posable version of the IPFP algorithm, only a weaker
assertion holds:

(b) if there exists a decomposable bpa (decomposable
with structure {{1, 2, 3}, {1, 3, 4}}) having all four
bpas µ1, . . . , µ4 for its marginals, then the proce-
dure with f. converges;

5 Inference

The simplest inference scenario is based on compu-
tation of conditionals. Instructions for computing
conditionals (and a clarification of what their prop-
erties are) can be found in [9]. In that paper it was
shown that, for bpa µ on XM and Xj , Xk ∈M ,

µ(Xk|Xj = a) =
(
νXj=a

d. µ
)↓Xk ,

where νXj=a is a one-dimensional bpa on Xj hav-
ing just one focal element {a} ⊂ Xj , for which
νXj=a({a}) = 1. (Note that νXj=a is thus normal
and proper.) This bpa expresses the fact that we are
sure that variable Xj achieves value a.
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Maybe it is worth showing that for computation of
conditional bpas we must use the operator d. and
not f. .

5.1 Example

Consider two variables X1, X2 with X1 = X2 =
{b, c, d, e}, and bpa µ with just one focal element

µ({(b, b), (c, c), (d, d), (e, e)}) = 1.

This bpa describes the situation when we do not know
which of the values occurs, but we are sure that both
variables X1 and X2 certainly have the same value.

To compute νX1=b
d. µ, we proceed according to Def-

inition 2. First notice that νX1=b is a probabilistic
bpa, and therefore (see Formula (3)) it is the same
as the corresponding comf θX1=b = νX1=b. Denote by
θ (with no index) the comf corresponding to µ. The
marginal µ↓X1 is a vacuous bpa with just one focal
element X1 = {b, c, d, e}. Therefore, the corresponding
comf θ↓X1 equals 1 for all nonempty subsets of X1, and
therefore the denominator in the formula appearing in
Definition 2 equals 1. So, in this specific case we get

θX1=b . θ = θX1=b · θ.
Due to Formula (3), θ equals 1 for all nonempty
subsets of {(b, b), (c, c), (d, d), (e, e)}. Therefore
θX1=b

d. θ equals one for all those subsets a ⊆
{(b, b), (c, c), (d, d), (e, e)} in which no other value than
b appears at the first position, i.e., a↓{X1} = {b}, and
it is only {(b, b)}. Therefore we get

(θX1=b
d. θ)({(b, b)}) = 1,

and (θX1=b
d. θ)(a) = 0 for all a ⊆ X1×X2, for which

a 6= {(b, b)}.
This means that we get a probabilistic bpa equaling 1
for {(b, b)}, from which we get (after marginalization)
that µ(X2|X1 = b) equals 1 if and only if X2 = b.

However, if we computed µ(X2|X1 = b) = νX1=b
f. µ

according to Definition 3 we would get that νX1=b
f. µ

has, again, only one focal element, but this time
it would be {(b, b), (b, c), (b, d), (b, e)}. Therefore,
marginalizing this bpa for variable X2 we would get a
vacuous bpa for which

(νX1=b
f. µ)↓X2({b, c, d, e}) = 1.

This equality does not correspond to what we expected.

5.2 Conditioning in Decomposable Models

Consider decomposable bpa µ with the structure
{K1,K2, . . . ,Km} (

⋃m
i=1 Ki = N), and assume, first,

that it is a d-decomposable model, i.e.,

µ = µ↓K1 d. µ↓K2 d. . . . d. µ↓Km .

If we want to compute a conditional
µ(Xk|Xj = a)

=
(
νXj=a

d. (µ↓K1 d. µ↓K2 d. . . . d. µ↓Km)
)↓Xk

we can be facing a computationally hard problem, un-
less we take into account the fact that K1,K2, . . . ,Km

are ordered to meet RIP. This enables us to carry out
the necessary computations locally in the way that was
shown in [7]. This computationally tractable process
takes advantage of the well-known fact (an immediate
consequence of the existence of a join tree, see [1])
that if K1,K2, . . . ,Km can be ordered to meet RIP,
then for each ` ∈ {1, 2, . . . ,m} there exists an order-
ing that meets RIP and in which K` is the first one.
So consider any K` for which Xj ∈ K`, and find the
ordering that meets RIP and starts with K`. With-
out loss of generality, let it be K1,K2, . . . ,Km (so, in
this case we assume that Xj ∈ K1). This fact makes
the application of Property 8 of Theorem 1 possible;
applying it (m− 1) times we get
νXj=a

d. (µ↓K1 d. µ↓K2 d. . . . d. µ↓Km)
= νXj=a

d. (µ↓K1 d. µ↓K2 d. . . . d. µ↓Km−1)
d. µ↓Km = . . .

= νXj=a
d. µ↓K1 d. µ↓K2 d. . . . d. µ↓Km

Notice that the whole process can be repeated several
times in case one wants to compute a conditional
like µ(Xk|X1 = a,X3 = b, . . .) – the only additional
problem is that before each reordering of marginals
(i.e., after each conditioning by one variable) one has to
ensure that the model is composed from marginals of
one bpa (This can be done by a simple computational
process described in Proposition 7 of [7]). So, we
can conclude that the computation of conditionals in
d-decomposable models can be carried out locally.

Another question is whether the same computation-
ally local process can be also used if we consider f-
decomposable model

µ = µ↓K1 f. µ↓K2 f. . . . f. µ↓Km .

However, though we conjecture that the answer is
positive, at this moment the question still remains
open. We would need to prove the following assertion
to confirm the validity of our expectation.

Conjecture Suppose µ1, µ2 and µ3 are
bpas on XK , XL, and XM , respectively. If
L ⊃ (K ∩ M) then, (µ1

d. µ2) f. µ3 =
µ1

d. (µ2
f. µ3).

6 Summary and Conclusions

The primary goal of this paper is to convince the reader
that introducing two operators of composition for be-
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lief functions is not an end in itself. Each of them has
its own raison d’être. d. is, in a way, a generalization
of probabilistic composition, introducing a conditional
independence among the variables, whereas f. gen-
eralizes probabilistic factorization. Since these two
notions coincide in probability theory, it is sufficient
to use just one operator of composition in probability
theory.

The role of d. for computation of conditionals is
irreplaceable. On the other hand, computational pro-
cedures for f-decomposable models are much more
efficient than those for d-decomposable models. The
only problem spoiling their mutually advantageous
coexistence will disappear once the presented conjec-
ture is proven. Nevertheless, even if the conjecture is
disproved there will still be a chance to design compu-
tationally efficient procedures employing both studied
operators; they just will not be as simple as the proce-
dure described in the last section.
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Abstract
This paper asks whether the salient result about non-
negative value of cost-free information holds in the context
of games. By reexamining Osborne’s example where infor-
mation may hurt, it argues that the failure of this result is
mainly driven by the assumption of common knowledge in
the traditional framework of incomplete information games,
since it leads to act-state dependence in a sequential setting.
This paper also shows that such a failure occurs when we
extend the framework of incomplete information games to
allow for a representation of uncertainty using sets of prob-
abilities and the use of Γ-maximin. Nevertheless, the key
to this negative result is that a phenomenon called dilation
of sets of probabilities obtains in this generalized setting.

Keywords. Bayesian games, value of information, ambi-
guity, act-state dependence, dilation, Γ-maximin.

1 Introduction

It is well known that in an individual decision problem
a Bayesian decision maker should not refuse to receive
cost-free information. To understand this result intuitively,
note that choosing the expected utility maximizer d∗ in
the absence of new information has the same expectation
as the plan of always making decision d∗ no matter what
additional information is forthcoming. But it might be that
the decision d∗ does not always maximize expected utility
upon on receiving new information. It follows that the ex-
pected utility of choosing d∗ initially cannot be greater than
the prior expectation of choosing the best decisions after
having more information. This ensures that additional infor-
mation cannot be harmful to one’s prior expectations. Thus
it is rational for a Bayesian decision maker to postpone her
terminal decision in order to acquire cost-free information.
Indeed, such an intuitive idea can be traced back to Ramsey
(1990), and has been formalized by Good (1967). However,
this satisfactory result about the non-negative value of cost-
free information fails to hold in many cases. For instance,
Kadane et al. (2008) have shown that certain modifications
of standard expected utility theory may require a decision

maker to strictly prefer less information to more, thereby
implying a negative value of information to the individual.

For our purposes, two cases under which this positive result
does not obtain are worth mentioning. The first involves
the idea of act-state dependence, namely probabilistic de-
pendence between act and state, which is precluded by
conventional expected utility theory. For example, within
a small geographic market, consumers’ inquiry about the
price of a certain good may cause its price to rise. In this
case, because of act-state dependence, a potential consumer
strictly prefers not to learn the (cost-free) information about
the price. As a result, the value of information is negative to
the consumer. Another relevant instance of such a violation
occurs in the context of decision making under uncertainty,
where uncertainty is assumed to be represented by sets of
probabilities rather than a single probability distribution.
When extending expected utility theory to accommodate
uncertainty aversion, it may happen that the set of uncon-
ditional probabilities for an event is properly included in
the set of probabilities conditional on every event of some
partition, which is a phenomenon known as dilation in the
literature1. Given the presence of dilation, it should come
as no surprise that a rational decision maker may refuse a
free offer to learn a piece of new information. Therefore,
the result introduced at the beginning of the paper is not
robust with respect to the introduction of act-state depen-
dence, as well as the choice of the modeling of uncertainty
in the setting of single-agent decision making.

Moving beyond individual decision making, it has also
been demonstrated that, in the context of games, more
information may hurt the player who possesses the infor-
mation2. More specifically, the player may be worse off
when she has more information than when she does not.
The simple logic behind this negative result is the follow-
ing. In a game where one player has certain information

1See Seidenfeld and Wasserman (1993), Herron et al. (1994), and Her-
ron et al. (1997) for an extensive and systematic study of the phenomenon
of dilation.

2See for instance Akerlof (1970) and Osborne (2004) for several promi-
nent examples that illustrate this observation concerning the negative value
of information in games.
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about the situation, this fact being commonly known among
the players has a strategic impact on the players’ rational
strategy choices, which results in an inferior equilibrium
outcome than the one for a game with more information.
Thus, if that specific player can first choose between these
two games and then play the chosen one, the optimal strat-
egy is to play the game with less information, implying that
new information has a negative value for that player. In
light of this, we can conclude that the familiar result about
the non-negative expected worth of cost-free information
is not robust with respect to the introduction of strategic
interaction either.

These findings suggest a need for a reconsideration of the
information value problem in games. The aim of this pa-
per is to provide a better understanding of this issue in
games based on previously known results in the literature
of decision theory. As a starting point of our investigation,
we review the example introduced by Osborne (2004) ex-
hibiting the counterintuitive result that in the context of
Bayesian games a rational player may strictly prefer less in-
formation to more. In addition, the example helps us clarify
the central issue and highlight the sequential problem in-
volved in the comparison between a game where one player
has less information, and a different version of the game
where the player has more information. It is within such a
sequential setting that the issue of whether information has
a positive value can be properly assessed.

Next we show that the non-negative value of information
can be restored by a weakening of the common knowledge
assumption. Our analysis of Osborne’s example makes it
clear that the assumption of common knowledge plays a
crucial role in the result of the negative information value
in games. This leads us to consider a variant of the original
game in which one player has more information while the
other players are not aware of this fact. By comparing it
with the original game, we show that more information
to a player does lead to a better equilibrium outcome and
thus has a positive value for the player3. We can intu-
itively understand this result by recognizing that act-state
dependence is the real factor that has driven the result
of the negative information value in games. The lack of
common knowledge merely provides a convenient way to
abstract from the kind of probabilistic dependence between
a player’s choice of the games and her probability about
the opponent’s choices.

We then deal with the question of whether the finding about
the negative information value in games still holds in the
presence of ambiguity. First, we briefly discuss how the
traditional framework of Bayesian games developed by
Harsanyi (1967/68) can be naturally extended to accommo-
date the idea of employing sets of probabilities to model

3Neyman (1991) similarly argues that a player cannot be worse off by
having more information provided that other players are not aware of it.
The author thanks an anonymous reviewer for pointing out this reference.

uncertainty. Such an extension allows the players’ initial be-
liefs about the state to be represented by closed and convex
sets of probability distributions, which is more normatively
appropriate and empirically grounded than the modeling of
uncertainty through a single precise prior4. Following the
pioneer work of Kajii and Ui (2005), we introduce a solu-
tion concept called Γ-maximin equilibrium that generalizes
the concept of Bayesian Nash equilibrium to incomplete
information games under ambiguity. Roughly speaking,
our solution concept requires that each player chooses the
optimal strategy in the sense of maximizing her minimum
expected utility for each realization of her private signals.
Using this solution concept, we then show that the phe-
nomenon of the negative value of information reappears in
the context of incomplete information games under ambi-
guity. This finding is perhaps not that surprising given the
discussion on Osborne’s example.

Nevertheless, we further argue that there exists an important
distinction between Osborne’s observation and the finding
presented here. Specifically, we demonstrate that, when am-
biguity is present, the conclusion about the negative value
of information in games is robust with respect to the relax-
ation of the common knowledge assumption. This stands in
a sharp contrast to what happens in Bayesian games when
the assumption of common knowledge is weakened. In
order to account for this difference, we briefly describe the
phenomenon of dilation of sets of probabilities, and suggest
that the role dilation together with the use of Γ-maximin
plays in our examples is fundamental to understanding the
result about the negative value of information in games un-
der ambiguity. This implies that our finding bears a closer
relationship to the results reported in Seidenfeld (2004) and
Kadane et al. (2008) concerning the effect of dilation on the
value of information in the context of single-agent decision
making.

The remainder of this paper is organized as follows. In
Section 2 we examine the well-known result about the
negative value of information in Bayesian games in detail,
and also present a different approach for determining the
value of information in games by relaxing the assumption
of common knowledge. Section 3 shows by examples that
a non-expected utility player may pay not to receive cost-
free information in incomplete information games under
ambiguity. Section 4 discusses whether our finding still
holds true even if there is a lack of common knowledge in
games, and then relates it to the phenomenon of dilation.
Section 5 contains a few concluding remarks.

4See for instance Knight (1921), Ellsberg (1961), Levi (1974), and
Walley (1991) for a number of compelling arguments that justify the idea
of using imprecise probabilities to model uncertainty.
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L M R
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3 1,0 1,1
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L M R
T 1, 2

3 1,1 1,0
B 2,2 0,3 0,0

State ω2

1
Prob.

1

2
Prob.

1

2

Prob.
1

2
Prob.

1

22

Figure 1: A Bayesian game with no information about the states

2 Common Knowledge and Negative Value
of Information in Games

In this section we reconsider the example presented by
Osborne (2004) where a player may assign a negative value
to cost-free information in the context of Bayesian games.
That is, the player becomes worse off in the version of
the game where she has more information. It thus follows
that the player would rationally pay to avoid learning this
piece of new information, even though there is no cost
associated with it. To keep things simple, we will return to
this example later and argue that the assumption of common
knowledge plays a critical role in Osborne’s analysis, which
throws considerable light on the nature of this negative
result in games.

Example 2.1. Consider the game structure shown in Fig-
ure 1. In this game, there are two players and two possi-
ble states {ω1,ω2}. The action set of player 1 is given by
A1 = {T,B} and that of player 2 is given by A2 = {L,M,R}.
Players’ payoffs under each strategy profiles are specified
by two numbers in the corresponding box of the following
table, with the first number being the payoff of player 1.
Moreover, we assume that both players do not know the
state and assign probability 1

2 to each state. That is, both
players believe that each state will occur with probability
1
2 , although neither of them knows which state they are
actually in. And no further information concerning the
state will be revealed to the players. Following normal
convention, we further assume that everything about the
game is common knowledge.

Game theorists commonly regard the notion of Bayesian
Nash equilibrium as the reasonable solution concept for
solving Bayesian games. Informally speaking, a Bayesian
Nash equilibrium consists of a collection of strategies such
that each player’s strategy is a best reply to the strategies
the other players have chosen. It is easy to see by expecta-
tion that player 2’s strategy L strictly dominates the other
strategies. And player 1 has a unique best reply against
L, namely, the action B. Hence, the strategy profile (B,L)
is the unique Bayesian Nash equilibrium for the Bayesian
game considered in this example. More importantly, note

that this equilibrium gives rise to the outcome (2,2) with
the first component being the payoff to player 1.

It is well known in the decision-theoretic literature that in
single-agent decision problems it is weakly better for an
expected utility maximizer to wait for more information
prior to make a terminal decision. In other words, every
expected utility decision maker prefers more information
to less. In order to test whether this is valid within the
context of games, Osborne suggests to contrast Example 2.1
described above with the following case.

Example 2.2. As before, we assume that both players do
not know the state before receiving their private informa-
tion and assign probability 1

2 to each state. However, player
2 learns the state from her private information, whereas
player 1 does not. In other words, after having received
her private information, player 2 knows whether she is
playing the strategic game on the left or the one on the
right. By contrast, player 1 still does not know the state in
this interim stage and thinks that with equal probability 1

2
she is playing one of these two games. Nevertheless, player
1 knows the fact that player 2 is informed of the state. In
a similar way, this strategic situation can be described
by Figure 2 where the two frames labeled 2 enclosing
each table indicate that player 2 can perfectly distinguish
between these two tables.

Notice that each type of player 2 has a strictly dominant
action, namely, R and M respectively. This means that
player 2 should choose to play the strategy (R,M), no mat-
ter what player 1 intends to do. Knowing that player 2 is
informed of the state, player 1 can then anticipate the above
reasoning on the behalf of player 2. Given this, player 1
should respond optimally by playing T , which is the unique
best response to (R,M). Therefore, this game has a unique
Bayesian Nash equilibrium (T,(R,M)), which gives rise to
the outcome (1,(1,1)).

Now suppose that in a sequential setting player 2 is first
asked to choose either to play the Bayesian game in Exam-
ple 2.1, or to play the Bayesian game in Example 2.2, and
then enters the chosen game. Note that player 2 would ob-
tain more information about the state in Example 2.2 than

Common knowledge, ambiguity, and the value of information in games

169



L M R
T 1, 2
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Figure 2: A Bayesian game in which player 2 knows the state

she would in Example 2.1. Contrary to our intuition, player
2 would rather choose to play the game in Example 2.1
instead of the one in Example 2.2, where she is actually
informed of the state. It is important to remark, however,
that such a choice of player 2 is perfectly rational in the ex-
act sense of maximizing expected utility, since the unique
Bayesian Nash equilibrium of the game in Example 2.1
yields player 2 a higher expected payoff than the unique
Bayesian Nash equilibrium of the game in Example 2.2
does. This implies that player 2 strictly prefers to play the
game with less information rather than more, which stands
in stark contrast to the familiar result in decision theory
about the non-negative value of information.

Generally, more information is valuable for making better
decisions. In a strategic situation, however, knowing only
that a certain kind of information becomes available to
someone may alter one’s behavior, even if she herself does
not know what the information is. It is thus important
to keep in mind that one should separate the real issue
concerning the value of information in games, from the
question whether the knowledge of others holding certain
private information plays a role in determining its value.
Next we suggest an instructive way to investigate whether
more information is better for a player by restricting others
from knowing that fact. Such an approach then avoids the
kind of complication just described.

Example 2.3. Consider a slightly modified version of the
Bayesian game introduced in Example 2.2. As before, we
assume that both players do not know the state before
receiving their private information and assign probability
1
2 to each state. Upon receipt of their private information,
player 2 learns the state, whereas player 1 still does not
know the state. Unlike in the previous game, in this case
we assume that player 1 does not know the fact that player
2 is informed of the state. To be a bit more specific, player
1 still believes that player 2 assigns probability 1

2 to each
state like she does. Given that player 1 is not informed of
player 2’s updated belief about the state, it is obvious that
the conventional assumption about common knowledge is
no longer valid in the current case.

The only difference between Example 2.2 and Example 2.3
lies in the fact that in the latter case we specifically make the

information concerning player 2 knowing the state unavail-
able to player 1. Nevertheless, such a slight modification
has greatly changed the strategic interaction between these
two players. To see this, note that in Example 2.3 two play-
ers have rather different information about the situation:
At the interim stage where players learn of their private
information, player 1 does not know player 2’s actual belief
about the state, whereas player 2 has a complete knowledge
of the strategic situation, including her own information
being unknown to player 1. In this sense, player 1 holds a
false belief about player 2’s updated belief. In this setting,
the usual strategic impact caused by new information goes
away, since the information would only affect the person
who has it. By restricting player 1 from knowing the fact
that player 2 learns the state, we can then ask whether this
piece of new information has any value to player 2 or not.

We first need to figure out how to resolve these kinds of
strategic situations involving “imperfect” beliefs, as the
notion of Bayesian Nash equilibrium is designed to solve
only standard Bayesian games. As a minimal requirement
of rationality, a reasonable solution should respect the in-
formation available to each player. Moreover, we want to
follow the tradition of modeling the players as expected
utility maximizers. Given these requirements, it seems
reasonable to suggest that each player should choose a
strategy that maximizes her expected payoff given the (pos-
sibly false) beliefs about the state and the strategies chosen
by the other players, as long as these beliefs can be justified
in terms of information available to her.

Now let us apply the above idea to the situation described
in Example 2.3. First, we claim that player 1’s optimal
choice is to play B. To see this, note that in the interim
stage player 1 still believes that player 2 does not know the
state and assigns probability 1

2 to each state. Given such
a belief, player 1 would believe that player 2 will choose
the action L, which strictly dominates the other two actions.
Anticipating this conjecture, player 1 responds optimally
by playing B. On the other hand, player 2 has perfect
knowledge about the situation, even including the fact that
player 1 holds incorrect belief about whether she knows
the state. Since player 2 learns the state at the interim stage,
player 2 will choose to play her strictly dominant actions in
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each state, that is, R and M respectively. Although player
2 can anticipate player 1 to select B rather than her equi-
librium strategy L, player 2 would keep her optimal choice
of (R,M) unchanged, since it still maximizes her expected
payoff given B. Hence, the recommended play in this case
is the strategy choice (B,(R,M)).

It is important to note that player 2’s payoff under the
optimal play in Example 2.3 is 3, which is greater than her
payoff of 2 associated with the equilibrium of the game in
Example 2.1. Thus, if player 2 is faced with an initial choice
between whether to play the game in Example 2.1 or instead
to play the game in Example 2.3, the rational decision is
to choose the latter one. It follows that player 2 strictly
prefers to have more information rather than less, which
is in accordance with the familiar result concerning the
non-negative value of cost-free information. This contrasts
sharply with the foregoing analysis.

Note that common knowledge plays a critical role in solving
both games in terms of Bayesian Nash equilibrium. In both
games, everything about the games is common knowledge,
and thus both players can reason about each other’s strategy
choice on the behalf of her opponent. In Example 2.1,
based on her prior belief about the state, player 2 select her
best action L, which leads player 1 to choose B. Similarly,
in Example 2.2, player 2 utilizes her information of the
state and singles out the optimal strategy (R,M), which
induces player 1 to choose T . So, when player 2 is faced
with the sequential problem of choosing first between these
two games and then playing the chosen one, there exists
probabilistic dependence between her choice of the games
and her probability about the opponent’s strategy choice. In
this sense, act-state dependence arises in such a sequential
problem.

On the other hand, act-state dependence does not arise
when player 2 is asked to choose first whether to play the
game in Example 2.1 or to play the game in Example 2.3,
and then to play the selected game. To see this, recall that
in Example 2.3 player 1 does not know the fact that player
2 has more information. In the light of this assumption,
player 1 is not able to arrive at the same conclusion as player
2 does. Instead, player 1 would obtain the same conjecture
about player 2’s strategy choice as the one in Example 2.1,
namely, L. Since player 2 has perfect knowledge about the
situation, she can deduce from her information player 1’s
strategy choice, which is identical to the one in Example 2.1.
So, if player 2 is asked to first choose between the game in
Example 2.1 and the one in Example 2.3 and then to play
the chosen game, there is no act-state dependence, since
both players’ probabilities for how the other player chooses
are unchanged. For this reason player 2 would assign a
positive value to the information about the state.

It has already been shown (Kadane et al., 2008) that in indi-
vidual decision problems the result about the non-negative

value of cost-free information does not hold provided that
there is act-state dependence in personal probabilities. Then
it should come as no surprise that, in the context of games,
players may have negative value for new information in the
presence of act-state dependence. It is act-state dependence
that has driven the counterintuitive result about the nega-
tive value of information discussed above5. Relaxing the
assumption of common knowledge in Example 2.3 enables
us to prevent the occurrence of act-state dependence in the
sequential problem.

3 Negative Value of Information in Games
under Ambiguity

This section is devoted to extending the analysis of the
value of information in Bayesian games to accommodate
ambiguity aversion by considering the multiple priors mod-
els developed by Gilboa and Schmeidler (1989). In order to
explore whether the phenomenon of negative value of infor-
mation is robust with respect to extensions of the expected
utility theory, we need to investigate how to incorporate
models of imprecise probabilities into Bayesian games. We
will not attempt to present a formal model of incomplete in-
formation games under ambiguity here6. Instead, we shall
introduce the basic ideas in an informal way.

Unlike in Harsanyi (1967/68), here we take the view that,
due to limited information, a player may not be able to iden-
tify a unique prior to describe her belief about the states,
which can be characterized as a set of probability distri-
butions. More precisely, we assume that in an incomplete
information game each player’s perception of uncertainty
about the states is modeled by a closed and convex set of
probability measures, instead of a single common probabil-
ity distribution. And we adopt the principle of Γ-maximin
as the decision rule used by all the players. In the same
spirit of Bayesian Nash equilibrium, we propose a new
solution concept in which each player chooses the optimal
action in the sense of maximizing the minimum expected
utility for each realization of her private signal. In this
sense, our model constitutes only a minor departure from
the standard approach to Bayesian games.

In order to help better understand how our game model
works, let us consider the following example through which
we introduce the major components of an incomplete infor-
mation game under ambiguity and the solution concept for
this kind of games.

Example 3.1. Consider the game structure shown in Fig-
ure 3 (Game 4). As in Bayesian games, nature moves first
and chooses which state to occur. Moreover, assume that
both players in this game are uncertain about nature’s

5The author thanks Teddy Seidenfeld for pointing this out. Seiden-
feld (2009) first gives such an analysis of Osborne’s example regarding
negative value of information in games.

6See Kajii and Ui (2005) for a formal definition of such a game model.
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T 1.6,1 1,0
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Figure 3: An incomplete information game under ambiguity

move in choosing the state. Nevertheless, suppose that
both players’ prior beliefs about the states are depicted
by the following common set of priors over the states with
α ∈ [0.1,0.9].

P =
{

p ∈ ∆(Ω) :p(ω1) = p(ω3) =
1−α

2
,

p(ω2) = p(ω4) =
α
2
}
. (1)

Like in the framework of Bayesian games, the solution con-
cept proposed here requires that each player’s conjecture
regarding the opponents’ choices is correct in the standard
sense. Roughly speaking, our solution concept called Γ-
maximin equilibrium is defined as a strategy profile such
that each player’s strategy is optimal in the sense of maxi-
mizing the minimum expected payoff, given the other play-
ers’ strategy choices. Clearly, the concept of Γ-maximin
equilibrium generalizes the notion of Bayesian Nash equi-
librium to games under ambiguity.

Now let us apply the concept of Γ-maximin equilibrium to
the game in Figure 3. We can transform the game into an
ordinary game in strategic form by calculating each player’s
expected payoffs under different strategy profiles using
each of her posterior probabilities defined over the state.
Given a strategy profile, each player’s payoff generally
becomes an interval instead of a precise value. However,
it turns out that in this case the players’ payoffs are all
determinate and independent of the variable α . By a simple
calculation, it follows that this game can be turned into the
following 2×2 game in strategic form.

L R
T 1.3,1 1.3,0
B 1,0 1,1

Figure 4: Game 4 in strategic form

It is obvious that this game can be easily solved by strict
dominance, which leads to a unique solution, namely, the
strategy profile (T,L). Hence, this is the unique Γ-maximin
equilibrium for the incomplete information game under
ambiguity in Figure 3, where its corresponding outcome is
(1.3,1). One may notice that the principle of Γ-maximin
does not play a role in solving this specific game. It is thus
worthwhile to point out that this is not generally true for
incomplete information games under ambiguity, since the
payoffs would typically form intervals. As we shall see in
the next example, the game is solved by explicitly applying
the idea of Γ-maximin.

It has already been demonstrated that in single-agent de-
cision problems a non-expected utility decision maker, es-
pecially a Γ-maximin decision maker, may prefer less in-
formation to more7. Thus one should expect that a similar
phenomenon would arise in incomplete information games
under ambiguity. In the following, we present a case where
a Γ-maximin player would rationally pay not to receive
cost-free information, which is exactly in the same spirit as
the negative result presented in the previous section.

In order to draw the needed contrast with the game in
Figure 3, we consider a situation in which player 2 has
more information and player 1 knows that fact. In this
sense, we follow exactly the same construction as Osborne
has proposed for the Bayesian case.

Example 3.2. Consider the game structure shown in Fig-
ure 5, which is similar to the game in Example 3.1. Likewise,
assume that both players’ prior beliefs about the states are
represented by the same set of priors over the states given
in Equation (1). As opposed to the previous case, we as-
sume in this game that player 1 learns more information
about the state, whereas player 2 does not. To be more
specific, player 1 may receive two signals; when player 1

7See Wakker (1988), Seidenfeld (2004) and AI-Najjar and Weinstein
(2009) for various examples that illustrate this point.
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Figure 5: The second incomplete information game under ambiguity

gets one of the signals, she knows that the state is either
ω1 or ω2; when she gets another signal, she knows that
the state is either ω3 or ω4. Formally, player 1’s signal
function can be defined as follows τ1(ω1) = τ1(ω2) = t1
and τ1(ω3) = τ1(ω4) = t ′1. By contrast, player 2’s signal
function is given as follows: τ2(ωk) = t2 for k = 1,2,3,4.
This indicates that player 2 receives a single signal in the
interim stage.

Similarly, we want to solve this incomplete information
game under ambiguity by considering the concept of Γ-
maximin equilibrium. However, it is important to remark
that, as opposed to the notion of Bayesian Nash equilib-
rium, this solution concept is sensitive to whether we solve
the game from an ex ante or interim perspective. It is im-
portant to note that the ex ante and interim Γ-maximin
equilibrium may lead to rather different solutions to the
same incomplete information game under ambiguity, since
the normal form and extensive form of a decision problem
are not equivalent under Γ-maximin8. Here we shall only
focus on the concept of interim Γ-maximin equilibrium,
which can be regarded as a direct generalization of interim
Bayesian Nash equilibrium.

Before introducing this interim solution, we need to specify
how the players would update their beliefs upon receiving
new information, which is critical for determining play-
ers’ expected payoffs in the interim stage. The updating
problem lies at the heart of the theory of incomplete infor-
mation games. In the framework of Bayesian games, it is
widely accepted that Bayes’ rule provides a convenient and
useful way of revising players’ initial beliefs in the light
of new information. On the contrary, there has been little
agreement in the literature on how to update one’s beliefs in
the presence of ambiguity as new information is gathered9.

8Seidenfeld (1988) explicitly shows that the rule of Γ-maximin distin-
guishes between sequential decisions in extensive form and the normal
form one-stage decisions.

9See Gilboa and Schmeidler (1993) and Grove and Halper (1998) for

Nevertheless, the so-called full Bayesian updating rule is of-
ten regarded as the straightforward generalization of Bayes’
rule to the context of imprecise probabilities. Thus we will
apply this rule to incomplete information games with the
modeling of uncertainty through sets of probabilities.

Given player 1’s private information, the set of posterior
probabilities can be derived from the set of priors by apply-
ing the full Bayesian updating rule:

P(· | t1) = {p ∈ ∆(Ω) : p(ω1) = 1−α, p(ω2) = α}
P(· | t ′1) = {p ∈ ∆(Ω) : p(ω3) = 1−α, p(ω4) = α} ,

where α ∈ [0.1,0.9]. And it is clear that player 2’s initial
beliefs about the state would remain unchanged. Moreover,
note that player 1’s payoffs to some strategy profiles de-
pends upon the value of α and thus become intervals. This
stands in direct contrast with the game in Figure 3.

Similarly to the notion of interim Bayesian Nash equilib-
rium, the concept of interim Γ-maximin equilibrium re-
quires that each type of each player chooses a strategy that
maximizes her minimum interim expected payoff given the
strategies chosen by the other types of every other player.
We claim that this game has a unique interim Γ-maximin
equilibrium in pure strategy, namely, the strategy profile
((B,B),R)10. To see this, note that for each type of player
1 the action B always yields a higher minimum expectation
than T does, no matter whether player 2 chooses L or R.
Thus, player 1 should choose to play the strategy (B,B).
Given such a conjecture, player 2 should respond optimally
by playing R. Importantly, observe that this unique equilib-
rium yields type t1 of player 1 an expected payoff of 1.2

more detailed discussions about various updating rules when using sets of
probabilities to model ambiguity.

10In fact, this game has no other interim Γ-maximin equilibrium in
mixed strategy. For the current purpose, however, the notion of interim
Γ-maximin equilibrium in pure strategy is sufficient. Moreover, one can
easily verify that this equilibrium cannot be justified a Bayesian Nash
equilibrium using any element of the set of priors.
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and type t ′1 of player 1 an expected payoff of 0.8, both of
which are less than the payoff in the unique Γ-maximin
equilibrium of the game in Figure 3.

Now if player 1 has an initial choice between the game
in Example 3.1 and the game in Example 3.2, player 1
strictly prefers to play the former one in which player 1 has
no information about the state. In other words, player 1
assigns a negative value to the information that she may re-
ceive in the latter game. Unsurprisingly, then, this example
demonstrates that the phenomenon of the negative value
of information would arise in the context of incomplete
information games under ambiguity. In this sense, such a
phenomenon is indeed robust with respect to extensions
of Bayesian games using certain classes of non-expected
utility models.

In view of the analysis in Section 2, one may think that this
is due to the same fact that act-state dependence obtains
in this sequential problem. This is correct to some extent,
since player 1’s new information about the state does have a
strategic impact on her conjecture about player 2’s strategy
choice. As we shall see in the next section, however, act-
state dependence is not the key factor that accounts for
this negative result in games under ambiguity. The use of
imprecise probabilities to represent uncertainty in games
actually introduces additional complexity to the value of
information in games.

4 Negative Value of Information without
Common Knowledge

In this section we consider a variant of the game in Ex-
ample 3.2 where the assumption of common knowledge is
slightly weakened, and demonstrate that the conclusion of
the previous section still holds even if some player has more
information that is not commonly known to the other play-
ers. Then, on the basis of previously known results from
decision theory, we provide a more in-depth account of the
nature of the negative value of information in incomplete
information games with and without ambiguity.

As we announced, we reexamine the information value
problem in games by comparing the game in Example 3.1
with a game where player 1 has more information but player
2 is not informed of this fact. Similarly, the construction
of the latter game is deliberately designed to eliminate
the strategic effects caused by common knowledge of new
information.

Example 4.1. Consider a slightly modified version of the
incomplete information game under ambiguity introduced
in Example 3.2. The modified game is very similar to the
one in Figure 5 except that player 2’s belief about player 1’s
information in the interim stage does not match up with the
actual information possessed by player 1. More precisely,
we assume here that player 1 obtains more information

about the state, but that is not revealed to player 2. Instead,
player 2 still thinks that player 1 holds the same belief as
in the ex ante stage.

It is worth emphasizing that the fundamental difference be-
tween Example 3.2 and the current example lies in the ques-
tion of whether or not player 2 knows the fact that player
1 has more information about the state in the interim stage.
As we have seen, such a modification has a profound impact
on the solution to the games, which in turn substantially
changes the analysis of the information value in games.

In a similar fashion, we propose to solve this game by
demanding only that the strategy chosen by each player is
optimal in the sense of maximizing the lower expectation
on the basis of her information about the state and the
other players’ strategy choices. In contrast with Γ-maximin
equilibrium, this notion does not impose the consistency
requirement on each player’s conjectures about the other
players’ strategy choices, since some player may not have
all the information about the opponents’ characteristics.
For instance, in the current example, the fact that player
1 learns more information about the state is not available
to player 2. For this reason it is not surprising to see that
some player may hold a belief that is inconsistent with the
opponents’ actual behavior. In light of such a weakening
of the common knowledge assumption, however, it seems
quite reasonable to require each player to justify the strategy
choice on the grounds of information that is available to her.

We first argue that player 2 should choose to play L. The
argument goes like this. In this case, player 2 still believes
that neither player obtains any further information about
the state, and both of them employ the same set of priors
P to represent their uncertainty about the state. Given
such a belief, player 2 will then think that the game can
be transformed into the strategic form game depicted in
Figure 4, which is solvable using strict dominance. Player
2 would thus expect player 1 to select T and then choose to
play her unique best response L.

Second, we claim that player 1’s optimal strategy is (B,B).
Unlike player 2, player 1 not only has more information
about the state in the interim stage, but also knows that
player 2 does not learn of this fact. Based on her private
information, player 1 can reason as follows. As noted be-
fore, the action B always gives player 1 a higher minimum
expected payoff than T does, regardless of the action cho-
sen by player 2. Thus, the optimal choice for player 1 is
to choose the strategy (B,B). We should also remark that,
according to Γ-maximin, player 1’s strategy (B,B) is opti-
mal as well given player 2’s choice of L. This means that
player 1 does not want to alter her choice, even though she
can expect that player 2 will choose to play L instead of
the equilibrium strategy R. Importantly, note that under the
specified optimal plays for both players, the payoffs to two
types of player 1 are 0.8 and 1.2 respectively.
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We now turn our attention to the question of whether
player 1 prefers more information to less without the com-
mon knowledge assumption. Suppose that player is pre-
sented with the following sequential problem: First, decide
whether to play the game in Example 3.1 or instead to play
the game in Example 4.1, and then enter the selected game.
What would be player 1’s initial choice? Our foregoing
analysis of these two games suggests that the initial choice
for player 1 is to play the game in Figure 3 in which player
1 has no information about the state. That is, player 1 would
rationally pay to avoid learning more information about the
state in this case. Thus, the same phenomenon occurs again
in the presence of ambiguity, even if player 2 is assumed
to not know the fact that player 1 has more information.
In contrast to the Bayesian case, one cannot explain away
this counterintuitive result by weakening the assumption of
common knowledge.

Let us reflect on this negative result obtained in games
under ambiguity. First, it is important to note that the relax-
ation of the common knowledge assumption does block the
kind of strategic effects caused by new information. For
instance, player 2’s strategy choice in the game of Exam-
ple 4.1 is not affected by player 1’s extra information about
the state, since player 2 does not learn that fact. In this re-
spect, the current case is quite similar to the Bayesian game.
It thus follows that act-state dependence does disappear
when we restrict player 2 from knowing that player 1 has
more information. In the absence of act-state dependence,
we still infer that player 1 strictly prefers less information
to more when ambiguity is present. Taken these together, it
suggests that there must be something other than act-state
dependence, which leads to the undesirable result of the
negative value of information in games under ambiguity.

A natural question then arises: What is the real reason
behind this counterintuitive result? To address this ques-
tion, we first point out a distinctive feature of the game
introduced in Example 3.2 by comparing the two sets of
probabilities that are used to represent player 1’s prior and
posterior beliefs about the state. At the beginning of the
game, player 1’s belief about the state is represented by the
set P as depicted by Equation (1). By contrast, upon ar-
rival of new information player 1 changes the probabilities
by applying the full Bayesian updating rule, which gives
rise to the sets P(· | t1) and P(· | t ′1). Observe that the prior
probability interval for event {ω1,ω4} is strictly contained
within its conditional probability interval given by P(· | t1).
Intuitively, this means that player 1’s probability judgment
about the event {ω1,ω4} becomes more imprecise after she
observes t1. We can say the same thing about the proba-
bility interval for {ω2,ω3}. In a similar fashion, the same
facts can be reported regarding player 1’s probability esti-
mates for these events in the case that t ′1 is observed. We
can thus conclude that player 1’s probability intervals for
nature’s choice of the state become wider, regardless of

the signal revealed to her. Such a phenomenon is called
dilation of sets of probabilities.

Intuitively, one may expect that one’s probability interval
for some hypothesis should become narrower after learning
the outcome of some experiment. Contrary to common
sense, when dilation obtains, the probability interval ac-
tually expands, no matter what the outcome is. It is not
surprising to find that a Γ-maximin decision maker may
refuse to learn new information when dilation is present.
Because the agent becomes more uncertain, no matter what
the outcome of the experiment is. In single-agent decision
problems, Γ-maximin requires that a decision maker using
that decision rule should pay to not receive new information
whenever dilation occurs.

In the context of games, it is reasonable to expect that this
would also arise in the presence of ambiguity if dilation
occurs. As explained above, this is exactly what happens
in the example of incomplete information games under am-
biguity. Hence, it is the phenomenon of dilation, together
with the use of Γ-maximin, rather than act-state depen-
dence that has really driven the result of the negative value
of information in games under ambiguity. In addition, it
is important to remark that in the presence of dilation the
same result holds with or without the common knowledge
assumption. This is why we arrive at the same conclusion
in both comparisons that player 1 would rather choose the
situation in which she does not have more information. As
our examples have shown, when considering whether new
information has any value in games, act-state dependence
is very sensitive to strategic impact whereas dilation does
not. In this sense, dilation is more robust than act-state
dependence regarding the result about the negative value
of information in the context of games under ambiguity.

5 Summary

The discussion here is concerned with the issue of whether
the familiar result about the non-negative value of infor-
mation is still valid under strategic situations. Osborne
(2004) has shown that in Bayesian games more information
to one player may make her worse off in terms of equilib-
rium payoffs. This finding raises the concern that a wide
variety of game-theoretic models with important economic
applications may fail to satisfy a seemingly reasonable
requirement on rational choice. In this paper we have re-
examined the information value problem in the context of
incomplete information games by considering the strategic
effect of common knowledge on players’ strategies and
also the introduction of ambiguity.

We draw two conclusions from this investigation. First, the
role act-state dependence plays in the sequential setting is
fundamental to understanding the result that a Bayesian
player may rationally pay not to receive cost-free infor-
mation in strategic interactions. We have argued that the
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kind of probabilistic dependence between a player’s initial
choice of the games and her probability about the oppo-
nents’ strategy choice leads the player to assign a nega-
tive value to the information. We have further shown that
the non-negative value of information can be restored by
weakening the assumption of common knowledge. This is
mainly due to the fact that the lack of common knowledge
isolates the strategic effect of information on equilibrium
play, and thus removes act-state dependence. So this result
lends an additional support for our account of the result of
the negative value of information in Bayesian games.

Second, in the presence of ambiguity, more information
may also damage the player who holds it, thereby implying
a negative value of information. Yet, we should emphasize
that the negative value of information can occur in the
context of incomplete information games under ambiguity,
even if we isolate the effect of act-state dependence by
relaxing the common knowledge assumption. Unlike what
happens in Bayesian games, in this case the result about the
negative value of information still holds true mainly due to
dilation of sets of probabilities. The upshot is that, within
the generalized game-theoretic framework that allows for
the modeling of uncertainty through sets of probabilities,
one needs to pay attention to both the strategic effect of
common knowledge and the role of ambiguity in order to
respect the value of information.

Acknowledgements

I would like to thank Teddy Seidenfeld and Kevin Zollman
who originally suggested this topic, and provided constant
encouragement and valuable suggestions throughout the
investigation. I am grateful to Martin Osborne for helping
me with a technical problem when using the latex package
sgame.sty created by him. I also want to thank the four
anonymous reviewers for their insightful comments on an
earlier version of the paper.

References
Akerlof, G. A. (1970). The Market for “Lemons”: Qual-

ity Uncertainty and the Market Mechanism. Quarterly
Journal of Economics 84(3), 488-500.

Al-Najjar, N. I., and Weinstein J. (2009). The Ambiguity
Aversion Literature: A Critical Assessment. Economics
and Philosophy 25, 249-284.

Ellbsberg, D. (1961). Risk, Ambiguity, and the Savage
Axioms. Quarterly Journal of Economics 75, 643-649.

Gilboa, I., and Schmeidler, D. (1989). Maxmin Expected
Utility with Non-Unique Prior. Journal of Mathematical
Economics 18, 141-153.

Gilboa, I., and Schmeidler, D. (1993). Updating Ambigu-
ous Beliefs. Journal of Economic Theory 59, 33-49.

Good, I. J. (1967). On the Principle of Total Evidence.
British Journal of Philosophy of Science 17, 319-321.

Grove, A. J., and Halpern, J. (1998). Updating Sets of Prob-
abilities. In Proceedings of the Fourteenth Conference
on Uncertainty in AI, 173-182.

Harsanyi, J. C. (1967/68). Games with Incomplete Informa-
tion Played by ‘Bayesian’ Players. Management Science
14, 159–182, 320–334, and 486–502.

Herron, T., Seidenfeld, T., and Wasserman, L. (1994). The
Extent of Dilation of Sets of Probabilities and the Asymp-
totics of Robust Bayesian Inference. In PSA: Proceed-
ings of the Biennial Meeting of the Philosophy of Science
Association, Vol. 1, 250-259.

Herron, T., Seidenfeld, T., and Wasserman, L. (1997). Di-
visive Conditioning: Further Results on Dilation. Philos-
ophy of Science 64, 411-444.

Kadane, J. B., Schervish, M., and Seidenfeld, T. (2008). Is
Ignorance Bliss? The Journal of Philosophy 105, 5-36.

Kajii, A., and Ui, T. (2005). Incomplete Information Games
with Multiple Priors. Japanese Economic Review 56,
332-351.

Knight, F. H. (1921). Risk, Uncertainty, and Profit. Boston,
MA: Houghton Mifflin Company.

Levi, I. (1974). On Indeterminate Probabilities. Journal of
Philosophy 71, 391-418.

Neyman, A. (1991). The Positive Value of Information.
Games and Economic Behavior 3, 350-355.

Osborne, M. J. (2004). An Introduction to Game Theory.
New York, NY: Oxford University Press.

Ramsey, F. P. (1990). Weight or the Value of Knowledge.
British Journal for the Philosophy of Science 41, 1-4.

Seidenfeld, T. (1988). Decision Theory without “Indepen-
dence” or without “Ordering”: What is the Difference?
Economics and Philosophy 4, 267-290.

Seidenfeld, T. (2004). A Contrast between Two Decision
Rules for Use with (Convex) Sets of Probabilities: Γ-
maximin versus E-admissibility. Synthese 140, 69-88.

Seidenfeld, T. (2009). On the Value of In-
formation in Games (Online). Available:
www.hss.cmu.edu/philosophy/faculty-seidenfeld.php.

Seidenfeld, T., and Wasserman, L. (1993). Dilation for Sets
of Probabilities. Annals of Statistics 21, 1139-1154.

Wakker, P. (1988). Non-Expected Utility as Aversion to
Information. Journal of Behav Decis Mak 1, 169-175.

Walley, P. (1991). Statistical Reasoning with Imprecise
Probabilities. New York: Chapman and Hall.

H. Liu

176

http://www.economics.utoronto.ca/osborne/latex/
http://www.hss.cmu.edu/philosophy/seidenfeld/recent%20presentations/On%20the%20value%20of%20information%20in%20Games.pdf


Calculating Bounds on Expected Return and First Passage Times
in Finite-State Imprecise Birth-Death Chains

Stavros Lopatatzidis and Jasper De Bock and Gert de Cooman
Ghent University, SYSTeMS Research Group

{Stavros.Lopatatzidis,Jasper.DeBock,Gert.deCooman}@UGent.be

Abstract
We provide simple methods for computing exact
bounds on expected return and first passage times
in finite-state birth-death chains, when the transition
probabilities are imprecise, in the sense that they are
only known to belong to convex closed sets of proba-
bility mass functions. These so-called imprecise birth-
death chains are special types of time-homogeneous
imprecise Markov chains. We also present numerical
results and discuss the special case where the local
models are linear-vacuous mixtures, for which our
methods simplify even more.

Keywords. Birth-death chain, Markov chain, impre-
cise, return time, first passage time, credal set.

1 Introduction

A birth-death chain [11, Section 9.4] is a special type
of time-homogeneous Markov chain that is used in
various scientific fields, including evolutionary biology
and queueing theory. We consider the generalised case
of an imprecise birth-death chain, where the transition
probabilities are imprecise, in the sense that they are
only known to belong to convex closed sets of proba-
bility mass functions—credal sets. This may be the
case because the transition probabilities are based on
partial expert knowledge or limited data, or for the
purposes of conducting a sensitivity analysis. Similar
models were already considered in Reference [2], which
presented results on limiting conditional distributions
for imprecise birth-death chains with one absorbing
state. Imprecise birth-death chains are themselves a
special case of so-called (time-homogeneous) impre-
cise Markov chains, which were studied in—amongst
others—References [5, 7, 9].

This paper focusses on—upward and downward—first
passage times and return times.1 For precise birth-
death chains, these have been studied in, for example,

1These are often called recurrence times as well.

Reference [8]. For the more general case of imprecise
birth-death chains, we are not aware of any results.
Our most important contribution are simple methods
for computing lower and upper—exact bounds for—
expected values of first passage times and return times
in finite-state imprecise birth-death chains. We also
present numerical results and discuss the special case
where the local models are linear-vacuous mixtures,
for which our methods simplify even more.

We start in section 2 by discussing the notion of a pre-
cise birth-death chain and then introduce our imprecise
version of it in Section 3. Section 4 defines return and—
upward and downward—first passage times and their
lower and upper expected values. In Sections 5 and 6,
we provide our methods for computing lower and upper
expected upward and downward first passage times.
We use these methods in section 7 to calculate lower
and upper expected return times. Section 8 discusses
the special case where the local models are linear-
vacuous mixtures and Section 9 presents numerical
results. We conclude the paper in Section 10.

2 Birth-Death Chains

Finite-state birth-death chains are special cases of
time-homogeneous finite-state Markov chains. Their
state space, denoted by X , is finite and can be linearly
ordered by an integer. Without loss of generality, we
may assume that X = {0, . . . , L}, with L ∈ N.2 At any
time point n ∈ N, the state of the chain is represented
by a random variable, denoted by Xn, which takes
values in the state space X . For every n ∈ N, the
sequence of variables X1, . . . , Xn is denoted by X1:n
and takes values x1:n := x1, . . . , xn in Xn. Similarly,
we use X1:∞ as a shorthand notation for the infinite
sequence X1, . . . , Xn, . . . Also, for every k ∈ N such
that k ≤ n, we let Xk:n and Xk:∞ be the sequences of
states from time point k to n or infinity, respectively.

2We do not consider zero to be a natural number.
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Since finite-state birth-death chains are special cases
of (time-homogeneous) Markov chains, they satisfy
the Markov condition, which requires that

En+1(·|x1:n) = En+1(·|xn) for all x1:n ∈ Xn, (1)

where En+1(·|xn) is the expectation operator that cor-
responds to the probability mass function p(Xn+1|xn)
for Xn+1, conditional on Xn = xn, and similarly for
En+1(·|x1:n). If the Markov chain is furthermore time-
homogeneous, then p(Xn+1|xn)—and therefore also
En+1(·|xn)—does not depend on n, which implies that
all the transition probabilities can be summarised by
means of a single stochastic matrix P of dimension
L + 1, by letting Pij := p(j|i) for all i, j ∈ X . In
the special case of a birth-death chain, this stochastic
matrix is tridiagonal, which expresses that transitions
are only possible between adjacent states. Hence, P
is of the form

P =




r0 p0 0 · · · · · · 0
q1 r1 p1 0 · · · 0
... . . . . . . . . . . . . ...
0 · · · 0 qL−1 rL−1 pL−1
0 · · · · · · 0 qL rL




where the elements of each row sum to 1. For any
i ∈ X/{0, L}, we will assume that the probabilities pi,
qi and ri are positive, and similarly for r0, p0, qL, rL.
Figure 1 depicts a graphical representation of a finite-
state birth-death chain.

0 1 · · · L− 1 L

p0

r0

p1

r1

q1

pL−2

q2

pL−1

rL−1

qL−1 qL

rL

Figure 1: A birth-death chain with X = {0, . . . , L}

3 Imprecise Birth-Death Chains

Imprecise birth-death chains are similar to precise
birth death chains. The main difference is that the
probability mass functions that make up the matrix
P do not need to be specified exactly. They are only
known to belong to convex closed sets of probability
mass functions, called credal sets. Formally, for every
finite set Y, a credal set on Y is a closed and convex

subset of the set

ΣY :=
{
π ∈ RY :

∑

y∈Y
π(y) = 1, (∀y ∈ Y)π(y) ≥ 0

}

of all probability mass functions on Y.
For every i ∈ X \ {0, L}, we consider a credal set Qi
on Xm := {`, e, u}, where—for reasons that should
become clear soon—m stands for middle and `, e and
u stand for lower, equal and upper, respectively. For
the individual probability mass functions πi ∈ Qi, we
will make frequent use of the notational convention
that

(pi, ri, qi) =
(
πi(`), πi(e), πi(u)

)
,

thereby establishing an intuitive connection with the
matrix P that characterises a precise birth-death chain.
Similarly, Q0 and QL are taken to be credal sets on
X0 := {e, u} and XL := {`, e}, respectively. For their
elements π0 ∈ Q0 and πL ∈ QL, we adopt the following
notational conventions:

(r0, p0) =
(
π0(e), π0(u)

)

and
(qL, rL) =

(
πL(`), πL(e)

)
.

Since X0 is binary, Q0 is fully determined by the
minimum and maximum value of p0, as π0 ranges over
the elements of Q0. We denote this minimum and
maximum by p0 and p0, respectively. Similarly, QL is
fully determined by q

L
and qL.

For reasons of mathematical convenience, we adopt
the following positivity assumption.
Assumption 1 (Positivity assumption). The local
credal sets Qi, i ∈ X , consist of strictly positive prob-
ability mass functions.

This assumption implies—amongst many other use-
ful properties, such as Theorem 1—that the lower
probabilities p0 and q

L
are strictly positive.

We now use the credal sets Qi to define corresponding
credal setsMi on X . For all i ∈ X \ {0, L}, a prob-
ability mass function φi ∈ ΣX belongs toMi if and
only if there is some πi ∈ Qi such that

φi(j) =





qi if j = i− 1
ri if j = i

pi if j = i+ 1
0 otherwise

for all j ∈ X .

Similarly, φ0 belongs to M0 if and only if there is
some π0 ∈ Q0 such that

φ0(j) =





r0 if j = 0
p0 if j = 1
0 otherwise

for all j ∈ X
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and φL belongs to ML if and only if there is some
πL ∈ QL such that

φL(j) =





qL if j = L− 1
rL if j = L

0 otherwise
for all j ∈ X .

For any real-valued function f on X and any state i
in X , we now consider the corresponding lower and
upper expectation of f , defined by

E(f |i) := min
φi∈Mi

Eφi
(f) = min

φi∈Mi

{∑

j∈X
φi(j)f(j)

}

and

E(f |i) := max
φi∈Mi

Eφi
(f) = max

φi∈Mi

{∑

j∈X
φi(j)f(j)

}
,

where Eφi(f) :=
∑
j∈X φi(j)f(j). The resulting lower

and upper expectation operators are connected by con-
jugacy: E(f |i) = −E(−f |i). For that reason, without
loss of generality, we can focus on the lower expectation
operators E(·|i), i ∈ X .
An imprecise birth-death chain is now simply a time-
homogeneous imprecise Markov chain [5] that has these
lower previsions E(·|i)—or equivalently, the credal sets
Mi—as its local transition models. The correspond-
ing global uncertainty models are derived from the
conditional lower expectation operators En+1(·|x1:n),
defined for all n ∈ N and x1:n ∈ Xn by3

En+1(·|x1:n) = En+1(·|xn) := E(·|xn), (2)

where the first equality follows from the so-called im-
precise Markov condition and the second equality fol-
lows from time-homogeneity.

We want to stress here that the imprecise Markov con-
dition that is imposed by Equation (2) is not equiv-
alent to an element-wise application of the (precise)
Markov condition in Equation (1). We do not require
En+1(·|x1:n) and En+1(·|xn) to be equal; we only re-
quire the bounds on these expectations to be equal.
Imposing Equation (1) element-wise would be equiva-
lent to considering a set of precise birth-death chains,
each of which is required to satisfy the usual pre-
cise Markov assumption. Our approach imposes less
stringent constraints. Using imprecise-probabilistic
terminology: we impose epistemic irrelevance rather
than strong independence; more information can be
found in Reference [1].

From the local assessments that are provided by Equa-
tion (2), we now derive global uncertainty models for

3In general, an initial model E1(·) is required as well. How-
ever, for our present purposes, it is not necessary to specify
one.

our imprecise Markov chain. For any i ∈ X and n′ ∈ N
such that n′ > n, the global uncertainty model for the
variables Xn+1:n′ , conditional on Xn = i, is a lower ex-
pectation operator En+1:n′(·|i) that takes real-valued
functions on Xn′−n as its argument. It is given by the
natural extension [10] of the models that were defined
in Equation (2); see Reference [4] for more details and
alternative interpretations. For the purposes of this
paper, we need global uncertainty models that are
even more general. In particular, for every i ∈ X and
n ∈ N, we need an uncertainty model for the infinite se-
quence of variables Xn+1:∞, conditional on Xn = i, in
the form of a lower expectation operator En+1:∞(·|i),
defined for all extended real-valued functions on XN.

These more general global models can be defined in
multiple ways, and typically require some additional
technical continuity argument; see Reference [3] for
a definition in terms of submartingales, which is the
one that we will adopt here. However, for our present
purposes, the exact definition is only relevant for The-
orem 1, which—due to the page limit constraint—is
stated without proof. Therefore, and in order to avoid
having to introduce the technical concept of a sub-
martingale, we choose not to provide a definition for
the global models En+1:∞(·|i). All that is important
for the developments in this paper is that these global
models are time-homogeneous and satisfy—a specific
version of—the law of iterated expectation. For every
n ∈ N and every extended real-valued function g on
XN, it holds that

En+1:∞(g(Xn+1:∞)|i) = En+2:∞(g(Xn+2:∞)|i). (3)

Furthermore, if we define the—possibly extended—
real-valued function f ′ on X by

f ′(i′) := En+2:∞(g(i′, Xn+2:∞)|i′) for all i′ ∈ X ,

then, if f ′ is real-valued, we have that

En+1:∞(g(Xn+1:∞)|i) = En+1(f ′|i) = E(f ′|i), (4)

where the second equality follows from Equation (2).

4 Return and First Passage Times

Consider a timepoint n ∈ N and two—possibly
identical—states i and j in X . If the variable Xn

has i as its value, then the corresponding first pas-
sage time to j—the number of time-steps required to
reach j—is a function τi→j(i,Xn+1:∞) of the infinite
sequence of variables Xn+1:∞, defined by the following
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recursion equation:

τi→j(i,Xn+1:∞)

:=
{

1 if Xn+1 = j

1 + τXn+1→j(Xn+1, Xn+2:∞) if Xn+1 6= j

= 1 + Ijc(Xn+1)τXn+1→j(Xn+1, Xn+2:∞) (5)

where Ijc is the indicator of jc := X \ {j}, defined by

Ijc(x) :=
{

0 if x = j

1 if x 6= j
for all x ∈ X .

If i = j, the corresponding first passage time is referred
to as the return time to i. The so-called upward and
downward first passage times correspond to the cases
i < j and i > j, respectively.

Due to Equation (3), we know that the lower expected
value

τ i→j,n := En+1:∞(τi→j(i,Xn+1:∞)|i)

and upper expected value

τ i→j,n := En+1:∞(τi→j(i,Xn+1:∞)|i)
:= −En+1:∞(−τi→j(i,Xn+1:∞)|i)

of the first passage time from i to j do not depend on
the specific timepoint n ∈ N that is chosen. For that
reason, we can simply denote them by τ i→j and τ i→j ,
respectively.

Theorem 1. If Assumption 1 is satisfied, then for all
i, j ∈ X , the lower and upper first passage times τ i→j
and τ i→j are real-valued and strictly positive.

By combining Equations (4) and (5) with Theorem 1,
we find that

τ i→j = 1 + E(Ijcτ•→j |i) (6)
and

τ i→j = 1 + E(Ijcτ•→j |i), (7)

where τ•→j and τ•→j are functions on X , defined for
all x ∈ X by

τ•→j(x) := τx→j and τ•→j(x) := τx→j .

Taking into account our definition for E(·|i), Equa-
tion (6) results in the following system of non-linear
equalities: for all j ∈ X , we have that

τ0→j = 1+ min
π0∈Q0

{
r0Ijc(0)τ0→j+p0Ijc(1)τ1→j

}
, (8)

τL→j = 1 + min
πL∈QL

{
qLIjc(L− 1)τL−1→j

+ rLIjc(L)τL→j
}

and, for all i ∈ X/{0, L}, that

τ i→j = 1 + min
πi∈Qi

{
qiIjc(i− 1)τ i−1→j + riIjc(i)τ i→j

+ piIjc(i+ 1)τ i+1→j
}
. (9)

A similar system of non-linear equalities can be derived
from Equation (7) as well. In the remainder of this
paper, we will solve these non-linear systems, leading
to simple expressions that can be used to compute
τ i→j and τ i→j , for any i, j ∈ X .

5 Lower and Upper Expected
Upward First Passage Times

We start by computing lower expected values of up-
ward first passage times, that is, for any i, j ∈ X such
that i < j, we will compute τ i→j . We initially focus
on calculating τ i→i+1, for i ∈ X \ {L}, and then show
that any lower expected upward first passage time can
be obtained as a sum of such terms. Similar results
are obtained for upper expected upward first passage
times.

Finding τ0→1 is easy. It follows from Equation (8),
with j = 1, that

τ0→1 = 1 + min
π0∈Q0

{r0τ0→1}

= 1 + min
π0∈Q0

{(1− p0)τ0→1}

= 1 + τ0→1 − max
π0∈Q0

{p0τ0→1}

= 1 + τ0→1 − p0τ0→1, (10)

where the second equality holds because π0 is a proba-
bility mass function and the last equality holds because
we know from Theorem 1 that τ0→1 is real-valued and
therefore finite. Since Theorem 1 also tells us that
τ0→1 is strictly positive, we infer from Equation (10)
that

τ0→1 = 1
p0
. (11)

Finding τ0→j , for j ∈ {2, . . . , L}, is more involved.
We start by establishing a connection with τ1→j . By
applying Equation (8), we find that

τ0→j = 1 + min
π0∈Q0

{r0τ0→j + p0τ1→j}

= 1 + min
π0∈Q0

{(1− p0)τ0→j + p0τ1→j}

= 1 + τ0→j + min
π0∈Q0

{p0(τ1→j − τ0→j)},
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which implies, due to Theorem 1, that

min
π0∈Q0

{p0(τ1→j − τ0→j)} = −1. (12)

Since the minimum in Equation (12) is negative and
p0 is a probability and therefore non-negative, it must
be that τ1→j − τ0→j < 0. Therefore, Equation (12) is
minimised for p0 = p0 and we find that

τ0→j = 1
p0

+ τ1→j . (13)

By combining Equations (11) and (13), we see that

τ0→j = τ0→1 + τ1→j for all j ∈ {2, . . . , L}. (14)

Since we already know τ0→1—see Equation (11)—we
are now left to find τ1→j .

We first consider the case j = 2. It follows from
Equation (9), with i = 1 and j = 2, that

τ1→2 = 1 + min
π1∈Q1

{q1τ0→2 + r1τ1→2}

= 1 + min
π1∈Q1

{q1τ0→2 + (1− q1 − p1)τ1→2}

= 1 + τ1→2 + min
π1∈Q1

{q1(τ0→2 − τ1→2)− p1τ1→2},

which implies, due to Theorem 1, that

min
π1∈Q1

{q1(τ0→2 − τ1→2)− p1τ1→2} = −1.

By applying Equation (14), for j = 2, we find that

min
π1∈Q1

{q1τ0→1 − p1τ1→2} = −1. (15)

Since we already know τ0→1, it follows from Assump-
tion 1 and the following lemma that τ1→2 is the unique
solution to Equation (15).
Lemma 2. Consider a credal set Q on Xm that con-
sists of strictly positive probability mass functions and
let c be a real constant. Then

min
π∈Q
{qc− pµ}

is a strictly decreasing function of µ.

This unique solution τ1→2 is furthermore easy to com-
pute. It follows from Lemma 2 that a simple bisection
method suffices.

Next, we consider the case j ∈ {3, . . . , L}. By applying
Equation (9), for such a j and with i = 1, we find that

τ1→j = 1 + min
π1∈Q1

{q1τ0→j + r1τ1→j + p1τ2→j}

= 1 + min
π1∈Q1

{q1τ0→j + (1− q1 − p1)τ1→j + p1τ2→j}

= 1 + τ1→j + min
π1∈Q1

{q1(τ0→j − τ1→j)

+ p1(τ2→j − τ1→j)},

which implies, due to Theorem 1, that

min
π1∈Q1

{q1(τ0→j − τ1→j) + p1(τ2→j − τ1→j)} = −1.

In combination with Equation (14), this results in

min
π1∈Q1

{q1τ0→1 + p1(τ2→j − τ1→j)} = −1. (16)

Since we know from Assumption 1 and Lemma 2 that
the equation

min
π1∈Q1

{q1τ0→1 + p1µ} = −1

has a unique solution µ, it follows directly from Equa-
tions (15) and (16) that

τ1→j = τ1→2 + τ2→j for all j ∈ {3, . . . , L}. (17)

At this point, we already know how to compute τ0→1
and τ1→2 and we have also established the following
additivity property:

τ i→j = τ i→i+1 + τ i+1→j

for all i ∈ {0, 1} and j ∈ {i+2, . . . , L}. Continuing in a
similar way, we now derive an expression for computing
τ2→3 and prove that the above additivity property
holds for i = 2 as well. By applying Equation (9), for
i = 2 and j = 3, we find that

τ2→3 = 1 + min
π2∈Q2

{q2τ1→3 + r2τ2→3}

= 1 + min
π2∈Q2

{q2τ1→3 + (1− q2 − p2)τ2→3}

= 1 + τ2→3 + min
π2∈Q2

{q2(τ1→3 − τ2→3)− p2τ2→3},

which implies, due to Theorem 1, that

min
π2∈Q2

{q2(τ1→3 − τ2→3)− p2τ2→3} = −1.

By applying Equation (17), for j = 3, we find that

min
π2∈Q2

{q2τ1→2 − p2τ2→3} = −1. (18)

Since we have already computed τ1→2, it follows from
Assumption 1 and Lemma 2 that τ2→3 is the unique
solution to Equation (18) and that this unique solution
can furthermore easily be computed by means of a
bisection method.

Next, by applying Equation (9), for i = 2 and j in
{4, . . . , L}, we find that

τ2→j = 1 + min
π2∈Q2

{q2τ1→j + r2τ2→j + p2τ3→j}

= 1 + min
π2∈Q2

{q2τ1→j + (1− q2 − p2)τ2→j + p2τ3→j}

= 1 + τ2→j + min
π2∈Q2

{q2(τ1→j − τ2→j)

+ p2(τ3→j − τ2→j)},
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which implies, due to Theorem 1, that

min
π2∈Q2

{q2(τ1→j − τ2→j) + p2(τ3→j − τ2→j)} = −1.

In combination with Equation (17), this results in

min
π2∈Q2

{q2τ1→2 + p2(τ3→j − τ2→j)} = −1. (19)

It now follows from Equations (18) and (19), Assump-
tion 1 and Lemma 2, that

τ2→j = τ2→3 + τ3→j for all j ∈ {4, . . . , L}.

At this point, it should be clear that, by continuing in
this way, we obtain the following two results.
Proposition 3. For all i ∈ X \ {0, L}, we have that

min
πi∈Qi

{qiτ i−1→i − piτ i→i+1} = −1. (20)

Proposition 4. For all i, j ∈ X such that i+ 1 < j,
we have that

τ i→j = τ i→i+1 + τ i+1→j .

For any i ∈ X \{L}, the value of τ i→i+1 can therefore
be computed recursively. For i = 0, we simply apply
Equation (11). For any other i ∈ X \ {0, L}, it follows
from Assumption 1, Lemma 2 and Proposition 3 that
τ i→i+1 is the unique solution to Equation (20), which
can be obtained by means of a bisection method. In
this equation, the value of τ i−1→i has already been
computed earlier on in this recursive procedure.

The following additivity result is a direct consequence
of Proposition 4.
Corollary 5. For any i, j ∈ X such that i < j, we
have that

τ i→j =
j−1∑

k=i
τk→k+1.

It implies that the recursive techniques that we devel-
oped in this section can be used to compute any lower
expected upward first passage time.

Similar results can be proved for upper expected values
of upward first passage times. We only provide the final
expressions; the derivation is completely analogous. In
this case, the starting point is that

τ0→1 = 1
p0

(21)

For any i ∈ X \ {0, L}, the value of τ i→i+1 can then
be computed recursively, due to Assumption 1 and the
following two results.

Proposition 6. For all i ∈ X \ {0, L}, we have that

max
πi∈Qi

{qiτ i−1→i − piτ i→i+1} = −1.

Corollary 7. Consider a credal set Q on Xm that
consists of strictly positive probability mass functions
and let c be a real constant. Then

max
π∈Q
{qc− pµ}

is a strictly decreasing function of µ.

Due to the next result, this recursive technique allows
us to compute arbitrary upper expected upward first
passage times.
Proposition 8. For any i, j ∈ X such that i < j, we
have that

τ i→j =
j−1∑

k=i
τk→k+1

6 Lower and Upper Expected
Downward First Passage Times

Lower and upper expected values of downward first
passage times can be computed in more or less the
same way. The main difference is that the recursive
expressions now start from the other side, that is, from
i = L. We find that

τL→L−1 = 1
qL

(22)

and
τL→L−1 = 1

q
L

(23)

For any i ∈ X \ {0, L}, due to Assumption 1, the
values of τ i→i−1 and τ i→i−1 can now be computed
recursively, using the following two results.
Proposition 9. For all i ∈ X \ {0, L}, we have that

min
πi∈Qi

{−qiτ i→i−1 + piτ i+1→i} = −1

and
max
πi∈Qi

{−qiτ i→i−1 + piτ i+1→i} = −1

Corollary 10. Consider a credal set Q on Xm that
consists of strictly positive probability mass functions
and let c be a real constant. Then

min
π∈Q
{−qµ+ pc} and max

π∈Q
{−qµ+ pc}

are strictly decreasing functions of µ.

Once we have computed τ i→i−1 and τ i→i−1 for all
i ∈ X \ {L}, the following result enables us to easily
obtain all other lower and upper expected downward
first passage times.
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Proposition 11. For any i, j ∈ X such that i > j,
we have that

τ i→j =
i−1∑

k=j
τk+1→k and τ i→j =

i−1∑

k=j
τk+1→k

7 Lower and Upper Expected Return
Times

Lower and upper expected return times can now be
computed very easily. By applying Equations (8)–(9),
with j equal to 0, L and i, respectively, we find that

τ0→0 = 1 + min
π0∈Q0

{p0τ1→0} = 1 + p0τ1→0, (24)

τL→L = 1 + min
πL∈QL

{qLτL−1→L} = 1 + q
L
τL−1→L

(25)

and, for all i ∈ X \ {0, L}, that
τ i→i = 1 + min

πi∈Qi

{qiτ i−1→i + piτ i+1→i} (26)

In these expressions, the lower expected first passage
times τ1→0, τL−1→L, τ i−1→i and τ i+1→i can be com-
puted using the recursive techniques that we developed
in the previous two sections. Similarly, for the upper
case, we find that

τ0→0 = 1 + max
π0∈Q0

{p0τ1→0} = 1 + p0τ1→0, (27)

τL→L = 1 + max
πL∈QL

{qLτL−1→L} = 1 + qLτL−1→L

(28)

and, for all i ∈ X \ {0, L}, that
τ i→i = 1 + max

πi∈Qi

{qiτ i−1→i + piτ i+1→i}. (29)

Again, the upper expected first passage times τ1→0,
τL−1→L, τ i−1→i and τ i+1→i that appear in these ex-
pressions can be computed with the recursive tech-
niques that were introduced above.

8 Linear-Vacuous Mixtures

We now apply our results to the special case where all
the local models are linear-vacuous mixtures. In that
case, the computation of lower and upper expected
first passage and return times becomes even simpler.

We start from given strictly positive probability mass
functions π∗0 = (r∗0 , p∗0) ∈ ΣX0 , π∗L = (q∗L, r∗L) ∈ ΣXL

and, for all i ∈ X \ {0, L}, π∗i = (q∗i , r∗i , p∗i ) ∈ ΣXm
.

Furthermore, for all i ∈ X , we consider some real-
valued εi ∈ [0, 1). We use these parameters to de-
fine the following so-called linear-vacuous [10, Sec-
tion 2.9.2] local credal sets:

Q0 = Qε0
π∗0

:= {(1− ε0)π∗0 + ε0π
′
0 : π′0 ∈ ΣX0} ,

QL = QεL

π∗
L

:= {(1− εL)π∗L + εLπ
′
L : π′L ∈ ΣXL

}

and, for all i ∈ X \ {0, L},

Qi = Qεi

π∗
i

:= {(1− εi)π∗i + εiπ
′
i : π′i ∈ ΣXm

} ,

which can be regarded as neighbourhood models for
the probability mass functions π∗i , i ∈ X . Furthermore,
for all i ∈ X \ {0}, we define

q
i

:= (1− εi)q∗i and qi := (1− εi)q∗i + εi

and, for all i ∈ X \ {L},

p
i

:= (1− εi)p∗i and pi := (1− εi)p∗i + εi,

which are the minimum and maximum values of qi
and pi, for πi ∈ Qi, respectively.
In this special case, Equation (20) can be solved ana-
lytically. For all i ∈ X \ {0, L}, we find that

min
πi∈Qi

{qiτ i−1→i − piτ i→i+1}

= min
π′∈ΣXm

{
[(1− εi)q∗i + εiq

′
i]τ i−1→i

− [(1− εi)p∗i + εip
′
i]τ i→i+1

}

= (1− εi)(q∗i τ i−1→i − p∗i τ i→i+1)
+ εi min

π′
i
∈ΣXm

{q′iτ i−1→i − p′iτ i→i+1}

= (1− εi)(q∗i τ i−1→i − p∗i τ i→i+1)− εiτ i→i+1

= q
i
τ i−1→i − piτ i→i+1,

where the third equation holds because we know from
Theorem 1 that τ i−1→i and τ i→i+1 are real-valued and
positive. Therefore, for all i ∈ X \ {0, L}, it follows
directly from Equation (20) that

τ i→i+1 = 1
pi

+
q
i

pi
τ i−1→i.

By combining this recursive expression with Equa-
tion (11), we can derive explicit expressions. For all
i ∈ X \ {L}, we find that:

τ i→i+1 =
i∑

k=0

∏i
`=k+1 q`∏i
m=k pm

. (30)

In combination with Corollary 5, this equation allows
us to easily compute all lower expected upward first
passage times for the linear-vacuous case.

Similar results can be obtained for upper expected
upward first passage times and for lower and up-
per expected downward first passage times. For all
i ∈ X \ {0, L}, we find that
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τ i→i+1 = 1
p
i

+ qi
p
i

τ i−1→i,

τ i→i−1 = 1
qi

+
p
i

qi
τ i+1→i

and
τ i→i−1 = 1

q
i

+ pi
q
i

τ i+1→i.

By combining these recursive equations with Equa-
tions (21), (22) and (23), respectively, we can obtain
explicit expressions. For all i ∈ X \ {L}, we find that

τ i→i+1 =
i∑

k=0

∏i
`=k+1 q`∏i
m=k pm

and, for all i ∈ X \ {0}, we find that

τ i→i−1 =
L∑

k=i

∏k−1
`=i p`∏k
m=i qm

(31)

and

τ i→i−1 =
L∑

k=i

∏k−1
`=i p`∏k
m=i qm

.

In combination with Proposition 8 and 11, these equa-
tions allow us to easily compute all upper expected
upward first passage times and all lower and upper
expected downward first passage times for the linear-
vacuous case.

For the lower and upper return times, we still use
Equations (24) and (25) if i = 0 and Equations (27)
and (28) if i = L. If i ∈ X \ {0, L}, then, for this
linear-vacuous case, Equations (26) and (29) can be
simplified. We find that

τ i→i = 1 + min
πi∈Qi

{qiτ i−1→i + piτ i+1→i}

= 1 + min
π′

i
∈ΣXm

{
[(1− εi)q∗i + εiq

′
i]τ i−1→i

+ [(1− εi)p∗i + εip
′
i]τ i+1→i

}

= 1 + (1− εi)(q∗i τ i−1→i + p∗i τ i+1→i)
= 1 + q

i
τ i−1→i + p

i
τ i+1→i. (32)

and that

τ i→i = 1 + (1− εi)(q∗i τ i−1→i + p∗i τ i+1→i)
+ εi max{τ i−1→i, τ i+1→i}

= 1 + max{qiτ i−1→i + p
i
τ i+1→i,

q
i
τ i−1→i + piτ i+1→i}.

9 Numerical Results

We end by computing lower and upper expected first
passage and return times for two examples of imprecise
birth-death chains. The first is a general example of an
imprecise birth-death chain and the second one is an
imprecise birth-death chain with linear-vacuous local
models. In both examples, we take Qi to be identical
for all i ∈ X \{0, L}, and simply denote it by Q, which
is a credal set on Xm. Some of the lower and upper
expected values that we compute have many decimal
points; we present them up to the third decimal point.

General Example

Consider an imprecise birth-death chain with state
space X = {0, 1, 2, 3, 4}, that is, L = 4. Let Q0 be
determined by p0 = 0.15 and p0 = 0.4 and let QL be
determined by q

L
= 0.2 and qL = 0.6. The credal set

Q is taken to be the convex hull of the following 10
extreme points, which are of the form π = (q, r, p).

(0.65, 0.15, 0.2), (0.6, 0.25, 0.15), (0.5, 0.4, 0.1),
(0.43, 0.45, 0.12), (0.33, 0.5, 0.17), (0.27, 0.43, 0.3),
(0.25, 0.35, 0.4), (0.3, 0.25, 0.45), (0.4, 0.17, 0.43),
(0.55, 0.1, 0.35)

Figure 2 provides a graphical representation of this
credal set Q.4

q

rp

Figure 2: The grey zone depicts the credal set Q from
the birth-death chain in the general example.

For this particular example, we now compute τ0→4,
τ0→4, τ4→0 and τ4→0.

Due to Corollary 5, we know that

τ0→4 = τ0→1 + τ1→2 + τ2→3 + τ3→4, (33)

4We represent ΣXm by means of a equilateral triangle of
height one. The elements π = (q, r, p) of ΣXm correspond to
points in this triangle. For every such π, the value of q, r, p is
equal to the perpendicular distance from that point to the edge
that opposes the corresponding corner.
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τ0→4 16.635
τ0→4 1420
τ4→0 8.093
τ4→0 81.32

Table 1: Final results for the general example.

τ0→1 2.5 τ4→3 1.666
τ1→2 3.889 τ3→2 2.051
τ2→3 4.814 τ2→1 2.169
τ3→4 5.432 τ1→0 2.206
τ0→1 6.666 τ4→3 5
τ1→2 43.333 τ3→2 12
τ2→3 226.666 τ2→1 23.2
τ3→4 1143.333 τ1→0 41.12

Table 2: Intermediate results for the general example.

where, using Equation (11),

τ0→1 = 1/p0 = 2.5.

By plugging this value for τ0→1 in Equation (20), for
i = 1, we find that

min
π1∈Q

{2.5q1 − p1τ1→2} = −1

As we know from Lemma 2, this equality has a unique
solution that can for example be obtained by means of
a bisection method. We find that τ1→2 = 3.889. Simi-
larly, in a recursive fashion, we find that τ2→3 = 4.814
and τ3→4 = 5.432. A final application of Equation (33)
tells us that τ0→4 = 16.635. τ0→4, τ4→0 and τ4→0
can be computed analogously; the results are given in
Table 1. Intermediate results can be found in Table 2.

Linear-Vacuous Example

Consider a precise birth-death chain with state space
X = {0, 1, 2, 3, 4}—L = 4—and the following proba-
bility matrix:

P ∗ =




0.55 0.45 0 0 0
0.3 0.5 0.2 0 0
0 0.3 0.5 0.2 0
0 0 0.3 0.5 0.2
0 0 0 0.6 0.4,




which is completely characterised by the probability
mass functions π∗0 = (0.55, 0.45), π∗L = (0.6, 0.4) and,
for all i ∈ X \ {0, L}, π∗i = π∗ = (0.3, 0.5, 0.2).

We now let εi = ε = 0.4 for all i ∈ X and consider
the imprecise birth-death chain that has the corre-
sponding linear-vacuous credal sets as its local models.

In this way, we obtain the following lower and upper
probabilities:

p0 = 0.27, p0 = 0.67, q
L

= 0.36, qL = 0.76

and, for all i ∈ X \ {0, L}:

q
i

= 0.18, qi = 0.58, p
i

= 0.12, pi = 0.52.

For all i ∈ X \ {0, L}, the credal set Qi is equal to
Qεπ∗ , which is the convex hull of the following three
extreme points:

(0.58, 0.3, 0.12), (0.18, 0.7, 0.12), (0.18, 0.3, 0.52).

Figure 3 provides a graphical representation of this
credal set Qεπ∗ .

q

rp

π∗

Figure 3: The grey zone depicts the credal set Qεπ∗
from the birth-death chain in the the linear-vacuous
example.

The lower and upper expected return times that cor-
respond to this particular example can be found in
Table 3. For the sake of this example, we compute
τ1→1 explicitly.

We start by applying Equation (32) for i = 1, which
tells us that

τ1→1 = 1 + q1τ0→1 + p1τ2→1

= 1 + 0.18τ0→1 + 0.12τ2→1.

Therefore, since we know from Equations (30) and (31)
that

τ0→1 = 1
p0

= 1.492

and

τ2→1 = 1
q2

+
p2
q2q3

+
p2p3
q2q3q4

= 2.154,

we find that τ1→1 = 1.526.
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i τ i→i τ i→i
0 1.584 91.41
1 1.526 24.956
2 1.678 17.845
3 1.656 79.71
4 2.037 503.724

Table 3: Lower and upper expected return times for
the birth-death chain in the linear-vacuous mixture
example.

10 Summary and Future Work

We have presented a simple method for computing
lower and upper expected—upward and downward—
first passage times and return times in imprecise birth-
death chains, have presented numerical results, and
have discussed a special case for which our method
simplifies even more.

In future research, we plan to try and apply similar
methods to (a) other simple types of imprecise Markov
chains—different from birth-death chains—such as,
for example, the Bonus-Malus systems that are de-
scribed in Reference [6] and (b) continuous—rather
than discrete—time models.
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Abstract
A Gaussian Process (GP) defines a distribution over
functions and thus it is a natural prior distribution for
learning real-valued functions from a set of noisy data.
GPs offer a great modeling flexibility and have found
widespread application in many regression problems.
A GP is fully defined by a mean function that repre-
sents our prior belief about the shape of the regression
function and a covariance function, relating the func-
tion values at different covariates. In the absence of
prior information, one typically assumes a GP with
zero mean function. Therefore, a priori, it is assumed
that the regression function is constantly equal to zero.
The aim of this paper is to model a situation of prior
near-ignorance about the GP mean function. For this
we consider the set of all GPs with fixed covariance
function and constant mean function free to vary from
−∞ to +∞. We apply the model with constant mean
function to hypothesis testing; in particular we test
the equality of two regression functions and show that
the use of a prior near-ignorance model allows the
test to automatically detect when a reliable decision
cannot be made based on the available data. Finally,
we propose a generalization of this model that allows
considering other sets of prior mean functions.

Keywords. Gaussian Process, prior near-ignorance,
nonparametric regression, hypothesis testing, Bayesian
nonparametrics.

1 Introduction

Gaussian processes (GPs) extend multivariate Gaus-
sian distributions to infinite dimensionality, thus defin-
ing a distribution over functions that can be used as
prior distribution for inferences about an unknown
function f(x). GPs have found widespread use in
different application domains such as classification,
regression etc. [9, 8, 6, 12, 11, 4]. The reason of
such success can be attributed to the great modelling
flexibility of GPs, which are often used in situations

where little is known about f(x). However, GPs are
not completely free-form, since a GP is completely
specified by its mean function and covariance function.
The covariance function describes the relation between
observations from the same process. A multitude of
possible families exists for the covariance function,
including squared exponential, polynomial, periodic,
etc. (see [12]), among which the squared exponential
family is by far the most popular. On the other side,
the mean function represents our prior belief about
the form of the regression function. In the absence of
prior knowledge, which is typically the case, the mean
function is assumed to be zero everywhere and, to
comply with this assumption, data are transformed to
have zero mean. However, this seems quite a poor rep-
resentation of the condition of prior ignorance about
f(x). In this work we improve this representation by
considering a set of GP priors with mean functions
free to vary in the set of all constant functions. As
the expectation of f(x∗) at the covariate x∗ w.r.t. the
prior GPs can vary in [−∞,+∞], this set of priors
is a model of prior ignorance about f(x). Prior igno-
rance and learning from data are usually conflicting
properties [13, Sec. 7.4],[10, 14]. However, in [3, 2] it
is shown that, for Gaussian distributions, if we let the
variance to depend on the mean, prior near-ignorance
and learning from data can be guaranteed at the same
time. In this work, we apply this idea to GPs. In
order for the GP model to be able to learn from data,
we add to the covariance function a constant term
increasing with the prior mean function.

We will use this set of priors to test the difference
between two regression function given two samples of
noisy observations. A nonparametric Bayesian test for
the equality of regression functions based on GPs is
described in [1]. In that work it is assumed that the
covariates of the two samples cover the same range
of values, and the comparison between the regression
functions is limited to that range of values, assuming
that, having no data outside of it, nothing can be
stated about the difference or equality of the two
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functions. Using the Imprecise GP (IGP) it is possible
to perform the equality test without worrying about
the distribution of the covariates, as the imprecise
approach is able to identify those instances where the
decision is prior dependent and thus it automatically
detects when a reliable decision cannot be made.

Finally, we introduce a IGP model that generalizes
the previous one by considering all GPs with mean
function Mh(x) where M > 0 and h(x) belongs to
a set of functions H. We derive the conditions that
H has to satisfy to make prior near-ignorance and
leaning hold for the IGP model. From this model we
can derive the IGP with constant mean as well as well
as other models considering different/larger sets of
prior mean functions.

2 Gaussian Process

Consider the regression model

y = f(x) + v, (1)

where x ∈ X ⊆ R, f : R → R and v ∼ N (0, σ2
n) is

a white noise, and assume that we observe the data
(xi, yi) for i = 1, . . . , n. Our goal is to employ these
observations to make inferences about the unknown
function f(x). Following the Bayesian estimation ap-
proach, we place a prior distribution on f(x), and
employ the observations to compute its posterior distri-
bution; finally we use this posterior to make inferences
about f(x). Since f(x) is a function, the Gaussian
process is a natural prior distribution for it [6, 12].
Formally,
Definition 1. Let µ : R → R and k : R × R → R+

be a positive definite symmetric function.1 A function
f(x) with x ∈ R is said to be distributed according
to a Gaussian process with mean function µ and co-
variance kernel k if for any finite set of covariates
x∗1, . . . , x

∗
m, the vector [f(x∗1), . . . , f(x∗m)]T has a mul-

tivariate m-dimensional Gaussian distribution with
mean [µ(x∗1), . . . , µ(x∗m)]T and covariance matrix with
(i, j)-th entry k(x∗i , x∗j ), i, j = 1, . . . ,m.

In the following, GP (µ(x), kθ(x, x′)) will denote a
GP with mean function µ(x) and covariance func-
tion kθ(x, x′) : R × R → R+. The subscript θ has
been introduced to highlight that the covariance func-
tion usually depends on a vector of hyperparame-
ters θ [12]. If f(x) ∼ GP (µ(x), kθ(x, x′)), then, for
any fixed m points x∗ = [x∗1, . . . , x∗m]T , the vector
f∗ = [f(x∗1), . . . , f(x∗m)]T is Gaussian distributed:

p(f∗|x∗,θ) = N (f∗;µ∗,K∗∗), (2)
1A symmetric function k : R×R→ R+ is said to be positive

definite if for any x = [x∗1, . . . , x∗m]T with x∗i ∈ R, the m ×m
matrix [k(x∗i , x∗j )]ij is positive definite.

with mean µ∗ = µ(x∗) and covariance matrix K∗∗ =
[kθ(x∗i , x∗j )]ij for each i, j = 1, . . . ,m. Consider a
set of n inputs x = [x1, . . . , xn]T and a vector of
noisy output data y = [y1, . . . , yn]T . Based on the
training data (xi, yi) for i = 1, . . . , n, and given a test
input x∗, we wish to find the posterior distribution of
f∗ = [f(x∗1), . . . , f(x∗m)]T . From (1) and the properties
of the Gaussian distribution, it follows that [12, Sec.
2.2]:
[

y
f∗
]
∼ N

([
µ
µ∗

]
,

[
K + σ2

nI K∗T

K∗ K∗∗

])
, (3)

where µ = µ(x), K = [kθ(xi, xj)]ij , i, j = 1 . . . , n and
K∗ = [kθ(x∗i , xj)]ij , i = 1 . . . ,m, j = 1 . . . , n. When
σ2
n is not known, it can also be considered a hyper-

parameter. Hence, we introduce the extended vector
θn = [θ, σ2

n] of all model hyperparameters, including
the noise variance. The posterior distribution of f∗ is
then

p(f∗|x∗,x,y,θn) = N (f∗; µ̂∗, K̂∗∗), (4)

with posterior mean and covariance given by:

µ̂∗ = µ∗ +K∗(K + σ2
nI)−1(y− µ), (5)

K̂∗∗ = K∗∗ −K∗(K + σ2
nI)−1K∗T . (6)

Once we have computed p(f∗|x∗,x,y,θn) we can make
any inference about f∗.

GP models use a kernel to define the covariance be-
tween any two function values: Cov(f(x), f(x′)) =
kθ(x, x′). A popular choice is the squared exponential
kernel:

kθ(x, x′) = σ2
k exp

[
−1

2
(x− x′)2

`2

]
, (7)

with hyperparameters θ = (σk, `) > 0. This kernel
assumes that the correlation between two function
values decreases with the distance of their covariates.
Observations whose covariates have a distance much
larger than the lengthscale ` are almost uncorrelated.
A multitude of other possible families of covariance
functions exists (polynomial, periodic, etc.), and more
can be obtained by kernel composition, as positive def-
inite kernels (i.e. those which define valid covariance
functions) are closed under addition and multiplica-
tion. Once we have selected a kernel or a particular
kernel composition, we must determine the values of
the hyperparameters θn. The proper Bayesian proce-
dure is to choose a prior for θn and then determine
the posterior distribution of the quantities of interest.
For instance, inferences on f∗ can be carried out by
marginalizing out θn:

p(f∗|x∗,x,y) =
∫
p(f∗|x∗,x,y,θn)p(θn|x∗,x,y))dθn.

No closed form solution exists for p(f∗|x∗,x,y) or for
the posterior of the hyperparameters and, therefore,
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inferences must be computed numerically by Markov
Chain Monte Carlo methods (MCMC). The conver-
gence of MCMC methods can be quite slow when the
dimension of θn is high and, therefore, when we are
not interested in the posterior distribution of θn, we
can approximate the marginal of f∗ by plugging the
maximum a posteriori (MAP) estimate for θn into
(4). In other words, we maximize w.r.t. θn the joint
marginal probability of y and θn, whose logarithm can
be computed analytically [12, Ch.2]:

log p(y,θn|x) =− 1
2(y− µ∗)T (Kn)−1(y− µ∗)+

− 1
2 log |Kn| −

n

2 log 2π + log p(θn)
(8)

where Kn = K + σ2
nI.

3 Imprecise Gaussian Process with
Constant Mean Function

In this section we relax the assumption of zero-mean
function and consider a set of GPs with constant mean
function varying from −∞ to +∞.
Definition 2. Given a covariance kernel kθ(x, x′) and
a constant c > 0, we define the constant mean Impre-
cise Gaussian Process (c-IGP) as the set of GPs:

Gc =
{
GP

(
Mh, kθ(x, x′) + 1+M

c

)
: h = ±1, M ≥ 0

}
.

As discussed below, the constant parameter c deter-
mines the degree of posterior imprecision.
The c-IGP includes all GPs with constant mean func-
tion and covariance function made of two components:
a first one, kθ(x, x′), hereafter referred to as base ker-
nel, which is chosen according to the specific applica-
tion and is identical for all GPs in Gc, and a constant
component (M +1)/c proportional to M +1. The con-
stant component allows the model to learn from data,
as it forces the covariance to increase with the prior
mean. In [2, pag. 22], it is shown for the one-parameter
exponential family that if the product n0|y0| of the
number of pseudo-observations n0 (which represent the
strength of the prior and for a Gaussian prior is given
by the inverse of its variance) and the absolute value of
the pseudo-observation y0 (which represent our prior
opinion about the parameter value and for a Gaussian
prior is given by its mean) is bounded, then learn-
ing from data is guaranteed. For the c-IGP model,
this holds for each individual x∗ because the prior
about f(x∗) is a Gaussian distribution with mean Mh
(corresponding to y0) and variance kθ(x∗, x∗) + M+1

c
(corresponding to 1/n0), and thus:

n0|y0| =
M |h|

kθ(x∗, x∗) + M+1
c

≤ c.

Notice however that this guarantees only learning from
data with covariate equal to x∗.
Proposition 1. The c-IGP is a model of prior igno-
rance about the expectation of f(x∗) in the sense that
for any covariate x∗ it holds

inf
M,h

E[f(x∗)] = −∞, sup
M,h

E[f(x∗)] = +∞.

The proof of this and the following propositions and
theorems can be found in the Appendix.

A posteriori we have the following result.
Theorem 1. Let x be a vector of inputs and y a set of
noisy observations of f(x) with f(x) ∼ GP (Mh, kθ +
M+1
c ), and let kx = [kθ(x, x1), . . . , kθ(x, xn)]T . The

posterior distribution of f is a GP with mean function

µ̂(x) = kTxK−1
n (y− ŷ1n) + ŷ (9)

with ŷ = (M+1)sT
k y+cMh

c+(M+1)Sk
, and covariance function

k̂(x, x′) =kθ(x, x′)− kTxK−1
n kx′+ (10)

(M + 1)(1− kTx sk)(1− kTx′sk)
c+ (M + 1)Sk

,

where sk = K−1
n 1n, Sk = 1

T
nK
−1
n 1n, and 1n is a

n-dimensional vector of ones.

The posterior mean function is the same that would
have been obtained from the prior GP (ŷ, kθ(x, x′)).
We can interpret ŷ as an adjusted mean obtained by
combining the prior mean Mh and a weighted average
of the observations y. This is due to the constant term
in the covariance function which introduces a correla-
tion between all function values (does not matter how
distant their covariates are). As this constant term
goes to infinity, that is, as c→ 0, the adjusted mean
becomes ŷ → sT

k

Sk
y which is independent of h and M

and the posterior distribution is a GP with mean and
covariance functions

lim
c→0

µ̂(x) = kTxK−1
n y + (1− kTx sk)s

T
k

Sk
y,

lim
c→0

k̂(x, x′) = kθ(x, x′)− kTxK−1
n kx′+

(1− kTx sk)(1− kTx′sk)
Sk

.

Notice that, for c → 0 we have a precise model, as
IGP posterior inferences are not influenced by the
mean function of the prior and converge to a single
GP. This prior can, thus, be interpreted as a partially
uninformative prior (inferences still depend on the
base kernel).

As discussed in Section 2, MAP estimates of the hy-
perparameters θn are used in the model. However
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the different priors in the IGP set produce different
estimates, whereas the IGP model here proposed re-
quires the same set of hyperparameters for all priors.
The issue is, then, which of the IGP priors should be
used to estimate θn. Notice that posterior inferences
obtained for any c always encompass those obtained
for c→ 0 (see Theorem 3 below). Hence, we use the
MAP estimate of θn given by this prior.
Theorem 2. MAP estimates of the hyperparameters
of the GP (Mh, kθ + M+1

c ) with c→ 0 are obtained by
maximizing L(y,θn|x) + log p(θn) where

L(y,θn|x) =1
2

(
yTK−1

n y− (yT sk)2

Sk
− logSk|Kn|

)

(11)

is, up to an additive constant, the logarithm of the
joint marginal likelihood of y,θn

From (9) we can derive the upper and lower expecta-
tions of f(x).

Theorem 3. Under the c-IGP model, if
∣∣∣ sky
Sk

∣∣∣ ≤ 1 +
c
Sk

, the upper and lower bounds, µ(x) and µ(x), of
µ̂(x) are

µ(x) = kTxK−1
n y + (1− kTx sk) sTk

Sk
y + c

|1− kTx sk|
Sk

(12)

µ(x) = kTxK−1
n y + (1− kTx sk) sTk

Sk
y− c |1− kTx sk|

Sk
, (13)

which, if 1−kTx sk ≥ 0, are obtained for M →∞, h =
1 (upper) and M → ∞, h = −1 (lower), while, if
1 − kTx sk < 0, are obtained for M → ∞, h = −1
(upper) and M →∞, h = 1 (lower).

If, instead,
∣∣∣ sky
Sk

∣∣∣ > 1 + c
Sk

and (1−kTx sk) sky
Sk

> 0, the
upper bound is found for M →∞ and h = 1 and the
lower for M = 0; they are given by

µ(x) = kTxK−1
n y + (1− kTx sk)sTk

Sk
y + c

1− kTx sk
Sk

µ(x) = kTxK−1
n y + (1− kTx sk) sTk y

c+ Sk
.

Finally, if (1−kTx sk) sky
Sk

< 0, the upper bound is found
for M = 0 and the lower for M →∞ and h = 1.

From Theorem 3 we can see that the imprecision of
the model verifies

µ(x)− µ(x) ≥ 2c |1− kTx sk|
Sk

,

where the equality holds if the condition
∣∣∣ sky
Sk

∣∣∣ ≤ 1+ c
Sk

is verified. In this case, we can see that the imprecision
is symmetric with respect to the posterior mean of the
prior with c→ 0. Parameter c determines the degree
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IGP(c=10)

Figure 1: GP and c-IGP estimates of the function f(x)
given n = 50 observations.

of imprecision of the model. A large value of c implies
a large imprecision. For c → ∞ we have a vacuous
model that cannot learn from data.

When the condition
∣∣∣ sky
Sk

∣∣∣ ≤ 1 + c
Sk

is verified, by a
simple rewriting of equations (12)-(13) it can be seen
that µ(x) and µ(x) are equivalent to the posterior
mean given the prior GP (ŷ, kθ(x, x′)) with adjusted
mean

ŷb = sTk
Sk

y± c

Sk
.

Example 1. A sample of n = 50 observations affected
by Gaussian noise with σn = 0.1 is drawn from the
function f(x) = exp(−x2). The covariates x1, . . . , xn
are uniformly distributed in [−1, 1], i.e., x ∼ U [−1, 1].
The function is modelled by the precise GP process
GP (0, kθ) and the c-IGP with the squared-exponential
kernel in (7) as base kernel kθ. Figure 1 shows the
posterior expectation of the GP and the upper and
lower expectations of the c-IGP for different values of
c. Notice that in the region where there are observa-
tions (x ∈ [−1, 1]) the imprecision remains very small
even when c is large, whereas it increases significantly
outside this region.

It is often useful to compute pointwise credible in-
tervals CIf (x, α) = [f

x,α
, fx,α] for the value of f(x).

Using a GP prior f(x) ∼ GP (µ(x), kθ(x, x′)), a pos-
terior (1 − α)% credible interval for the value of
f(x) is CIf (x, α) = [µ̂(x) − zα/2

√
k̂(x, x), µ̂(x) +

zα/2

√
k̂(x, x)] with zα/2 the 1− α/2 percentile of the

standard normal distribution. Hence we have that the
posterior probability P

(
f(x) ∈ CIf (x, α)

)
is 1 − α.

In the imprecise case, we define the credible interval
by imposing that the upper posterior probabilities
P
(
f(x) < f

x,α
) and P

(
f(x) > fx,α) are equal to α/2.

This implies that P
(
f(x) ∈ CIf (x, α)

)
≥ 1− α for all

GPs in G.
Theorem 4. Under the c-IGP model, the interval
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Figure 2: GP and c-IGP estimates of pointwise credible
intervals for the value of f(x) in Example 1.

CIα = [f
x,α

= µ(x)− zα/2σfx
, fx,α = µ(x) + zα/2σfx

]
with

σ2
fx

= kθ(x, x)− kTxK−1
n kx + (1− kTx sk)2

Sk
,

verifies

P
(
f(x) < f

x
) ≤ α/2, P

(
f(x) > fx) ≤ α/2

where the equality holds if
∣∣∣ sky
Sk

∣∣∣ ≤ 1 + c
Sk

.

Notice that with respect to the precise model
GP (0, kθ(x, x)) the value of σ2

fx
increases only for

the term (1−kT
x sk)2

Sk
. Moreover, σ2

fx
does not depend

on c and is the same given by the precise model with
c→ 0. Then, the width of the pointwise CIs for c > 0
increases only for a term equal to the difference be-
tween the upper and lower expectation of f(x). Figure
2 compares the credible intervals obtained using the
prior GP (0, kθ(x, x)) and the c-IGP model. As for
the expectation, the width of the CIs remains small
for x ∈ [−1, 1] and increases significantly outside this
region.

Data analyst are often interested also in simultaneous
credible regions (SCR) for the value of f at multiple
covariate values. Given a vector of m covariates x∗, a
(1 − α)% SGR for f(x∗) includes all vectors f∗ that
verify

(f − µ̂∗)T (K̂∗∗)−1(f − µ̂∗) < χ−1(1− α|m), (14)

where χ−1(1− α|m) is the (1− α)-quantile of a Chi-
squared distribution with m degrees of freedoms. For
the the condition 14 to be verified by all priors in
the c-IGP, it has to be verified by the upper bound
of (f − µ̂∗)T (K̂∗∗)−1(f − µ̂∗), which can be found
by solving numerically an optimization problem. An
example of such optimization is given in the next
section in the context of hypothesis testing.

4 Application: Hypothesis Test for
the Equality of two Functions

An equality test is used to detect differences between
two regression functions f1(x) and f2(x) given the
two independent samples D1 = (x(1),y(1)) and D2 =
(x(2),y(2)) of, respectively, n1 and n2 observations.
Our aim is to extend the Bayesian test based on the
GP presented in [1] using the c-IGP model. The
approach in [1] assumes the same GP prior GP (0, kθ)
for the two functions f1 and f2; the two posterior
distributions share the same hyperparameters. Here,
we assume the same c-IGP set of priors G for the two
functions, that is,

fi ∼ GP
(
Mihi, kθ(x, x′) + Mi + 1

c

)
,

with i = 1, 2, hi = ±1 and Mi ≥ 0. As a consequence,
we are assuming that f1 and f2 are two GPs with the
same base kernel kθ(x, x′). Instead, their prior mean
functionsM1h1 andM2h2 can be different, as they are
free to vary in the set of all constant functions. We as-
sume that the two samples y(1) and y(2) are affected by
Gaussian noise with variance, respectively, σ2

1 and σ2
2 .

The hyperparameters θ, σ1, σ2 are obtained consider-
ing for both f1 and f2 the prior with c→ 0. Then, after
combining the two datasets {D1, D2}, we maximize
the joint marginal probability of (y(1),y(2),θ, σ1, σ2)
with respect to θ, σ1, σ2. Assuming that f1 and f2 are
independent Gaussian processes, we have that

p(y(1),y(2)|x(1),x(2),θ, σ1, σ2) =
p(y(1)|x(1),θ, σ1)p(y(2)|x(2),θ, σ2).

Then, the logarithm of the joint marginal of
y(1),y(2),θ, σ2

1 , σ
2
2 is

2∑

i=1
log p(y(i)|x(i),θ, σi) + log p(θ, σ1, σ2)

where log p(y(i)|x(i),θ, σi), is given in (11), up to an
additive constant.

In the precise approach, given the prior GP (0, kθ),
we compute from (4) the posterior marginal GPs
p(f∗1 |x∗, D1) and p(f∗2 |x∗, D2) at the m = n1 + n2
test inputs x∗ = {x∗i : i = 1, . . . ,m, x∗i ∈ [x(1),x(2)]}.
In this way, the equality of the two functions is tested
at the covariates of the observations, that is, where
we have the experimental evidence. Moreover, it is
assumed that the observation covariates x(1) and x(2)

cover the same region of the covariate space. This is
done to avoid testing the equality in regions where
there are no observations for one or both functions, as
in these region we do not expect to be able to state

A prior near-ignorance Gaussian process model for nonparametric regression

191



any conclusion about equality or difference of the two
functions. If applied in such regions, the precise test
would always assign very large posterior probability
to the hypothesis that there is no difference between
the functions. Using a IGP model, we can test the
equality assumption in any subset XT of the covariate
space X by taking the m test inputs x∗ so to cover
uniformly the region of interest XT . If all priors in
the IGP set entail the same decision, we retain it, if
instead they lead to different decisions we conclude
that a robust decision cannot be made in XT . This
way, we can automatically identify a situation where
data do not allow to state any conclusion.

Let us denote the mean and covariance functions of
the posterior distributions of f∗1 and f∗2 as µ̂(i)(x) and
k̂(i)(x, x′), i = 1, 2. Since the difference of two Gaus-
sian variables is Gaussian, it follows that the posterior
of the GP ∆f(x) = f1(x)− f2(x) is also a GP with
mean and covariance functions ∆µ̂(x) = µ̂(1)(x) −
µ̂(2)(x) and k̂∆(x, x′) = k̂(1)(x, x′) + k̂(2)(x, x′). Let
∆f∗ , ∆µ̂∗ and K̂∗∆ be the difference, the mean and the
covariance functions evaluated at the test covariates
x∗, then, we say that the two functions are equal with
posterior probability 1 − α if the credible region for
∆f∗ includes the zero vector or, in other words, if:

(∆µ̂∗)T (K̂∗∆)−1∆µ̂∗ ≤ χ−1(1− α|ν), (15)

where ν is the number of positive eigenvalues of K̂∗∆.
In practice, as the number m of test inputs is likely to
be considerably larger than the dimensionality of the
covariance function, the matrix K̂∗∆ is not full rank.
Thus, we decompose it as PDPT , where D is the
diagonal matrix of the eigenvalues λ1, . . . , λm (sorted
in descending order), and retain only the sub-matrices
PνDνP

T
ν corresponding to the eigenvalues λ1, . . . , λν

which verify the condition λν+1/
∑m
i=1 λi < ε, where

ε is a small, positive constant. In the example below,
we use ε = 0.0001.

In the c-IGP model, the inference about
χ2
s(M1,M2, h1, h2) = (∆µ̂∗)T (K̂∗∆)−1∆µ̂∗ de-

pends on the choice of the prior, that is on the value
of M1, M2, and of h1, h2.
Proposition 2. The c-IGP model is a prior ignorance
model for inferences about χ2

s, i.e.,

χ2
s

= 0 χ2
s →= +∞.

A posteriori let µ̂(i)
0 (x) = k

(i)T
x K

(i)−1
n y(i) be the pos-

terior mean functions obtained from a GP with zero
mean and covariance function kθ(x, x′) when x = x(i),
y = y(i), and let k̂(i)

0 (x, x′) be the covariance function
obtained from (10) when c → ∞. For a given value
of M1 and M2 the posterior expectation of the GP

∆f(x), that is ∆µ̂(x), can be derived from (9) and is

∆µ̂M1,M2(x) = µ̂
(1)
0 (x)− µ̂(2)

0 (x) + µ(1)
c (x) + µ(2)

c (x)

where µ(i)
c (x) = (1 − k(i)T

x K
(i)−1
n ) s(i)T

k
y(i)+tic

c(1−|ti|)+S(i)
k

, ti =
Mh
M+1 and k(i)

x and K(i)
n are obtained by evaluating the

covariance functions at the training covariates x(i), i =
1, 2. The lower/upper bounds for χ2

s(M1,M2, h1, h2)
are obtained by minimizing/maximizing w.r.t. ti ∈
[−1, 1] the statistic:

χ2
s = ∆µ̂∗T (K̂∆

M1,M2)−1∆µ̂∗, (16)

where K̂∆
M1,M2

= [k̂(1)
0 (xi, xj) + k̂

(2)
0 (xi, xj) +

k̂
(1)
c (xi, xj) + k̂

(2)
c (xi, xj)]i,j , and k̂

(i)
c (x, x′) =

(Mi+1)[1−k(i)T
x s(i)

k
][1−k(i)T

x′ s(i)
k

]T

c+(Mi+1)S(i)
k

, i = 1, 2.

4.1 Numerical Example

Let us consider two samples D1 and D2 that we wish
to compare on the subset XT = [a, b] of the covariate
space. Assuming an observation noise v ∼ N (0, σn =
0.2), we sample D1 and D2 from:

Case A: x(1,2)
i ∼ U [−2, 2], y

(1,2)
i = f(xi) + vi,

Case B: x(1)
i ∼ U [−2, 2], y

(1)
i = f(xi) + vi,

x
(2)
i ∼ U [−2, 2] y

(2)
i = g(xi) + vi,

Case C: x(1)
i ∼ U [−2, 0], y

(1)
i = f(xi) + vi,

x
(2)
i ∼ U [−2, 4], y

(2)
i = g(xi) + vi,

Case D: x(1)
i ∼ U [−2, 2], y

(1)
i = f(xi) + vi,

x
(2)
i ∼ U [−2, 4], y

(2)
i = g(xi) + vi,

where f(x) = exp(−x2) and g(x) = f(x) + 0.5f(x− 2)
(see Figure 3). For each scenario the two datasets D1
and D2 have been simulated only once. More extensive
simulations are left to future work. We have tested
the difference between the two samples for different
test subsets XT ∈ [−2, b]. The difference f(x)− g(x)
is about zero for x < 0, is large (> σn) in the interval
[1, 3] and is small (< σn) in [0, 1]. Therefore, we expect
to easily detect a difference between the two samples
when b > 1, whereas for b < 1 the decision is more
difficult and for b < 0 we can assume that the two
functions are equal. Table 1 shows the decisions for
the precise and the imprecise tests at different values
of c and b. One can notice that for c = 10 we are most
often undecided (save when the decision is simple,
e.g., in cases B and D when b > 1 and thus all tests
recognize the difference) as the imprecision is very
large in this case.

F. Mangili

192



−2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

x	

 

 

−2 −1 0 1 2 3 4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

x

Figure 3: Left: Functions f (continuous line) and g
(dashed line). Right: difference f − g.

GP IGP
Case b n=50 n=200 n=50 n=200
A 2 0 0 0/0/2 0/0/2
A 4 0 0 0/2/2 0/2/2
B 0 0 0 0/0/2 0/0/2
B 1 0 1 0/2/2 1/1/1
B 2 1 1 1/1/1 1/1/1
B 4 1 1 1/1/1 1/1/1
C 0 0 0 0/0/2 0/0/2
C 1 0 0 0/0/2 0/0/2
C 2 0 0 0/2/2 0/2/2
C 4 0 0 0/2/2 0/2/2
D 0 0 0 0/0/0 0/0/2
D 1 0 1 2/2/2 1/1/1
D 2 1 1 1/1/1 1/1/1
D 4 1 1 1/1/1 1/1/1

Table 1: Decisions of the precise test for c = 1/5/10,
where 0 indicates that the two functions are equal
with posterior probability 1− α, 1 indicates that the
two functions are different (i.e., the posterior proba-
bility that they are equal is less than α), 2 indicates
indecision (i.e., the decision depends on the prior).

On the other side, for c = 1 the test makes almost
always the same decision as the precise test, as the
imprecision is very small in this case. When c = 5 we
have a better balance between robustness and power:
the IGP test makes the same decision as the precise
one when there is enough information to make a robust
decision, whereas it is undecided when the decision is
difficult due to the lack of information. For instance,
in case A with b = 2 the precise test always issues a
no difference decision. The same happens in case C,
although the two situations are very different, because
in the first case f1 = f2 and we can observe both
functions on the entire set XT , whereas in the second
case f1 6= f2 but we cannot see it as we observe f1
only in the range [−2, 0] where the two function are
almost identical. On the other side, the imprecise test
detects the difference of the two situations, and in case
A it correctly issues a no difference decision, whereas
in case C it is undecided, thus acknowledging that
there is not enough information to make a decision.

Something similar can be observed also in case D: when
b = 0 both the precise and imprecise tests issue a no
difference decision as in this range the two function can
be actually considered identical; when, instead, b = 1,
the functions are different, but, since the difference is
small, it cannot be clearly detected with only n = 50
data. However, the imprecise test recognizes that
the decision is somehow difficult and is undecided,
whereas the precise test can only decide that there is
no difference. For n = 200, the information is enough
to make both tests detect a difference.

5 A Generalization of the IGP Model

In this Section we generalize the IGP with constant
mean by considering an IGP with mean function pro-
portional to an arbitrary function h(x).
Definition 3. Given a function h(x) and a constant
c > 0, we define an Imprecise Gaussian Process with
base mean function h(x) (hIGP) the set of GPs:

Gh(x) =
{
GP

(
Mh(x), kθ(x, x′) + M+1

c h(x)h(x′)
)
, M ≥ 0

}
.

A posteriori we have the following result.
Theorem 5. Let h = h(x) and

f(x) ∼ GP (Mh(x), kθ + M+1
c h(x), h(x′)).

The posterior distribution of f is a GP with mean
function

µ̂(x) = kTxK−1
n (y− ŷ(x)) + ŷ(x) (17)

with ŷ(x) = (M+1)hTK−1
n y+cM

c+(M+1)hTK−1
n h h(x), and covariance

function

k̂(x, x′) = kθ(x, x′)− kTxK−1
n kx′+

(M + 1)(h(x)− kTxK−1
n h)T (h(x′)− kTx′K−1

n h)
c+ (M + 1)hTK−1

n h
.

We can further generalize the IGP model in Definition
3 by letting h(x) free to vary in a set of functions H.
Definition 4. Given a set of functions H and a con-
stant c > 0, we define an Imprecise Gaussian Process
with set of base mean functions H (H-IGP) the set of
GPs:

GH =
{
Gh(x) : h(x) ∈ H

}
. (18)

From Theorem 5 we can see that not all H-IGP verify
learning. In fact, if H include functions that are zero
at all training covariates x so that hTK−1

n h = 0,
posterior inferences are vacuous.
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Proposition 3. Any set H-IGP such that h is a
nonzero vector for all h(x) ∈ H can learn from the
observations x,y.

Moreover, not all H-IGP verify prior-ignorance about
E[f(x∗)] for all x∗. If, for instance, h(x∗) = 0 all
h(x) ∈ H, then a priori E[f(x∗i )] = Mh(x∗) = 0 for
all M .
Proposition 4. If it exist h+(x∗) ∈ H : h+(x∗) > 0
and h−(x∗) ∈ H : h−(x∗) < 0, then the H-IGP is a
model of prior ignorance about the expectation of f(x∗)
in the sense that it verifies

inf
M,h(x)

E[f(x∗i )] = −∞, sup
M,h(x)

E[f(x∗i )] = +∞.

By properly selecting the set H one can obtain IGP
models that verify both prior near-ignorance and learn-
ing.
Example 2. The c-IGP model presented in Sec-
tion 3 is an H-IGP model with set of base mean
functions Hc = {h(x) = −1, h(x) = 1}. This set
verifies the conditions of both Proposition 4 and 3
an thus verifies both prior near-ignorance and learning.

Example 3. Let us consider the set H = {h(x) =
−x, h(x) = x}. It verifies the conditions of Proposi-
tion 4 for all covariates except x = 0 and verifies the
condition of Proposition 3 provided that x is a nonzero
vector. The corresponding H-IGP includes GPs with
mean function varying in the set of all linear functions
with intercept in 0. It is a model of prior ignorance
about f(x) for all x 6= 0 and can learn from data with
covariate x 6= 0.

6 Conclusions

In this paper we have presented a model of prior near
ignorance about the value of a regression function
based on the Gaussian process. We have shown that
this IGP model can be used to make inferences about
the regression functions which are more robust with
respect to the choice of the prior. In fact, for those
subsets of X where there are many observations infer-
ences almost coincide with the precise model, whereas
in those subset with no observations the imprecision of
the prediction is very high, thus reflecting the actual
lack of knowledge. As a consequence of this, decisions
based on this model are more reliable. For instance,
we have applied the IGP to test the difference between
regression functions, and shown that the IGP model
allows us to acknowledge when the available data are
not informative enough to make a robust decision. Al-
though in this paper we have only consider univariate
functions, the c-IGP model can be straightforward

extended to the multivariate case where x is a vector
of covariates.

A generalization of the IGP with constant mean has
also been proposed, based on which it will be possible
to develop other prior near ignorance models that con-
sider different sets of prior mean functions. The study
of these models and their properties will be the object
of future work. Moreover, as a strong prior informa-
tion is introduced in the model also by the base kernel,
further research should focus on the development of
models allowing for a weaker specification of the kernel
function.

There are many techniques other than GPs available
for nonparametric regression, e.g., splines, relevance
vector machines, kernel smoothers, etc., that have not
been considered in this work. Their relative strengths
and weaknesses w.r.t. GPs are discussed in [12, Sec. 7].
As they are all precise methods, we can expect them
to suffer from the same weaknesses of the precise GPs.
The probabilistic formulation of GPs and the simple
closed form expression of their posterior inferences,
have made them a good starting point to develop an
imprecise approach to nonparametric regression that,
in the future, could be extended to other regression
techniques, taking advantage also from the connections
they have with GPs [12, Sec. 6].

Appendix

6.1 Proof of Proposition 1

This can be seen by considering that a priori E[f(x∗i )] =
Mh(x∗i ) so that for h(x∗i ) = ±1 and M → ∞ we have
E[f(x∗i )]→ ±∞.

6.2 Proof of Theorem 1

Miller in [7] proves the following

Lemma 1. If A and A+B are invertible, and B has rank
1, then

(A+B)−1 = A−1 − 1
1 + g

A−1BA−1,

where g = trace(BA−1) with g 6= −1.

From this, it follows that

(Kn + M + 1
c

1nn)−1 = K−1
n −

M + 1
c+ (M + 1)Sk

sksTk ,

(19)
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where 1nn is a n× n dimensional matrix of ones. Then,

µ̂(x)

= Mh+
(

kx + M + 1
c

1n

)T

(
K−1
n −

M + 1
c+ (M + 1)Sk

sksTk
)

(y−Mh1n)

= Mh+
[

kTxK−1
n

(
1− (M + 1)1nsTk

c+ (M + 1)Sk

)
+

(M + 1)sTk
c+ (M + 1)Sk

]
(y−Mh1n)

= kTxK−1
n

(
y−Mh(x)− (M + 1)1nsTk

c+ (M + 1)Sk
(y−Mh(x))

)

+Mh+ (M + 1)sTk
c+ (M + 1)Sk

(y−Mh(x))

= kTxK−1
n

(
y− (M + 1)sTk y + cMh

c+ (M + 1)Sk
1n

)
+

(M + 1)sTk y + cMh

c+ (M + 1)Sk
.

Similarly for the covariance function we obtain:

k̂(x, x′)

= kθ(x, x′) + M + 1
c
−
(

kx + M + 1
c

1n

)T

(
K−1
n −

M + 1
c+ (M + 1)Sk

sksTk
)(

kx′ + M + 1
c

1n

)

= kθ(x, x′)− kTxK−1
n kx+

M + 1
c+ (M + 1)Sk

(
kTx sksTk kx′ − kTx sk − sTk kx′ + 1

)
.

6.3 Proof of Theorem 2

From (8), the logarithm of the marginal probability of
y, θn given the prior GP

(
Mh, kθ(x, x′) + M+1

c

)
is

log p(y, θn) =

− 1
2 (y−Mh1n)T

(
Kn + M + 1

c
1nn

)−1
(y−Mh1n)+

− 1
2 log |Kn + M+1

c
1nn| − n

2 log 2π + log p(θn).

(20)
From (19) we obtained that the first term on the r.h.s. of
(20) is equal to

cM2h2Sk − 2cMhyT sk − (M + 1)(yT sk)2

2c+ 2(M + 1)Sk
− 1

2yTK−1
n y.
(21)

Based on the matrix determinant Lemma [5] which states:
Lemma 2. Given a n× n invertible matrix A and two n
dimensional vectors u,v

|A+ uvT | = |A|(1 + vTA−1u),

we obtain

|Kn + M + 1
c

1nn| = |Kn|c+ (M + 1)Sk
c

. (22)

Then, from (21), (20) and (22), it follows

log p(y, θn) c→0−−−→ − 1
2

[
yTK−1

n y− (yT sk)2

Sk

]
+

− 1
2 log |Kn|Mc Sk − n

2 log 2π + log p(θn).
(23)

Finally, by considering that the terms − 1
2 log M

c
and

−n2 log 2π are constant with θ, we have that

argmaxθ[log p(y,θn)]

= argmaxθ

[
−1

2

(
yTK−1

n y− (yT sk)2

Sk
− logSk|Kn|

)

+ log p(θn)
]
.

6.4 Proof of Theorem 3

The derivative of (9) with respect to M is

∂µ̂(x)
∂M

= (1− kTx sk) ±c± Sk + sTk y
(c+ (M + 1)Sk)2

If
∣∣∣ sT

k
y

Sk

∣∣∣ ≤ c
Sk

+ 1, the second term of the derivative above
is positive for h = 1 and negative for h = −1. Notice also
that, forM = 0, the values of µ̂(x) in the two cases h = ±1
coincide. Then, if the first term 1− kTx sk is positive, we
have that µ̂(x) increases with M for h = 1 and decreases
for h = −1 so that the upper is found for h = 1 and
M → ∞ and the lower for h = −1 and M → ∞. Vice
versa, if the first term is negative, the upper is found for
h = −1 and M →∞ and the lower for h = 1 and M →∞.

If, instead,
∣∣∣ sT

k
y

Sk

∣∣∣ > c
Sk

+ 1, the second term of the deriva-

tive above is always positive (if sT
k

y
Sk

> 0) or negative

(otherwise); then, µ̂(x) increases if 1− kTx sk and sT
k

y
Sk

have
the same sign, and decreases otherwise. In the first case,
the upper is found for h = 1 and M → ∞ and the lower
for M = 0; vice versa, in the second case, the upper is
found for M = 0 and the lower for h = −1 and M →∞.

The value of the upper and lower can be derived from (9).

6.5 Proof of Theorem 4

For each GP in G the lower bound of a (1− α)% credible
interval is

µ̂(x)− zα/2

√
k̂(x, x) ≤ µ(x)− zα/2

√
k̂(x, x).

Moreover, from (10), it can be seen that k̂(x, x) increases
with M , so that it maximum is found at M →∞ and is
σ2
fx

= kθ(x, x′)− kTxK−1
n kx′ + (1−kT

x sk)2

Sk
so that

µ̂(x)− zα/2

√
k̂(x, x) ≤ µ(x)− zα/2σfx .

where the equality holds when the lower expectation µ(x) is

found for M →∞, that is when
∣∣∣ sky
Sk

∣∣∣ ≤ 1 + c
Sk

(Theorem
3).
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6.6 Proof of Proposition 2

It can be verified that the lower bound is found by choosing
M1 = M2 = 0. The upper is found, for instance, for
M1 = 0, M2 →∞, as we have

χ2
s(0,M2, h1, h2) = M2

21
T
m(2 ∗K∗∗ + M2 + 2

c
)−1

1m

= M2
2

2 1
T
m

[
(K∗∗)−1 − M2 + 2

2c+ (M2 + 2)Sk∗
sk∗sTk∗

]
1m

= M2
2

1
2

[
Sk∗ − M2 + 2

2c+ (M2 + 2)Sk∗
S2
k∗

]

= M2
2

cSk∗

2c+ (M2 + 2)Sk∗
M2→∞−−−−−→ cM2 →∞,

where Sk∗ = 1
T
m(K∗∗)−1

1m, sk∗ = (K∗∗)−1
1m and where

we have used Lemma 1.

6.7 Proof of Theorem 5

Let us define M ′ = M+1
c

, Sh = hTK−1
n h, sh = K−1

n h and
D = 1 +M ′Sh. From Lemma 1, it follows that

(Kn +M ′hhT )−1 = K−1
n −

M ′

D
shsTh . (24)

Then, µ̂(x) =

=Mh(x) +
(

kx + M ′h(x)hT
)T (

K−1
n − M ′

D
shsTh

)
(y−Mh)

=Mh(x) + kTxK−1
n y− kTx

M ′

D
shsThy + M ′

D
h(x)sThy+

− M

D
kTx sh −

MM ′

D
h(x)Sh

= kTxK−1
n (y− ŷ(x)) + ŷ(x)

Similarly for the covariance function we obtain:

k̂(x, x′) =kθ(x, x′) +M ′h(x)h(x′)−
(
kx +M ′h(x)h

)T
(
K−1
n −

M ′

D
shsTh

)(
kx′ +M ′h(x′)h

)

=kθ(x, x′)− kTxK−1
n kx + M ′

D

(
kTx shsThkx′+

−h(x)kTx sh − h(x′)sThkx′ + h(x)h(x′)
)
.

6.8 Proof of Proposition 3

From (17) it follows that

lim
M→+∞

µ̂(x) = kTxK−1
n y + (h(x)−kTxK−1

n h)hTK−1
n y + c

hTK−1
n h

,

which, if h is a nonzero vector, is bounded.

6.9 Proof of Proposition 4

This can be seen by considering that a priori E[f(x∗i )] =
Mh(x∗i ) so that for h(x) = h+(x) and M → ∞ we have
E[f(x∗i )] → +∞ and for h(x) = h−(x) and M → ∞ we
have E[f(x∗i )]→ −∞.
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Abstract
We study the conformity of marginal unconditional and
conditional models with a joint model under assumptions
of epistemic irrelevance and independence, within Walley’s
theory of coherent lower previsions. By doing so, we make
a link with a number of prominent models within this the-
ory: the marginal extension, the irrelevant natural extension,
the independent natural extension and the strong product.

Keywords. Coherent lower previsions, sets of desirable
gambles, epistemic irrelevance, epistemic independence,
marginal extension, strong product.

1 Introduction

The theory of coherent lower previsions was developed
by Peter Walley [22], with some influence from earlier
work by Peter Williams [23], as a generalisation to the
imprecise case of the behavioural approach to probability
championed by de Finetti [10]. One of its advantages is
that it includes as particular cases most of the models of
non-additive measures existing in the literature, such as
Choquet capacities [3], belief functions [21] or possibility
measures [12].

Coherent lower previsions can be used to express both
unconditional and conditional information, and several co-
herent lower previsions can be used to build a joint model
that puts together the assessments present in each of the
underlying sources. This is usually done by means of the
notion of natural extension, which in some cases can be
combined with other structural assessments, such as inde-
pendence or exchangeability [1, Chapter 3].

The conformity of some marginal lower previsions with
a joint model is easy to understand (it means simply that
the joint model produces this marginals when restricted to
gambles that depend on one of the variables); however, the
relationship with the conditional models is more problem-
atic. This is due to two reasons: on the one hand, there are
several ways in which we can consider that a number of
conditional models are consistent with a joint model, as

the different notions of coherence by Williams and Walley
testify. In this paper, we are going to use Walley’s theory
of coherent lower previsions, which makes use of the no-
tion of conglomerability. This is an assumption that is not
considered in de Finetti and Williams’ approaches, and that
has been subject to some controversy.

On the other hand, even if we stick to Walley’s approach
(but also in the finite case, where conglomerability is not
an issue), there are several ways in which we can derive
conditional models from an unconditional ones, so it is not
immediate how to tell which conditional assessments are
the ones derived from the unconditional model.

Our choice in this paper is to consider the notion of condi-
tional natural extension, which, according to Walley, pro-
vides the most conservative behavioural implications of the
assessments present in the unconditional model.

Under this setting, we are going to define a notion of con-
formity of marginal and conditional assessments with the
meaning of the existence of a joint that induces them with
the procedures of marginalization and natural extension
mentioned above. We shall consider three different scenar-
ios: that where we start from two marginal models and
make an assessment of epistemic irrelevance, that where
we make an assessment of epistemic independence, and
that where our starting point is a marginal and a conditional
lower prevision. In each of these cases we shall show that
the notion of conformity does not always hold, we shall
give necessary and sufficient conditions for its existence,
and determine the least conservative model satisfying this
notion.

Interestingly, we shall prove that this so-called conforming
natural extension coincides under some conditions with
some well-known models within the theory of coherent
lower previsions: the marginal extension, the irrelevant
natural extension, and the independent natural extension.
This has led us to deepen our study of independent models,
by completing some recent work in [19, 25]. In particular,
we study in detail two properties that we have recently
linked with independent products, and more specifically
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with the strong product. We investigate to which extent
they are satisfied by other independent products and also
by the marginal extension. The properties are in some cases
formulated in terms of sets of desirable gambles, which
provide the behavioural interpretation underlying coherent
lower previsions.

The paper is organized as follows: in Section 2, we intro-
duce the basics of the theory of coherent lower previsions
that we shall use in the rest of the paper. Our study be-
gins in Section 3 with the definition of conformity for a
marginal and a conditional model, when the latter is defined
by means of an assessment of epistemic irrelevance. This
is completed in Section 4 with a study of the relationship
between conformity and independent products. Then in
Section 5 we consider the general case of conformity of a
marginal and a conditional lower prevision, where the latter
need not satisfy the property of epistemic irrelevance. The
paper ends in Section 6 with some additional comments
and remarks.

2 Preliminaries

2.1 Coherent Lower Previsions

Let us give the basics of the theory of coherent lower previ-
sions necessary to follow the remainder of this paper. An
in-depth study with details on the behavioural interpretation
of the following notions may be found in [22].

Consider a possibility space Ω . A gamble on Ω is a
bounded real-valued function f ∶ Ω → R. The set of all
gambles on Ω is denoted L(Ω). In particular, we shall letL+(Ω) ∶= { f ∈ L(Ω) ∶ f ≥ 0, f ≠ 0}. For any subset B of
Ω, we use IB to denote its indicator gamble, that takes the
value 1 on the elements of B and 0 otherwise.
Definition 1. A coherent lower prevision on L(Ω) is a
function P ∶ L(Ω) →R satisfying the following properties:

(C1) P( f ) ≥ inf f ;

(C2) P(λ f ) = λP( f );
(C3) P( f +g) ≥ P( f )+P(g)
for every f ,g ∈ L(Ω) and every λ > 0.

One example of a coherent lower prevision is the vacuous
prevision with respect to a subset B of Ω , given by P( f ) ∶=
infω∈B f (ω).
A coherent lower prevision satisfying (C3) with equality
for every f ,g ∈ L(Ω) is called a linear prevision. Linear
previsions can be used to characterise coherence: a lower
prevision P is coherent if and only if it is the lower envelope
of its associated credal set M(P) ∶= {P linear prevision ∶
P( f ) ≥ P( f ) ∀ f}, meaning that P( f ) = min{P( f ) ∶ P ∈M(P)} for every gamble f .

Given a partition B of Ω , a gamble f ∈ L(Ω) is calledB-measurable when it is constant on the elements of B. A
separately coherent conditional lower prevision is a map
P(⋅∣B) such that for every B ∈ B, P(⋅∣B) is a coherent lower
prevision satisfying P(B∣B) = 1, and where P( f ∣B) is theB-measurable gamble given by P( f ∣B) = ∑B∈B IBP( f ∣B).
Definition 2. Given a coherent lower prevision P and a sep-
arately coherent conditional lower prevision P(⋅∣B), they
are called (jointly) coherent when

(GBR) P(IB( f −P( f ∣B))) = 0;

(CNG) P( f −P( f ∣B)) ≥ 0

for every gamble f and every B ∈ B.

The first of these conditions is called the Generalised Bayes
rule, and determines P( f ∣B) uniquely when P(B) > 0. The
second is usually referred to as a conglomerability con-
dition, and follows from the first when the partition B is
finite.

In this paper, we will focus on the case where Ω ∶= X1×X2.
By an abuse of notation, we shall use P(⋅∣X1) to refer to a
lower prevision conditional on the partition {{x1}×X2} ofX1×X2, and we shall say that a gamble is X1-measurable
when it is measurable with respect to this partition. There
is a one-to-one correspondence between L(X1) and the
class of X1-measurable gambles (and also between L(X2)
and the class of X2-measurable gambles); we shall use it
throughout the paper to alleviate the notation.

In particular, we shall mention the notion of coherence of
a joint lower prevision P on L(X1×X2) with conditional
lower previsions P(⋅∣X1),P(⋅∣X2); for the purposes of this
paper, we only need that it implies the coherence of P with
each of P(⋅∣X1),P(⋅∣X2). A more detailed account can be
found in [22, Section 7.1].

2.2 Sets of Desirable Gambles

A more general model than coherent lower previsions are
coherent sets of desirable gambles:
Definition 3. A subsetR⊆L(Ω) is coherent when it is a
convex cone that includes L+(Ω) and does not include 0.

IfR is a coherent set of desirable gambles, then the lower
prevision given by

P( f ) ∶= sup{µ ∶ f −µ ∈ R} (1)

is coherent. On the other hand, there are several coherent
sets of desirable gambles that induce the same coherent
lower prevision. The smallest such set is called the set of
strictly desirable gambles, and it is given byR ∶= L+(Ω)∪{ f ∶ P( f ) > 0}. On the other hand, the closure of any of
these sets in the topology of uniform convergence is given
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byR ∶= { f ∶ P( f ) ≥ 0}, and this is called the set of almost-
desirable gambles associated with P.

Similarly, a coherent set of desirable gambles can also
be used to define a separately coherent conditional lower
prevision, by means of the formula

P( f ∣B) ∶= sup{µ ∶ IB( f −µ) ∈ R} (2)

for every gamble f and every conditioning event B.

3 Irrelevant Products

Consider two possibility spaces X1,X2 and let P be a co-
herent lower prevision on L(X1×X2). Its marginal lower
previsions PX1

,PX2
are defined on L(X1),L(X2) as the

restriction of P to X1- and X2-measurable gambles, respec-
tively.

The conditional information encompassed by P can be de-
termined by many different updating rules (see for instance
[22, Chapter 6] or [16]). In this paper we are using the
updating rule determined by the natural extension:
Definition 4. Let P be a coherent lower prevision onL(X1×X2). For any x1 ∈ X1, the conditional natural extension
E(⋅∣x1) is defined as

E( f ∣x1) ∶= ⎧⎪⎪⎨⎪⎪⎩
sup{µ ∶ P(Ix1( f −µ)) ≥ 0} if P(x1) > 0
infx∈X2 f (x1,x) otherwise.

(3)

Recall that when P(x1) > 0 the conditional lower previ-
sion E(⋅∣x1) is uniquely determined by (GBR). In general,
P,E(⋅∣X1) need not be coherent; when they are, E(⋅∣X1) is
the smallest, or least committal, conditional lower previ-
sion that is jointly coherent with P. This is equivalent to the
conglomerability of P, a notion discussed in much detail in
[22, Section 6.8].
Definition 5. P is said to model X1-X2 irrelevance when
its conditional natural extension E(⋅∣X1) satisfies epistemic
irrelevance, meaning that E( f ∣x1) = E( f ∣x′1) for every X2-
measurable f and every x1,x′1 ∈ X1.

Note that given marginal coherent lower previsions
PX1

,PX2
on L(X1),L(X2), we can always make an assess-

ment of irrelevance and obtain a conditional lower prevision
P(⋅∣X1) on L(X1×X2) by means of the formula

P( f ∣x1) ∶= PX2
( f (x1, ⋅)) ∀ f ∈ L(X1×X2),∀x1 ∈ X1. (4)

However, there may be no joint P modelling X1-X2 irrel-
evance and inducing some given PX1

,P(⋅∣X1): the reason
is that as soon as PX1

(x1) = 0 for some x1 it follows from
Eq. (3) that P(⋅∣x1) should be vacuous, and then by irrele-
vance PX2

should be vacuous too.

When instead we can find such a P, we say that PX1
,PX2

are conforming with an X1-X2 irrelevant model, or, more
briefly, that they are conforming with X1-X2 irrelevance:

Definition 6. We say that PX1
,PX2

are conforming withX1-X2 irrelevance when there is a coherent lower prevision
P with marginals PX1

,PX2
and whose conditional natural

extension E(⋅∣X1) satisfies Eq. (4).

We shall denote Pirr(PX1
,PX2

) the set of coherent lower previ-

sions satisfying the conditions of the definition above for
given PX1

,PX2
.

It is interesting to remark that P may be an X1-X2 irrele-
vant model with marginals PX1

,PX2
while its conditional

natural extension E(⋅∣X1) does not satisfy Eq. (4):
Example 1. Consider X1 ∶= X2 ∶= {0,1}, and
let P be the lower envelope of the linear pre-
visions {P1,P2} associated with the mass func-
tions X1 × X2 = {(0,0,0.5,0.5),(0.5,0.5,0,0)} on{(0,0),(0,1),(1,0),(1,1)}. Then PX1

(0) = PX1
(1) = 0,

so E(⋅∣X1) is vacuous and as a consequence it satisfiesX1-X2 irrelevance. However, the X2-marginal of P is the
linear prevision given by PX2( f ) = ( f (0) + f (1))/2 for
every f ∈ L(X2). Thus, Eq. (4) is not satisfied. ◊
In other words, the conditional natural extension may sat-
isfy an irrelevance condition with respect to an uncondi-
tional coherent lower prevision different from the marginal
of P. This is why we are explicitly requiring this to hold in
Definition 6.

Note also that, given the marginal coherent lower previ-
sion PX1

on L(X1) and the conditional lower prevision
P(⋅∣X1) derived from PX2

by Eq. (4), Walley models their
behavioural implications by means of the smallest lower
prevision E that is coherent with them, and which in this
case is given by the concatenation PX1

(P(⋅∣X1)) [22, The-
orem 8.1.7]. However, the conditional natural extension of
E may not agree with P(⋅∣X1), whence it is arguable that
with E we encompass assessments different from the ones
we started with. Indeed, the notion of conformity differs
from that of coherence of conditional and unconditional
lower previsions considered by Walley (although the latter
follows from conformity in the finite case). Conformity can
be characterised as follows:

Proposition 1. Let PX1
,PX2

be two coherent lower pre-
visions with respective domains L(X1),L(X2). Then
Pirr(PX1

,PX2
) ≠ ∅ if and only if either PX1

(x1) > 0 for every

x1 or PX2
is vacuous.

Proof. Let us start with the direct implication. Assume
that P is a coherent lower prevision with marginal PX1
and whose conditional natural extension E(⋅∣X1) coincides
with the conditional lower prevision that the marginal PX2
induces by means of (4). If there is some x1 ∈ X1 such
that PX1

(x1) = 0, it follows from Eq. (3) that E(⋅∣x1) must
be vacuous, and from Eq. (4) that PX2

must then be the
vacuous lower prevision.

Conversely, consider the coherent lower prevision

Conformity and independence with coherent lower previsions

199



PX1
(P(⋅∣X1)), where P(⋅∣X1) is induced from PX2

by
Eq. (4). It follows by definition that its marginals are
PX1

,PX2
. Thus, to see that it belongs to Pirr(PX1

,PX2
) un-

der any of the conditions of the proposition statement, it
suffices to show that in those cases P(⋅∣X1) coincides with
the conditional natural extension E(⋅∣X1) of PX1

(P(⋅∣X1)).
By [22, Theorem 6.7.2], PX1

(P(⋅∣X1)) is coherent with
P(⋅∣X1). In particular, this means that E(⋅∣X1) is dominated
by P(⋅∣X1). If PX2

is vacuous, then so is P(⋅∣X1), and as a
consequence it is equal to E(⋅∣X1). On the other hand, if
PX1
(x1) > 0 for every x1 ∈ X1, it follows from the coher-

ence of PX1
(P(⋅∣X1)) and P(⋅∣X1) that the latter is equal

to E(⋅∣X1), because this is the only conditional lower pre-
vision that satisfies (GBR) with PX1

(P(⋅∣X1)).
This shows that conformity is quite a stringent notion, be-
cause the assumption PX1

(x1) > 0 for every x1 ∈ X1 can
only hold when the space X1 is countable.

In other words, for most pairs of marginal coherent lower
previsions PX1

,PX2
there is no joint P whose conditional

natural extension is the one that P2 induces by epistemic
irrelevance. There are two reasons for this: one is the use of
the natural extension as an updating rule; the other is that,
as we have showed in Example 1, a X1-X2 irrelevant model
may induce a different conditional prevision than the one
determined by its marginal and the notion of irrelevance.

Next, we are going to compare our definition above with
another notion that has been considered in the literature [9]:
it may be considered that P models irrelevance with respect
to PX1

,PX2
when it is coherent (in the sense considered in

Definition 2) with the conditional lower prevision P(⋅∣X1)
given by Eq. (4) and has marginal PX1

.

In order to make this comparison, we prove first of all that
the set Pirr(PX1

,PX2
) is closed under lower envelopes:

Proposition 2. The lower envelope P of a family {Pλ ∶ λ ∈
Λ} of elements of Pirr(PX1

,PX2
) also belongs to Pirr(PX1

,PX2
).

Proof. It follows trivially that the marginals of P are
PX1

,PX2
. Moreover, the conditional natural extension

E(⋅∣X1) of P must be dominated by that of each Pλ , that is,
P(⋅∣X1). Now we apply Proposition 1.

If PX1
(x1) > 0 then E( f ∣x1) = sup{µ ∶P(Ix1( f −µ)) ≥ 0} =

sup{µ ∶ Pλ (Ix1( f −µ)) ≥ 0 ∀λ ∈ Λ} = P( f ∣x1): it suffices
to note that for every µ < P( f ∣x1) we obtain that P(Ix1( f −
µ)) = infλ∈Λ Pλ (Ix1( f −µ)) ≥ 0, whence E( f ∣x1) ≥ µ and
as a consequence E( f ∣x1) ≥ P( f ∣x1).
On the other hand, if PX2

is vacuous then so is P(⋅∣X1),
and as a consequence it coincides with E(⋅∣X1). Applying
Proposition 1, we conclude that P is an X1-X2 irrelevant
model.

In this manner, we may define a conforming natural ex-
tension, and regard conformity as a structural assessment
that can be made together with irrelevance. It models the
implications of the assessments present in the marginals
PX1

,PX2
and our notion of conformity. In the finite case, it

is easy to establish the following:

Proposition 3. Consider marginal coherent lower previ-
sions PX1

,PX2
on L(X1),L(X2), and assume that X1 is

finite. If Pirr(PX1
,PX2

) ≠ ∅, then the smallest model in this

set is PX1
(PX2

) ∶= PX1
(P(⋅∣X1)), where P(⋅∣X1) is derived

from PX2
by (4).

Proof. When X1 is finite, any coherent lower prevision P
is coherent with its conditional natural extension E(⋅∣X1).
Applying [22, Section 6.7.2], we deduce that any ele-
ment of Pirr(PX1

,PX2
) must dominate the marginal extension

PX1
(P(⋅∣X1)).

Moreover, from the proof of Proposition 1 we see that
when there is an X1-X2 irrelevant model that is conforming
with PX1

,PX2
, then PX1

(P(⋅∣X1)) is one such irrelevant
model. These two facts imply that PX1

(PX2
) is the smallest

irrelevant model.

We shall refer to PX1
(P(⋅∣X1)) as the irrelevant natural

extension of PX1
,PX2

. What Proposition 3 shows is that
this coincides with the conforming natural extension in the
finite case, whenever the latter exists.

Note that when X1 is infinite the above result may not
hold, as we see from the next example. The key is that in
our definition of conformity with X1-X2 irrelevance, we
are not requiring the joint model to be coherent with the
conditional lower prevision P(⋅∣X1) that PX2

induces by
means of Eq. (4):
Example 2. Let X1 ∶=N,X2 ∶= {0,1} and let P1 be the lin-
ear prevision on L(X1 ×X2) whose restriction to events
is the σ -additive probability given by P1(n,0) = P1(n,1) =

1
2n+1 ∀n. Let P2 be a linear prevision whose restriction
to events satisfies P2({2n ∶ n ∈ N} × {0}) = P2({2n + 1 ∶
n ∈ N}× {1}) = 0.5 and P2(n,0) = P2(n,1) = 0 for every
n. Let P = 0.5(P1 +P2). Then P(n) > 0 for every n ∈ N,
and the conditional natural extension of P is given by
P( f ∣n) = 0.5 f (n,0) + 0.5 f (n,1) ∀ f ∈ L(X1 ×X2). This
shows that P is an X1-X2 irrelevant model that is conform-
ing with its marginals PX1 ,PX2 .

To see that it does not coincide with the marginal extension
PX1(PX2), take A = {2n ∶ n ∈ N}× {1}. Then P(A) = 1

8 ≠
PX1(P(A∣X1)) = 0.5PX1({2n ∶ n ∈N}) = 0.25. This means
that P is not coherent with the conditional lower prevision
P(⋅∣X1), because it does not satisfy the notion of conglom-
erability. ◊
We can immediately characterise conformity in the precise
case when X1 is finite:

E. Miranda & M. Zaffalon

200



Proposition 4. When X1 is finite, two linear previsions
PX1 ,PX2 are conforming withX1-X2 irrelevance if and only
if PX1(x1) > 0 for every x1. In that case, the only conforming
model is given by PX1(PX2).
4 Independent Products

Similarly to the previous section, we say that P modelsX1-X2 independence when each of its conditional natural
extensions satisfies epistemic irrelevance:
Definition 7. Let P be a coherent lower prevision onL(X1 × X2) and let PX1

,PX2
denote its marginals onL(X1),L(X2). We say that P models X1-X2 independence

when E( f ∣x1) = E( f ∣x′1) for every X2-measurable f and
x1,x′1 ∈ X1, and E(g∣x2) =E(g∣x′2) for every X1-measurable
g and x2,x′2 ∈ X2.

Similarly to what we did in the previous section, we may
also study which pairs of marginals are conforming with
a X1-X2 independent model, in the sense that its condi-
tional natural extensions coincide with the conditionals
P(⋅∣X1),P(⋅∣X2) determined by PX1

,PX2
and the assump-

tion of irrelevance. This produces the following definition:
Definition 8. Given two marginal coherent lower previsions
PX1

,PX2
on L(X1),L(X2) we say that they are conform-

ing with X1-X2 independence when there is a coherent
lower prevision P on L(X1×X2) with marginals PX1

,PX2
satisfying

E( f ∣x1) = PX2
( f (x1, ⋅)) ∀X2-measurable f

E( f ∣x2) = PX1
( f (⋅,x2)) ∀X1-measurable f .

We shall denote Pind(PX1
,PX2

) the set of coherent lower previ-

sions satisfying the conditions of the definition above for
given PX1

,PX2
.

From Proposition 1, we immediately derive the following:

Proposition 5. Let PX1
,PX2

be two coherent lower pre-
visions with respective domains L(X1),L(X2). Then
Pind(PX1

,PX2
) ≠ ∅ if and only if (a) either PX1

(x1) > 0 for

every x1 or PX2
is vacuous; and (b) either PX2

(x2) > 0 for
every x2 or PX1

is vacuous.

In particular, it follows that if X1,X2 are uncountable, then
the only marginal coherent lower previsions PX1

,PX2
that

are conforming with X1-X2 independence are the vacuous
ones.

When two marginal coherent lower previsions PX1
,PX2

are
conforming with X1-X2 independence, there are in general
many different coherent lower previsions in Pind(PX1

,PX2
).

One example is given by the following family:
Definition 9. A coherent lower prevision P on X1 ×X2
is called an independent product of the marginal coherent

lower previsions PX1
,PX2

if and only if P,P(⋅∣X1),P(⋅∣X2)
are coherent, where P( f ∣x2) ∶=PX1

( f (⋅,x2)) and P( f ∣x1) ∶=
PX2
( f (x1, ⋅)) for every f ∈ X1×X2.

Note, however, that independent products of given
marginals always exist when X1,X2 are finite, whereas this
is not the case for X1-X2 independent models, as shown by
Proposition 5.

Proposition 6. Assume that PX1
,PX2

are conforming withX1-X2 irrelevance (resp., independence). Then any inde-
pendent product of PX1

,PX2
belongs to Pind(PX1

,PX2
).

Proof. Let us establish the result for X1-X2 irrelevance; the
proof for X1-X2 independence is analogous.

One the one hand, any independent product P is coher-
ent with P(⋅∣X1) and has marginal PX1

, so it suffices to
show that it must induce P(⋅∣X1) by means of Eq. (3). If
PX1
(x1) > 0 for every x1, it follows from coherence that

P(⋅∣x1) coincides with E(⋅∣x1); if PX1
(x1) = 0 for some

x1, then if P′ is an X1-X2 irrelevant conforming joint it
must be P′(⋅∣x1) vacuous, whence PX2

is the vacuous lower
prevision. But then since P is coherent with the vacuous
conditional lower prevision P(⋅∣X1), it follows that it must
be E(⋅∣x1) vacuous even if P(x1) > 0. Thus, P(⋅∣X1) agrees
with the conditional natural extension of P.

Independent products were studied in [9] in the case whenX1,X2 are finite and in [19] when they are infinite. In par-
ticular, in [19, Theorem 3] it is proved that, if two marginal
coherent lower previsions PX1

,PX2
have an independent

product, the smallest one corresponds to the smallest co-
herent lower prevision that dominates the two concatena-
tions PX1

(PX2
),PX2

(PX1
). This coherent lower prevision

is called the independent natural extension, and it is de-
noted by PX1

⊗PX2
. Two interesting surveys of the notion

of independence within imprecise probabilities are [5, 7].

The result above, together with Proposition 3, allows us to
establish the following:

Proposition 7. Assume that X1,X2 are finite, and let
PX1

,PX2
be two coherent lower previsions with respective

domains L(X1),L(X2). If Pind(PX1
,PX2

) ≠ ∅ then the small-

est element of this set is the independent natural extension
PX1

⊗PX2
.

When both X1,X2 are infinite, independent products may
not exist [19, Example 1]. Taking into account that this
case is also problematic with respect to conformity, that
reduces in most cases just to the combination of the vacuous
marginal coherent lower previsions, in the remainder of this
section we shall assume that at least one of X1,X2 is finite.

One particular family of independent products are the lower
envelopes of factorising linear previsions:
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Definition 10. A coherent lower prevision P with marginals
PX1

,PX2
is called an independent envelope when there is

some M⊆ ext(M(PX1
))⨉ext(M(PX2

)) such that P =
min{P ∶ P ∈M}.
The smallest independent envelope corresponds to the case
where M = ext(M(PX1

))⨉ext(M(PX2
)). It is called

the strong product of PX1
,PX2

, and we shall denote it
PX1

⊠PX2
. The strong product may not coincide with the

independent natural extension [22, Section 9.3.4]; more-
over, it is only guaranteed to exist when at least one of the
possibility spaces is finite [19]: otherwise, the two products
P1 ×P2 and P2 ×P1 of any marginal linear previsions may
not coincide.

To see that the strong product is not the only independent
envelope with given marginals, consider the following ex-
ample:
Example 3. Consider X1 ∶= {ω1,ω2},X2 ∶= {x1,x2} and let
PX1

,PX2
be determined by PX1

(ω1) ∶= 0.4, PX1(ω1) ∶=
0.5, PX2

(x1) ∶= 0.4, PX2(x1) ∶= 0.5. Let P be the co-
herent lower prevision on L(X1 × X2) given by P ∶=
min{P1,P2}, where P1,P2 are associated with the mass func-
tions (0.25,0.25,0.25,0.25) and (0.16,0.24,0.24,0.36)
on {(ω1,x1),(ω1,x2),(ω2,x1),(ω2,x2)}, respectively.

It follows from [22, Section 9.3.4] that P dominates the
strong product of PX1

,PX2
. Moreover, it is the lower

envelope of two factorising previsions, and as a conse-
quence [9, Section 4.3] it is an independent product of its
marginals, that coincide with PX1

,PX2
. To see that it does

not coincide with the strong product PX1
⊠PX2

, note that
P((ω1,x2)) = 0.24 > 0.2 = PX1

⊠PX2
((ω1,x2)). ◊

A similar example (involving zero lower probabilities) can
be found in [9, Example 3].

The independent natural extension and the strong product
are the two most important independent products in the
literature of imprecise probabilities: the first one, because
it corresponds to the most conservative product under the
notion of epistemic independence; and the second because
it is the one that models adequately the notion of strong
independence [5]. Indeed, if we want to give a sensitivity
analysis interpretation, we see that if P is a lower envelope
of precise models P that are conforming with X1-X2 in-
dependence then Proposition 4 implies that P must be an
independent envelope; and the smallest such envelope is
given by the strong product.

In [25, Theorem 28], we established that when X2 is finite
a coherent lower prevision P with marginals PX1

,PX2
is

dominated by the strong product if and only if it satisfies
the following condition:

P( f ) ≤ P(PX2( f ∣X1)) ∀ f ∈ L(X1×X2),PX2 ≥ PX2
, (5)

where PX2(⋅∣X1) is derived from PX2 using Eq. (4).

In particular, this property is satisfied by the independent
natural extension. However, it is not a sufficient condition
for independence, as we show next:
Example 4. Consider X1 ∶= {0,1} =∶ X2, and let P be the co-
herent lower prevision on L(X1 ×X2) given by P( f ) ∶=
min{ f(0,0)+ f(0,1)

2 ,
f(1,0)+ f(1,1)

2 ,
f(0,0)+ f(1,1)

2 }. Then the
marginals of P are PX1

( f ) = min{ f (0), f (1)},PX2(g) =
g(0)+g(1)

2 for every f ∈ L(X1),g ∈ L(X2). The strong
product of these marginals is given by PX1

⊠PX2( f ) =
min{ f(0,0)+ f(0,1)

2 ,
f(1,0)+ f(1,1)

2 } for every f ∈ L(X1×X2).
Moreover, it follows from [9, Proposition 25] that PX1

⊠PX2
is the only independent product of these marginals. Since
it dominates P, we deduce from [25, Theorem 28] that
P satisfies (5). However, they do not coincide, since
P({(0,1),(1,0)}) = 0 < 0.5 = (PX1

⊠PX2)((0,1),(1,0)),
and as a consequence P is not an independent product. ◊
Note also that in general being an independent product
is not sufficient for condition (5), since there exist inde-
pendent products that dominate the strong product; one
instance is given in Example 3.

Next we discuss another condition that has been linked with
independent products, as an attempt to give a behavioural
interpretation of the strong product. For every ω ∈ X1 and
f ∈ L(X1×X2), let us define

f ω ∶ X1×X2 → R(ω ′,x) ↦ f (ω,x).
Proposition 8. [25, Proposition 30] Let X1,X2 be finite
spaces, and let P be a coherent lower prevision on L(X1×X2). Then P is an independent envelope if and only if

P(g− f ) ≥ min
ω∈X1

P(g− f ω) ∀g, f ∈ L(X1×X2). (6)

The condition above can be regarded as a kind of dissocia-
tion between the marginal and conditional beliefs, and in
the case of linear previsions it can be written more simply
as P( f ) ≤ maxω∈X1 P( f ω) = maxω∈X1 PX2( f (ω, ⋅)) ∀ f ∈L(X1×X2). From Proposition 8 it follows that we can re-
gard the strong product PX1

⊠PX2
as the smallest coherent

lower prevision that satisfies (6).

Note however, not every coherent lower prevision that dom-
inates the strong product satisfies (6), as we can see from
the following example:
Example 5. Consider the spaces X1,X2 and the marginal
coherent lower previsions PX1

,PX2
from Example 3. By

[22, Example 9.3.4] the strong product PX1
⊠ PX2

of
PX1

,PX2
is given by PX1

⊠ PX2
= min{P1,P2,P3,P4},

where these are associated with the mass func-
tions (0.16,0.24,0.24,0.36),(0.25,0.25,0.25,0.25),(0.2,0.3,0.2,0.3) and (0.2,0.2,0.3,0.3) on{(ω1,x1),(ω1,x2),(ω2,x1),(ω2,x2)}, respectively.
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Consider the coherent lower prevision P =
min{P1,P2,0.5P3 + 0.5P4}, that obviously dominates the
strong product. To see that it does not satisfy (6), consider
the gambles g = (1,0,−9,−0.81), f = (0,0,1,−0.81),
where the vector is made up of the images of(ω1,x1),(ω1,x2),(ω2,x1),(ω2,x2), respectively. Then it
holds that:

(ω1,x1) (ω1,x2) (ω2,x1) (ω2,x2)
g− f 1 0 -10 0

g− f ω1 1 0 -9 -0.81
g− f ω2 0 0.81 -10 0

and from this we derive that P(g− f ) = −2.3,P(g− f ω1) =−2.293 and P(g− f ω2) = −2.2975. Thus, we see that P(g−
f ) <minω∈X1 P(g− f ω), so (6) does not hold. ◊
This is another way of showing that not every model domi-
nating the strong product of its marginals is an independent
envelope.

Condition (6) can be equivalently expressed in terms of
the set of almost-desirable gambles associated with the
coherent lower prevision P. More generally, when P is
induced by a set of desirable gamblesR, then the analogous
condition would be given by

g− f ω ∈ R ∀ω ∈ X1⇒ g− f ∈ R.
Note that this is not equivalent to Eq. (6), as we can tell
from the fact that it is not always satisfied by the strong
product:
Example 6. Let P be the uniform linear prevision on{ω1,ω2}×{x1,x2}, which is trivially the strong (and only)
product of its marginals. Consider the set of gamblesR ∶={ f ∶ P( f ) > 0}∪{ f ∶ P( f ) = 0, f (ω1,x2)+ f (ω2,x1) > 0}.
It is easy to check that R is a coherent set of desirable
gambles and that its associated coherent lower prevision
coincides with P.

Consider now the gambles f ,g given by:

(ω1,x1) (ω1,x2) (ω2,x1) (ω2,x2)
f -1 3 3 -1
g 1 2 1 0.

Then the gambles g− f ω1 ,g− f ω2 and g− f are given by:

(ω1,x1) (ω1,x2) (ω2,x1) (ω2,x2)
g− f ω1 2 -1 2 -3
g− f ω2 -2 3 -2 1

g-f 2 -1 -2 1

It follows that g− f ω1 ,g− f ω2 ∈ R but g− f does not. ◊
On the other hand, under some conditions the strong prod-
uct satisfies an analogous condition for sets of strictly de-
sirable gambles:

Proposition 9. Let P be a coherent lower prevision
on L(X1 ×X2), where X1,X2 are finite spaces, and let
PX1

,PX2
denote the marginals of P, respectively. If P =

PX1
⊠PX2

and PX1
(ω) > 0 for every ω ∈ X1, then it satis-

fies
g− f ω ∈ R ∀ω ∈ X1⇒ g− f ∈ R.

Proof. Consider gambles f ,g ∈ L(X1 ×X2) such that g−
f ω ∈ R for every ω ∈ X1, and let us define X ′

1 ∶= {ω ∈ X1 ∶
g− f ω ≱ 0}.
If X ′

1 = ∅, then g− f ω ≥ 0 for all ω , whence Iω(g− f ω) ≥
0 ∀ω and therefore g− f =∑ω Iω(g− f ω) ≥ 0. But it cannot
be g = f because in that case the inequality g−gω ≥ 0 for
every ω would imply that g is X -measurable and then
g = gω for all ω , a contradiction with the coherence ofR.

Next, if X ′
1 ≠ ∅, then given ω ∈ X ′

1 it must be P(g− f ω) >
0, whence there is some δω > 0 such that P(g− f ω) >
δω > 0. This means that for every PX1 ≥ PX1

and every
PX2 ≥PX2

it holds that (PX1 ×PX2)(g) ≥ (PX1 ×PX2)( f ω)+
δω = PX2( f (ω, ⋅))+δω . On the other hand, given ω ∉ X ′

1 ,
g− f ω ≥ 0, whence (PX1 ×PX2)(g) ≥ (PX1 ×PX2)( f ω) =
PX2( f (ω, ⋅)). We deduce that

(PX1 ×PX2)( f ) = ∑
ω∈X1,x∈X2

PX1(ω)PX2(x) f (ω,x)
≤ ∑

ω∈X ′
1

PX1(ω)(PX1 ×PX2(g)−δω)
+ ∑

ω∉X ′
1

PX1(ω)(PX1 ×PX2(g))
= (PX1 ×PX2)(g)− ∑

ω∈X ′
1

δω PX1(ω),
whence (PX1 × PX2)(g − f ) ≥ ∑ω∈X ′

1
δω PX1(ω) ≥∑ω∈X ′

1
δω PX1

(ω); from this P(g − f ) ≥∑ω∈X ′
1

δω PX1
(ω) > 0, and therefore g− f ∈ R.

To see that this does not always hold without the assumption
of positive lower probabilities in X1, consider the following
example:
Example 7. Let X1 ∶= {ω1,ω2},X ∶= {x1,x2} and let
PX1 ,PX2 be the linear previsions on L(X1),L(X2) associ-
ated with the mass functions PX1(ω1) = 1 = PX2(x1). Con-
sider the gambles f ,g given by

(ω1,x1) (ω1,x2) (ω2,x1) (ω2,x2)
g 1 2 2 2
f 1 1 0 4

We obtain

(ω1,x1) (ω1,x2) (ω2,x1) (ω2,x2)
g− f ω1 0 1 1 1
g− f ω2 1 -2 2 -2
g− f 0 1 2 -2
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Then g− f ω1 is strictly desirable because it is non-negative;
g− f ω2 is strictly desirable because (PX1 ×PX2)(g− f ω2) =(g− f ω2)(ω1,x1) = 1 > 0; and g− f is not strictly desirable
because (PX1 ×PX2)(g− f ) = 0 and it is not a non-negative
gamble. Hence, the product PX1 ×PX2 does not satisfy

g− f ω ∈ R ∀ω ∈ X1⇒ g− f ∈ R.◊
5 Conformity of Marginal and Conditional

Models

In the previous sections we have studied to which extent the
notion of conformity can be imposed together with a struc-
tural assessment of epistemic irrelevance or independence.
Next we study in more detail the properties of conformity,
without making any structural assumptions.

Let P be a coherent lower prevision on L(X1 ×X2), and
let P(⋅∣X1) be its conditional natural extension. It follows
from [22, Theorem 6.8.2] that P is coherent with P(⋅∣X1) if
and only if it is X1-conglomerable, and that this condition
holds trivially when X1 is finite.

Similarly to what we discussed in Section 3, given a coher-
ent lower prevision PX1

on L(X1) and a conditional lower
prevision P(⋅∣X1), we say that they are conforming when
there is a coherent lower prevision P on L(X1×X2) with
marginal PX1

and conditional natural extension P(⋅∣X1).
It is easy to see that not every marginal and conditional
models are conforming with a joint model P in the manner
depicted above: this follows from the fact that if P(x1) = 0
then the conditional lower prevision P(⋅∣x1) determined by
natural extension must be vacuous. In fact, with a similar
proof to that of Proposition 1, it is possible to show the
following:
Proposition 10. Let PX1

,P(⋅∣X1) be a marginal and
a conditional lower prevision with respective domainsL(X1),L(X1 ×X2). Then PX1

,P(⋅∣X1) are conforming if
and only if P(⋅∣x1) is vacuous whenever PX1

(x1) = 0.

Moreover, when PX1
and P(⋅∣X1) are conforming with

some joint model, they they may be conforming with more
than one. In the finite case, the smallest of these is deter-
mined by the notion of marginal extension.
Proposition 11. Assume X1 is finite, and let PX1

be a co-
herent lower prevision on L(X1) and P(⋅∣X1) a conditional
lower prevision on L(X1×X2). If there is some P conform-
ing with PX1

,P(⋅∣X1), then the smallest such model is given
by PX1

(P(⋅∣X1)).
Proof. It follows from [22, Section 6.7.2] that
PX1
(P(⋅∣X1)) is coherent with P(⋅∣X1) and has marginal

PX1
, so it only remains to show that it induces P(⋅∣X1) by

means of Eq. (3).

If PX1
(x1) = 0, then by Proposition 10 P(⋅∣x1) is vacu-

ous, whence by Eq. (3) it coincides with the conditional

natural extension E(⋅∣x1) of PX1
(P(⋅∣X1)). On the other

hand, if P(x1) > 0 then it follows from the coherence of
P(P(⋅∣X1)) and P(⋅∣X1) that P(⋅∣x1) is uniquely determined
by P( f ∣x1) ∶= sup{µ ∶P(I{x1}×X2

( f −µ)) ≥ 0}, and so it co-
incides with E(⋅∣x1).
Finally, note that if X1 is finite then any joint model P that
is conforming with PX1

,P(⋅∣X1) is in particular coherent
with P(⋅∣X1), and as a consequence it must dominate the
marginal extension PX1

(P(⋅∣X1)).
To see that the result may not hold when X1 is infinite, we
refer to Example 2.

In the precise case, the conditional natural extension
P(⋅∣X1) of a linear prevision is precise if and only if
P(x1) > 0 for every x1 ∈ X1, and then P = PX1(P(⋅∣X1)) if
and only if P is X1-disintegrable [11] (which holds trivially
when X1 is finite).

With respect to the two conditions we discussed in the
previous section, in general a marginal extension may not
satisfy Eq. (5). To see this, it suffices to consider a linear
prevision that is not the product of its marginals, as in the
following example:
Example 8. Consider X1 ∶= {ω1,ω2},X2 ∶= {x1,x2} and let
P be the linear prevision associated with the mass function
P({ω1,x2}) ∶= P({ω2,x1}) ∶= P({ω2,x2}) ∶= 1

3 . Since it is
a linear prevision then it is a marginal extension model.

Consider f ∶= −I{(ω1,x1),(ω2,x2)}. Then P( f ) = − 1
3 . Since

the marginal of P is given by PX1(ω1) = 1
3 ,PX1(ω2) = 2

3 ,
we obtain P(PX2( f )) =P(ω1)⋅(− 1

3)+P(ω2)⋅(− 2
3) = − 5

9 <
P( f ).◊
In fact, for a linear prevision P on a finite space X1×X2 it
can be checked that conditions (5) and (6) are each of them
equivalent to P being the product of its marginals [25].

When just one of the marginals is linear, condition (6) can
be used to characterise the equality between the marginal
extension and the strong product, as we show next:

Proposition 12. Consider finite spacesX1,X2, and let P be
a coherent lower prevision on L(X1×X2), with respective
marginals PX1

,PX2
. If PX2

is linear, then P satisfies (6) if
and only if P = PX1

(PX2(⋅∣X1)).
Proof. By [9, Proposition 25], when PX2 is linear there is
only one independent product of PX1

,PX2 : the marginal
extension PX1

(PX2(⋅∣X1)), which coincides thus with the
strong product.

Now, by Proposition 8, if P satisfies (6) then it is
an independent envelope, and as a consequence it
is an independent product. This means that P must
agree with PX1

(PX2(⋅∣X1)). Conversely, if P is equal to
PX1
(PX2(⋅∣X1)) then it also coincides with the strong prod-

uct, and by Proposition 8 it satisfies Eq. (6).
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On the other hand, if PX2 is linear then Eq. (5) holds if
and only if P ≤ PX1

(PX2(⋅∣X1)). This would mean that the
marginal extension satisfies Eq. (5), although it may not be
the only one to do so: for a counterexample, consider again
the coherent lower prevision P from Example 4.

We conclude this section by giving a property of the
marginal extension in terms of sets of desirable gambles:

Proposition 13. Assume X1 is finite, and let R be a co-
herent set of gambles on X1×X2, and let P,P(⋅∣X1) be the
lower previsions it induces by means of Eqs. (1), (2). Then
P ≥ P(P(⋅∣X1)), and they coincide only if R is negatively
additive, meaning that

(∀ω ∈ X1)I{ω}g ∉ R⇒ g ∉ R. (7)

Proof. The inequality P ≥ P(P(⋅∣X1)) holds because P
is coherent with the conditional lower prevision P(⋅∣X1)
(use for instance [18, Thm. 8]), and applying then [22,
Thm. 6.7.2].

Assume thatR is not negatively additive, so that Eq. (7) is
violated for some gamble f . Then it follows that P( f ) >
maxω∈X1 P( f ∣ω), whence for every P ≥ P it holds that

P(P( f ∣X1)) ≤ max
ω∈X1

P( f ∣ω) < P( f ),
whence P(P( f ∣X1)) ≤ P(P( f ∣X1)) < P( f ).
To see that negative additivity is not sufficient for P to be a
marginal extension, consider the following example:
Example 9. Let X1 ∶= {ω1,ω2},X2 ∶= {x1,x2} and let H ={A ⊆X1×X2 ∶ ∣A∣ = 2}. For any A ∈H, define PA as PA( f ) ∶=(∑z∈A f (z))/2, and let P be the lower envelope of the fam-
ily {PA ∶ A ∈ H}. Consider R its associated set of strictly
desirable gambles. To see that it is negatively additive, note
that its associated conditional lower prevision P(⋅∣X1) is
vacuous and that P,P(⋅∣X1) satisfy the condition

P( f ) ≤max{P( f ∣ω1),P( f ∣ω2)} ∀ f ; (8)

It is not difficult to show that Eq. (8) is equivalent to the
negative additivity ofR.

However, if we consider the gamble f given by f (ω1,x1) =
1, f (ω1,x2) = 2, f (ω2,x1) = 3, f (ω2,x2) = 4, we obtain that

P( f ) = 1.5 > 1 = P(P( f ∣X1))
and as a consequence P is not a marginal extension. ◊
A slightly related result can be found in [24, Proposi-
tion 13]: it is shown there that negative additivity implies
the notion of temporal consistency between a coherent set
of gamblesR and its associated set of conditional beliefs,
when the setR is defined by means of marginal extension.

6 Conclusions

The results in this paper show that the notion of conformity
clashes (except in the vacuous case) with the existence of
zero lower probabilities, which appear quite often within
the theory of imprecise probabilities, and which have been
the object or quite some discussion (see for instance [22,
Section 6.10], [4]); note moreover that within our frame-
work we obtain zero lower probabilities as soon as the
conditioning space is uncountable.

One possible alternative that may help to deal better with
this issue would be to use a different updating rule, such
as regular extension, that produces more informative infer-
ences and that in particular does not imply that the marginal
lower previsions are vacuous as soon as one element has
lower probability zero. The study of conformity under this
scenario is left as an open problem.

If we restrict our attention to finite spaces, then it is easy
to see that a structural assessment of conformity gives rise
to the marginal extension, and in case it is combined with
assessments of epistemic irrelevance and independence it
produces the notions of irrelevant and independent natural
extension. This has led us to study in more detail the prop-
erties of independent products, and more particularly those
that are lower envelopes of factorising linear previsions: the
independent envelopes. This allows us to give our notion
a sensitivity analysis interpretation that usually gets lost
when we move from the unconditional to the conditional
case. We have considered two properties that imply that a
lower prevision is dominated, and dominates, the strong
product, respectively, and have shown that under some con-
ditions they are satisfied by the marginal extension, too.

There are several lines of research that we can derive from
the results in this paper: on the one hand, we should study
the conformity of more than two (marginal or conditional)
models. This has been studied from the point of view of
coherence in [17, Section 8.2], where it was shown that
Walley’s weak coherence is quite related to the works in
[2, 13] and also to the notion of satisfiability [14, 15].

Note also that in our treatment of epistemic irrelevance
and independence we have only considered conditional
information on the singletons; it would be interesting to
consider a more general setting where we condition on
arbitrary subsets of the possibility spaces X1,X2.

On the other hand, it would also be interesting to make a
similar study using the more general language of sets of
desirable gambles, that may help overcome some of the
issues related to conditioning on sets of (lower) probability
zero. We expect that links with the irrelevant and the inde-
pendent natural extension for sets of gambles considered in
[6, 8, 20] should arise in this context.

Conformity and independence with coherent lower previsions

205



Acknowledgments

The authors acknowledge financial support from
project TIN2014-59543-P and from the Swiss NSF
n. 200021_146606 / 1. We would like also to thank
especially one of the reviewers for pointing out a mistake
in a proof in the first version of this paper.

References
[1] T. Augustin, F. Coolen, G. de Cooman and M. Troffaes,

editors. Introduction to Imprecise Probabilities. Wiley,
2014.

[2] G. Boole. The Laws of Thought. Dover Publications, New
York, 1847, reprint 1961.

[3] G. Choquet. Theory of capacities. Annales de l’Institut
Fourier, 5:131–295, 1953–1954.

[4] G. Coletti and R. Scozzafava. Probabilistic logic in a coher-
ent setting. Kluwer, 2002.

[5] I. Couso, S. Moral and P. Walley. A survey of concepts of
independence for imprecise probabilities. Risk Decision and
Policy, 5:165–181, 2000.

[6] J. de Bock and G. de Cooman. Credal networks under
epistemic irrelevance: The sets of desirable gambles ap-
proach. International Journal of Approximate Reasoning,
56(B):178–207, 2015.

[7] L. M. de Campos and S. Moral. Independence concepts
for convex sets of probabilities. In Proceedings of 11th.
Conference on Uncertainty in Artificial Intelligence, pages
108–115, San Mateo (EEUU), 1995.

[8] G. de Cooman and E. Miranda. Irrelevance and indepen-
dence for sets of desirable gambles. Journal of Artificial
Intelligence Research, 45:601–640, 2012.

[9] G. de Cooman, E. Miranda and M. Zaffalon. Independent
natural extension. Artificial Intelligence, 175(12–13):1911–
1950, 2011.

[10] B. de Finetti. Theory of Probability: A Critical Introductory
Treatment. John Wiley & Sons, Chichester, 1974–1975.

[11] L. E. Dubins. Finitely additive conditional probabilities, con-
glomerability and disintegrations. The Annals of Probability,
3:88–99, 1975.

[12] D. Dubois and H. Prade. Possibility Theory. Plenum Press,
New York, 1988.

[13] M. Fréchet. Sur les tableaux de correlation dont les marges
sont données. Ann. Univ. Lyon, Section A, Series 3, 14:53–
77, 1951.

[14] P. Hansen, B. Jaumard, M. Poggi de Aragão, F. Chauny and
S. Perron. Probabilistic satisfability with imprecise proba-
bilities. International Journal of Approximate Reasoning,
24(2–3):171–189, 2000.

[15] B. Jaumard, H. Hansen, and M. Poggi de Aragão. Column
generation methods for probabilistic logic. ORSA Journal
on Computing, 3:135–148, 1991.

[16] E. Miranda. Updating coherent previsions on finite spaces.
Fuzzy Sets and Systems, 160(9):1286–1407, 2009.

[17] E. Miranda and M. Zaffalon. Coherence graphs. Artificial
Intelligence, 173(1):104–144, 2009.

[18] E. Miranda and M. Zaffalon. Notes on desirability and
conditional lower previsions. Annals of Mathematics and
Artificial Intelligence, 60(3-4):251–309, 2010.

[19] E. Miranda and M. Zaffalon. Independent products in infi-
nite spaces. Journal of Mathematical Analysis and Applica-
tions, 425(1):460–488, 2015.

[20] S. Moral. Epistemic irrelevance on sets of desirable gambles.
Annals of Mathematics and Artificial Intelligence, 45:197–
214, 2005.

[21] G. Shafer. A Mathematical Theory of Evidence. Princeton
University Press, Princeton, NJ, 1976.

[22] P. Walley. Statistical Reasoning with Imprecise Probabilities.
Chapman and Hall, London, 1991.

[23] P. M. Williams. Notes on conditional previsions. Techni-
cal report, School of Mathematical and Physical Science,
University of Sussex, UK, 1975.

[24] M. Zaffalon and E. Miranda. Probability and time. Artificial
Intelligence, 198(1):1–51, 2013.

[25] M. Zaffalon and E. Miranda. Desirability and the birth of
incomplete preferences. 2015. Submitted for publication.

E. Miranda & M. Zaffalon

206



Comonotone Lower Probabilities
for Bivariate and Discrete Structures

Ignacio Montes and Sebastien Destercke
Technologic University of Compiegne, France

ignacio.montes@hds.utc.fr sebastien.destercke@hds.utc.fr

Abstract
Two random variables are called comonotone when
there is an increasing relation between them, in the
sense that when one of them increases (decreases), the
other one also increases (decreases). This notion has
been widely investigated in probability theory, and is
related to the theory of copulas. This contribution
studies the notion of comonotonicity in an imprecise
setting. We define comonotone lower probabilities
and investigate its characterizations. Also, we pro-
vide some sufficient conditions allowing to define a
comonotone belief function with fixed marginals and
characterize comonotone bivariate p-boxes.

Keywords. Comonotonicity, copulas, lower probabil-
ities, belief functions, p-boxes.

1 Introduction

Random variables are usual tools in probability the-
ory when modeling uncertainty. When dealing with
two random variables, Sklar’s Theorem [10] tells us
that the joint distribution function can be expressed
in terms of the marginals by means of a function
called copula [7]. Thus, the copula gathers the infor-
mation concerning the possible dependence between
the random variables. When there is no dependence
between them, we talk about independent random
variables, and the copula associated with those vari-
ables is the product. The extreme cases of dependence
between variables are related to situations in which
either there is an increasing or decreasing relation be-
tween them. In the former case, this means that when
the value of one variable increases the other variable
also increases, while in the second scenario when the
value of one variable increases, the value of the other
variable decreases. They are referred as comonotone
and countermonotone random variables, respectively,
and the associated copulas are the minimum and the
Łukasiewicz operator.

In this work we shall assume the existence of an im-
precisely known probability and we shall use coherent
lower probabilities to model it. Lower probabilities are
one of the models within the theory of Imprecise Prob-
abilities introduced by Walley [12], as well as belief
functions [9], possibilities [3, 13] or uni- and bivari-
ate p-boxes [11, 8], all of them particular families of
coherent lower probabilities.

The aim of this paper is to extend the notion of comono-
tonicity to coherent lower probabilities and to investi-
gate the particular cases in which the lower probability
is a belief function or is associated with a bivariate
p-box.

After introducing some preliminary notions related
to lower probabilities and copulas in Section 2, Sec-
tion 3 investigates the definition and characterizations
of comonotonicity for coherent lower probabilities. We
shall see that, in contrast with the precise framework,
not any two marginal coherent lower probabilities al-
low us to define a joint comonotone coherent lower
probability. Thus, in Section 4 we investigate some
conditions under which this property is satisfied for
the particular case of belief functions. In Section 5 we
consider bivariate p-boxes and we characterize the con-
ditions they must satisfy to ensure that its associated
lower probability is comonotone.

2 Preliminaries

In this section we introduce some preliminary notions
that will be useful throughout the paper. First of
all we introduce lower probabilities [12], which are
very useful to model situations in which a probability
is imprecisely defined. Other model related to lower
probabilities is that of p-boxes [4], which are used to
model the imprecise knowledge to cumulative distri-
bution functions. Univariate p-boxes are connected
to belief functions, which play a key role in Shafer’s
Theory of Evidence [9]. Finally, we also introduce
possibility measures [3], which can be embedded both
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into the Theory of Evidence and the Fuzzy Set Theory.

Secondly we introduce the main notions of the Theory
of Copulas [7] and we explain the problem we are
dealing in this paper.

2.1 Lower Probabilities

A lower probability [12] is a function P : K → [0, 1],
where K ⊆ P(Ω). P (A) can be interpreted as the
subject’s supremum acceptable buying price for the
bet A, in the sense that we obtain 1 if A happens and
0 otherwise. Any lower probability defines, using a
conjugacy relation, an upper probability P : Kc → [0, 1],
where Kc = {Ac : A ∈ K}, by:

P (A) = 1− P (Ac) ∀A ∈ Kc.

Any lower probability defines a set of probabilities,
usually called credal set, given by:

M(P ) = {P prob. | P (A) ≤ P (A) ≤ P (A)}.

Some consistency requirements are usually imposed on
lower probabilities. The most usual one is coherence:
a lower probability P is coherent when

P (A) = min
P∈M(P )

P (A) ∀A ⊆ Ω,

It is well-known that any coherent lower probability
satisfies P (A) ≤ P (A) whenever A ∈ K∩Kc. Further-
more, any coherent lower probability defined on K can
be extended to a greater domain K ⊆ K′ by using the
natural extension [12]:

E(A) = min{P (A) | P ∈M(P )}, ∀A ∈ K′.

In this work we consider lower probabilities defined
on finite and ordered possibility spaces, denoted by
X ,Y ⊂ R, called marginal lower probabilities, or de-
fined on the cartesian product of two finite and ordered
sets, denoted by X × Y ⊆ R2, called joint lower prob-
abilities, where both X and Y are finite. In particular,
if PX,Y is a joint lower probability defined on X × Y,
it defines two marginals on X and Y by:

PX(A) = PX,Y(A× Y), ∀A ⊆ X .
PY(B) = PX,Y(X ×B), ∀B ⊆ Y.

Uni- and bivariate p-boxes are specific instances of
lower probabilities, defined as follows.
Definition 1. A discrete univariate p-box defined on
the ordered1 finite set X = {x1, . . . , xn} is a pair of
increasing functions F , F : X → [0, 1] such that F ≤ F
and F (xn) = F (xn) = 1.

1We assume the elements in X are indexed according to this
order, that is, x1 < . . . < xn.

A discrete bivariate p-box defined on the Cartesian
product of finite ordered2 sets X ×Y = {x1, . . . , xn}×
{y1, . . . , ym} is a pair of component-wise increasing
functions3 F , F : X ×Y → [0, 1] such that F ≤ F and
F (xn, ym) = F (xn, ym) = 1.

In what remains, and for the sake of simplicity, we
avoid the term “discrete” so we will speak about uni-
and bivariate p-boxes.
Remark 1. Note that in the definition of univari-
ate p-box we do not require F , F to satisfy F (x1) =
F (x1) = 0. The reason is that we interpret (F , F ) as
the imprecise observation of a cumulative distribution
function F . However, cumulative distribution func-
tions F defined on a finite space X = {x1, . . . , xn}
satisfy the properties: F is increasing and F (xn) = 1.
Nevertheless, as soon as x1 has strictly positive proba-
bility, F (x1) will be strictly positive. For this reason
the property F (x1) = F (x1) = 0 is not required for
univariate p-boxes.

With a similar reasoning we can justify why
F (x1, y1) = F (x1, y1) = 0 is not required for bivariate
p-boxes (F , F ).

Univariate [11] and bivariate [8] p-boxes can be used
to model the imprecise information about (univariate
or bivariate) cumulative distribution functions.
Definition 2. For any x ∈ X = {x1, . . . , xn} and
y ∈ Y = {y1, . . . , ym}, consider the following notation:

Ax = [x1, x], and Ax,y = Ax ×Ay.

A univariate p-box defines a coherent lower probability
on the domain K1 = {Ax, A

c
x : x ∈ X} by:

P (Ax) = F (x) and P (Ac
x) = 1− F (x).

A bivariate p-box defines a lower probability on the
domain K2 = {Ax,y, A

c
x,y : (x, y) ∈ X × Y} by:

P (Ax,y) = F (x, y) and P (Ac
x,y) = 1− F (x, y). (1)

Belief functions are another particular case of lower
probabilities.
Definition 3. A lower probability P on P(Ω) is called
n-monotone if and only if:

P (∪p
i=1Ai) ≥

∑

∅6=I⊆{1,...,p}
(−1)|I|+1P (∩i∈IAi)

for any 2 ≤ p ≤ n and any A1, . . . , Ap ⊆ Ω. A
lower probability that is n-monotone for any n is called

2Again, we assume the elements in X and Y are indexed
according to this order: x1 < . . . < xn and y1 < . . . < ym.

3A function F : X × Y → R is component-wise increasing
when F (x, yi) ≤ F (x, yj) for any x ∈ X and i, j ∈ {1, . . . , m}
such that i < j and F (xi, y) ≤ F (xj , y) for any y ∈ Y and
i, j ∈ {1, . . . , n} such that i < j.
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completely monotone or belief function, and its upper
probability is called plausibility. Belief and plausibility
functions are usually denoted by Bel and Pl, and they
are coherent lower and upper probabilities.

Using the so-called Möbius inverse, they define a mass
distribution [3] in the following way:

m(A) =
∑

E⊆A

(−1)|A\E|Bel(E) ∀A ⊆ Ω. (2)

A mass distribution m : P(Ω)→ [0, 1] satisfies m(∅) =
0 and

∑
E⊆Ωm(E) = 1. Conversely, any mass function

defines a belief and plausibility functions

Bel(A) =
∑

E⊆A m(E) ∀A ⊆ Ω,
Pl(A) =

∑
E:E∩A6=∅m(E) ∀A ⊆ Ω.

The positivity of the mass m is characteristic of belief
functions, in the sense that Eq. (2) is positive if and
only if it is applied to a completely monotone lower
probability.
Definition 4. [9] Given a belief function Bel with
mass distribution m, the elements E ⊆ Ω with positive
mass, m(E) > 0, are called focal elements, and we
will denote by F the set of focal elements. The union
of all the focal sets is called the core of Bel, and it is
denoted by Core(Bel).

As for lower probabilities, we shall also use the termi-
nology of marginal and joint to refer to belief functions
defined on X ,Y and X × Y, respectively. Any joint
belief function Bel defined on X × Y with mass distri-
bution m defines two marginal belief functions BelX
and BelY on X and Y, respectively, with associated
mass distributions mX and mY:

mX(A) =
∑

E:E↓X =A

m(E) and mY(B) =
∑

E:E↓Y =B

m(E)

for any A ⊆ X and B ⊆ Y, and where E↓X and
E↓X denote the projection of E on spaces X and
Y. Two important models to which we will devote
particular attention and that induce belief functions
are univariate p-boxes and possibility measures.

From now on, given E with a finite number of elements
we will use the following notation:

e = minE, e = maxE. (3)

Kriegler and Held [5] showed that the lower probability
induced by a p-box in the following way:

P (A) = inf{P (A) : F ≤ FP ≤ F}, (4)

where FP is the cumulative distribution function as-
sociated with P , is indeed a belief function. Such

belief function can be computed as Figure 1 shows.
Thus, from now on we shall use the term focal ele-
ments of a p-box to refer to the focal elements of the
belief function associated with a p-box using Eq. (4).
According to [5], the focal elements of a p-box, named
E1, . . . , En, can be ordered such that ei ≤ ei+1 and
ei ≤ ei+1. When dealing with focal sets of p-boxes,
we will consider that they are indexed according to
this ordering. Furthermore, any joint belief function
Bel defines a bivariate p-box in the following way:

F (x, y) = inf{FP (x, y) : P ∈M(Bel)} = Bel(Ax,y);
F (x, y) = sup{FP (x, y) : P ∈M(BelY)} = Pl(Ax,y);

whereas any marginal belief function Bel defines an
univariate p-box:

FX(x) = inf{FP (x) : P ∈M(BelX)} = BelX(Ax);
FX(x) = sup{FP (x) : P ∈M(BelX)} = PlX(Ax).

A possibility measure constitutes another important
specific case of plausibility function.
Definition 5. A possibility measure Π : P(Ω) →
[0, 1] is a supremum-preserving map: Π(∪i∈IAi) =
supi∈I Π(Ai) for any I, Ai ⊆ Ω.

The conjugate of a possibility, N(A) = 1 − Π(Ac)
∀A ⊆ Ω, is a belief function. Its focal elements are
nested: if E1 and E2 are focal elements, then either
E1 ⊆ E2 or E2 ⊆ E1. Since we are dealing with finite
referentials, there are only a finite number of focal
sets E1, . . . , En, and for possibility measures we can
assume they are indexed such that E1 ⊆ . . . ⊆ En.

2.2 Sklar’s Theorem

Sklar’s Theorem is an important tool in probability
theory that allows a joint cumulative distribution func-
tion (cdf for short) to be expressed in terms of the
marginals by means of a function called copula.
Definition 6. [7] A copula is a commutative binary
operator C : [0, 1]2 → [0, 1] satisfying:

1. C(x, 0) = 0, C(x, 1) = x ∀x ∈ [0, 1].

2. C(x1, y1) + C(x2, y2) ≥ C(x2, y1) + C(x1, y2)
∀x1, x2, y1, y2 ∈ [0, 1] such that x1 ≤ x2, y1 ≤ y2.

Some classical copulas are the product copula,
Π(x, y) = x·y, the minimum,M(x, y) = min(x, y), and
the Łukasiewicz operator W (x, y) = max(x+ y− 1, 0).
The minimum and Łukasiewicz operators are also
called the Fréchet-Hoeffding bounds because any cop-
ula satisfies the so-called Fréchet-Hoeffding inequality
M(x, y) ≤ C(x, y) ≤W (x, y). Copulas play an impor-
tant roll in the famous Sklar’s Theorem.
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Figure 1: P-box (left) and its associated belief function (right), with focal elements E1 = {x1, x2, x3}, E2 =
{x2, x3}, E3 = {x2, x3, x4, x5}, E4 = {x4, x5} and E5 = {x4, x5, x6}.

Theorem 1. [10][Sklar’s Theorem] Let FX,Y be a joint
cdf with marginals FX and FY. Then, there exists a
copula C such that
FX,Y(x, y) = C(FX(x), FY(y)) ∀(x, y) ∈ [0, 1]2. (5)

Conversely, given two marginal cdfs FX and FY and a
copula C, they define a joint cdf FX,Y using Eq. (5).

Possibly the most usual application of Sklar’s Theorem
concerns independent random variables. Two variables
X and Y are independent if FX,Y(x, y) = FX(x)·FY(y),
that is, when the copula linking the marginals is
the product. Also very important are the cases in
which the random variables are coupled by the Fréchet-
Hoeffding bounds. Random variables coupled by the
minimum (resp., Łukasiewicz operator) are called
comonotone (resp., countermonotone). Comonotone
random variables can be characterized in many differ-
ent ways. For this aim, we first introduce the following
notion.
Definition 7. A subset S of R2 is increasing when
for any (x, y), (u, v) ∈ S, x < u implies y ≤ v, and
y < v implies x ≤ u.

Then, a pair of random variables (X,Y ) is comonotone
if it satisfies one, and therefore all, of the following
equivalent conditions:

• The copula that links the marginals is the mini-
mum: FX,Y(x, y) = min(FX(x), FY(y)) ∀(x, y).

• The support of (X,Y ) is an increasing set on R2.

• ∀(x, y) ∈ R2, either P (X ≤ x, Y > y) = 0 or
P (X > x, Y ≤ y) = 0.

Remark 2. The notion of comonotonicity can also
be defined for discrete probabilities PX,Y, just by sub-
stituting the support of (X,Y ) by the support of PX,Y.

For example, consider a finite Ω where all its elements
have positive probability. Consider the random vari-
ables X,Y defined by:

ω ∈ Ω1 ⊂ Ω ω ∈ Ωc
1 ⊂ Ω

X 1 2
Y 0 3

Then, the support of (X,Y ) is given by {(1, 0), (2, 3)},
which is an increasing subset of R2 and therefore
(X,Y ) is comonotone. In this case, we can also con-
sider the support of P(X,Y ), which are the elements
(x, y) with positive possibility. In this case, the support
of P(X,Y ) coincides with the support of (X,Y ) and
therefore P(X,Y ) is comonotone.

When we have imprecise information about the joint or
the marginal cdfs or about the copula, Sklar’s Theorem
cannot be applied. The next Theorem adapts Sklar’s
Theorem to the imprecise setting, using p-boxes, both
uni- and bivariate, and sets of copulas.
Theorem 2. [6][Imprecise Sklar’s Theorem]

1. Given two univariate p-boxes (FX, FX) and
(FY, FY) and a set of copulas C, consider:

F (x, y) = infC∈C C(FX(x), FY(y)) and
F (x, y) = supC∈C C(FX(x), FY(y)).

Then, they define a bivariate p-box (F , F ) whose
associated lower probability is coherent.

2. Given a bivariate p-box (F , F ), it could not be
possible to express it in terms of the univariate
p-boxes and a set of copulas, even when the lower
probability associated with (F , F ) is coherent.

In the framework of imprecise probabilities, the notion
of independence has been widely investigated [1, 2].
However, those satisfying the factorizing property have
the same associated bivariate p-box, and it is obtained
by applying the product copula to the marginals p-
boxes [6, Prop. 6]:

F (x, y) = FX(x) ·FY(y) and F (x, y) = FX(x) ·FY(y)

for any x, y. The question now is: what is the mean-
ing of comonotonicity in the imprecise probability
setting? As far as we know, this remains unexplored.
Thus, the aim of this paper is to define the notion
of comonotonicity when dealing with coherent lower
probabilities.
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3 Comonotone Lower Probabilities

We have seen that comonotonicity in the precise frame-
work can be expressed in three equivalent ways. Now,
we shall try to investigate to what extent these condi-
tions, or similar ones, also hold in the case of coherent
lower probabilities.

In our framework, we consider a coherent lower proba-
bility P defined on the power set of X ×Y . We assume
that P models the imprecise information about a joint
probability PX,Y. The question is: how can we model
the additional information that PX,Y is comonotone?
Definition 8. A lower probability P defined on
P(X × Y) is called comonotone when any P ∈M(P )
is comonotone.

This is a straightforward definition, since if P models
the imprecise information about a comonotone proba-
bility PX,Y, all the probabilities compatible with the
lower probability should be comonotone.
Example 1. Consider the lower probability P defined
on {0, 1} × {1, 2} such that:

P ({(1, 2)}) = α ∈ (0, 0′5), P ({(0, 1)}) = β ∈ (0, 0′5)
P ({(0, 1), (0, 2), (1, 2)}) = 1,
P ({(0, 1), (0, 2), (1, 2), (1, 1)}) = 1,
P (A) = 0 otherwise.

This lower probability is coherent and its credal set is
formed by all the convex combinations of the following
precise probabilities:

{(0, 1)} {(0, 2)} {(1, 2)}
P1 β 1− α− β α
P2 β 0 1− β
P3 1− α 0 α

Then, the support of any P ∈ M(P ) is included in
{(0, 1), (0, 2), (1, 2)}, that is an increasing set, and
therefore all the probabilities inM(P ) are comonotone,
and then also is P .

We now investigate how comonotone coherent lower
probabilities can be equivalently expressed. We first
express it by means of sets {X > x, Y ≤ y} and
{X ≤ x, Y > y}.
Theorem 3. A coherent lower probability P defined
on P(X×Y) is comonotone if and only if any ∀(x, y) ∈
X × Y either

P ({(u, v) : u ≤ x, v > y}) = 0 or
P ({(u, v) : u > x, v ≤ y}) = 0.

This theorem shows that the characterization of
comonotone random variables in terms of event prob-
abilities also holds in the imprecise case. Now, we are

going to see that, if we define the support supp(P ) of
a lower probability P by:

supp(P ) =
⋃

P∈M(P )

supp(P ),

its comonotonocity can also be equivalently expressed
in terms of the increasingness of supp(P ).
Theorem 4. A coherent lower probability P defined
on P(X × Y) is comonotone if and only if its support
supp(P ) is an increasing set.

Therefore, this second equivalent expression also holds
for lower probabilities. Now, it only remains to check
whether or not the comonotonicity of lower probabili-
ties is related to the copula that links the marginals.
The next result shows one implication.
Theorem 5. Let P be a coherent comonotone lower
probability defined on P(X × Y). If (F , F ), (FX, FX)
and (FY, FY) denote the bivariate and the marginal
univariate p-boxes, respectively, then for any (x, y):

F (x, y) = min(FX(x), FY(y)) and
F (x, y) = min(FX(x), FY(y)).

The next example shows that, unfortunately, the con-
verse implication does not hold in general.
Example 2. Consider the joint coherent lower prob-
ability P defined on {1, 2}2 by:

P ({(1, 1), (1, 2), (2, 2)}) = α > 0,
P ({(1, 1), (2, 1), (2, 2)}) = 1− α > 0,
P ({(1, 1), (1, 2), (2, 1), (2, 2)}) = 1,
P (A) = 0 otherwise.

Then, regardless of α, F = I{(x,y):x,y≥2} and F =
I{(x,y):x,y≥1}. Furthermore:

FX(x) = FY(x) = I{x≥2}(x) and
FX(x) = FY(x) = I{x≥1}(x).

Then:
F (x, y) = min(FX(x), FY(y)) and
F (x, y) = min(FX(x), FY(y)).

However, P is not comonotone because the support
of P contains the elements (1, 2) and (2, 1), and this
contradicts Theorem 4.

Thus, going from a precise to an imprecise setting,
comonotonicity can only be characterized by two equiv-
alent ways: by means of the increasingness of the
support or by means of the upper probability of the
adequate sets. Indeed, the bivariate p-box of a comono-
tone lower probability is the minimum of the marginals,
but the minimum of two marginal p-boxes will not
necessarily generate a comonotone lower probabilities.
Figure 2 summarizes the conditions we have seen along
this section.
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Comonotone lower probabilities

supp(P ) is an
increasing set

∀(x, y), either
P ({(u, v) : u > x, v ≤ y}) = 0 or
P ({(u, v) : u ≤ x, v > y}) = 0.

F (x, y) = min(F X(x), F Y(y))
F (x, y) = min(F X(x), F Y(y)).

Any P ∈ M(P )
is comonotone.
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Figure 2: Summary of the conditions for joint comono-
tone lower probabilities.

4 Comonotone Belief Functions

We now focus on the comonotonicity of belief func-
tions. In this case we have to note that supp(Bel)
coincides with Core(Bel), and therefore Theorem 4
can be directly adapted.

Corollary 1. A belief function Bel defined on P(X ×
Y) is comonotone if and only if Core(Bel) is an in-
creasing set.

We may think that the converse of Theorem 5 could
hold when dealing with belief functions. However,
this is not the case, since the lower probability given
in Example 2 is in fact a belief function with fo-
cal elements E1 = {(1, 1), (1, 2), (2, 2)} and E2 =
{(1, 1), (2, 1), (2, 2)} with m(E1) = α and m(E2) =
1− α, respectively.
Although Section 3 characterized comonotone lower
probabilities, did not explore important questions:
when and how can we build a comonotone lower prob-
ability P from marginals PX, PX? These are the
questions we address in this section, for the specific
case of belief functions.

Note that those questions can always be answered
positively in the precise framework, as it is always
possible to define a joint comonotone probability from
two marginal probabilities PX and PY, by simply defin-
ing FX,Y as the minimum of the marginals and then
considering the associated probability. Unfortunately,
not every marginal lower probabilities allow us to de-
fine a comonotone lower probability with the given
marginals, even when the lower probabilities are belief
functions, as the next example shows.

Example 3. Let BelX and BelY be the marginal belief
functions, defined over X = {1, 2, 3} and Y = {1, 2}

with mass distributions

mX({1, 2}) = 0.7, mX({1, 2, 3}) = 0.3;
mY({1}) = 0.3, mY({2}) = 0.7.

Let us assume that there is a comonotone joint belief
function Bel whose marginals are the belief functions
BelX,BelY induced by mX, mY. If this is the case,
using Theorem 5, the bivariate p-box induced by Bel is
the minimum of the marginals FX , FX and FY , FY .
Then:

F (1, 2) = min(FX(1), FY(2)) = 1.

This implies that any focal set E of Bel satis-
fies E ∩ {(1, 1), (1, 2)} 6= ∅ because F (1, 2) =
Pl({(1, 1), (1, 2)}). Furthermore, (1, 2) ∈ Core(Bel),
because:

Pl({(1, 1)}) = F (1, 1) = min(FX(1), FY(1))
= 0.3 < 1 = F (1, 2),

which means that there is a focal element E such that
(1, 2) ∈ E and (1, 1) /∈ E. Now, since Bel is comono-
tone, Core(Bel) is increasing by Corollary 1, and then
(2, 1) /∈ Core(Bel), hence there is no focal element E
such that (2, 1) ∈ E. Yet, we have

F (2, 1) = Bel({(1, 1), (2, 1)}) = 0.3,

which implies that there is a focal set E such that
E ⊆ {(1, 1), (2, 1)}. Since (2, 1) /∈ E, E = {(1, 1)},
what implies that Bel({(1, 1)}) > 0. However, if Bel
is comonotone, it follows that

Bel({(1, 1)}) = F(1, 1) = min(FX(1),FY(1)) = 0,

a contradiction showing that there are no comonotone
belief functions with marginals BelX,BelY.

This shows that our problem is trickier to answer in the
imprecise setting. Below we provide some situations
under which a joint comonotone belief function exists
with given marginals.

The first case we investigate is when the marginals are
possibility measures. Before introducing the main
result, note that for any two possibilities having
A1, . . . , Am and B1, . . . , B` as focal elements, we can
always duplicate those elements to build an equivalent
mass function (in terms of induced belief function)
with focal elements C1, . . . , Cn and D1, . . . , Dn such
that

• Ci ⊆ Ci+1 and Di ⊆ Di+1 for any i = 1, . . . , n−1.

• Ci ∈ {A1, . . . , Am} and Di ∈ {B1, . . . , Bl} for
any i ∈ {1, . . . , n}.
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• mX(Ci) = mY(Di).

The next example illustrates this procedure.
Example 4. Consider the possibility measures with
the following focal sets:

A1 = {2}, A2 = {1, 2}, A3 = {1, 2, 3},
B1 = {1, 2}, B2 = {1, 2, 3, 4},

with the following masses:

mX(A1) = 0.3, mX(A2) = 0.5, mX(A3) = 0.2.
mY(B1) = 0.5, mY(B2) = 0.5.

Now, we rewrite the focal sets in the following way

A1 A2 A2 A3
B1 B1 B2 B2

C1 C2 C3 C4
D1 D2 D3 D4

m 0.3 0.2 0.3 0.2.

We can therefore assume, without loss of generality,
that any two possibilities have the same number of
focal sets and that their masses coincide.
Proposition 1. Given two marginal possibility mea-
sures, there exists a joint comonotone possibility whose
marginals are the original possibility measures.

This result gives a constructive method for building
the joint comonotone possibility. If A1 ⊆ . . . ⊆ An

and B1 ⊆ . . . ⊆ Bn denotes the focal elements of mX
and mY such that mX(Ai) = mY(Bi) for i = 1, . . . , n.
Using the notation of Eq. (3), Algorithm 1 shows
how to define the focal elements and mass function
associated with the joint comonotone possibility.

The next example shows how to apply this procedure.
Example 5. Consider the possibility measures of Ex-
ample 4. We define the following focal sets for the
joint comonotone possibility:

E1 = {(2, 1), (2, 2)}, E2 = {(1, 1), (2, 1), (2, 2)},
E3 = {(1, 1), (2, 1), (2, 2), (2, 3), (2, 4)},
E4 = {(1, 1), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4)},

and the masses are:

E1 E2 E3 E4
m 0.3 0.2 0.3 0.2

Let us now look at the case where the focal elements
A1, . . . , Am and B1, . . . , B` of the marginal belief func-
tions BelX and BelY can be ordered such that, follow-
ing notation of Eq. (3), ai ≤ ai+1, ai ≤ ai+1 and
bj ≤ bj+1, bj ≤ bj+1 for any i = 1, . . . ,m − 1 and
j = 1, . . . , ` and are intervals, in the sense that any

Algorithm 1 Procedure defining focal elements of the
joint comonotone possibility

1: for i = 2, . . . , n do

Ii = {(x, bi) : x ∈ [ai, ai−1]} ∪ {(ai−1, y) : y ∈ [bi, bi−1}
∪{(c, bi−1) : x ∈ [ai−1, ai]} ∪ {(ai, y) : y ∈ [bi−1, bi]}

2: end for
3: Define

G1 = {(x, b1) : x ∈ [a1, a1]} ∪ {(a1, y) : y ∈ [b1, bi−1]}

4: for i=2,. . . ,n do

Gi = Ii ∪ Gi−1

5: end for
6: for i=1,. . . ,n do

Fi = Gi ∩ (Ai × R) ∩ (R×Bi)
m(Fi) = mX(Ai) = mY(Bi)

7: end for

Ai, Bj contains all elements in X ,Y between ai, ai

and bj , bj , respectively. Similarly to focal elements of
possibility distributions, those focal elements can be
expressed as {C1, . . . , Cn} and {D1, . . . , Dn} simply
by duplicating elements. Then, they satisfy:

• ci ≤ ci+1, ci ≤ ci+1, di ≤ di+1 and di ≤ di+1 for
any i ∈ {1, . . . , n}.
• Ci ∈ {A1, . . . , Am} and Di ∈ {B1, . . . , B`} for
any i ∈ {1, . . . , n}.
• mX(Ci) = mY(Di) for any i = 1, . . . , n.

Example 6. Consider the belief functions BelX and
BelY whose focal elements are:

A1 = {0, 1}, A2 = {1, 2}, A3 = {2, 3} and
B1 = {0, 1}, B2 = {1, 2},

whose masses are:
mX(A1) = 0.4, mX(A2) = 0.3, mX(A3) = 0.3;
mY(B1) = 0.6, mY(B2) = 0.4.

We rewrite the focal elements in the following way:

A1 A2 A2 A3
B1 B1 B2 B2

C1 C2 C3 C4
D1 D2 D3 D4

m 0.4 0.2 0.1 0.3

Then, from now on we will assume that given two
marginal belief functions whose focal sets are inter-
vals ordered through the lattice ordering, both belief
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functions have the same number of focal sets and their
masses coincide.
Proposition 2. Consider two marginal belief func-
tions BelX and BelY with mass distributions mX,
mY whose focal elements A = {A1, . . . , An}, B =
{B1, . . . , Bn} are such that Ai and Bi are intervals
and mX(Ai) = mY(Bi) for any i = 1, . . . , n. If A and
B satisfy the following constraints:

I) ai ≤ ai+1 and ai ≤ ai+1 for any i = 1, . . . , n.

II) bi ≤ bi+1 and bi ≤ bi+1 for any i = 1, . . . , n.

III) If ai < aj, then bi ≤ bj.

IV) If bi < bj, then ai ≤ aj

then, there exists a joint comonotone belief function
Bel such that its marginal masses coincide with mX
and mY.

Using the notation of Eq. (3), Algorithm 2 shows how
to build the focal elements and the mass of the joint
comonotone belief function.

Algorithm 2 Procedure defining focal elements of the
joint comonotone belief function

1: Define

G = {(ai, bi), (ai, bi) : i = 1, . . . , n}

2: Name the elements on G by:

G = {(c1, d1), . . . , (c2n, d2n)}
ci ≤ ci+1 and di ≤ di+1 for i = 1, . . . , 2n− 1

3: for i = 1, . . . , 2n-1 do

Ii = {(x, dk) : x ∈ [ck, ck+1]}
∪{ck+1, y) : y ∈ [dk, dk+1}

4: end for
5: for i=1,. . . ,n do

Ei = ∪(a
i
,b

i
)≤(ck,dk)<(ai,ai)Ik

m(Ei) = mX(Ai) = mY(Bi)

6: end for

The next example shows how this algorithm is applied.
Example 7. Let us continue Example 6. We build
the following focal sets for the joint belief function:

E1 = {(0, 0), (1, 0), (1, 1)}, E2 = {(1, 0), (1, 1), (2, 1)},
E3 = {(1, 1), (2, 1), (2, 2)}, E4 = {(2, 1), (2, 2), (2, 3)}.

Now, we assigns the following masses:

E1 E2 E3 E4
m 0.4 0.2 0.1 0.3

This joint belief function is comonotone and its
marginals coincide with BelX and BelY.

The condition in Proposition 2 that focal sets should
be intervals is essential, as the next example shows.
Example 8. Consider two mass functions mX and
mY with A = {A1, A2} and B = {B}, where:

A1 = {1, 3}, A2 = {2, 4}, B = {1, 1, . . . , n− 1, n}

for n > 3. A and B satisfy all the conditions of Propo-
sition 2, except for being intervals. However, there
is no joint comonotone belief functions having those
marginals. Indeed, following Algorithm 2, such a joint
would have two focal elements E1, E2 with projections
A1, B and A2, B, respectively, and such that E1 ∪ E2
is increasing. Now, for any x ∈ {1, 1, . . . , n − 1, n},
E1 ∪ E2 must contain, at least for one x, any the fol-
lowing pair: (x, 1) and (x, 2), (x, 1) and (x, 4), (x, 3)
and (x, 2), or (x, 3) and (x, 4), for E1, E2 to have the
required projections. If we take any two of those pairs
for two different x ≤ y in {1, 1, . . . , n − 1, n}, then
they form a non-increasing set. For example, take
(x, 1), (x, 4) and (y, 3), (y, 4), we have (x, 4) 6≤ (y, 3).
Hence it is not possible to build a comonotone joint
belief from mX and mY.

We have seen conditions under which, given marginal
belief functions, it is possible to define a joint comono-
tone belief function. However, the next example
shows that this joint comonotone belief function is
not unique.
Example 9. Consider the marginal belief functions
BelX and BelY with mass distributions mX and mY,
given by:

mX({1, 2}) = mY({1, 2}) = 1.

In this case, we can define three joint belief functions
that are comonotone: if we denote their masses by m,
m′ and m′′, they are given by:

m({(1, 1), (2, 2)}) = m′({(1, 1), (2, 2), (1, 2)})
= m′′({(1, 1), (2, 2), (2, 1)}) = 1.

5 Comonotone p-boxes

Consider now a bivariate p-box (F , F ) defined on X ×
Y, where X = {x1, . . . , xn} and Y = {y1, . . . , ym}.
We have already said that bivariate p-boxes define a
lower probability P on the set K2 following Eq. (1).
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Consider the natural extension of P to P(X ×Y), and
we are going to investigate whether it is comonotone or
not. During this section, and for the sake of simplicity,
we shall assume that n,m > 1, P ({xi}) > 0 and
P ({yj}) > 0 for any i = 1, . . . , n and j = 1, . . . ,m.
This implies that FX(xi) > FX(xi−1) and FY(yj) >
FY(yj−1) for i = 2, . . . , n and j = 2, . . . ,m.

In [8] it is argued that some notions like “avoiding sure
loss”, “coherence” or “2-mononicity” of a bivariate p-
box is given in terms of its associated lower probability
(given in Eq. (1)).
Definition 9. A coherent bivariate p-box is comono-
tone when its associated lower probability is comono-
tone.

Next results give two characterizations of comonotone
bivariate p-boxes. The first one establishes the form
of the bivariate p-box.
Proposition 3. Let (F , F ) be a coherent bivariate
p-box defined on X ×Y. Then, it is comonotone if and
only if there is an increasing set S ⊆ X × Y, named
S = {(u1, v1), . . . , (uk, vk)}, such that:

S.1 The X and Y projections of S are X and Y.

S.2 If (xi, yj) ∈ S and (xi+1, yj) /∈ S, then

F (xi, yj) = F (xi+1, yj) = · · · = F (xn, yj) =
F (xi, yj) = F (xi+1, yj) = · · · = F (xn, yj).

S.3 If (xi, yj) ∈ S and (xi, yj+1) /∈ S, then

F (xi, yj) = F (xi, yj+1) = · · · = F (xi, ym) =
F (xi, yj) = F (xi, yj+1) = · · · = F (xi, ym).

The second result characterizes comonotone coherent
bivariate p-boxes in terms of the belief functions asso-
ciated with its marginal p-boxes.
Theorem 6. Let (F , F ) be a coherent bivariate p-box
defined on X × Y. Denote by (FX, FX) and (FY, FY)
its marginal p-boxes, and by BelX and BelY the belief
functions associated with the marginal p-boxes. Then,
(F , F ) is comonotone if and only if one of the following
conditions are satisfied:

1. BelX is precise with positive probability in
{x1}, . . . , {xn}. BelX and BelY satisfy the fol-
lowing conditions:

• The focal elements of BelY are
{y1}, . . . , {yl−1}, where l ∈ {1, . . . ,m}, and
B1, . . . , Bs, where yl = mini=1,...,s minBi

and, ∪s
i=1Bi = {yl+1, . . . , ym}.

• mX({xn}) ≥
∑s

i=1mY(Bi)−mY({yl}).

Focal elements of BelX:
Focal elements of BelY: y1 y2 y3 y4 y5 y6 y7

x1 x2 x3 x4 x5 x6 x7

Figure 3: Example of belief functions that allow to
build a comonotone bivariate p-box. According to
Theorem 6, mY({y5, y6, y7}) ≤ mX({x7}) must hold.

2. Condition 1 holds when we exchange the role of
BelX and BelY.

Using the previous theorem, we can state the following
corollary.
Corollary 2. If a bivariate p-box is comonotone, its
associated lower probability is a belief function.

From this result we know that any comonotone co-
herent bivariate p-box can be built with the adequate
belief functions. We can also deduce that most bivari-
ate p-boxes will not be comonotone. Thus, under the
interpretation of Definitions 8 and 9, bivariate p-boxes
do not seem to be adequate to model comonotonicity.
Example 10. Figure 3 shows an example of marginal
belief functions satisfying the conditions of Theorem 6.
Assume that the masses are the following:

{x1} {x2} {x3} {x4} {x5} {x6} {x7}
mX 0.12 0.15 0.22 0.13 0.1 0.08 0.2

{y1} {y2} {y3} {y4} {y5} {y5, y6, y7}
mY 0.17 0.15 0.15 0.18 0.2 0.15

Then, the comonotone bivariate p-box has the following
focal elements:

E1 = {(x1, y1)}, E2 = {(x2, y1)}, E3 = {(x2, y2)},
E4 = {(x3, y2)}, E5 = {(x3, y3)}, E6 = {(x3, y4)},
E7 = {(x4, y4)}, E8 = {(x5, y4)}, E9 = {(x5, y5)},
E10 = {(x6, y5)}, E11 = {(x7, y5)},
E12 = {x7} × {y5, y6, y7}.

Their masses are:

E1 E2 E3 E4 E5 E6
m 0.12 0.05 0.1 0.05 0.15 0.02

E7 E8 E9 E10 E11 E12
m 0.13 0.03 0.07 0.08 0.05 0.2

Note again that the set S of Proposition 3 is the core
of Bel. It can be seen in Figure 4.

6 Conclusions

This paper investigates the notion of comonotonicity
for coherent lower probabilities. We have seen that
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y7

y6

y5

y4

y3

y2

y1

x7x6x5x4x3x2x1

Figure 4: Core of the belief function that defines a
comonotone bivariate p-box.

the comonotonicity of a coherent lower probability can
be expressed in two equivalent ways: by means of the
increasingness of its support or by means of the upper
probability of the sets {(u, v) : u > x, v ≤ y} and
{(u, v) : u ≤ x, v > y}. Furthermore, the bivariate
p-box associated with a comonotone coherent lower
probability can be expressed as the minimum of the
marginal p-boxes. However, in contrast to the precise
setting, the converse does not hold in general.

Another important difference between precise and im-
precise frameworks is that in the former any pair of
marginal probabilities admits the definition of a joint
comonotone probability with the fixed marginals. This
is not the case of lower probabilities, not even when
they are belief functions. Nevertheless, such a property
does hold for possibility measures and for univariate
p-boxes satisfying some additional restrictions.

Unfortunately, we have also seen that bivariate p-
boxes, except in very special cases, do not seem to be
adequate to model comonotonicity because they im-
pose very strong conditions, like for instance one of the
marginals must be precise. Then, in contrast to the
precise framework where bivariate distribution func-
tions express the information about comonotonicity,
this is not the case of bivariate p-boxes.

One interesting open problem is to investigate the
meaning of comonotonicity for a more general frame-
work, that of lower previsions. Although independent
products satisfying the factorizing property have the
same associated bivariate p-box, in the general frame-
work of lower prevision they are no longer equivalent.
It would not be surprisingly that comonotonicity could
be extended in many different ways.
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Abstract
We analyse the impact of a policy decision on crop
rotations, using the imprecise land use model that was
developed by the authors in earlier work. A specific
challenge in crop rotation models is that farmer’s crop
choices are driven by both policy changes and external
non-stationary factors, such as rainfall, temperature
and agricultural input and output prices. Such dy-
namics can be modelled by a non-stationary stochastic
process, where crop transition probabilities are multi-
nomial logistic functions of such external factors. We
use a robust Bayesian approach to estimate the pa-
rameters of our model, and validate it by comparing
the model response with a non-parametric estimate,
as well as by cross validation. Finally, we use the re-
sulting predictions to solve a hypothetical yet realistic
policy problem.

Keywords. multinomial logistic regression, stochas-
tic process, robust Bayesian, conjugate, maximum
likelihood, crop, decision

1 Introduction

This paper investigates a specific actual real-world
problem, namely how imprecise probability can be used
to inform policy, in a way that reflects limited data and
lack of information to policy makers. In general, policy
decisions aim to balance the greater good to society
with the welfare of the individual, in terms of economic
costs and benefits from a policy implementation. For
example, farmers typically grow crops to maximise
their profits, however governments can influence this
decision through policy interventions to meet the needs
of society, such as biodiversity, economic resilience, and
security of supply.

An issue which has received a lot of attention recently
concerns changes in crop rotations, which are linked to
negative environmental impact, reduced diversification
of crops and reduced self-sufficiency in feed and food.

Concerning animal feed, protein demand has increased
a lot, due to increasing meat demand from developing
countries. Also, the use of European legumes such as
peas and beans [11] has declined. At the moment, the
UK imports most of its protein; however, these prices
are going up due to growing global demand for soya [7].
Simultaneously, growing more protein can improve di-
versity, and thereby increase resistance against disease
and climate change, and improve supply security [8].
For these reasons, reforms of the Common Agricultural
Policy that are now being implemented includes two
measures specifically aimed at increasing the amount
of protein crops grown [2].

We will look at a hypothetical scenario to see how
nitrogen price affects the amount of legumes being
grown. Legumes produce their own nitrogen, and
so require little nitrogen based fertiliser. As such,
one expects that farmers tend to grow less fertiliser
dependant crops as nitrogen prices increase. We will
formulate and answer a hypothetical decision problem
which illustrates the types of problems that can be
solved using land use models.

Farmers generally grow crops in rotation to prevent
build-up of pests and diseases, and thereby to max-
imise yields and profit margins. The optimal crop
choices vary with soil type and climate conditions.
The rotation is generally driven by the length of the
period required between successive plantings of the
most valuable crop that can be grown, in order to
allow pests and diseases to decline to non-damaging or
readily controllable levels. Rotating crops also spreads
risk in the face of weather variability and annual fluc-
tuations in commodity prices.

Modelling crop distributions across time and space
is highly non-trivial. Building a statistical model for
farmers’ crop choices is difficult, because there are so
many factors that influence a farmer’s choice. We need
to take care in picking the relevant major influencing
factors. Moreover, although we have a reasonably sized
database, some crop types and factor levels are quite
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rare. Furthermore, prior expert information is difficult
to obtain. Thus, building a model capable of making
reasonable inferences about future crop distributions
is a difficult problem.

Building on the work of Luo [9], and Chen and
Ibrahim [4], we previously developed a land use model
that accurately captures uncertainty in the modelling
process [16, 13]. In that work, a non-stationary
stochastic process models crop choice, where crop tran-
sition probabilities are multinomial logistic functions,
and predictions are based on sets of conjugate priors
and MAP estimates for efficient sensitivity analysis.
Here, we will use this model to answer the hypothetical
policy question discussed earlier.

Compared to our earlier work in this domain [16, 13],
the novel contributions of this paper are: (i) We train
our model on a much larger data set, and handle a
larger number of crop types. (ii) We deal with nu-
merical stability issues resulting from near-zero counts.
(iii) We propose a non-parametric estimation method,
which is, as far as we know, new in the literature.
(iv) We validate our model, using two different ap-
proaches: formally through classification based accu-
racy measures, and heuristically through comparison
with non-parametric estimates. (v) We propose a new
method for the decision analysis based on MAP esti-
mation. (vi) We apply our model to a hypothetical
policy decision problem.

The paper is structured as follows. Section 2 describes
the land use model from [13]. Section 3 explains the
set of priors and posterior inferences. Section 4 shows
some of the results from the model. Section 5 describes
the model validation. Section 6 analyses a decision
problem. Section 7 concludes the paper.

2 The Model

We model crop rotations on a particular field as a
non-stationary stochastic process, with J states, cor-
responding to J crop choices. The crop grown at time
k is denoted by Yk. The choice of Yk+1 is influenced
by regressors Xk = (Xk0, Xk1, . . . , XkM ), as well as
by Yk, but is otherwise independent of the history of
the system. As usual in a regression analysis, we set
Xk0 = 1. We denote the transition probabilities by

πij(x) = P (Yk+1 = j | Yk = i,Xk = x) (1)

We assume a multinomial logistic regression model for
πij(x), with J2(M + 1) model parameters βijm, where
i ∈ {1, . . . , J}, j ∈ {1, . . . , J}, and m ∈ {0, . . . ,M}:

πij(x) = exp(βijx)
∑J
h=1 exp(βihx)

(2)

i x1 x2 ni(x) ki1(x) ki2(x) ki3(x) ki4(x)
1 93 112 2 0 1 0 1
2 56 154 1 0 0 1 0
1 85 110 1 0 0 0 1
3 30 90 1 1 0 0 0
...

...
...

...
...

...
...

...

Table 1: Crop rotation data for a particular soil type,
where i is the previous crop grown, x1 is the observed
rainfall, x2 is the nitrogen price, ni(x) is the current
crop total for i and x, and kij(x) is the number of
crop j being grown.

with βijx :=
∑M
m=0 βijmxm. Without loss of general-

ity we can set βiJm = 0 for all i and m, and call this
the baseline category logit model [3].

Soil type is a significant driver of crop choice. Follow-
ing [9], we split our data by soil type, and perform a
separate analysis for each soil type. For ease, we do
not index our model parameters by soil type.

For estimation, we have ni(x) observations where the
previous crop was i, and the regressors were x. Obvi-
ously ni(x) will be zero at all but a finite number of
x ∈ X , where X = {1} × RM . Of these ni(x) observa-
tions, the crop choice was j in kij(x) cases. Obviously,
ni(x) =

∑J
j=1 kij(x) for each i. Table 1 shows an

extract from the data set.

The following conjugate prior for the model parameters
β was proposed in [13]:

f0(β|s0, t0) ∝ exp
(∑J

i=1
∑
x∈X s0i(x)

[

∑J
j=1 t0ij(x)βijx− log

∑J
j=1 exp(βijx)

])
(3)

where s0i and t0ij are non-negative functions such
that s0i(x) = t0ij(x) = 0 for all but a finite number of
x ∈ X , with 0 ≤ t0ij(x) ≤ 1 and

∑J
j=1 t0ij(x) = 1 on

those points x where s0i(x) > 0. This conjugate prior
matches the form of the likelihood, and the posterior
distribution and parameters are [13]:

f(β|k, n, s0, t0) = f0(β|sn, tn) (4)
sni(x) = s0i(x) + ni(x) (5)

tnij(x) = s0i(x)t0ij(x)+kij(x)
s0i(x)+ni(x) (6)

3 Inference

Because prior expert opinion is very difficult to obtain
in our problem, we use sets of prior densities, simi-
larly to Walley’s IDM [18]. Here, we study inferences
resulting from a fixed prior function for s0i(x):

s0i(x) =
{
s if x ∈ X,

0 otherwise,
(7)
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for some X ⊂ X and a near vacuous set T of prior
functions for t0. Note that in earlier work [13] we used
a full vacuous set, however we found that we need
to bound the t0ij(x) parameters away from zero at
those points where s0i(x) > 0 in order to maintain
numerical stability in cases where we have very few
observations; we chose this bound ε = 0.01 > 0 small
enough to have no observable impact on the analysis.

X is the set of regressor values where we specify prior
beliefs. It can be any finite subset of X , but we note
that the inferences appear more intuitive if X is chosen
to sensibly cover the range of observed x values [16].
As in the imprecise Dirichlet model [18, Section. 2.5],
smaller values of s typically produce tighter posterior
predictive bounds. For further discussion of why this
choice of priors makes sense, we refer to [13].

A standard way to do the inference now would go via
MCMC. However, as we wish to perform a sensitivity
analysis against the prior, and the dimension of the
parameter space is very large, MCMC is too slow for
our purpose. Therefore, we simply use MAP estima-
tion. If we can find a MAP estimate for all t0 ∈ T, we
obtain a set B∗ of solutions β∗, one for each t0 ∈ T.
Each member of B∗ corresponds to an estimate of the
posterior transition probability. Therefore,

π̂ij(x) ≈ inf
β∗∈B∗

exp(β∗ijx)
∑J
h=1 exp(β∗ihx)

(8)

π̂ij(x) ≈ sup
β∗∈B∗

exp(β∗ijx)
∑J
h=1 exp(β∗ihx)

(9)

are the desired lower and upper posterior probability
estimates of the transition probability.

4 Case Study

We have crop rotation data from two separate regions
in the UK, detailing which crop was grown in every
field in each region from 1993 until 2004 [15].

We have data available for a variety of regressors: here
we look at rainfall [10] before sowing and the nitrogen
price [1]. Rainfall is important as some crops grow
better when it is wetter, and some soil types deal
with heavy rainfall better. We can assume farmers
are interested in maximising their profit margin. Most
fertilisers are nitrogen based, and as such a high nitro-
gen price will impact profit margins for crops which
require large amounts of fertiliser.

We will assume a farmer is faced with a choice of J = 4
types of crops: wheat, legumes, rapeseed and all other
crops. A common practice is to grow wheat (generally
the most profitable crop) followed by a break crop, such
as legumes or rapeseed. Transitions between legumes

W

L

R

O

Figure 1: Possible crop transitions, where W is wheat,
R is rapeseed, L is legumes, and O is other. Transitions
between R and L do not occur in practice so have been
excluded from the model.
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Figure 2: Prediction of future crop distributions on
heavy soil given a future scenario.

and rapeseed are very rare (this only occurred 3 times
in roughly 30000 observations). We could leave these
transitions in, but they make negligible difference to
the inferences, and experts have no interest in these
transitions anyway. Therefore, we remove them from
the model. Figure 1 depicts all crops and transitions
in our model.

An important use of land use models is to predict what
may happen in the future, given a future scenario for
the regressors. For future crop distributions, we use the
methodology for imprecise Markov chains developed
in [6]. Our initial distribution is calculated empirically
from the data and is 23% wheat, 5% rapeseed, 4%
legumes and 68% others. Figure 2 shows the results
for heavy soil.
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The figure shows the historical crop distribution up
to 2004 and the values of the regressors until that
point. It then shows the predicted crop distributions
for the next five years, given a future scenario for the
regressors. Here, we have analysed what would happen
if future rainfall will be quite low (compared to the
observed historical values), and future nitrogen prices
will be high. We can see that, although nothing dras-
tic is predicted, legumes seem to increase somewhat.
We could compare different scenarios to analyse the
impact of changes in, say, nitrogen price. However, a
government can influence regressors such as nitrogen
price through policy. Thus, it is of interest to study a
decision problem which aims to advise this policy. We
do this analysis in section 6.

Note that our data runs from 1993 to 2004, so in fact
the prediction is until 2009. It would be interesting
to compare predictions with actually observed crop
distributions, however field level data was no longer
being collected from 2005 onwards. It may be possible
in the future to validate against satellite data (we
currently do not have such data in this study), and
thereby to gauge the predictive power of the model.

5 Validation

We discuss two methods for validating the model.
A first naive but simple way is to graphically com-
pare the predicted transition probabilities with a non-
parametric estimate from the data. A second way is
to cross validate the model’s predicted best response
with parameters estimated from training data against
the response as in the test data; this is similar to what
is done in classification.

5.1 Non-Parametric Estimates

A simple non-parametric estimate of πij(x) takes a
weighted average of the observations around x:

π̃ij(x) :=
∑
x′∈X w(x− x′)kij(x′)∑
x′∈X w(x− x′)ni(x′)

(10)

where w is some suitably chosen kernel, that is, a
non-negative symmetrical function centred around the
origin. A key choice in this function is the so-called
bandwidth, which quantifies the smoothness of the
estimate. We took a multivariate Gaussian kernel:

w(x) := |Σ|−n/2 exp
(
−1

2x
TΣ−1x

)
(11)

with
Σ2 :=

[ 1 0 0
0 202 0
0 0 202

]
(12)

Note that the first component of x is always taken to
be the constant 1, hence only the lower right 2 × 2

submatrix of Σ2 is relevant. The choice of 20 for
both components was done by trial and error to get
sufficiently smooth estimates.

Figure 3 depicts π̃ij(x) as calculated from eq. (10) and
[π̂ij(x), π̂ij(x)] as calculated from eqs. (8) and (9), for
all cases of previous crop i and soil type, as a function
of nitrogen price and for a fixed value of rainfall (we
chose the historic mean, 55mm). We can see that our
model predictions and the non-parametric estimates
coincide quite well. The most notable differences are
located at the extremes of our observed nitrogen data.

Figure 4 shows a smoothed version of ni(x), that is:
∑

x′∈X
w(x− x′)ni(x′)/w(0) (13)

These plots give an idea of the size of the denomina-
tor in eq. (10), and thereby how much data is near
each point x. The lowest data densities are observed
from legumes on heavy soil type, where the average
number of observations lies around 20. The highest
data density is observed from other on light soil type,
where we see numbers between 1000 and 2300. This
difference in data density is well reflected in the robust
Bayesian estimates. The data density decreases sub-
stantially as nitrogen price increases, and interestingly
our robust Bayesian intervals also become wider in
this direction, as desired: we built a robust Bayesian
model to capture exactly this sort of feature.

The worst fits are observed in the two bottom right
plots, where the robust Bayesian model seems to
slightly overestimate the slopes of the curves. We
currently have no good explanation as to why this
behaviour occurs.

5.2 Cross Validation

A typical method for validating classifiers is to split
the data into training and test data, and then to
compare the predicted class (or set of classes) from
the model based on the training data, with the actual
classes in the test data. We can consider our model
as a classifier, in the following sense: we compare the
farmer’s actual choice with the most likely predicted
crop. For example, for the predictions in fig. 3, for
that particular value of rainfall, the most likely crop
from other is other, wheat from legumes and rapeseed,
and either other or wheat from wheat, depending on
nitrogen price. Of course, in the test data, rainfall will
vary as well; fig. 3 just shows a particular slice of the
model. Note that our model sometimes produces a set
of most likely crops, as we do a sensitivity analysis
over all β∗ ∈ B∗.
For credal classification, there are a number of perfor-
mance measures [5]. The determinacy is the percent-
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Figure 3: Non-parametric estimates π̃ij(x) and robust Bayesian interval estimates [π̂ij(x), π̂ij(x)] for all previous
crops i, soil types, as a function of nitrogen price, for fixed rainfall. Probability lies on the y axis.
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Figure 4: Smoothed ni(x) as a function of x. This
gives an idea of the accuracy of the non-parametric
estimates plotted in fig. 3.

region deter- single indeterminate set
minacy accuracy output size accuracy

Anglia 0.968 0.722 2.008 0.855
Mease 0.988 0.758 2.140 0.929

All 0.976 0.734 2 0.795

Table 2: Cross validation results

age of classifications where the output class is unique.
The single accuracy is then the accuracy of those pre-
dictions. The indeterminate output size is the average
number of classes when the output class is not unique.
Finally, the set-accuracy is the percentage of times an
indeterminate set contains the correct classification.

To ensure that all the data is used for testing, the
analysis is typically repeated, say 10 times, by splitting
the original data set into 10 parts, and then repeatedly
testing on each of these parts, based on training on
the complement of the testing part.

We can use a similar approach to validate our model.
We have two distinct geographical regions in our
dataset. We perform cross validation within each
region, and also combine the two regions together and
perform cross validation on the entire data set.

Table 2 presents the results. The single accuracy is
quite excellent: our model predicts the correct crop in
70–75% of the cases. The set accuracy is even better,
around 80–90%. We note that the determinacy is quite
high as a result of the large data set used. This is
mostly due to the fact that there is a clear dominant
crop type for most combinations of soil and previous
crop growing. If we split our analysis by soil and pre-
vious crop, we find certain combinations where the
determinacy is much lower. Due to space constraints
we omit this analysis here, as it only affects determi-
nacy in a substantial way. Indeed, we can already now
tell that the set accuracy will on average remain about
80–90%, which indicates that the model performs very
well. Finally, we note that the set accuracy is at its
lowest for the full data. A logical explanation for this
is that the regions are geographically quite distinct.
Even despite these differences, the model copes well.

To assess the predictive power of the model, we com-
pared our multicategorical logistic model with a much
simpler multinomial model, without covariates, using
the imprecise Dirichlet model [18] with s = 2 for our
priors. Due to the amount of observations in our data
set, this model always predicts a single crop type. In
regions where data is abundant, the logistic model
also outputs a single predicted crop, and the mod-
els perform similarly (around 73% accuracy in both
cases). However, in regions where the data is sparse
and where therefore the logistic model produces a set
of predictions, the logistic model has 84% set accuracy,
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whereas the multinomial model has only 43% accuracy.
This shows the benefits of our logistic model in regions
of sparse data.

Note that this method for validation assesses only
whether the farmer grows the most likely predicted
crop. If this is what we are interested in, then, in
regions where there is abundant data, the multinomial
model is preferable: it produces similar performance
as generally one crop dominates the others, and it is
a much simpler model. However, we are interested
in understanding the drivers behind farmer’s crop
choices, and obviously the multinomial model cannot
capture this, unlike the logistic model. Consequently,
in our view, the traditional classification performance
measures are not entirely suitable to assess model
performance. This also raises an interesting question
in how classification performance measures could be
adapted to capture model performance not only related
to the most likely predicted class.

6 Policy Example

An important use of land use modelling is to aid policy
makers. Changes in policy affect farmer’s decisions,
and so land use models can predict the impact of
these changes. As mentioned in Section 1, there is an
interest in the UK in increasing the amount of legumes
being grown. Changes in government policy can help
to achieve this.

To inform policy makers, we consider a series of scenar-
ios with varying nitrogen price, and thereby investigate
the hypothetical impact on crop transitions. Because
legumes require far less fertiliser than rapeseed, we
expect that an increase in nitrogen price leads to an
increased growing of legumes. We emphasize that we
have not built a causal model [14], thus one must be
wary not to give too strong an interpretation to the
inferences presented here.

Both legumes and rapeseed are break crops, so we
are particularly interested in transitions from wheat,
depicted in the bottom three plots of fig. 3. We see
that, for all soil types, as nitrogen prices increase, the
amount of legumes grown after wheat increases too.
We use these three plots in our policy example.

There is perhaps a more obvious way to approach this
problem. The usual way a government would aim to
increase levels of legumes is by offering a subsidy to
grow them. We have the data available to us to at-
tempt this. By including profit margin as a regressor,
we performed an analysis where we altered the profit
margin of legumes relative to rapeseed. One would
expect that as legumes became relatively more prof-
itable, for example through increased subsidy, more

farmers would plant legumes as a break crop instead
of rapeseed. However, the results in fact showed the
opposite happening.

One potential explanation for this is the format of
the data. The profit data we use [12] is actually the
predicted profit for the next year. We use this as that
is the information farmers have available when making
their decision. As such, if there is expected to be an
increase in legumes for the next year, then because of
supply and demand, there may be a predicted decrease
in the profitability of legumes. As such, we suspect
there is a confounding variable. In fact, using nitrogen
price directly produces more sensible results. Although
this makes the analysis less intuitive, for this reason,
we proceed with nitrogen price directly.

We are interested in analysing how a farmer’s decision
responds to changes in nitrogen price. Thus, we as-
sume that the policy maker has some control over the
nitrogen price, and we analyse the decision problem
from the policy maker’s point of view (rather than the
farmer’s). If the policy maker can specify utilities for
different outcomes, then we can use these utilities to
make a specific recommendation as to which nitrogen
price achieves the best expected utility. In our robust
Bayesian setting, we investigate the effect of a wide
range of priors on the optimal decision. As legumes
are fairly rare in some cases, this allows us to identify
situations where we do not have sufficient information
in order to arrive at a conclusion.

For the purpose of this paper, we choose a very simple
form for the utility function:

U(a, b) = 100a− κb (14)

where a is the fraction of legumes across all farms,
b is the nitrogen price, and κ is chosen to control
how this price is weighed against the level of legumes.
Note that a is multiplied by 100. This ensures a
reasonable scale for the utility, but otherwise makes
no technical difference as utility functions are unique
up to positive affine transformations. Also, we do not
fix any particular value for κ; instead, we investigate
our decision problem across a range of κ values.

As before, we do not actually calculate the expected
utility, as this is computationally too expensive. In-
stead, we directly use the MAP estimate for β, and
calculate the corresponding value for a

a(β∗, b) :=
exp(β∗ij · (1, r, b))∑J
h=1 exp(β∗ih · (1, r, b))

(15)

where (1, r, b) is x; r is rainfall, which for the purpose
of this analysis is kept fixed. Varying r makes no
substantial difference to the conclusions of our study.
As here we are only interested in transitions from
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wheat to legumes, i represents wheat and j represents
legumes. The (approximate) optimal decision is then

arg max
b∈[b1,b2]

U(a(β∗, b), b) (16)

where a(β∗, b) is the fraction of legumes in the model
with MAP parameter β∗ and nitrogen price b.

In our robust setting, we actually have a set B∗ of
β∗ values. We use interval dominance, due to the
simplicity by which it can be computed and graphically
represented. Specifically, with

U(b) := infβ∗∈B∗ U(a(β∗, b), b) (17)
U(b) := supβ∗∈B∗ U(a(β∗, b), b) (18)

all b ∈ [b1, b2] that satisfy

U(b) ≥ maxb∈[b1,b2] U(b) (19)

are deemed optimal. We have taken the values b1 and
b2 to be the lowest and highest observed historical
nitrogen price. These are the values our model is built
on. Therefore, in our decision problem we vary nitro-
gen price over the range of values we have previously
observed. Figure 5 shows [U(b), U(b)] when moving
from wheat on each soil type and for various values of κ.
The horizontal black line represents maxb∈[b1,b2] U(b).
Values of b for which U(b) lies above this line are op-
timal by interval dominance. Of course, in reality, a
government would not base policy on previous crop or
soil. However, we present this analysis as it shows a
variety of interesting features, and also compares well
with the validation plots in fig. 3.

The same trends are observable across all soil types.
When κ = 0, we are saying that the policy maker is
indifferent to changes in nitrogen price. As such a
high nitrogen price is desirable, as the model predicts
this leads to an increase in legume growth. Thus, the
values of b which are optimal are high.

As we increase κ, eq. (14) says that a higher nitrogen
price is becoming more detrimental to society. As
such, we expect lower values of b to become optimal.
Eventually, we reach a point for which all b are optimal.
For example, on light soil this occurs at κ = 0.02.

Eventually we reach a stage where a high nitrogen
price is highly undesirable for society, regardless of the
benefits that it brings with respect to increased legume
growth. For example, on medium soil and κ = 0.07,
only b values less than 100 are optimal.

For a policy maker, once decided on a value of κ (which
would be determined by the policy maker determining
what scenarios they are indifferent between), then the
job would be to determine how to alter the nitrogen
price to suit society’s needs. For example, on heavy

soil with κ = 0.06, a high nitrogen price is beneficial
to society. As such, a government could increase tax
on nitrogen to increase the price of it. On the other
hand, for heavy soil and κ = 0.2 government could
decrease tax on nitrogen.

We stress again that the above analysis is purely hypo-
thetical. We made unrealistic assumptions, and made
no attempt at modelling causal relationships, so the
conclusions drawn above in no way represent realistic
policy proposals. Instead we demonstrated mathemat-
ical techniques for aiding policy making. Only if we
had suitable data, a suitable utility function, and a
suitable choice of causal covariates, could we draw
hard policy conclusions from the results.

7 Summary and Conclusions

In this paper we further developed the previously pro-
posed land use model from [13]. The model uses multi-
nomial imprecise logistic regression with sets of conju-
gate prior distributions, on a non-stationary stochastic
process. We obtained robust Bayesian bounds on the
posterior transition probabilities of growing wheat,
legumes, rapeseed or anything else, as functions of
rainfall and nitrogen price. Compared to previous
work we trained our model on a much larger data set.
We addressed numerical stability issues by use of a
near vacuous set of priors to bound probabilities away
from zero.

We validated our model in two ways: comparing a non-
parametric estimate with the robust Bayesian interval
estimate, and by performing cross-validation. The
results show that our model performs well, particularly
in areas where there are few observations.

We formulated and answered a hypothetical decision
problem with real-world relevance. We investigated
what level of nitrogen price is most beneficial to society
to promote legume growth. We used interval domi-
nance to identify optimal policies due to its graphical
representability and computational simplicity. We
demonstrated how land use modelling can aid policy
makers, and how imprecise probability can help to
solve real world problems.

On a critical note, we may wonder about what is the
advantage of using an imprecise probability model as
opposed to a precise non-parametric model, or a pre-
cise Bayesian model? Indeed, confidence intervals on
the parameters could be easily obtained through the
non-parametric model that we introduced in eq. (10)—
albeit with all the issues that come with such esti-
mates particularly in regions where the data is sparse
and where we do not believe that eq. (10) is accu-
rate. Similarly, credible intervals could be obtained
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Figure 5: [U(b), U(b)] when moving from wheat to legumes on all soil types, for various values of κ. Utility lies
on the y axis.
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through MCMC on just a single prior. However, for
decision making, we need expected utility (or, loss),
not confidence intervals or credible intervals. A pre-
cise Bayesian model always gives an exact expectation,
and one would still worry about sensitivity against
the prior, thereby ending up doing exactly what we
do in the paper. Moreover, it is well known that the
simplest way to find admissible frequentist decisions
goes through a robust Bayesian analysis [17]. So, fre-
quentists should find our analysis also quite appealing,
provided they accept the parametric model.

Future work will concentrate on analysing decision
problems in a more realistic way. Our data set is quite
old—after 2004 field level data was not collected in
the UK. However, it is planned to start again in the
near future, meaning the model can be built on more
relevant data. We plan on obtaining legume subsidy
price, and including that as a regressor to see if that
stops the confounding error discussed in section 6. The
profit margin of a crop is simply a function of vari-
ous factors, including subsidy level. Thus, including
subsidy directly in the model as a regressor will be
straightforward. We also plan to investigate other de-
cision criteria, such as maximality and E-admissibility,
particularly when interval dominance leads to vacuous
decisions. The utility function could also be enhanced
to account for risk aversion, and other factors that
influence the benefits to society.

Acknowledgements

The first two authors are supported by the Food and
Environment Research Agency (FERA) and EPSRC.
We also thank Andy Hart (FERA) for his input.

References
[1] Data collected by DEFRA for the index of the pur-

chase prices of the means of agricultural production.
[2] Legume futures report. http://www.legumefutures.

de/. Accessed: 18/02/2015.
[3] Alan Agresti. Categorical Data Analysis. John Wiley

and Sons, third edition, 2013.
[4] Ming-Hui Chen and Joseph G. Ibrahim. Conjugate

priors for generalized linear models. Statistica Sinica,
13:461–476, 2003.

[5] Giorgio Corani and Marco Zaffalon. Learning reliable
classifiers from small or incomplete data sets: The
naive credal classifier 2. Journal of Machine Learning
Research, 9(4):581–621, 2008.

[6] Gert de Cooman, Filip Hermans, and Erik Quaeghe-
beur. Imprecise Markov chains and their limit be-
havior. Probability in the Engineering and Informa-
tional Sciences, 23(4):597–635, October 2009. doi:
10.1017/S0269964809990039.

[7] C. L. Gilbert and C. W. Morgan. Food price volatility.
Philosophical Transactions of the Royal Society of

London B: Biological Sciences, 365(1554):3023–3034,
2010. doi: 10.1098/rstb.2010.0139.

[8] Erik Steen Jensen, Mark B. Peoplese, Robert
M.Boddey, Peter M. Gresshoff, Henrik Hauggaard-
Nielsen, Bruno J.R. Alves, and Malcolm J. Morrison.
Legumes for mitigation of climate change and the
provision of feedstock for biofuels and biorefineries. a
review. Agronomy for Sustainable Development, 32
(2):329–364, 2012. doi: 10.1007/s13593-011-0056-7.

[9] Weiqi Luo. Land use modelling. Internal Report,
Food and Envirnoment Research Agency, 2010.

[10] MET. Data collected by the Met Office. http://www.
metoffice.gov.uk/climate/uk/stationdata/. Ac-
cessed: 11/02/2013.

[11] Thomas Nemecek, Julia-Sophie von Richthofen, Gaë-
tan Dubois, Pierre Casta, Raphaël Charles, and Hu-
bert Pahl. Environmental impacts of introducing
grain legumes into european crop rotations. European
Journal of Agronomy, 28:380–393.

[12] John Nix. Farm Management Pocketbook. Agro Busi-
ness Consultants Ltd., 1993–2004.

[13] Lewis Paton, Matthias C. M. Troffaes, Nigel Boat-
man, Mohamud Hussein, and Andy Hart. Multino-
mial logistic regression on Markov chains for crop
rotation modelling. In Anne Laurent, Oliver Strauss,
Bernadette Bouchon-Meunier, and Ronald R. Yager,
editors, Proceedings of the 15th International Con-
ference IPMU 2014 (Information Processing and
Management of Uncertainty in Knowledge-Based Sys-
tems, 15–19 July 2014, Montpellier, France), volume
444 of Communications in Computer and Informa-
tion Science, pages 476–485. Springer, 2014. doi:
10.1007/978-3-319-08852-5_49.

[14] Judea Pearl. Causal inference in statistics: An
overview. Statistics Surveys, 3:96–146, 2009. doi:
10.1214/09-SS057.

[15] RPA. Data collected by the Rural Payments Agency
under the integrated administration and control sys-
tem for the administration of subsidies under the
common agricultural policy.

[16] Matthias C. M. Troffaes and Lewis Paton. Logis-
tic regression on Markov chains for crop rotation
modelling. In F. Cozman, T. Denœux, S. Dester-
cke, and T. Seidenfeld, editors, ISIPTA’13: Pro-
ceedings of the Eighth International Symposium on
Imprecise Probability: Theories and Applications,
pages 329–336, Compiègne, France, July 2013. SIPTA.
URL http://www.sipta.org/isipta13/index.php?
id=paper&paper=033.html.

[17] Abraham Wald. Contributions to the theory of statis-
tical estimation and testing hypotheses. The Annals
of Mathematical Statistics, 10(4):299–326, December
1939. doi: 10.1214/aoms/1177732144.

[18] Peter Walley. Inferences from multinomial data:
Learning about a bag of marbles. Journal of the
Royal Statistical Society, Series B, 58(1):3–34, 1996.
URL http://www.jstor.org/stable/2346164.

L. Paton, M.C.M. Troffaes, N. Boatman, & M. Hussein

226

http://www.legumefutures.de/
http://www.legumefutures.de/
http://www.metoffice.gov.uk/climate/uk/stationdata/
http://www.metoffice.gov.uk/climate/uk/stationdata/
http://www.sipta.org/isipta13/index.php?id=paper&paper=033.html
http://www.sipta.org/isipta13/index.php?id=paper&paper=033.html
http://www.jstor.org/stable/2346164


Dilation, Disintegrations, and Delayed Decisions

Arthur Paul Pedersen
Center for Adaptive Rationality

Max Planck Institute for Human Development
Lentzeallee 94, 14195 Berlin
pedersen@mpib-berlin.mpg.de

Gregory Wheeler
Munich Center for Mathematical Philosophy

Ludwig Maximilians University
Geschwister-Scholl-Platz 1, 80539 Munich

gregory.wheeler@lrz.uni-muenchen.de

Abstract
Both dilation and non-conglomerability have been
alleged to conflict with a fundamental principle of
Bayesian methodology that we call Good’s Principle:
one should always delay making a terminal decision
between alternative courses of action if given the op-
portunity to first learn, at zero cost, the outcome
of an experiment relevant to the decision. In par-
ticular, both dilation and non-conglomerability have
been alleged to permit or even mandate choosing to
make a terminal decision in deliberate ignorance of rele-
vant, cost-free information. Although dilation and non-
conglomerability share some similarities, some authors
maintain that there are important differences between
the two that warrant endorsing different normative
positions regarding dilation and non-conglomerability.
This article reassesses the grounds for treating dilation
and non-conglomerability differently. Our analysis ex-
ploits a new and general characterization result for
dilation to draw a closer connection between dilation
and non-conglomerability.

1 Introduction

Good’s Principle is considered by I. J. Good [8], among
others before him [24, 19, 25], to be a fundamental
principle of rational decision making. Good’s Princi-
ple recommends to delay making a terminal decision
between alternative courses of action if the opportu-
nity arises to learn, at no cost, the outcome of an
experiment relevant to the decision.

Dilation [34, 31, 21] occurs when an interval estimate of
an event E is properly included in the interval estimate
of E conditional on the occurrence of every event of a
measurable partition B. In such circumstances merely
running the experiment to determine the value of B,
whatever the outcome, suffices to render your initial
estimate of E less precise. Should you update your
estimate of E to the less precise estimate? Should
you refuse a free offer to learn the outcome of such an

experiment? Is it rational for you to pay someone to
not tell you?

A probability function p is non-conglomerable [4, 5] for
an event E in a measurable partition B if the marginal
probability of E fails to be included in the closed inter-
val determined by the infimum and supremum of the
set of conditional probabilities of E given each cell of
B. When B is denumerable, any probability function
is non-conglomerable for E in B only if it fails to be
countably additive [4, 5, 26]. In such circumstances
merely running the experiment to determine the value
of B, whatever the outcome, suffices to uniformly in-
crease (or decrease) your initial estimate of E. Is your
initial estimate of E coherent? Is it rational to forgo
the opportunity to learn the experimental outcome of
B?
Even though both dilation [9, 6] and non-
conglomerability [26] have been alleged to conflict with
Good’s Principle, there is a tradition within the impre-
cise probability community to treat each differently.
Walley, for example, argues that conglomerability is a
requirement of rationality in the course of extending
coherent lower previsions to conditional lower previ-
sions. More recently, Zaffalon and Miranda argue that
conglomerability is a requirement of rationality when
an agent’s future commitments and current conditional
beliefs are established together [36]. Either way, in-
stances of non-conglomerability generate violations of
salient dominance principles and allow for the deval-
uation of cost-free information and thus violations of
Good’s Principle [14]. Even so, instances of dilation do
not preclude violations of salient dominance principles
and of Good’s Principle – see §5, below – but dilation
is viewed as a reasonable, even if surprising, feature of
conditional lower previsions [34, §6.4.3]. For Seiden-
feld et al. [26], non-conglomerability raises a challenge
for those who concede that sometimes rationality per-
mits credal states to be representable by numerically
precise probabilities failing to be countable additive.
More specifically, Seidenfeld et al. observe that every
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instance of non-conglomerability can be transformed
into a violation of admissibility, a dominance principle
at the heart of the Bayesian enterprise (e.g., Wald, de
Finetti, Savage), and that expected utility maximiza-
tion in such cases admits the devaluation of cost-free
information. However, for some decision rules pro-
posed for imprecise probabilities, such as Γ-maximin,
dilation also invites a devaluation of cost-free informa-
tion. But in this case Seidenfeld recommends to reject
the decision rule rather than dilation [29].

It is true that while failures of conglomerability can
only occur only in infinite partitions, dilation can oc-
cur with respect to finite partitions. This observation
alone, of course, fails to provide an adequate expla-
nation for adopting a view that treats dilation and
non-conglomerability differently with respect to simi-
lar problems. In this paper we challenge the practice of
treating dilation and non-conglomerability differently.
Our analysis appeals to a new and general characteri-
zation result for dilation to draw a closer connection
between dilation and non-conglomerability

The structure of the paper is as follows. In §2 we review
dilation and present our general characterization result
purely in terms of distance from independence. Then,
in §3 we review the conglomerability principle and
rehearse a standard example of non-conglomerability.
In §4, we discuss Good’s Principle in more detail and
introduce a general framework within which to express
Good’s Principle, as it is commonly understood, in
terms of subjective expected utility. Then, in §5 we dis-
cuss various violations of Good’s Principle, with special
attention to two examples in particular, one involving
dilation and the other involving non-conglomerability.
In particular, we argue that the normative standing of
Good’s Principle in the dilation case depends on partic-
ular features of the uncertainty model and the decision
rules used, both of which depend ultimately on the
decision maker’s beliefs, values and goals. We then
turn to an example involving non-conglomerability to
argue that such examples should be treated in the
same fashion, that is, that the normative standing of
conglomerability likewise depends on the features of
the uncertainty model and decision rules the decision
maker uses.

2 Dilation

A lower probability space is a quadruple (Ω,A,P,P)
such that Ω is a set of states, A is an algebra over
Ω, P is a nonempty set of probability functions on
A, and P is a lower probability function on A with
respect to P—that is, P(E) = inf{p(E) : p ∈ P} for
each E ∈ A. The value P(E) is called the lower
probability of E. The upper probability function P is

then defined in the usual manner by stipulating that
P(E) = 1 − P(Ec) for each E ∈ A; the value P(E)
is called the upper probability of E. If P(H) > 0,
then conditional lower and upper probabilities are
defined as P(E | H) = inf{p(E | H) : p ∈ P} and
P(E | H) = sup{p(E | H) : p ∈ P}, respectively. In
the following, we call a collection of events B from A a
positive measurable partition (of Ω) if B is a partition
of Ω such that P(H) > 0 for each H ∈ B.
Let B be a positive measurable partition of Ω. We say
that B dilates E just in case for each H ∈ B:

P(E | H) < P(E) ≤ P(E) < P(E | H).1

In other words, B dilates E just in case the closed
interval [P(E), P(E)] is contained in the open interval
(P(E | H), P(E | H)) for each H ∈ B.
What is remarkable about dilation is the specter of
turning a more precise estimate of E into a less precise
estimate, no matter what event from the partition
occurs.

Next, in §2.1, we rehearse an example from [28] involv-
ing a maximally uncertain event, G, a flip of a fair coin
(whose outcomes form a partition, B) and a pivotal
quantity, E, defined in terms of G and the outcome
of the coin toss. Then, in §2.3, we provide a simple
characterization of dilation in terms of distance from
stochastic independence, followed by a short discussion
of the result.

2.1 Example of Dilation

Suppose G is a highly uncertain event, one with upper
probability close to 1, P (G) = .9, and lower probability
close to 0, P (G) = .1. So,

P (G)− P (G) = 0.8. (1)

Suppose now that B = {H,Hc} is a partition repre-
senting the outcomes of a fairly tossed coin,

P (H) = P (H) = 1
2 = P (Hc) = P (Hc). (2)

In addition to being positively measurable, suppose
the outcomes of the toss are stochastically independent
of our maximally uncertain event. In particular, the
event of the coin landing heads, H, is stochastically
independent of G occurring; hence, for each p ∈ P,

p(G ∩H) = p(G)p(H) = p(G)
2 . (3)

Next let E be the event of either G and H both
occurring or both failing to occur, namely E := (G ∩
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Figure 1: (a) 2x2 Table for an uncertain event (row)
and a fair coin randomizer (column); (b) The event of
learning that the outcome of the coin toss is ‘heads’.

H) ∪ (Gc ∩Hc). The probability of E is determinate:
p(E) = 1

2 . Similarly, for each p ∈ P, p(Ec) = 1/2.

These conditions are represented by the two-by-two
table in Figure 1(a). Here the columns H and Hc

represent the two possible outcomes of the fair coin
toss; the rows G and Gc represent the two outcomes
of our maximally uncertain event; the diagonals E
and Ec describe the two events defined in terms of
the possible outcomes of row and column: E is the
“matching” event of either H and E both obtaining or
neither obtaining, and Ec is the “unmatched” event
of one but not the other obtaining.

Observe that E is dilated by B = {H,Hc}: although
the initial estimate of E is precisely one-half, learning
the outcome of the coin toss, whether heads or tails,
dilates the probability estimate of E to [.1, .9].
Proof - We show that 0.1 = P (E | H) < P (E) = 1/2.

P (E | H) = inf { p(E | H) : p ∈ P }

= inf
{

p ([(G ∩ H) ∪ (Gc ∩ Hc)] ∩ H)
p(H) : p ∈ P

}

= inf
{

p(G ∩ H)
p(H) : p ∈ P

}

= inf
{

p(G)p(H)
p(H) : p ∈ P

}

= 0.1

A similar argument establishes 0.9 = P (E | H) > 1/2,
and the argument holds if instead the coin lands tails,
i.e., P (E | Hc) = 0.1 and P (E | Hc) = 0.9. Thus, E
is dilated by the coin toss, B = {H,Hc}. �
The specific case where the coin lands H is illustrated
in Figure 1(b). Here conditioning on H reduces the
probability that E obtains to the probability that G
obtains, which is highly uncertain.

1While our terminology agrees with that of [11, p. 252], it
differs from that of [31, p. 1141] and [12, p. 412], who call
dilation in our sense strict dilation.

2.2 Measuring Distance from Independence

Given a single probability function p on A and events
E and H with positive probability, the degree to which
two events E and H diverge from stochastic indepen-
dence, if they diverge at all, may be characterized by
a simple measure of distance from stochastic indepen-
dence:

Sp(E,H) := p(E ∩H)
p(E)p(H) .

The measure Sp is simply the covariance of E and
H, Cov(E,H) = p(E ∩H)− p(E)p(H), put in ratio
form. Therefore, Sp(E,H) = 1 just in case E and H
are stochastically independent; Sp(E,H) > 1 when
E and H are positively correlated; and Sp(E,H) < 1
when E and F are negatively correlated. The measure
Sp naturally extends to a set of probability functions
P as follows:

S+
P (E,H) := {p ∈ P : Sp(E,H) > 1};

S−P (E,H) := {p ∈ P : Sp(E,H) < 1};
IP(E,H) := {p ∈ P : Sp(E,H) = 1}.

The set of probability functions IP(E,H) from P with
E and H stochastically independent is called the sur-
face of independence for E and H with respect to P. In
the remainder subscripts will be dropped when there
is no danger of confusion.

2.3 A Simple Characterization of Dilation

In this section, we present simple necessary and suf-
ficient conditions for dilation formulated in terms of
deviation from stochastic independence, which im-
proves upon previous results in [21]. We illustrate
an immediate application of such a characterization
with measures of dilation. To begin, we introduce the
notion of a neighborhood.

Given a lower probability space (Ω,A,P,P), events
E, H ∈ A with P(H) > 0, and ε > 0 define:

P(E|H, ε) := {p ∈ P : |p(E|H) − P(E|H)| < ε};

P(E|H, ε) := {p ∈ P : |p(E|H) − P(E|H)| < ε}.

We call the sets P(E|H, ε) and P(E|H, ε) lower and
upper neighborhoods of E conditional on H with radius
ε, respectively. Thus, a probability function p is an
element of P(E|H, ε) if p(E|H) is within ε of P(E|H),
and similarly for an upper neighborhood.

For the sake of readability in what follows, given a
nonempty set of probabilities P, let P∗ denote co(P),
the weak*-closed convex hull of P. Thus, P∗(E|F, ε) =
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co(P)(E|F, ε) and P∗(E|F, ε) = co(P)(E|F, ε). Simi-
larly, let S+

∗ (E,F ) and S−∗ (E,F ) be defined by:

S+
∗ (E,F ) := {p ∈ co(P) : Sp(E,F ) > 1}

S−∗ (E,F ) := {p ∈ co(P) : Sp(E,F ) < 1}.

Given a nonempty set I, we let RI+ denote the set of
elements (ri)i∈I of RI such that ri > 0 for each i ∈ I.
We now state a result characterizing dilation and then
report an immediate corollary.

Theorem 1 Let (Ω,A,P,P) be a lower probability
space, let B = {Hi : i ∈ I} be a positive measurable
partition, and let E ∈ A. Then the following are
equivalent:

(i) B dilates E;

(ii) There is (εi)i∈I ∈ RI+ such that for every i ∈ I :

P∗(E|Hi, εi) ⊆ S−∗ (E,Hi) and
P∗(E|Hi, εi) ⊆ S+

∗ (E,Hi);

(iii) There is (εi)i∈I ∈ RI+ such that for every i ∈ I :

P(E|Hi, εi) ⊆ S−(E,Hi) and
P(E|Hi, εi) ⊆ S+(E,Hi),

where for each i ∈ I, εi ≤ min(εi, εi) and εi is the
unique minimum of |p(E|Hi)− P(E|Hi)| attained on
C+
i =df {p ∈ P∗ : Sp(E,Hi) ≥ 1}, and εi is the

unique minimum of |p(E|Hi)− P(E|Hi)| attained on
C−i =df {p ∈ P∗ : Sp(E,Hi) ≤ 1}. �
Theorem 1 implies that a positive measurable partition
B dilates an event E just in case for each partition
cell H, there are upper and lower neighborhoods of E
conditional on H such that the lower neighborhood of
E conditional on H lies entirely within the subset of
the set of probabilities in question for which E and H
are negatively correlated, while the upper neighbor-
hood of E given H lies entirely within the subset of
the set of probabilities in question for which E and H
are positively correlated. We remark that Theorem 1
holds for arbitrary nonempty sets of probabilities.

When B is a finite positive measurable partition, the
preceding theorem may be simplified.

Corollary 1 Let (Ω,A,P,P) be a lower probability
space, let B = (Hi)ni=1 be a finite positive measurable
partition, and let E ∈ A. Then the following are
equivalent:

(i) B dilates E;

(ii) There is ε > 0 such that for each i = 1, . . . , n:

P∗(E|Hi, ε) ⊆ S−∗ (E,Hi) and
P∗(E|Hi, ε) ⊆ S+

∗ (E,Hi);

(iii) There is ε > 0 such that for each i = 1, . . . , n:

P(E|Hi, ε) ⊆ S−(E,Hi) and
P(E|Hi, ε) ⊆ S+(E,Hi),

where ε ≤ min(εi, εi : i = 1, . . . , n) and εi is the
unique minimum of |p(E|Hi)− P(E|Hi)| attained on
C+
i =df {p ∈ P∗ : Sp(E,Hi) ≥ 1}, and εi is the

unique minimum of |p(E|Hi)− P(E|Hi)| attained on
C−i =df {p ∈ P∗ : Sp(E,Hi) ≤ 1}. �
Thus, when the positive measurable partition B is
finite, the radii εi of Theorem 1 may be replaced by a
single positive radius ε. The preceding corollary also
improves upon a similar result in [21].

Discussion. Theorem 1 and Corollary 1 should
hardly be surprising. The correlation properties that
entail dilation are rather straightforward consequences
of the definition. Moreover, these correlation proper-
ties entail that each dilating partition cell and dilated
event live on the surface of independence under some
probability function from the closed convex hull of the
set of probabilities in question. Although straightfor-
ward, Theorem 1 shows that by looking beyond the
upper and lower supporting hyperplanes P∗(E|H) and
P∗(E|H) to the upper and lower supporting neighbor-
hoods P∗(E|H, ε) and P∗(E|H, ε), it becomes possible
to characterize dilation completely in terms of posi-
tive and negative correlation, achieving a longstanding
goal. The results also show that dilation, properly
understood, is a property of the convex closure of a
set of probabilities.

One may see the generality of Theorem 1 by comparing
it to an earlier result in [35, Result 1]. Observe that
(1) Theorem 1 applies to arbitrary positive measur-
able partitions, whereas [35, Result 1] applies only to
binary partitions; (2) Theorem 1 applies to arbitrary
sets of probabilities, whereas Result 1 just applies to
weak*-closed convex sets of probabilities; and (3) The-
orem 1 presents characterizing conditions—property
(ii) and property (iii)—formulated in terms of upper
and lower neighborhoods, whereas Result 1 gives a
characterizing condition formulated in terms of a patch-
work of infimums and supremums—a point we discuss
further in [21, §4]. Of course, Theorem 1, given its
generality, entails that the characterizing condition of
Result 1 in [35] is logically equivalent to property (ii)—
or property (iii)—of Theorem 1 in the very special case
for binary partitions and weak*-closed convex sets of
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probabilities. Yet, in our judgment, the characterizing
condition of Result 1, even with its narrow scope, is
periphrastic. The upshot is that Theorem 1, in spite
of its wide scope, delivers characterizing conditions
which succinctly express the wherefore of dilation.

Last, returning to the simple heuristic example of
dilation we presented in §2, we remark that a straight-
forward calculation of the relevant radii ε1, ε1, ε2, ε2
corresponding to H and Hc, respectively, yields 2

5 .

2.4 Proper and Improper Dilation

It is well known that the familiar univocal notion
of probabilistic independence splinters into a plural-
ity of logically distinct independence concepts [34, 2].
Thus, if a decision modeler knows that one event is
epistemically independent of another – that is, that
each event is epistemically irrelevant to the other –
then he knows that observing the outcome of one
event does not change the estimate in the other, even
though the two events may fail to be stochastically
independent, and thus may admit dilation. In other
words, our characterization results hold for a variety
of extensions—including unknown interaction, irrel-
evant natural extensions, and independent natural
extensions [2]—without discriminating between mod-
els which correctly or incorrectly encode knowledge of
either epistemic irrelevance or epistemic independence.
However, our proposal is that a correctly parame-
terized extension can provide principled grounds for
avoiding the loss of precision by dilation that may oth-
erwise come from updating. So, even if the conditions
for Theorem 1 hold, there may be enough knowledge
about the relationship between the two events in ques-
tion to support a parameterization that defuses the
diluting effect that dilation has from updating. We
therefore distinguish between two kinds of dilation
phenomenon: proper dilation, which occurs within a
model that correctly parameterizes the set of distribu-
tions to reflect what is known about how the events
are interrelated, if anything is known at all, and im-
proper dilation, which occurs within a model whose
parameterization does not correctly represent what is
known about how the events interact.

3 Non-Conglomerability

Given a real-valued finitely additive probability func-
tion p on an (σ-) algebra A over a set of states Ω, a
positive measurable partition B of Ω, and an event E
of A, we say that p is conglomerable for E in B if

inf { p(E|H) : H ∈B}≤ p(E)≤ sup { p(E|H) : H ∈B}

Otherwise we say that p is non-conglomerable for E in
B. So p is non-conglomerable for E in B just in case
p(E) fails to lie in the closed interval [inf { p(E|H) :
H ∈ B}, sup { p(E|H) : H ∈ B}].
Of course, every probability function is conglom-
erable for all events and finite B. Cases of non-
conglomerability only arise for infinite B. It is well-
known that any probability function with an infinite
range is conglomerable for each event E and denumer-
able B just in case it is countably additive. In addition,
any such probability function is non-conglomerable for
some event E and denumerable B just in case it fails
to be disintegrable for E in B—that is, if fails to satisfy
the law of total probability for E in B. These con-
cepts and results can be extended to bounded random
quantities [5] and unbounded random quantities [27].
Further, it should be noted that some probability func-
tions that fail to be countably additive may nonetheless
be conglomerable in arbitrary positive measurable par-
titions. Moreover, in some cases, a nontrivial convex
combination of probability functions, each of which
fails to be conglomerable in a positive measurable
partition, may very well be conglomerable in the par-
tition. Indeed, a nontrivial convex combination of
probability functions, each of which is conglomerable
in a positive measurable partition, may very well fail
to be conglomerable in the partition. To gain control
over these cases, authors investigated conglomerability
within the setting of primitive conditional probability,
which accommodates conditioning events with zero
probability [1, 26, 30]. Next we give an example of
non-conglomerability for a denumerable partition.

3.1 Example of Non-Conglomerability

Following [5],2 let A be the collection of all subsets of
Ω = {0, 1} × N>0, let E = {(1, n) : n ∈ N>0}, and let
B = {Hn : n ∈ N>0}, where Hn = {(0, n), (1, n)} for
each n ∈ N>0. Let p be a finitely-additive probability
function on A such that:

(i) p(E) = 1
2 ;

(ii) p(E ∩Hn) = 1
2n+1 for each n ∈ N>0; and

(iii) p(Ec ∩Hn) = 0.

Then p(E) < inf{p(E|Hn) : n ∈ N>0} = 1, so p is
non-conglomerable for E in the denumerable partition
B.

2This example seems to have entered the literature in [3,
p. 205], although de Finetti there reports that Lester Dubins
presented the example in a letter to L.J. Savage.
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4 Good’s Principle and Expected
Utility

In Foundations of Statistics, Savage considers the dif-
ference between a basic decision problem, in which an
agent is to choose to perform one action from among
several he judges to be available for choice, and a de-
rived decision problem, in which the agent is to choose
from the same basic actions, but only after consider-
ing the associated conditional expected utilities for
the basic action given each possible outcome of some
experiment. “It is almost obvious,” Savage remarks,
“that the value of a derived problem cannot be less
than, and typically is greater, than the value of the
basic problem from which it is derived” [25, §6.2]. Sav-
age thereupon formulates and proves what has become
a fundamental principle of Bayesian methodology [25,
Chapter 7]. Although Ramsey [24] aired the idea of
this result in unpublished work and many others have
reaffirmed it following Savage’s seminal work (e.g., [22],
[19]), Good famously defended the principle in a short
article published in the 1960s [8] – and there has been a
rich discussion ever since [7, 33, 20, 28, 9, 32, 13]. Fol-
lowing Stigler’s law of eponymy, let us briefly explain
the basic idea of Good’s Principle.

4.1 Formalizing Good’s Principle

Here is the set up. Suppose that at some time t1 you
are to face a choice among several courses of action
a1, . . . , an. Prior to this choice, however, you face a
decision at some time t0 before t1 between (i) choosing
from among several courses of action a1, . . . , an at time
t1 or (ii) choosing from among the same courses of
action a1, . . . , an at some later time t2 after you have
observed, at no cost, the outcome of an experiment E.

According to Good’s Principle, Bayesian standards pro-
hibit you from rejecting the opportunity to choose from
among a1, . . . , an at t2 after observing the outcome
of the experiment E. In addition, if the experimen-
tal outcome might affect your choice from among the
courses of action, then Bayesian standards prohibit
you from deciding to choose from among a1, . . . , an
at t1. In short, to be a Good Bayesian, take Good’s
advice: accessible cost-free information relevant to a
decision should never be ignored.

As a piece of Bayesian legislation, Good’s Principle is
expressed in the legalese for codifying norms of classical
subjective expected utility theory. In order to express
Good’s Principle in the language of subjective expected
utility, we first introduce the formal framework we shall
use in our discussion. This framework is sufficiently
expressive for our purposes and will enable us to carry
out our discussion while remaining neutral over further

controversial matters unrelated to our concerns.

Let Ω be a set of states corresponding to a collection of
hypotheses which are individually consistent, mutually
exclusive, and collectively exhaustive relative to your
state of certainty at time t0. A set of actions A is
said to be a decision problem for you at time t if it
consists of all actions you judge to be available for
you to choose. Suppose that for each action a from A
and each state ω in Ω, you have identified a unique
consequence σ(a, ω) to be relevant for evaluating the
action’s success in promoting the goals and values you
endorse. So, you recognize that if you augment your
state of certainty with the hypothetical supposition
that you have implemented action a and state ω ob-
tains, your transformed state of certainty commits you
to being certain that consequence σ(a, ω) prevails.

We presume that you endorse a standard for decision
making that commits you to identifying a nonempty
subset c(A) of your feasible actions A you judge to be
admissible, or acceptable for choice, given your beliefs,
values and goals.

Turn now to Good’s Principle illustrated in Figure 2.
Suppose that you endorse subjective expected utility
maximization as your standard. To sidestep some
technical issues, suppose in particular that your judg-
ments of admissibility can be represented in terms of
subjective expected utility maximization with respect
to a real-valued expectation Ep[ · ] agreeing with a real-
valued probability function p defined on a Boolean
algebra over the set of states and a real-valued utility
function u defined over the set of consequences.3

O

A E

A
σ σ σ

A
σ σ σ

A
σ σ σ

σ(a1, ωi)
a1

σ(a2, ωi)

a2

σ(an, ωi)

. . . an

o1 o2

e1

e2 e3 . . .

Figure 2: Illustration of Good’s Principle

At time t0 you confront a decision problem O =
{o1, o2}. If you implement option o1 at time t0,
then at time t1 you will face a decision problem
A = {a1, . . . , an} without observing the outcome of
experiment E. If you implement option o2 at time t0,
then at time t2 you will face the same decision problem

3Often a uniqueness result for probabilities and utilities
accompanies the representation result (asserting, for example,
that the probability function is unique and that the utility
function is unique up to a positive affine transformation).
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A after observing the outcome of experiment E. Now
under the hypothesis N that at t1 you face decision
problem A after implementing option o1 at t0 (not
observing the outcome of experiment E), let c(A|N)
denote the set of admissible options given N (where ◦
denotes functional composition):

c(A|N) = arg max
a∈A

Ep( · |N)

[
(u ◦ σ)(a, p(dω|N) )

]
.

Similarly, under the hypothesis Ki that at t2 you face
decision problem A after implementing option o2 at
t0 and observing outcome ei of experiment E at t1,
let c(A|Ki) denote the set of admissible options given
Ki:

c(A|Ki) = arg max
a∈A

Ep( · |Ki)

[
(u ◦ σ)(a, p(dω|Ki) )

]
.

Good’s principle assumes that at t0 you are certain,
regardless of whether or not you choose to observe
the outcome of experiment E, that you will choose an
option A which maximizes your expected utility, that
your preferences over consequences remain unchanged,
and that your beliefs given hypotheses accord with
Bayesian conditionalization. Your expectation of (1)
your maximum conditional expected utility of choosing
from A given experiment E is not less than your ex-
pectation of (2) your maximum conditional expected
utility of choosing from A under option o1. That is,
o2 ∈ c(O), the set of admissible options from O. More-
over, your expectation of (1) is strictly greater than
(2) unless there is an action from A that maximizes
conditional expected utility from A regardless of the
experimental outcome of E. In other words, unless the
experiment is irrelevant, c(O) = {o2}.

4.2 Remarks on Conditional Probabilities

We wish to remark that your conditional probabil-
ity judgments, whether precise or imprecise, concern
only your commitments at the initial time t0. In our
analysis we adopt a distinction made by Isaac Levi,
and suggested, at least roughly, by many others.4
Specifically, we interpret your conditional probability
judgments in one of two ways. First, according to
the called-off interpretation, your conditional proba-
bility judgment given H expresses your commitment
at time t0 to specific unconditional attitudes contin-
gent on the occurrence of H. According to de Finetti’s
theory of previsions, for example, your conditional
probability assessment of an event E given an event
H at a particular time t0 expresses your unconditional
commitment at time t0 to judge contracts concerning
E that are “called-off” if H does not occur, where

4See, for example, [17, 18] and [23, 22, 10, 16, 34]; for a
summary of Levi’s ideas, see [15, Appendix A].

they are posited to be nil. Alternatively, according to
the hypothetical interpretation, your conditional prob-
ability judgment given H expresses your commitment
at time t0 to specific attitudes on the hypothetical
supposition that H obtains. We contrast these two
interpretations of conditional probability judgment
with a third temporal interpretation which expresses
your future commitment to attitudes upon observing
that H obtains. In the sequential decision problems
discussed in this paper, your current (at t0) condi-
tional probability judgments given a (possibly) future
event H express your assessments on the hypothetical
supposition that H is true. Similar remarks apply
to other conditional judgments you endorse, such as
your conditional value judgments and your conditional
assessments of admissibility.

In our view, the question whether conglomerability
is an appropriate normative standard for evaluating
probability judgments in the senses of interest in this
paper remains unsettled.

5 What’s so good about Good’s
Principle?

Although Good’s Principle continues to be thought of
as a cornerstone of orthodox Bayesianism by critics
and champions alike, we maintain that the principle is
not ironclad. In this section we consider two examples
of violations of Good’s Principle in some detail, one
involving dilation, another, non-conglomerability.

5.1 Good’s Principle and Dilation

Return to the dilation example from [28] that we began
in §2.1. Recall that E is defined as the event of either
the highly uncertain event G and the fair coin toss
yielding the event H both occurring or both G and
H failing to occur, that is E := (G ∩ H) ∪ (Gc ∩
Hc). Recall too that the probability of E and the
probability of H are each determinate, namely p(E) =
1
2 = p(H), whereas the probability of G is highly
uncertain, namely P (G) = 0.9 and P (G) = 0.1.

Now suppose that at t0 you face a decision problem
O = {o1, o2}, where option o1 is a basic decision
problem A whereby you are to choose at t1 between
two acts: a1, which pays you $1 if E occurs and ‘pays’
you −$1 if Ec, i.e., σ(a1, E) = $1 and σ(a1, E

c) =
−$1;5 or the act a2 which ‘pays’ you a constant −$0.50.
Assume that your utility is linear in dollar amounts
with u($x) = x. See Figure 3.

In this basic decision problem A, which is the result
5Here we abuse our notation by writing σ(a,E) = $1, for

instance, to express that σ(a, ·) is a constant $1 on E.
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of implementing option o1, the subjective expected
utility of a1 is $0 and the subjective expected utility
of a2 is −$0.50. So, a1 is uniquely admissible from A:
receiving nothing is better than paying 50 cents.

O

A

o1

$1 if E
−$1 if Ec

−$0.50

a2a1

E

o2

A

H

$1 if E
−$1 if Ec

a1

−$0.50

a2
A

Hc

−$0.50

a2

$1 if E
−$1 if Ec

a1

Figure 3: A Sequential Decision Example.

Turn now to option o2, whereby at t2 you face a de-
rived decision problem conditional on the outcome of
experiment E. That is, you are confronted with the
same decision problem A at t2 after learning (only)
thatH obtains orHc obtains at t1. But the derived de-
cision problem A, which is the result of implementing
option o2, is different from the basic decision prob-
lem A: in the derived decision problem the act a1 is
inadmissible against a2. Why? Because in the basic
decision problem p(E) = 1/2, but in the derived deci-
sion problem E is dilated by E to 0.1 and 0.9: whether
the outcome of the fair coin toss is heads or tails, E
conditional on that outcome is highly uncertain. Thus,
in the derived decision problem, there are probability
mass functions p ∈ P whereby p(Ec) is .9, in which
case the minimum expected utility of a1 is −$0.80. So,
in the derived decision problem, by Γ-Maximin, a2 has
a higher minimum expected value than a1 regardless
of the outcome of the experiment, E.

Assume that a decision maker is certain that she will
not change her preferences, will update her belief state
by Generalized Bayesian conditionalization, and that
she will choose to maximize her minimal expected util-
ity (Γ-Maximin). Then, in a pairwise choice between
a1 of the basic decision problem determined by option
o1, which has an expected value of zero, and a2 of
the derived decision problem determined by option
o2, which has an expected value of −$0.50, observing
cost-free information at t1, i.e., learning the outcome
of the fair coin toss E, is devalued. Here we have a
case where the decision maker would strictly prefer
not to receive cost-free information!

Discussion. Although in finite spaces some decision
rules, including Γ-Maximin, require decision makers to
reject the opportunity to observe cost-free information
before making a decision, others merely permit decision
makers to reject the opportunity to observe cost-free
information before making a decision. For example,
E-Admissibility permits, but never requires, you to
reject an opportunity to observe cost-free information
before making a decision. Even so, E-admissibility
supplemented with a secondary criterion for selecting
among E-Admissible options—namely, to maximize ex-
pected utility with respect to a least informative distri-
bution from among E-Admissibility options—respects
the value of (cost-free) information, and therefore man-
dates that decision makers abide by Good’s Principle.
So, the first point to note is that dilating probabilities
can be paired with a variety of decision rules, some
abide by Good’s Principle, others do not.

The second point to emphasize is that E and H are
not stochastically independent, so the basic (o1) and
derived (o2) forms of the decision problem A are im-
portantly different. (If the uncertainty in G were
represented by a single probability rather than a set of
probabilities, then the two forms would be equivalent.)
From Theorem 1 we see that the association between
E and H is the key to dilation; the effects one sees
from evaluating conditional judgments merely are a
consequence. Performing the experiment E reveals to
you the extent of your uncertainty about the depen-
dence of E on the experimental outcomes of E. How
knowledge of this particular form of uncertainty affects
decision making will depend on the decision maker’s
beliefs, values and goals.

5.2 Good’s Principle and
Non-Conglomerability

Suppose that at t0 you face a decision problem O =
{o1, o2} as in the previous section, here with decision
problem A = {a1, a2} and experiment E = {Hn : n ∈
N>0}. Action a1 pays you $1 if E occurs and ‘pays’
you −$1 if Ec, while action a2 ‘pays’ you a constant
−$0.50 i.e., σ(a1, E) = $1 and σ(a1, E

c) = −$1 and
σ(a2, E) = −$0.50 and σ(a2, E

c) = −$0.50.

Now, under the hypothesis that at t1 you face the
decision problem A without observing the outcome of
experiment E, your subjective expected utility of a1
is $0, while your subjective expected utility of a2 is
−$0.50. So you judge a1 to be uniquely admissible
from the basic decision problem A. That is, c(A|N) =
{a1}, where N is the hypothesis that at t1 you have
implemented option o1.

Under the hypothesis that at t2 you face the decision
problem A after observing outcome Hi of E, your
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subjective expected utility of a1 is −$1, while your
subjective expected utility of a2 remains −$0.50. So
you judge a2 to be uniquely admissible from the de-
rived decision problem A. That is, c(A|Ki) = {a2},
where Ki is the hypothesis that at t2 you face the
decision problem A after implementing option o2 at t0
and observing outcome ei of experiment E at t1. Thus,
assuming that you are certain you will not change your
preferences, that you will update your belief state by
Bayesian conditionalization, and that you will maxi-
mize subjective expected utility, option o1 has constant
utility $0 and option o2 has constant utility −$.50. In
other words, c(A) = {o1}: at t0 you judge that choos-
ing from A without observing the outcome of E to be
exclusively admissible for choice.

Discussion. One might argue that there are sig-
nificant differences between failures of Good’s Prin-
ciple due to dilation and failures due to non-
conglomerability. For instance, in the case of dilation,
some decision rules respect Good’s Principle and some
do not, which has been cited as grounds for modifying
particular decision rules rather than the modifying the
uncertainty model. In the case of non-conglomerability,
it may appear that there is a disanalogy. The standard
reply to cases of non-conglomerability is to modify the
uncertainty model, namely by imposing countable ad-
ditivity, rather than to modify the expected utility
maximization, which many take for granted. What
are the grounds for adjudicating between these two
cases?

6 Conclusion

In closing, there are three general points to make.
First, notice that there are several familiar approaches
that do not countenance imprecise probabilities but
which nevertheless require decision makers to forgo the
opportunity to observe cost-free information before
making a decision, and some of those approaches do so
even in finite spaces. Second, while Good’s Principle
is often implicated in learning or sequential decision
making, Good’s Principle itself is a synchronic, con-
firmational rule about an agent’s state of belief at a
particular time, rather than a temporal rule regulating
updating of an agent’s state of belief in light of an ob-
servation. Similarly, dilation is likewise characterized
synchronically, rather than dynamically.

Finally, what is the normative standing of Good’s
Principle? We believe it is not an obvious general
principle of rationality, and that the classical argu-
ment strategies for establishing the principle rest on
strong structural assumptions, not only about a deci-
sion maker’s adherence to expected utility maximiza-
tion, but also about the decision maker’s beliefs about

her future preferences, future belief states, and future
decision strategies. Although Good’s Principle is fa-
miliar, the foundations for its (still) wide acceptance
are not; indeed, there appear to be a host of reason-
able exceptions to Good’s Principle, even within the
standard setting of utility maximization. For these
reasons, we are puzzled why some authors still ele-
vate Good’s Principle to a general normative principle
while remaining indecisive about the normative status
of (merely) finitely additive probabilities.
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Abstract
In this paper we explore relaxations of (Williams) co-
herent and convex conditional previsions that form the
families of n-coherent and n-convex conditional previ-
sions, at the varying of n. We investigate which such
previsions are the most general one may reasonably
consider, suggesting (centered) 2-convex or, if posi-
tive homogeneity and conjugacy is needed, 2-coherent
lower previsions. Basic properties of these previsions
are studied. In particular, centered 2-convex previsions
satisfy the Generalized Bayes Rule and always have a
2-convex natural extension. We discuss then the ra-
tionality requirements of 2-convexity and 2-coherence
from a desirability perspective. Among the uncer-
tainty concepts that can be modelled by 2-convexity,
we mention generalizations of capacities and niveloids
to a conditional framework.

Keywords. Williams coherence, 2-coherent previ-
sions, 2-convex previsions, Generalized Bayes Rule.

1 Introduction

In his influential book [16], P. Walley developed a
behavioural approach to imprecise probabilities (and
previsions) extending de Finetti’s [4] interpretation of
precise previsions in terms of coherence. Operationally,
this was achieved through a relaxation of de Finetti’s
betting scheme.

In fact, following de Finetti, P is a coherent pre-
cise prevision on a set S of gambles if and only
if for all m, n ∈ N0, s1, . . . , sm, r1, . . . , rn ≥
0, X1, . . . , Xm, Y1, . . . , Yn ∈ S, defining G =∑m

i=1 si(Xi − P (Xi))−
∑n

j=1 rj(Yj − P (Yj)), it holds
that supG ≥ 0. The terms si(Xi − P (Xi)), rj(Yj −
P (Yj)) are proportional (with coefficients or stakes
si, rj) to the gains arising from, respectively, buying
Xi at P (Xi) or selling Yj at P (Yj). A coherent lower
prevision P on S may be defined in a similar way, just
restricting n to belong to {0, 1}. This means that the

betting scheme is modified to allow selling at most one
gamble. Several other betting scheme variants have
been investigated in the literature, either extending
coherence for lower previsions (conditional lower pre-
visions) or weakening it (previsions that are convex,
or avoid sure loss). In particular, a convex lower pre-
vision is defined introducing a convexity constraint
n = 1,

∑m
i=1 si = r1 = 1 in the betting scheme. In [16,

Appendix B] n-coherent previsions are studied, as a
different relaxation of coherence.

In this paper, we explore further variations of the be-
havioural approach/betting scheme: n-coherent and
n-convex conditional lower previsions, formally defined
later on as generalisations of the n-coherent (uncondi-
tional) previsions in [16]. Our major aims are:

a) to explore the flexibility of the behavioural ap-
proach and its capability to encompass different
uncertainty models;

b) to point out which are the basic axioms/properties
of coherence which hold even for much looser
consistency concepts.

Referring to b) and with a view towards the utmost
generality, we shall mainly concentrate on the extreme
quantitative models that can be incorporated into a
(modified) behavioural approach. This does not imply
that these models should be regarded as preferable
to coherent lower previsions. On the contrary they
will not, as far as certain questions are concerned.
For instance, inferences will typically be rather vague.
However, it is interesting and somehow surprising to
detect that certain properties like the Generalised
Bayes Rule must hold even for such models, or that
they can be approached in terms of desirability.

N -coherence and n-convexity may be naturally seen
as relaxations of, respectively, (Williams) coherence
and convexity. These and other preliminary concepts
are recalled in Section 2. Starting from the weakest
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reasonably sound consistency concepts, we explore ba-
sic properties of 2-convex lower previsions in Section 3.
We supply a characterisation by means of axioms, on a
special set of conditional gambles generalising a linear
space and termed DLIN (Definition 2). Interestingly,
it turns out that n-convexity with n ≥ 3 and convexity
are equivalent on DLIN . 2-convex previsions exhibit
some drawbacks: a 2-convex natural extension may
be defined, but its finiteness is not guaranteed; the
property of internality may fail, as well as agreement
with conditional implication (the Goodman-Nguyen
relation). In Section 4, we show that the special subset
of centered 2-convex previsions is not affected by these
problems. In Section 5, 2-coherent lower previsions are
discussed and characterised on DLIN (Proposition 8).
Again, n-coherence (n ≥ 3) and coherence are equiva-
lent on DLIN . On generic sets of gambles, n-coherent
previsions (n ≥ 3) have no n-coherent extension on
sufficiently large supersets whenever the equivalence
does not hold. We show also that 2-coherence should
be preferred to 2-convexity when positive homogeneity
and conjugacy are required. In Section 6 we analyse
2-convexity and 2-coherence in a desirability approach.
Generalising prior work by Williams [17, 18] for coher-
ence, we focus on the correspondence between these
previsions and sets of desirable gambles, and on estab-
lishing the ensuing desirability rules. Models that can
be accommodated into the framework of 2-convexity,
but not of coherence, are presented in Section 7. These
are conditional versions of capacities and niveloids.
Section 8 concludes the paper. Due to spacing con-
straints, proofs of the results are omitted (some can
be partly derived from results in [10, 12]).

2 Preliminaries

The starting points for our investigation are the known
consistency concepts of coherent and convex lower
conditional prevision [10, 11, 17, 18]. They both refer
to an arbitrary set D of conditional gambles, that is
of conditional bounded random variables. We denote
with X|B a generic conditional gamble, where X is
a gamble and B is a non-impossible event (B 6= ∅).
It is understood here that X : IP → R is defined on
an underlying partition IP of atomic events ω, and
that B belongs to the powerset of IP . Therefore, any
ω ∈ IP implies either B or its negation ¬B (in words,
knowing that ω is true determines the truth value of
B, i.e. B is known to be either true or false). Given
B, the conditional partition IP |B is formed by the
conditional events ω|B, such that ω implies B (implies
that B is true) and X|B : IP |B → R is such that
X|B(ω|B) = X(ω), ∀ω|B ∈ IP |B. Because of this
equality, several computations regarding X|B can be
performed by means of the restriction of X on B. In

particular, it is useful for the sequel to recall that
sup(X|B) = supB X, and inf(X|B) = infB X.

As special cases, we have that X|Ω = X is an uncon-
ditional gamble, A|B a conditional event if A is an
event (or its indicator IA - we shall generally employ
the same notation A for both).

As customary, a lower prevision P is, without fur-
ther qualifications, a map from D into the real line,
P : D → R. However, a lower prevision is often inter-
preted as a supremum buying price [16]. For instance,
if a subject assigns P (X|B) to X|B, he is willing to
buy X, conditional on B occurring, at any price lower
than P (X|B). Under this behavioural interpretation,
Definitions 1, 3, 5 check the consistency of P , depend-
ing on whether it avoids losses bounded away from 0,
according to different buying and selling constraints.

Definition 1. Let P : D → R be given.

a) P is a coherent conditional lower prevision on
D iff, for all m ∈ N0, ∀X0|B0, . . . , Xm|Bm ∈
D, ∀s0, . . . , sm real and non-negative, defining
S(s) =

∨{Bi : si 6= 0, i = 0, . . . ,m} and
G =

∑m
i=1 siBi(Xi − P (Xi|Bi)) − s0B0(X0 −

P (X0|B0)), it holds, whenever S(s) 6= ∅, that
sup{G|S(s)} ≥ 0.

b) P is a convex conditional lower prevision on
D iff, for all m ∈ N+, ∀X0|B0, . . . , Xm|Bm ∈
D, ∀s1, . . . , sm real and non-negative such that∑m

i=1 si = 1 (convexity constraint), defining Gc =∑m
i=1 siBi(Xi−P (Xi|Bi))−B0(X0−P (X0|B0)),

S(s) =
∨{Bi : si 6= 0, i = 1, . . . ,m}, it holds that

sup{Gc|S(s) ∨B0} ≥ 0.

b1) P is centered convex or C-convex on D iff it
is convex and, ∀X|B ∈ D, it is 0|B ∈ D and
P (0|B) = 0.

In the behavioural interpretation recalled above, Defi-
nition 1a) considers buying at mostm conditional gam-
bles X1|B1, . . . , Xm|Bm (also no one, when m = 0)
at prices P (X1|B1), . . . , P (Xm|Bm), respectively, and
selling at most one gamble X0|B0 at a supremum
buying price P (X0|B0). The gain G is a linear combi-
nation with stakes s0, . . . , sm of the gains from these
transactions. It is conditioned on S(s), to rule out both
trivial transactions (G = 0, since s1 = . . . = sm = 0)
and the case that G = 0 because no transaction takes
place (when B0, . . . , Bm are all false). Then, coher-
ence requires the non-negativity of the supremum of
G, conditional on at least one non-trivial transaction
being effective. The interpretation of Definition 1b) is
similar: what changes is the convexity constraint on
the stakes (s0 = 1), s1, . . . , sm. This implies that Gc

is the gain from one selling transaction and at least
one buying transaction.
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The definition of coherent lower prevision is a struc-
ture free version of Williams coherence, discussed in
[11]. It is more general than Walley’s coherence [16],
in particular it always allows for a natural extension
and is not necessarily conglomerable. The notion of
convex lower prevision is still more general, and was
introduced in [10], extending the unconditional convex-
ity studied in [9]. Convex previsions can incorporate
various uncertainty models, including convex risk mea-
sures, non-normalised possibility measures, and others.
However, the special subclass of C-convex lower previ-
sions guarantees better consistency properties. Among
these, there always exists a convex natural extension
of these measures, whose properties are analogous to
those of the natural extension [10, Theorem 9].

Even though coherent and convex lower previsions can
be defined on any set of conditional gambles, they are
characterised by a few axioms on the special environ-
ment DLIN defined next.
Definition 2. Let X be a linear space of gambles
and B ⊂ X the set of all (indicators of) events in
X . Suppose 1 ∈ B and BX ∈ X ,∀B ∈ B,∀X ∈ X .
Setting B∅ = B − {∅}, define

DLIN = {X|B : X ∈ X , B ∈ B∅}. (1)

The sets DLIN may be viewed as conditional generali-
sations of linear spaces of (unconditional) gambles. In
fact, when B = {Ω,∅}, DLIN reduces to a linear space
of unconditional gambles (including real constants).
Not surprisingly then, characterisations on DLIN have
an unconditional counterpart on linear spaces.
Proposition 1. Let P : DLIN → R be a conditional
lower prevision.

a) P is coherent on DLIN if and only if [18]

(A1) P (X|B)− P (Y |B) ≤ sup{X − Y |B},
∀X|B, Y |B ∈ DLIN .1

(A2) P (λX|B) = λP (X|B),
∀X|B ∈ DLIN ,∀λ ≥ 0.

(A3) P (X + Y |B) ≥ P (X|B) + P (Y |B),
∀X|B, Y |B ∈ DLIN .

(A4) P (A(X − P (X|A ∧B))|B) = 0,
∀X ∈ X ,∀A,B ∈ B∅ : A ∧B 6= ∅.

b) P is convex on DLIN if and only if (A1), (A4)
and the following axiom hold [10, Theorem 8]

(A5) P (λX + (1 − λ)Y |B) ≥ λP (X|B) + (1 −
λ)P (Y |B),∀X|B, Y |B ∈ DLIN ,∀λ ∈]0, 1[.

1 (A1) may be replaced by P (X|B) ≥ inf(X|B), ∀X|B ∈
DLIN , thus corresponding to the original version in [18].

Condition (A4) is the Generalised Bayes Rule (GBR),
introduced in [17, 18] and studied also in [16] in the
special case B = Ω.

Since our discussion will focus on minimal consistency
properties for a conditional lower prevision, we have to
mention a conditional generalisation of the implication
(inclusion) relation between events, termed Goodman-
Nguyen relation (≤GN ). In fact, suppose A⇒ B (or
A ⊆ B). Then, asking that µ(A) ≤ µ(B) is a really
minimal rationality requirement for any µ aiming at
measuring how likely an event is, given that, whenever
event A will turn to be true, B will be true too. The
following extension of the implication to conditional
events was proposed in [8]:

A|B ≤GN C|D iff A ∧B ⇒ C ∧D
and ¬C ∧D ⇒ ¬A ∧B. (2)

The Goodman-Nguyen relation ≤GN was extended to
conditional gambles in [12]:

X|B ≤GN Y |D iff
IBX + I¬B∨D sup(X|B) ≤ IDY + IB∨¬D inf(Y |D)

showing that X|B ≤GN Y |D implies P (X|B) ≤
P (Y |D) for a C-convex or coherent P [12, Proposition
10].

3 2-Convex Lower Previsions

In Definition 1, a) and b), there is no upper bound
to m ∈ N. One may think of introducing it as a
natural way of weakening coherence and convexity.
More precisely, let us call elementary gain on Xi|Bi

any term siBi(Xi − P (Xi|Bi)), with the proviso that
−B0(X0 − P (X0|B0)) in Definition 1 b) is also an
elementary gain, formally corresponding to s0 = −1.
Then, we may state that no more than n elementary
gains are allowed in either G (Definition 1, a)) or Gc

(Definition 1, b)). When doing so, we speak of n-
coherent or n-convex lower previsions. This approach
extends the notion of n-coherent (unconditional) pre-
vision in [16, Appendix B].

Intuition suggests that the smaller n is, the more the
corresponding consistency concept is looser. In the
extreme cases n may be as small as 1 with coherence,
2 with convexity.

However, 1-coherence is too weak. In fact, P
is 1-coherent on D iff, ∀X0|B0 ∈ D, ∀s0 ∈ R,
sup{s0B0(X0 − P (X0|B0))|B0} ≥ 0. It is easy to
see that this is equivalent to internality, i.e. to re-
quiring that P (X0|B0) ∈ [inf(X0|B0), sup(X0|B0)],
∀X0|B0 ∈ D.
Since internality alone does not seem enough as a ra-
tionality requirement, we turn our attention in this
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section to what seems to be the next weakest consis-
tency notion, that is 2-convexity.2

Definition 3. P : D → R is a 2-convex conditional
lower prevision on D iff, ∀X0|B0, X1|B1 ∈ D, we have
that

sup{B1(X1 − P (X1|B1))−
B0(X0 − P (X0|B0))|B0 ∨B1)} ≥ 0. (3)

We explore now some basic features of 2-convex previ-
sions. Some critical aspects are discussed next, show-
ing in Section 4 that they can be solved resorting to
the subclass of centered 2-convex previsions.

A remarkable result in our framework is the charac-
terisation of 2-convexity on a structured set DLIN .

Proposition 2. A conditional lower prevision P :
DLIN → R is 2-convex on DLIN if and only if (A1)
and (A4) hold.

To point out an important consequence of Proposition
2, compare it with Proposition 1 b). It follows at once
that the difference between 2-convexity and convexity,
on DLIN , is due to axiom (A5). On the other hand,
the proof that a convex prevision on DLIN must satisfy
(A5), given in [10, Theorem 8], only involves a gain Gc

made up of 3 elementary gains, i.e. it does not fully
exploit convexity, but only 3-convexity. This justifies
the following conclusion:

On DLIN , n-convexity with n ≥ 3 and convexity are
equivalent concepts.

Hence, the very difference between convexity and n-
convexity reduces to that between convexity and 2-
convexity, at least on DLIN . Yet, if P is defined on a
set D other than DLIN , we may think of extending it
to some DLIN ⊃ D. If P is n-convex on D, n ≥ 3, and
has an n-convex extension to DLIN , then P is convex
on DLIN and therefore also on D. It ensues that if
P is n-convex (n ≥ 3) but not convex on D, P will
have no n-convex extension on any sufficiently large
superset of D (any D∗ including some DLIN containing
D) - see also the later Example 2. This is a negative
aspect of n-convexity, when n ≥ 3. More generally, the
discussion above shows that n-convex previsions are
not particularly significant as an autonomous concept,
when n ≥ 3.

Turning again to 2-convex previsions, let us define a
special extension, the 2-convex natural extension.

Definition 4. Given a lower prevision P : D → R

2 2-convex previsions were termed 1-convex in [1, 12]. Here
we prefer the locution ‘2-convex’ by analogy with the rule for
fixing n in ‘n-coherent’ in [16].

and an arbitrary conditional gamble Z|B, let

L(Z|B) = {α :
sup{A(X − P (X|A)) −B(Z − α)|A ∨B} < 0,

for some X|A ∈ D}. (4)

Then the 2-convex natural extension E2c of P on Z|B
is

E2c(Z|B) = supL(Z|B). (5)

In general, E2c(Z|B) may not be real-valued (i.e. +∞,
or −∞ when L(Z|B) = ∅). The results in the next
proposition are helpful in hedging this occurrence.
Proposition 3. a) L(Z|B) 6= ∅, if there exists

Y |C ∈ D such that C ⇒ B.

b) Let P be 2-convex and such that 0|B ∈ D and
P (0|B) = 0, ∀X|B ∈ D. Given 0|C /∈ D, the
extension of P on D∪{0|C} such that P (0|C) = 0
is 2-convex.

c) When L(Z|B) 6= ∅, L(Z|B) =]−∞, E2c(Z|B)[.

d) If L(Z|B) 6= ∅ and sup(X|A) ≥ P (X|A), ∀X|A ∈
D, then E2c(Z|B) ≤ sup(Z|B), ∀Z|B.

e) Let P be 2-convex and 0|B ∈ D, ∀X|B ∈ D.
Then, ∀X|B ∈ D, sup(X|B) ≥ P (X|B) iff
P (0|B) ≤ 0.

Parts a) and b) of Proposition 3 suggest a simple way
to ensure E2c(Z|B) 6= −∞: just add the gamble 0|B
to D, putting P (0|B) = 0. To guarantee E2c(Z|B) 6=
+∞, it is sufficient that any 0|C in D (or added to
D) is given a non-positive lower prevision, by d) and
e). Clearly, the simplest and most obvious choice
is to put P (0|C) = 0, ∀0|C. This would make P a
centered 2-convex lower prevision; in the remainder of
this section we do not however rule out the possibility
that P (0|C) 6= 0 for some 0|C.
The properties of the 2-convex natural extension are
very similar to those of the natural extension:
Proposition 4. Let P : D → R be a lower prevision,
with D ⊆ DLIN . If E2c is finite on DLIN , then

a) E2c(X|B) ≥ P (X|B), ∀X|B ∈ D.

b) E2c is 2-convex on DLIN .

c) If P ∗ is 2-convex on DLIN and P ∗(X|B) ≥
P (X|B), ∀X|B ∈ D, then P ∗(X|B) ≥
E2c(X|B), ∀X|B ∈ DLIN .

d) P is 2-convex on D if and only if E2c = P on D.

e) If P is 2-convex on D, E2c is its smallest 2-convex
extension on DLIN .
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In words, the 2-convex natural extension dominates
P (by a)), characterises 2-convexity (by d)) and is the
least-committal 2-convex extension of P (by b), c),
e)).

Being rather weak a consistency concept, 2-convexity
may not satisfy a number of properties which neces-
sarily hold for coherent lower previsions. For instance,
the positive homogeneity axiom (A2) of Proposition 1,
P (λX|B) = λP (X|B), with λ ≥ 0, may not hold, not
even weakening it to

P (λX|B) ≥ λP (X|B),∀λ ∈ [0, 1]. (6)

(Unconditional versions of (6) hold for centered convex
previsions.)

It can instead be shown that
Proposition 5. If, given λ ∈ R, P is 2-convex on
D ⊇ {X|B, λX|B}, then necessarily

inf{(λ− 1)X|B}+ P (X|B) ≤ P (λX|B)
≤ sup{(λ− 1)X|B}+ P (X|B). (7)

Condition (7) seems rather mild, as the next example
points out.
Example 1. Given D = {X|B, 2X|B} (λ = 2), where
the image of X|B is [−1, 1] and P (X|B) = 0.2, equa-
tion (7) gives the bounds P (2X|B) ∈ [−0.8, 1.2]. It
is easy to check that P is 2-convex on D whatever
is the choice for P (2X|B) in the interval [−0.8, 1.2].
According to the value for P (2X|B) selected in this
interval, it may be P (2X|B) R 2P (X|B).

An annoying feature of 2-convexity is that internality
may fail, i.e. P (X|B) need not belong to the closed
interval [inf(X|B), sup(X|B)]. Thus, 2-convex pre-
visions may not satisfy a property holding even for
1-coherent previsions.

It has to be noticed that 2-convexity permits no com-
plete freedom in departing from internality. There
are two issues to be emphasized with respect to this
question. The first tells us that lack of internality
cannot be two-sided, because of the following result.
Proposition 6. If P : D → R is 2-convex on
D and P (Y |D) < inf(Y |D) for some Y |D ∈ D,
then P (X|B) ≤ sup(X|B), ∀X|B ∈ D. Similarly,
P (Y |D) > sup(Y |D) for some Y |D ∈ D implies
P (X|B) ≥ inf(X|B), ∀X|B ∈ D.

The second is the observation that 2-convexity imposes
a sort of, so to say, two-component internality. To see
this, note that
Lemma 1. If P : D → R is 2-convex on D, and X|B,
Y |B ∈ D, then

inf{X − Y |B} ≤ P (X|B)− P (Y |B)
≤ sup{X − Y |B}. (8)

Recall now that P (X|B) is interpreted as a supremum
buying price for X|B, and that Definition 3 ensures
that buying X|B for P (X|B) and selling Y |B at its
supremum buying price P (Y |B) would be (marginally)
acceptable for 2-convexity. Then, equation (8) tells
us that the profit P (X|B) − P (Y |B) from this two-
component exchange (X|B vs. Y |B) guarantees no
arbitrage. For instance, it cannot exceed sup{X −
Y |B}.
As a further critical issue with 2-convexity, we have
that the Goodman-Nguyen relation may not induce
an agreeing ordering on a 2-convex prevision. This
is tantamount to saying that the partial ordering of
some 2-convex conditional previsions may conflict with
the ordering of the extended implication (inclusion)
relation ≤GN .

For instance, from (2), if B ⇒ C then 0|C ≤GN

0|B. Agreement with the Goodman-Nguyen relation
requires P (0|C) ≤ P (0|B) to hold, but it can be proven
that if P (0|B) < 0 and B ⇒ C, then 2-convexity asks
instead that P (0|C) ≥ P (0|B) (the inequality may be
strict).

4 Centered 2-Convex Lower
Previsions

The critical issues on 2-convexity discussed in the
preceding section can be solved or softened requiring
the additional property

∀X|B ∈ D, 0|B ∈ D and P (0|B) = 0, (9)

i.e. restricting our attention to centered 2-convex
conditional lower previsions. This is shown in the
following proposition.
Proposition 7. Let P : D → R be a centered 2-convex
lower prevision on D. Then,

a) ∀X|B ∈ D, P (X|B) ∈ [inf X|B, supX|B].

b) P has a finite 2-convex natural extension E2c on
any superset of D.

c) X|B ≤GN Y |D implies P (X|B) ≤ P (Y |D).

Comment. The condition P (0|B) = 0 appears as
obvious, and in fact guarantees more satisfactory prop-
erties to 2-convexity. In our view, the main reason
for considering the alternative P (0|B) 6= 0 is to en-
compass additional uncertainty models. This is patent
already in the unconditional framework: convex risk
measures, as introduced in [6, 7], correspond to convex,
not necessarily centered previsions [9].

Note that by Proposition 7 a) centered 2-convexity
implies 1-coherence, while being obviously implied by
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2-coherence. Hence, the centering condition P (0|B) =
0 appears as a technical instrument to guarantee that
the lower prevision P satisfies more properties than a
generic 2-convex prevision, without having to assume
the more demanding properties of 2-coherence.

5 2-Coherent Lower Previsions

Our next step is a discussion of which additional prop-
erties are achieved by 2-coherent lower prevision.
Definition 5. P : D → R is a 2-coherent lower previ-
sion on D iff ∀X0|B0, X1|B1 ∈ D, ∀s1 ≥ 0, ∀s0 ∈ R,
defining S(s) =

∨{Bi : si 6= 0, i = 0, 1} we have that,
whenever S(s) 6= ∅,

sup{s1B1(X1 − P (X1|B1))−
s0B0(X0 − P (X0|B0))|S(s)} ≥ 0. (10)

2-coherent lower previsions are characterized on DLIN

as follows:
Proposition 8. Let P : DLIN → R be a conditional
lower prevision. P is 2-coherent on DLIN if and only
if (A1), (A2), (A4) and the following axiom hold:

(A6) P (X|B) ≤ −P (−X|B).

Remark 1. Proposition 8 can be equivalently restated
replacing axiom (A1) with

(A7) If X|B, Y |B ∈ DLIN , µ ∈ R are such that X|B ≥
Y |B + µ, then P (X|B) ≥ P (Y |B) + µ.

In fact, it can be easily verified that (A1) and (A7)
are equivalent.

Comment A comparison of Propositions 1 and 8 is use-
ful in detecting at once two major differences between
(centered) 2-convex and 2-coherent previsions.

One is positive homogeneity (axiom (A2)), a condi-
tion which, on any set D, is necessary for 2-coherence,
but not for 2-convexity. The need for positive ho-
mogeneity depends on the specific model we wish to
consider. We might be willing to reject it in some
instance, typically because of liquidity risk considera-
tions. Basically, this means that for a large positive λ
difficulties might be encountered at exchanging λX|B
at a price P (λX|B) = λP (X|B), because of lack of
market liquidity at some degree.

The second difference is pointed out by axiom (A6). To
fix its meaning, recall that given P (X|B), its conjugate
upper prevision P (X|B) is defined by

P (X|B) = −P (−X|B). (11)

Hence, by (11) axiom (A6) ensures that P (X|B) ≥
P (X|B), ∀X|B ∈ DLIN .

Therefore, 2-coherence is preferable to 2-convexity
whenever we fix an upper (P ) and a lower (P ) bound
for the uncertainty evaluation of X|B, while keeping
positive homogeneity.

As an aside to the above discussion, we note that 2-
coherence requires a weak form of homogeneity when
λ < 0:
Proposition 9. Given λ < 0, if P is 2-coherent
on D ⊇ {λX|B,X|B}, then necessarily P (λX|B) ≤
λP (X|B).

Compare Propositions 8 and 1, a). Recalling that any
2-coherent lower prevision satisfies internality (being
1-coherent too), while (A6) is a necessary condition
for coherence, only the superlinearity axiom (A3) dis-
tinguishes 2-coherence and coherence on DLIN . From
this, deductions on the role of n-coherence, n ≥ 3,
can be made which are quite analogue to those on n-
convexity in Section 3. This time, it can be shown that
any n-coherent lower prevision, n ≥ 3, must satisfy
(A3), and hence that:

On DLIN , n-coherence with n ≥ 3 and coherence are
equivalent concepts.

And again, we may in general argue that n-coherence
has no special relevance, compared to coherence, when
n ≥ 3. In particular, n-coherent extensions of an n-
coherent P exist on sufficiently large sets if and only
if P is coherent.

The latter concept is illustrated in the next example,
elaborating on Example 2.7.6 in [16].
Example 2. Let IP = {a, b, c, d} be a partition of
the sure event Ω. Define P on the powerset of IP as
follows:

• P (Ω) = 1

• P (E) = 1
2 if E is made up of 2 or 3 elements of

IP , one of which is a.

• P (E) = 0 otherwise.

It is shown in [16] that P is not coherent, while being
3-coherent, and hence also 3-convex. We show now
that P has no 3-convex extension to the linear space
L(IP ) of all gambles defined on IP .

In fact, suppose a 3-convex extension, also termed P ,
exists, and define A = a, B = a∨b, C = a∨c, D = a∨
d. Note that, by applying (7) with λ = 1

2 , X = A and
B = Ω, we get P ( 1

2A) ≤ P (A) = 0. Therefore, also
the 3-convex extension of P to 1

4 (B+C+D−1) = 1
2A

should be non-positive. However, by applying axiom
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(A5) as a necessary condition of 3-convexity and noting
that (7) (with λ = −1, X = 1 and B = Ω) ensures
also that P (−1) = −1, we obtain P ( 1

4 (B + C + D −
1)) = P ( 1

2 ( 1
2B+ 1

2C) + 1
2 ( 1

2D− 1
2 )) ≥ 1

2P ( 1
2B+ 1

2C) +
1
2P ( 1

2D− 1
2 ) ≥ 1

4P (B)+ 1
4P (C)+ 1

4P (D)+ 1
4P (−1) ≥

3 · 1
4 · 1

2 − 1
4 = 1

8 > 0, a contradiction.

From what we have just proven, we may conclude that:

a) the given P on the powerset of IP has no 3-convex
extension to L(IP );

b) P (viewed now as 3-coherent on the powerset of
IP ) has no 3-coherent extension on L(IP ) either:
if it had one, this extension would be 3-convex too,
contradicting a).

We may thus conclude that centered 2-convexity and 2-
coherence appear to be the most significant weakenings
of (centered) convexity and coherence.

6 Weak Consistency in a Desirability
Approach

In this section we examine centered 2-convexity and
2-coherence from the viewpoint of desirability. This
is an alternative approach to rationality concepts for
uncertainty measures going back to [17] in the case of
conditional imprecise previsions. It has been recently
applied to a variety of other situations, see e.g. the
discussion in [13] and the results in [14].

Roughly speaking, a set A of gambles is considered.3
It is such that its gambles are regarded as desirable or
acceptable. We may in general be willing to establish
some rationality criteria, requiring that certain gam-
bles do, or do not, belong to A. The basic problem
we shall consider here is: which is the correspondence
between the rationality criteria we adopt and the con-
sistency concepts of centered 2-convexity or alterna-
tively 2-coherence? More specifically, the following
two questions arise:

Q1) Which rationality criteria should be required to
the elements of a set A, so that a conditional
lower prevision P may be obtained from A that
is 2-coherent (alternatively, 2-convex)?

Q2) Conversely, given a 2-coherent (alternatively, 2-
convex) P , does it determine a set A′ with certain
rationality properties?

In the case that P is coherent, the answer to Q1) and
Q2) was given by Williams in [17]. Our approach to

3 As will appear later, A is included into some fixed linear
space of gambles.

solving Q1) and Q2) was largely influenced by his work.
Preliminarily, some notation must be introduced.
Definition 6. Let X be a linear space of gambles,
B ⊂ X a set of (indicators of) events, B∅ = B − {∅}.
We suppose Ω ∈ B and BX ∈ X , ∀B ∈ B, ∀X ∈ X .4
Define then

X� = {X ∈ X : inf X ≥ 0},
X� = {X ∈ X : supX ≤ 0}, (12)

and, ∀B ∈ B,

R(B) = {X ∈ X : BX = X},
R(B)� = {X ∈ R(B) : inf{X|B} > 0},
R(B)≺ = {X ∈ R(B) : sup{X|B} < 0}.

(13)

If S and T are subsets of X , their Minkowski sum is

S + T = {X + Y : X ∈ S, Y ∈ T }.

We shall use similar compact notation later. For in-
stance, λS + µT ⊆ U , ∀λ, µ ≥ 0, means: ∀X ∈ S,
∀Y ∈ T , ∀λ, µ ≥ 0, λX + µY ∈ U .

The following proposition answers question Q1) com-
pletely for 2-coherence:
Proposition 10. Let A ⊆ X be such that

a) λA+R(B)� ⊆ A, ∀λ ≥ 0, ∀B ∈ B;

b) R(B)≺ ∩ A = ∅, ∀B ∈ B.

c) (R(B1) ∩ A) + (R(B2) ∩ A) ⊆
R(B1 ∨B2) \ R(B1 ∨B2)≺,∀B1, B2 ∈ B.

Define, ∀X|B ∈ DLIN ,

P (X|B) = sup{x : B(X − x) ∈ A}. (14)

Then, P is 2-coherent on DLIN .

Unlike the case of coherent conditional lower previsions
examined in [17, Section 3.1], A does not need to be
a cone in Proposition 10: given X,Y ∈ A, λ ≥ 0,
neither X + Y nor λX are guaranteed to belong to A.
Actually, condition a) represents a weakening of the
cone axioms: if X ∈ A, Y ∈ R(B)� and λ ≥ 0, then
λX + Y ∈ A. This implies also R(B)� ⊆ A ∀B ∈ B,
a condition that, like also b), is required for coherence
as well (see (C1’), (C2’) in [17, Section 3.1]).

The interpretation of b) is that of an avoiding partial
loss condition: we can expect no gain from owning
a gamble in R(B)≺, when B is true, therefore such
gambles cannot be included into A.

4 Note that if X ∈ X and B ∈ B∅, X|B ∈ DLIN in the
notation of the preceding sections.
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As for c), writing it in an extended form, it tells us that:
if X1, X2 ∈ A, B1X1 = X1, B2X2 = X2, then (B1 ∨
B2)(X1+X2) = X1+X2 and sup(X1+X2|B1∨B2) ≥ 0.
Note that if X1 ∈ R(B1) and X2 ∈ R(B2), it always
holds that X1 +X2 ∈ R(B1 ∨B2), without having to
impose it by means of axiom c). In fact, we have that
(B1 ∨ B2)(X1 + X2) = (B1 ∨ B2)(B1X1 + B2X2) =
(B1 ∨B2)B1X1 + (B1 ∨B2)B2X2 = B1X1 +B2X2 =
X1 +X2, so that X1 +X2 ∈ R(B1 ∨B2).

Therefore, the essential condition in axiom c) is that
if X1, X2 are desirable (belonging to A), this does
not imply that X1 + X2 ∈ A (which is required for
coherence in [17, 18]), but only that X1 + X2 is not
necessarily discarded by resorting to b). To illustrate
this concept, let for instance B1 = B2 = Ω in c),
so that R(B1) = R(B2) = R(B1 ∨ B2) = R(Ω) = X .
Then, c) implies X1 +X2 /∈ R(Ω)≺, making impossible
to apply b) in order to discard X1 +X2 from A.
As for question Q2), an answer is given by the following
proposition, when P is 2-coherent.
Proposition 11. Let P : DLIN → R be 2-coherent.
Define

A′ = {λB(X − x) + Y : X|B ∈ DLIN ,
x < P (X|B), Y ∈ X�, λ ≥ 0}. (15)

Then the set A′ is such that:

a’) aA′ + X� ⊆ A′, ∀a ≥ 0;

b’) X� ∩ A′ = {0};

c’) (A′ +A′) \ {0} ⊆ X \ X�;

d’) P (X|B) = sup{x : B(X − x) ∈ A′}, ∀X|B ∈
DLIN .

Proposition 11 states the existence of a set of desirable
gambles A′, in accordance with a given 2-coherent
conditional lower prevision P and satisfying the ratio-
nality criteria a’), b’), c’). Comparing a’), b’) with a),
b) in Proposition 10, a clear similarity comes evident:
essentially, the sets R(B)�, R(B)≺, B ∈ B, have been
replaced with X�, X� respectively. As a consequence,
note that 0 ∈ A′.
The interpretation of c’) is similar to c) in Proposi-
tion 10. It tells that: if X1, X2 ∈ A′, X1 + X2 6= 0,
then sup(X1 +X2) > 0. Again, coherence would allow
the stronger implication X1, X2 ∈ A′ → X1 +X2 ∈ A′,
while 2-coherence only ensures that X1 +X2 does not
belong to the (near) rejection set X�.
Actually, a’), b’) c’) prove to be stronger than a), b), c).
This means that any 2-coherent conditional prevision
can be represented through a set of desirable gambles
A′ satisfying the necessary axioms a’), b’), c’), but

also that, at the same time, A′ satisfies the weaker
axioms a), b), c) in Proposition 10.

A comparison between (3) in Definition 3 and (10) in
Definition 5 intuitively suggests that we can get an
answer to Q1) for 2-convexity from a reduced form
of Proposition 10, with λ = 1. More precisely, the
following proposition holds:
Proposition 12. Let A ⊆ X be such that

a) A+R(B)� ⊆ A, ∀B ∈ B;

b) R(B)≺ ∩ A = ∅, ∀B ∈ B.

Define, ∀X|B ∈ DLIN ,

P (X|B) = sup{x : B(X − x) ∈ A}. (16)

Then, P is 2-convex on DLIN . Moreover, P is centered
iff R(B)� ⊆ A ∀B ∈ B.

An analogously reduced form of Proposition 11 allows
us to answer question Q2) for 2-convexity.
Proposition 13. Let P : DLIN → R be 2-convex.
Define

A′ = {B(X − x) + Y : X|B ∈ DLIN ,
x < P (X|B), Y ∈ X�}. (17)

Then the set A′ is such that:

a) A′ + X� ⊆ A′;

b) X� ∩ A′ = ∅ iff P (0|B) ≤ 0, ∀B ∈ B∅;

c) P (X|B) = sup{x : B(X − x) ∈ A′}, ∀X|B ∈
DLIN .

Further, P is centered iff R(B)� ⊆ A′ ∀B ∈ B.

Comparing Propositions 10 and 11 with, respectively,
Propositions 12 and 13, we note that, in addition to
the constraint λ = 1, 2-convexity requires no condition
like c) and c’) in Propositions 10 and 11 respectively.
Referring, for instance, to c’), this means that, given
X,Y ∈ A′ with X +Y 6= 0, 2-convexity does not guar-
antee sup(X + Y ) > 0: summing up two individually
desirable gambles could therefore give rise to a par-
tial or even to a sure loss. Moreover, a non-centered
2-convex P suffers from a more serious shortcoming:
if R(B)� ⊆ A′ does not necessarily hold, then a non-
negative gamble X = BX (X 6= 0) exists, that is
considered non-desirable. The main drawbacks of 2-
convexity relative to 2-coherence are therefore clearly
pointed out by a comparison through desirability ax-
ioms.
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7 Weakly Consistent Uncertainty
Models

As mentioned in the Introduction, a motivation for
studying the loose forms of consistency introduced
in this paper is their capability of encompassing or
extending uncertainty models already investigated in
the literature. Even though these models may depart
also considerably from coherence and convexity, they
can nevertheless be accommodated into a unifying
betting scheme, ranging from 2-convex to coherent
lower previsions.

Focusing on 2-convexity, we first recall a few definitions
and some results concerning unconditional 2-convex
lower previsions.
Definition 7. Given a finite partition IP , and denot-
ing with 2IP its powerset, a mapping c : 2IP → [0, 1] is
a (normalised) capacity whenever c(∅) = 0, c(Ω) = 1
(normalisation) and ∀A1, A2 ∈ 2IP such that A1 ⇒ A2,
c(A1) ≤ c(A2) (1-monotonicity).
Definition 8. Given a linear space L of random vari-
ables, a niveloid [2, 5] is a functional N : L → R =
R ∪ {−∞,+∞} which is translation invariant and
monotone, i.e. such that

N(X + µ) = N(X) + µ,∀X ∈ L,∀µ ∈ R;
X ≥ Y implies N(X) ≥ N(Y ),∀X,Y ∈ L. (18)

As well-known, capacities are uncertainty mea-
sures with really minimal quantitative requirements.
Niveloids can be viewed as a generalisation of theirs
to linear spaces of random variables which preserves
their minimality properties. Strictly speaking, this is
true for centered niveloids, i.e. such that N(0) = 0. In
fact, the centering condition N(0) = 0 does not ensue
from the definition of niveloid. Note also that niveloids
apply to random variables which may be unbounded
too.

It has been proven in [1, Section 4.1]5 that:
Proposition 14. a) Let P be defined on 2IP . Then

P is a centered 2-convex lower prevision if and
only if it is a capacity.

b) Let P be defined on a linear space L of bounded
random variables (gambles). Then P is a 2-convex
lower prevision if and only if it is a (finite-valued)
niveloid.

Hence, an unconditional 2-convex lower prevision is
equivalent to a capacity or a niveloid, on structured
sets (2IP or L respectively). On non-structured sets,ù
it extends these concepts.

5 See Footnote 2.

2-convex conditional lower previsions are natural can-
didates to define conditional capacities and niveloids
on arbitrary sets of, respectively, conditional events or
gambles. To the best of our knowledge, such condi-
tional versions have not been considered yet in this gen-
eral conditional environment, but rather in more spe-
cific cases. For instance, [3] focuses on updating rules
for ‘convex’ capacities, which means for 2-monotone
lower probabilities, while considering a single condi-
tioning event.

Thus 2-convex previsions may provide an appropri-
ate framework for such extensions, guaranteeing some
minimal properties like the existence of a 2-convex
natural extension (when being centered). Take for
instance centered 2-convex conditional lower probabil-
ities. They satisfy the properties one would require to
a conditional capacity: P (0|B) = 0, P (Ω|B) = 1 (this
follows from Proposition 7, a)), and A|B ≤GN C|D im-
plies P (A|B) ≤ P (C|D) (Proposition 7, c)). Similarly,
centered 2-convex lower previsions ensure generalisa-
tions of properties (18) (see especially Proposition 2
and Remark 1 for the first property, Proposition 7, c)
for the second).

8 Conclusions

N -convex and n-coherent conditional lower previsions
broaden the spectrum of uncertainty measures that
can be accommodated into a behavioural approach
to imprecision, including, for instance, conditional
extensions of capacities and niveloids when n = 2.
This choice for n is the most neatly distinguished from
coherence, the other extreme in the spectrum, and
that retaining more interesting properties. Among
these the GBR must still hold. Centered 2-convex
and 2-coherent previsions also have a clear meaning
in terms of desirability. Further work is necessary
to investigate additional properties, like the possible
existence of envelope theorems, or properties of already
defined notions. In particular, we conjecture that the 2-
convex natural extension may simplify computing the
convex natural extension. As a further generalisation
of this work, the consistency notions defined here could
be extended to the case of unbounded conditional
random variables. This has been done in [15] for
coherent conditional lower previsions, while, to the best
of our knowledge, a similar investigation for convex
conditional previsions is still missing.
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Abstract
The paper deals with parameter estimation for categor-
ical data under epistemic data imprecision, where for
a part of the data only coarse(ned) versions of the true
values are observable. For different observation models
formalizing the information available on the coarsening
process, we derive the (typically set-valued) maximum
likelihood estimators of the underlying distributions.
We discuss the homogeneous case of independent and
identically distributed variables as well as logistic re-
gression under a categorical covariate. We start with
the imprecise point estimator under an observation
model describing the coarsening process without any
further assumptions. Then we determine several sen-
sitivity parameters that allow the refinement of the
estimators in the presence of auxiliary information.

Keywords. Coarse data, missing data, epistemic data
imprecision, sensitivity analysis, partial identification,
categorical data, multinomial logit model, coarsening
at random (CAR), likelihood.

1 The Problem and its Background

A frequent challenge in statistical modelling is data
imprecision, where some data are coarse, i.e. they are
not observed in the resolution originally intended in
the subject matter context. Throughout this paper,
we focus on the case where the coarse observations are
data under epistemic data imprecision. For categorical
data as considered here this means that there exists
a true precise value y of a generic variable Y taking
values in a finite sample space ΩY = {1, . . . ,K}, but
we may only observe a non-singleton set Y containing y.
It is important to distinguish epistemic from ontic data
imprecision, where data are coarse by nature and thus
have to be interpreted as indivisible entities of their
own (see, in particular, [7, 8]; [24] for an application
in a multinomial logit model and classification.)

Epistemic data imprecision emerges most naturally in a
huge variety of applications. Missing data, interpreted
as the prominent special case where the whole sample
space is observed only, arise, for instance directly by
design in observational studies on treatment effects,
see, e.g., [27], and unit non-response is quite frequent
in surveys, in particular as refusals to answer sensitive
questions. Typical instances of not missing but still
coarse data include the numerous data sets where
coarsening is deliberately applied as an anonymization
technique (see, e.g., [10]), matched data sets with not
completely identical categories, secondary data where
the originally coded categories turn out to be not fine
enough and, as a technical example, reliability analysis
of a system whose components are tested separately
prior to assembly [30].

Trapped in the framework of precise probabilities, tra-
ditional statistical methods are forced to neglect data
imprecision or to impose quite strong, empirically
untestable assumptions on the underlying coarsening
process. Thus, except the very rare cases where the
external information on the subject matter problem is
rich enough to justify such an extent of precision of the
modelling of the coarsening process, the price of the
(seemingly) precise result is a substantial debilitation
of the reliability of the conclusions drawn.

Against this background, set-valued approaches, aim-
ing at a proper reflection of the available information,
have been gathering momentum, also becoming a pop-
ular topic at the ISIPTA symposia ([5, 26, 17, 32, 33],
to name just a few contributions). In different areas
of application concepts of cautious data completion
emerged, where a classical procedure is extended by
considering the set of all virtual precise observations
in accordance with the coarse data (see, e.g., the expo-
sition in [2], and the references therein). General inves-
tigations of coarse data from an imprecise-probability-
based Bayesian point of view include [6, 36]; random
set-based perspectives are developed for instance in
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[8, 21]. Linear regression under metrical coarse data
(interval data) is vividly discussed in the partial iden-
tification literature in the spirit of [19] (see also, e.g,
[26], and the references therein). Mainly focusing on
missing data, [34] suggests a framework for a system-
atic sensitivity analysis for statistical modelling under
epistemic data imprecision. [5] introduces a profile
likelihood approach for coarse data (for missing data
see also [37]) and derive from it a uniform framework
for robust regression analysis with imprecise data.

This paper will develop another likelihood-based (see,
e.g., [4, § 6.3, 7.2.2] for a general introduction) ap-
proach and we will in addition briefly sketch Bayesian
approaches in Section 3. Our work is strongly influ-
enced by the methodology of partial identification,
dealing with the trade-off between information and
credibility by first using the empirical evidence only,
i.e. using information implied by the data and includ-
ing only those assumptions about which there exists
a common consensus concerning their validity (e.g.,
[19, 28, 20]). Sensitivity analysis pursues the same
goal, but proceeds in a different direction. While par-
tial identification starts from total uncertainty and
gradually adds assumptions, in the framework of sen-
sitivity analysis the collection of all precise results
from successively relaxed assumptions is considered.
Thereby, the analysis is framed by a sensitivity param-
eter, which is not identified but suffices to identify the
parameter of interest, (e.g., [34]).

Our paper is structured as follows. In the next sec-
tion we fix the notation and formulate the problem
setting more exactly for the cases considered in this
paper: independent and identically distributed (i.i.d.)
variables and logistic regression with a categorical co-
variate. The crucial technical argument underlying our
paper (developed in general terms in Section 3) is to
introduce an observation model and utilize invariance
properties of the likelihood. In Section 4 we derive
and discuss the set-valued estimators arising from a
fully non-committal observation model, and we then
turn to settings where this interval is narrowed when
we benefit from the presence of additional auxiliary in-
formation. For technically handling this by sensitivity
parameters, it is helpful to go to the other extreme,
investigating point identifying additional assumptions
in some special cases. For the homogeneous situation,
after studying known coarsening in Section 5.1, we
focus on the coarsening at random (CAR) assump-
tion and illustrate the disastrous behaviour of the
resulting point estimator when CAR is inappropriate
(Section 5.2). Then in Section 5.3 we consider an
extension of CAR and determine the corresponding
ratio of coarsening probabilities as a sensitivity pa-
rameter. For the logistic regression case in Section 5.4

we work out that there is, as an alternative to CAR
and its extensions, a further assumption refining the
initial set of estimators to a precise result. This as-
sumption is called subgroup independent coarsening
and its generalization again can serve as a sensitivity
parameter (Section 5.5). These sensitivity parameters
frame a systematic sensitivity analysis, resulting in im-
precise point estimators reflecting justifiable auxiliary
information.

2 The Basic Setting

Let Y1, . . . , Yn be a random sample of a categori-
cal response variable of interest Y with realizations
y1, . . . , yn in sample space ΩY = {1, . . . , j, . . . ,K}.
Problematically, some of those realizations are not
known in a precise form, and thus only realizations
Y 1, . . . ,Y n of a sample Y1, . . . ,Yn of a random vari-
able Y within sample space ΩY = P(ΩY ) \ ∅ can
be observed, where P denotes the power set. The
possible categories of Y constitute the singletons of
(ΩY , P(ΩY)), with corresponding probability mass
functions p

Yi
= P (Yi = Y i) (i = 1, . . . , n). But as we

are interested in the random variables Y1, . . . , Yn, our
basic goal consists of gathering information about the
individual probabilities πi1 = P (Yi = 1), . . . , πiK =
P (Yi = K). Thereby, we assume throughout the paper
that the coarsening process is error-free, in the sense
that Y i 3 yi, i = 1, . . . , n.

We discuss the homogeneous case (i.i.d. case), in bio-
metrical terms prevalence estimation, as well as sit-
uations with one precise categorical covariate X, in
biometrical terms called treatment, with sample space
ΩX , being available. Both situations will be illustrated
by means of the following example.

Running Example: We refer to the data from the
German panel study “Labor Market and Social Security”
(PASS, wave 1, 2006/2007, [29]). As asking for the in-
come may be regarded as a sensitive question and thus
the response rate is expected to be low, in this study
non-responders are required to report their income in
classes starting from rather large classes that are nar-
rowed by following questions. By proceeding in this
way, anonymization is guaranteed in the level that is re-
quested by the respondents and answers of different de-
grees of coarseness are obtained. Keeping things simple,
here we refer to the data from question “HEK0700”,
where respondents are asked to report if their income
Y is < 1000e or ≥ 1000e (yi ∈ {<,≥}; “<” and “≥”
abbreviating these classes, respectively) and our main
goal is the estimation of π<. As some respondents gave
no suitable answer (“na”) and cannot be allocated to
one of the classes, partly only coarsened values of the
variable Y are observed (Y i ∈ {<,≥,na}).
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Example, version 1: In order to illustrate the
i.i.d. case, we only consider the reported answers
of the income question, where 238, 835 and 338 re-
spondents reported “<”, “≥” and “na”, respectively
(n< = 238, n≥ = 835, nna = 338).

In the case with categorical covariates, we here con-
fine ourselves to one categorical covariate only, as this
is technically equivalent to any finite set of categor-
ical covariates. While in the i.i.d. case probabilities
πi1 = π1, . . . , πiK = πK are assumed to be inde-
pendent of individual i, in the case with one covari-
ate the probabilities πi1 = P (Yi = 1|Xi = xi) =
πxi1, . . . , πiK = P (Yi = K|Xi = xi) = πxiK are influ-
enced by individual i through the corresponding value
of the covariate Xi. One of most generally applied
models is the multinomial logit model. It describes the
dependence of a categorical dependent variable Y of
nominal scale on covariates X by

πij = P (Yi = j|xi) = exp(βj0 + xTi βj)
1 +

∑K−1
s=1 exp(βs0 + xTi βs)

(1)
i = 1, . . . , n for categories j = 1, . . . ,K − 1 and by

πiK =
(
1 +

∑K−1

s=1
exp(βs0 + xTi βs)

)−1 (2)

with category specific regression coefficients, that is
βj = (βj1, . . . , βjm)T referring to m covariates and
intercept βj0. As we here address the case of one
categorical covariate Xi ∈ {1, . . . , c}, dummy coded
variables Xi1, . . . , Xim with m = c − 1 are included
into the model.1

It is common to summarize categorical data in con-
tingency tables by reporting the counts for possible
outcomes, where the covariatesX are supposed to be in
the rows (e.g., [31]). Thus, in our case the contingency
table in Table 1 will be addressed. The number of ob-
servations with Y = Y and treatment group X = x is
denoted by nxY

, where n0 = n0A +n0B +n0AB , n1 =
n1A + n1B + n1AB , nA = n0A + n1A, nB = n0B + n1B
and nAB = n0AB + n1AB .

Example, version 2: Illustrating the case with a
categorical covariate, apart from the partial income
knowledge, the receipt of the so-called Unemployment
Benefit II (variable alg2abez; here denoted by UBII)
is considered and serves in the model in Expressions
(1) and (2) as covariate Xi, i, . . . , n. The data are
summarized in Table 2.

1Dummy variable Xil (l = 1, · · · ,m) attains value 1 if the
l-th category is chosen by individual i, otherwise it is 0. In this
way, reference category c is represented by all dummy variables
being 0.

Y
A B AB total

X 0 n0A n0B n0AB n0
1 n1A n1B n1AB n1

total nA nB nAB n

Table 1: Contingency table that introduces used nota-
tion.

income
< ≥ na total

UBII yes (0) 130 114 75 319
no (1) 108 721 263 1092
total 238 835 338 1411

Table 2: Contingency table to illustrate some results
by means of the PASS data.

3 Sketch of the Basic Argument

This paper, similarly to [5, 37], relies on the likelihood
as the fundamental concept to derive parameter esti-
mators under epistemic data imprecision, but looks
at it from a different angle. In order to support the
appropriate incorporation of the available information
provided by the data and the background knowledge,
we explicitly formulate, and utilize, an observation
model relating the observable level and the ideal level.
The observation model is a set Q of (precise) coars-
ening probabilities,2 and thus the medium to specify
carefully and flexibly the available information about
the coarsening process.

By virtue of the theorem of total probability, the
elements of Q relate the probability distribution of
the imprecise observation Y to the distribution of the
underlying latent variable Y (and, if present, certain
covariates).

Parametrizing the distributions, again possibly after
splitting with respect to certain covariate values, let
ϑ (the various p’s in the following sections) and η
(the various π’s below) be the parameters determining
the distribution of Y and Y , respectively, and let ζ
be the parameter characterising the elements of Q
(the various q’s, possibly constrained by the specified
constraints:

(
q
Y |y := P (Y = Y |Y = y)

)
(Y ∈ΩY ,y∈ΩY )

in the i.i.d. case, while in the regression context the
coarsening mechanisms generally also depend on the
values of Xi, i.e., (q

Y |xy := P (Y = Y |X = x, Y =
y)(Y ∈ΩY ,y∈ΩY ,x∈ΩX) has to be considered).

Then we can describe the relationship between γ :=
(ηT , ζT )T ∈ Γ and ϑ ∈ Θ via the mapping Φ : Γ→ Θ ,
γ 7→ ϑ . Figure 1 and the running example illustrate

2More precisely, Q is a generalized transition kernel, consist-
ing of credal sets indexed by the values of Y .
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ϑ here e.g.
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γ here e.g.
(π<, qna|<, qna|≥)T

?

?

Figure 1: Observable and latent variable and the cor-
responding parameters.

this mapping Φ(·) and all parameters involved.

Example, version 1 (cont.): The mapping Φ(·)
with arguments ζ = (qna|<, qna|≥)T and η = π< es-
tablishes a connection to the parameters determining
the probabilities of the observable income variable Y,
namely ϑ = (p<, p≥)T .

In a first step (Section 4), we will only assume that
the coarsening process is error-free and therefore take
Q as the set of all coarsening mechanisms compatible
with error-freeness. Then (Section 5), by using aux-
iliary information, we sharpen this set Q. Note that
we do neither assume anything about the plausibility
of different elements ζ of Q nor do we treat different
y ∈ Y as differently plausible. To derive the estima-
tors, the invariance of the likelihood under parameter
transformations is crucial: evaluating the likelihood in
terms of γ and in terms of ϑ = Φ(γ) is equivalent here.
Our random set modelling will allow us to determine
the ML-estimator ϑ̂ of ϑ, which moreover, apart from
trivial extreme cases, can be shown to be single-valued.
Then the possibly set-valued maximum-likelihood es-
timator for γ is obtained as

Γ̂ =
{
γ
∣∣∣Φ(γ) = ϑ̂

}
(3)

(see also [5, Section 2]). Thus, adapting the concept of
maximum likelihood (ML) estimators to a persistent
set-based perspective and to random set-based situa-
tions, we achieve a general and powerful framework
for handling coarse categorical data via the mapping
Φ(·). If Φ(·) is injective, then Γ̂ is a singleton as well,
and γ so-to-say empirically point identified; otherwise
Γ̂ is set-valued in the literal sense and γ empirically
partially identified.

This compares to other approaches: A classical
Bayesian analysis would put some prior on ζ and on η
(cf., e.g., [23, 14]) while a generalized Bayesian analysis
would replace one or both priors by a set of priors.

This can be seen as imposing imprecise priors on ζ and
on η. The non-committal analysis would start with
a near-ignorance prior, for instance based on Dirich-
let distributions adapting [35]’s imprecise Dirichlet
model, and auxiliary information can be expressed by
smaller credal sets; compare also the general Bayesian
treatment of incomplete information in [6, 36]. Par-
tially differently, in [3, Section 4.4.] an approach is
presented that puts a precise prior on η and no prior
on ζ and models the coarsening process with a mul-
tivalued mapping. This may be seen as imposing a
vacuous imprecise probability on ζ. In another direc-
tion, one could impose some prior knowledge w.r.t. the
imprecise data point Y by assuming different y ∈ Y

as differently plausible. This can be done for example
by imposing a possibility distribution on y (cf., e.g.,
[9, Section 3.2.]) or constructing observations directly
by data augmentation (cf., e.g., [18]).

The dimension of the parameter vectors η and ζ in-
creases substantially with the cardinality of ΩY and
ΩX . In the i.i.d. case m = (

∑|ΩY |
z=1

(|ΩY |
z

)
· z) − 1 or

equivalently m = K · 2K−1 − 1 parameters have to
be estimated, where in the case with one covariate
this number even increases to |ΩX | ·m. Thus, for rea-
sons of conciseness of presentation, we confine detailed
explanations and derivations on the special, yet still
representative cases of a binary response variable Y
with sample space ΩY = {A, B} and observations
within ΩY = {A, B, AB}, as well as a binary precise
categorical covariate X with values 0 and 1. Then the
underlying model expressed in Expression (1) and (2)
is called logit model. As the inclusion of more than
one dummy variable simply leads to an increase of the
number of subgroups, all results can be transferred
straightforwardly to more general cases, namely cases
with more than one non-binary covariates. Further-
more, the main results not only will be shown for the
situation of a binary Y , where coarsening corresponds
to missingness, but also in a general way.

4 Maximum Likelihood Estimation
without Additional Information

In this section we derive the maximum likelihood esti-
mators for the case where no additional information
on the coarsening process is available, i.e. there are
no constraints on the elements of Q. A crucial step
is to rely on the random set view that treats data
imprecision as a change of the sample space with cor-
responding random variables Yi, i = 1, . . . , n, which
then lead to multinomially distributed variables with
parameter ϑ for the counts based on the new sample
space. According to the argumentation in Section 3,
the resulting likelihood in ϑ, and the estimator derived
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from maximizing it, will then be related to the param-
eters of the distribution of the latent variable (and
the observation model). As just discussed, we explain
the construction in some detail for the representative
special cases with ΩY = {A, B} (and ΩX = {0, 1})
and then report the general results.

4.1 Estimation in the i.i.d. Case

Considering categorical i.i.d. random variables
Y1, . . . ,Yn with realizations Y 1, . . . ,Y n in the sam-
ple space ΩY = {A, B, AB}, we obtain the following
likelihood function for the parameter ϑ = (pA, pB)T
given the data, summarized by the counts nA, nB and
nAB (with pAB = 1− pA − pB):3

L(ϑ) = L(pA, pB) = L(pA, pB ||Y 1, . . . ,Y n) (4)
= P (Y 1, . . . ,Y n||pA, pB) ∝ pnA

A · pnB

B · pnAB

AB .

For n = nA+nB +nAB > 0 this likelihood is uniquely
maximized by the relative frequencies (see [25]),

p̂
(MLE)
A = nA

n
, p̂

(MLE)
B = nB

n
, (5)

and thus p̂(MLE)
AB = 1− p̂(MLE)

A − p̂(MLE)
B = nAB

n .

Essentially, we are interested in the parameter η = πA
determining the probabilities of the true, but unob-
served variable Y being equal to particular categories
and the associated maximum likelihood estimator.
Those probabilities of interest, in our case πA and
πB = 1− πA, can be related with probabilities pA, pB
and pAB corresponding to the observable variables by

pA = (1− qAB|A) · πA , (6)
pB = (1− qAB|B) · (1− πA) ,

where pAB = qAB|A ·πA+qAB|B · (1−πA) results from
the law of total probability.

This means that the likelihood in terms of ϑ =
(pA, pB)T in Expression (4) and in terms of γ =
(πA, qAB|A, qAB|B)T , coincide, indeed.

By the invariance of the likelihood under parameter
transformations, Expressions (5) and (6) can be com-
bined, resulting in the following system of equations:

(1− q̂AB|A) · π̂A = nA
n

= p̂
(MLE)
A ,

(1− q̂AB|B) · (1− π̂A) = nB
n

= p̂
(MLE)
B , (7)

q̂AB|A · π̂A + q̂AB|B · (1− π̂A) = nAB
n

= p̂
(MLE)
AB .

For reasons of redundancy we can leave the third
equation out of consideration. As there typically are

3In the following, we will use the abbreviated notation of the
likelihood without referring to the data.

multiple triples γ̂ = (π̂A, q̂AB|A, q̂AB|B)T that lead
to the same values of ϑ̂ = (p̂(MLE)

A , p̂
(MLE)
B )T , the

mapping Φ : [0, 1]3 → [0, 1]2 with

Φ




πA
qAB|A
qAB|B


=

(
πA · (1− qAB|A)

(1− πA) · (1− qAB|B)

)
=
(
pA
pB

)
(8)

(cf. Figure 1 for the case of the running example)
connecting both parametrizations in general is not in-
jective. Thus the maximum likelihood estimate Γ̂ from
Expression (3) is set-valued in the literal sense. Points
in this set are constrained through the relationships
in (7), and thus Γ̂ is not a cuboid in [0, 1]3. Building
the one dimensional projections, set-valued estimators
of the single components of γ are obtained via

π̂A ∈
[
nA
n
,
nA + nAB

n

]
, (9)

q̂AB|A ∈
[
0, nAB
nA + nAB

]
,

and analogously for q̂AB|B , where 0
0 := 1.

Extending the discussion here to the general case of
ΩY = {1, . . . ,K} and the corresponding ΩY , the esti-
mators in Expression (9) generalize to

π̂y∈
[
n{y}
n

,

∑
Y 3y

n
Y

n

]
q̂
Y |y∈

[
0,

n
Y

n{y} + n
Y

]
,

(10)
(where as above 0

0 := 1) for all y ∈ Ωy = {1, . . . ,K}
and all Y ∈ ΩY such that {y} ⊂ Y .4

Example, version 1 (cont.): Applying Expres-
sion (10) to our example, one obtains

π̂< ∈
[

238
1411 ,

238 + 338
1411

]
= [0.17, 0.41] .

4.2 Logistic Regression with a Categorical
Covariate

Now we consider the heterogeneous situation expressed
by a discrete covariate X, which also has been depicted
in Table 1. Again we can derive set-valued estimators
of the parameters of interest η = (π0A, π1A)T (and the
auxiliary parameter ζ characterizing the coarsening
mechanisms) by taking the random set perspective,
setting up the corresponding likelihood function and

4The estimators of the probability components of the dis-
tribution of Yi prove to be the same as arising from a belief
functions like construction of empirical probabilities and also
coincide with the estimator obtained from cautious data comple-
tion, plugging in all potential precise sample outcome compatible
with the observations Y 1, . . . ,Y n (see, e.g., [2])
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applying the appropriate parameter transformations.
Proceeding in this way, for fixed treatment group
x the cell counts (nxA, nxB , nxAB) follow a multi-
nomial distribution, i.e. (nxA, nxB , nxAB) ∼
M(nx, (pxA, pxB , pxAB)) with conditional probabilities
pxY

= P (Y = Y |X = x) (see [31, 1]).5 Therefore, the
corresponding likelihood function is given by

L(ϑ) = L(p0A, p1A, p0B , p1B) (11)
∝ pn0A

0A · pn0B

0B · pn0AB

0AB · pn1A

1A · pn1B

1B · pn1AB

1AB .

For nx > 0 the maximum likelihood estimators for the
parameters are unique and given by (see [25])

p̂(MLE)
xY

=
nxY

nx
, for x ∈ {0, 1}.

Analogously to Section 4.1, we consider the
mapping, which connects both parametrizations,
Φ : [0, 1]6 → [0, 1]4 with

(12)

Φ




π0A
π1A

qAB|0A
qAB|1A
qAB|0B
qAB|1B




=




π0A · (1− qAB|0A)
π1A · (1− qAB|1A)

(1− π0A) · (1− qAB|0B)
(1− π1A) · (1− qAB|1B)


=




p0A
p1A
p0B
p1B




(cf. Figure 1) and observe that in this case it is also not
injective and thus Γ̂, constructed along the line of (3),
is strictly set-valued, too. Illustrating Γ̂ again by the
corresponding projections along the axes, we obtain
for given value x ∈ {0, 1} in the general case with more
than two categories in Y , i.e. y ∈ ΩY = {1, . . . ,K}
and Y ∈ ΩY with {y} ⊂ Y ,

π̂xy∈



nx{y}
nx

,

∑
Y 3y

nxY

nx


, q̂Y |xy∈

[
0,

nxY

nx{y} + nxY

]
,

(13)
where again 0

0 := 1.6

Example, version 2 (cont.): Applying Expres-
sion (13) to our example, one obtains

π̂0< ∈
[

130
319 ,

130 + 75
319

]
= [0.41, 0.64] ,

π̂1< ∈
[

108
1092 ,

108 + 263
1092

]
= [0.10, 0.34] .

By recurring on the relation defined in Expression (1)
and (2), and utilizing the injectivity of the logistic

5This corresponds to a product-multinomial sampling scheme
(e.g. [31, 1]).

6Reminiscing about the derivation given here, we see that
the categorical covariate case for the logistic model – in strict
contrast to the continuous case (see Section 6) – in essence
consists of a subgroup-specific consideration of the i.i.d. case.

function, the likelihood function considered here can
also be uniquely expressed in terms of the regression
coefficients. In this way, instead of the estimators π̂0A
and π̂1A determined by Expression (13), equivalently
one can consider the estimators

β̂A0 ∈
[

log
(

n0A
n0B + n0AB

)
, log

(
n0A + n0AB

n0B

)]

β̂A ∈
[

log
(
n1A · (n0B + n0AB)
n0A · (n1B + n1AB)

)
, (14)

log
(
n0B · (n1A + n1AB)
n1B · (n0A + n0AB)

)]
,

assuming all expressions to be well-defined.

Example, version 2 (cont.): In terms of the
regression coefficients, we obtain the estimates
β̂<0 ∈ [−0.37, 0.59] and β̂< ∈ [−1.83, − 1.25].

Interpreting the indeterminate sign of intercept β<0,
one notes that for the group of persons that receives
UBII (i.e. X = 0) the chance of being in the lower
income group (< 1000e) in comparison to being in
the higher income group (≥ 1000e) varies between
exp(−0.37) = 0.69 and exp(0.59) = 1.89. In this
way, one cannot judge the impact of the UBII on
the dependent variable income without implying fur-
ther assumptions about the coarsening. Unjustifiably
ignoring the coarsening (see Section 5.2) pretends a
particular sign of the regression coefficients. This cor-
roborates the importance of including all imaginable
coarsening mechanisms for obtaining a trustworthy
result, which will be discussed now more in detail.

5 Reliable Incorporation of Auxiliary
Information: Sensitivity Parame-
ters and Partial Identification

The set-valued estimators from Expression (9) (and
analogously from Expression (13)) are a typical ap-
plication of the methodology of partial identification,
emphasizing that only justified assumptions should
be made which do not have to induce point identified
parameters, but at least identify the parameter of in-
terest in parts compared to the set of parameters that
seemed to be possible in the beginning of the analysis
(e.g., [19]). In this way, the trivial bounds [0, 1] on the
probabilities have been refined substantially. In the
spirit of partial identification and sensitivity analysis
we can further refine the analysis if, and also only if,
auxiliary information beyond the empirical evidence
is available. Vansteelandt et al. [34] suggests to deter-
mine a sensitivity parameter δ in some range ∆ under
which the problem is identified and then to calculate
the parameter of interest η for different values of the
sensitivity parameter, where the whole region of the
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resulting parameters of interest is called Ignorance
Region ir(η,∆) and the corresponding region of esti-
mates Honestly Estimated Ignorance Region (HEIR)
îrn(η,∆). In order to account for statistical uncer-
tainty due to finite sample size as well, in context of
sensitivity analysis uncertainty regions are addressed
that either can be constructed as covering the param-
eter of interest or the whole ignorance region with a
probability of at least (1− α) [13, 34].

To handle the inclusion of reliable information tech-
nically, we start with distinguishing and investigating
point identifying additional assumptions, in order to
utilize them as a technical means to derive sensitivity
parameters, governing the incorporation of additional
information.

Due to the fact that the imprecise point estimators in
Expression (13) directly result from considering Ex-
pression (9) in a subgroup specific way, in Section 5.1
to Section 5.3 the detailed presentation is confined on
the i.i.d. case. In Section 5.4, considering explicitly
the regression model, another point-identifying as-
sumption is suggested, where again the corresponding
generalization may be used as a sensitivity parameter
which allows the inclusion of partial knowledge.

5.1 Known Coarsening

If one or both coarsening parameters qAB|A and qAB|B
are known (and different from 1), one can conclude
directly that the corresponding mapping Φ(·) from (8)
is injective as in this case the parameter πA can be
uniquely related to the parameter pA. Therefore, the
set-valued estimator for πA specified in Expression (9)
can be shrunk to a single-valued estimator. The exact
values of the coarsening parameters are most often
unknown, but in case there is material information
available that allows to bound them in non-trivial
intervals, the consideration here gives a first way to
perform a systematic sensitivity analysis. In most
situations however such direct bounds will not be
available. Therefore we look for alternative ways to
introduce auxiliary knowledge.

5.2 Coarsening at Random (CAR)

If the coarsening is non-stochastic, the underlying de-
gree of coarsening is predetermined and known. For
instance, if respondents are requested to give their
answer in a grouped way and we assume that all re-
spondents answer correctly, then the coarsening is
predefined in the sense that there is a unique coars-
ened outcome for every true answer. In the context
of distinguishing between non-stochastic and stochas-
tic coarsening mechanisms, Heitjan and Rubin [12]
investigated under which properties the corresponding

likelihood can be simplified to the so-called grouped
likelihood and introduced the concept of coarsening at
random (CAR). This is a simplifying property request-
ing that the probability q

Y |y is constant, no matter
which true value y is underlying as long as it fits to
the observed value Y . Illustrated by the running ex-
ample, CAR postulates that the probability of giving
no suitable answer should not depend on the true
income category, which contradicts practical experi-
ences (e.g., [16]). In the dichotomous situation of this
example we are then actually concerned with the as-
sumption of missing at random (MAR) [18], which can
be regarded as a special case of CAR.

Focusing again on the i.i.d. case, incorporating the
CAR assumption of qAB|A = qAB|B into the likeli-
hood and in the observation model specifying Φ(·),
the situation simplifies substantially. Indeed, Φ is (al-
most) injective now, and we get the empirically point
identified estimators, corresponding to having simply
ignored the units with coarse values:

π̂A = nA
nA + nB

q̂AB|A = q̂AB|B = nAB
nA + nB + nAB

.

There are ideal-type situations in which CAR can be
justified indeed.7 Nevertheless, this assumption must
be treated with greatest care. Deviating from such
an ideal-type situation and wrongly assuming CAR
can lead to a bias of an extent that for sure destroys
the relevance of the analysis, as is also illustrated in
Figure 2. There the estimation of πA under obstinately
assumed CAR but varying coarsening probabilities is
evaluated by the median relative empirical bias π̂A−πA

πA

based on 100 simulated datasets (here with πA = 0.6).8
The absolute value of the relative median bias increases
the more one deviates from the case of CAR, indeed,
up to a median relative bias of almost 80%.

5.3 Ratio of Coarsening Parameters

In our context the paper by Nordheim [22] obtains new
importance. He considers the ratio between different
mechanisms in the context of non-randomly missing
and misclassified data. By fixing the ratio between the
coarsening probabilities the corresponding maximum
likelihood problem leads to quadratic equations, where

7For instance, rounding, type I censoring, which is present if
the censoring times are fixed, and progressive type II censoring,
which investigates censoring after the fixed d-th failure, in their
pure form are CAR [15, 11].

8Thereby, in all addressed situations characterized by differ-
ent true underlying coarsening mechanisms (qAB|A and qAB|B
varying between 0.1 and 0.9 in equidistant breaks of 0.1, respec-
tively), the assumption of CAR is involved into the estimation by
plugging qAB|A = qAB|B into the likelihood that is maximized.
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Figure 2: Consequences for the median relative bias
of π̂A if there is a deviation from assumed CAR.

one solution is contained in the interval of π̂A from
Expression (9), while the other solution lies outside
of [0, 1] (cf. [22, p. 774]). Here we set R = qB|B

qA|A
=

1−qAB|B

1−qAB|A
, slightly modifying the ratio of Nordheim by

referring to the probabilities of the complementary
events. Treating this ratio between the probabilities
of precise observation fixed and including it into the
likelihood in Section 4.1, unique, empirically point
identified estimators are obtained as

π̂A = nA ·R
nB + nA ·R

, (15)

q̂AB|A = nB · (R− 1) + nAB ·R
n ·R

containing CAR as the special case R = 1. As in the
case of CAR, the impact of assuming a wrong value
of R has been investigated (results are available on
request, see also [22]), where again a substantial bias
can occur. The fact that there a similar variance of the
estimators is obtained independently of the amount
of deviation from the true value of R shows drasti-
cally that such deviations do not increase statistical
uncertainty in the traditional sense and thus cannot
be discovered by a traditional statistical analysis.

Because the parameter of interest πA is identified given
the typically unknown value of R, the ratio R can be
used as a sensitivity parameter. In many cases it might
be difficult to gain information about the exact value of
R, but it seems quite realistic that a rough evaluation
of the magnitude of R can be derived from material
considerations, former studies or experiments. Thus,
it is interesting to investigate the gain of information
resulting from implying a factor R that is roughly
known only, compared to the situation without any

additional assumptions.9 Considering the ratio R as a
sensitivity parameter leads to the HEIRs.10

5.4 Subgroup Independent Coarsening

In the situation with covariates, there is apart from
CAR, i.e. q̂AB|xA = q̂AB|xB, an alternative kind of
uninformative coarsening, namely the independence
of the underlying covariate value. Illustrated by the
running example, imposing this kind of assumption
means that answering in a coarse form, i.e., giving no
suitable answer, does not depend on the receipt of un-
employment benefit. As the receipt of unemployment
benefit depends on the income, and the value of the
income may influence the non-response to the income
question (cf. Section 5.2), this assumption should be
treated with particular caution here.

We will establish injectivity of the corresponding map-
ping Φ(·) under an intuitive regularity condition and
then, analogously to the procedure in Sections 5.2
and 5.3, this idea will be generalized in Section 5.5 by
again considering the corresponding fraction as a sensi-
tivity parameter. Imposing such subgroup independent
coarsening

qAB|0A = qAB|1A =: qAB|A (16)
qAB|0B = qAB|1B =: qAB|B ,

in the estimation problem of Section 4.2, the map-
ping Φ(·) from Expression (12) is now injective11 if re-
stricted to the arguments (π0A, π1A, qAB|A, qAB|B)T ∈
(0, 1)4 such that

π0A /∈ {0, 1}, π1A /∈ {0, 1} and π0A 6= π1A. (17)

One obtains the following unique estimators

π̂0A = n0A
n0

n1Bn0 − n1n0B
n0An1B − n0Bn1A

, (18)

π̂1A = n1A
n1

n1Bn0 − n1n0B
n0An1B − n0Bn1A

,

q̂AB|A = 1− n0An1B − n0Bn1A
n1Bn0 − n1n0B

,

q̂AB|B = 1− n0An1B − n0Bn1A
n0An1 − n1An0

,

9 An example is given in the preliminary version of a techni-
cal report available at http://www.statistik.lmu.de/~jplass/
forschung.html

10In more general cases of |ΩY | > 2, the relations between the
precise observation probabilities are not sufficient and relations
concerning different coarsening mechanisms have to be known
in order to obtain point identified estimators. More detailed
information can be found in the preliminary version of a technical
report cited in footnote 9.

11A proof of the injectivity of Φ in this situation is given in
the preliminary version of a technical report cited in footnote 9.
The case of π0A = π1A reproduces the i.i.d. case, where there
are multiple solutions.
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when these are well-defined and inside the interval
[0, 1]. Otherwise the maximum likelihood estimation
is more challenging, but it can be shown that asymp-
totically (n → ∞) the estimators of Expression (18)
typically for all cases satisfying Expression (17) will be
in [0, 1]. It has to be re-emphasized that in practical
applications one must carefully reflect the plausibility
of the subgroup independent coarsening assumption
of Expression (16). In addition, the restrictions

p0A ≤
P (X = 0) · p1B − p0B · P (X = 1)

p1B − p0B · p1A

p0A

≤ 1− p0B

offer, at least under large sample sizes, a possibility to
check whether the subgroup independent coarsening
is appropriate at all.

5.5 A Generalization of Subgroup
Independent Coarsening

There are situations in which one might have an idea
about the relative magnitude of the probabilities of
precise observations in both subgroups. For instance,
knowledge from former studies could be available con-
cerning the question whether respondents who do re-
ceive Unemployment Benefit II rather report their
income class in a precise or a coarse way compared to
the respondents that do not receive this benefit.

Analogously to the generalization of CAR in Sec-
tion 5.3, we now generalize the assumption of sub-
group independent coarsening by considering the ratio
between the subgroup specific probabilities of precise
observation, i.e., R1 = qA|1A

qA|0A
and R2 = qB|1B

qB|0B
, where

the case of R1 = R2 = 1 corresponds to assuming
subgroup independent coarsening. As in Section 5.4,
the mapping Φ(·) from Expression (12) is injective for
all cases in Expression (17) and thus unique estima-
tors result.12 Again, inclusion of partial knowledge
is possible by regarding R1 and R2 as sensitivity pa-
rameters and considering all estimators resulting from
incorporating a region of plausible values R1 and R2.

6 Concluding Remarks

We presented a maximum likelihood analysis of cat-
egorical data under epistemic data imprecision. Our
approach working with possibly set-valued maximum
likelihood estimators overcomes the dilemma of the
precise probability based approaches, often damned
to debilitate conclusions by the need to incorporate
unjustified formal assumptions to ensure identifiability
of parameters. The explicit reliance on an observation
model specifying the coarsening process allows us to

12They are given in the preliminary version of the technical
report cited in footnote 9.

incorporate properly auxiliary information whenever
it is present, in order to refine appropriately estimates
derived from the empirical evidence alone.

The crucial arguments were developed, mutatis mu-
tandis, for the i.i.d. case as well as a logistic regression
based on one (or more) categorical covariates. From
the applied point of view, an extension to metrical
covariates is highly desirable. Although then a sub-
group specific investigation is not possible any more,
appropriate generalizations seem achievable in further
work, especially when sensitivity parameters can be
determined. However, to allow estimation of the un-
derlying distribution from the data and to maintain
the metric character, (partially) parametric modelling
is needed. This implicitly restricts the set of distribu-
tions considered and in particular raises further issues
in the understanding of statistical models as discussed,
e.g., in [26, Sec. 3.1] for linear regression modelling.

In addition to this, the invariance property of the
likelihood under different parametrizations, which is
the technical basis of our results, offers two further
directions of generalization. Further work may utilize
these relationships beyond maximum likelihood esti-
mation, in order to derive likelihood-based hypotheses
tests and regions taking finite sample variability into
account explicitly. These estimators also should be
compared to confidence intervals derived along the
lines of [34] when an appropriate sensitivity parameter
could be determined.

Other areas of further research include a deeper inves-
tigation of the alternative generalized Bayesian (and
possibilistic) approaches briefly mentioned in Section 3
as well as the consideration of other “deficiency” pro-
cesses, most notably misclassification, which can be
formalized in a very similar way. Our methodology
thus also offers an alternative to, and a generalization
to logistic regression of, recent work on misclassifica-
tion from a partial identification perspective [20, 17].
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Abstract
In surveys, and most notably in election polls, un-
decided participants frequently constitute subgroups
of their own with specific individual characteristics.
While traditional survey methods and corresponding
statistical models are inherently damned to neglect
this valuable information, an ontic random set view
provides us with the full power of the whole statistical
modelling framework. We elaborate this idea for a
multinomial logistic regression model (which can be
derived as a discrete choice model for voting behaviour)
and an imprecise classification tree, and apply them
as a prototypic illustration to the German Longitudi-
nal Election Study 2013. Our results corroborate the
importance of a sophisticated, random set-based mod-
elling. Furthermore, by reinterpreting the undecided
respondents’ answers as disjunctive random sets, gen-
eral forecasts based on interval-valued point estimators
are calculated.

Keywords. Ontic data imprecision, survey method-
ology, election polls, multinomial logistic models, dis-
crete choice models, imprecise classification trees, con-
junctive random sets, disjunctive random sets, epis-
temic prediction, German Longitudinal Election Study
2013 (GLES 2013)

1 Introduction

Although pondering between several options is charac-
teristic for human beings, indecisiveness of respondents
is not reflected in most surveys. Instead it is common
to force a precise answer, and at best to provide an ad-
ditional category “Don’t know” for those that are not
decided. Frequently, in the framework of the analysis
respondents reporting this “Don’t know” category are
no longer taken into consideration as those answers are
understood as unusable. In many cases indecisive re-

spondents are able to definitely exclude some options,
which is not expressed by category “Don’t know”, and
additionally characteristics of indecisive and decisive
respondents may systematically differ. Consequently,
the common proceeding leads to a substantial loss of
information in data collection and biased results in
the analysis of data.

In order to deal with this problem, it is necessary that
questionnaire designers allow for multiple answers as
“option A or option B” or at least provide ways to
construct them. Hence, the preferences of the indeci-
sive respondents are reflected in the most informative
way and we are able to distinguish between different
types of indecisive respondents. In this sense, we ex-
plicitly account for the heterogeneity within the group
of indecisive respondents.

In order to embed this idea into a proper statistical
modelling framework, we mainly will rely on the notion
of ontic sets in the sense of Dubois and Prade ([15, 16])
as well as Dubois and Couso ([11]). They stressed the
importance of differentiating between two views of a
set, one representing precise collections of elements
(ontic view) and the other reflecting incomplete knowl-
edge about a particular precise value (epistemic view)
([12]). As answers of indecisive respondents are inter-
preted as ontic sets, we will call data that are coarse
induced by indecision like “A or B” data under ontic
imprecision.

Our paper is structured as follows. In Section 2 we will
recapitulate some notions mainly based on random set
theory ([19]) that have already been investigated in
the framework of ontic sets ([11, 12]). In this context,
we will emphasize the applicability of ontic sets to the
general analysis in the presence of answers of indecisive
respondents, where the focus will be on incorporating
the idea of the ontic view into multinomial logistic
regression analysis and classification trees in order to
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model heterogeneity of respondents by their covari-
ates. By briefly digressing into the epistemic view, in
Section 3 interval-valued forecasts will be constructed.
The aforementioned techniques are used in an illus-
trative analysis based on the German Longitudinal
Election Study that is briefly presented in Section 4.
Corresponding results are shown and compared to
those obtained from classical statistical analyses in
Section 5.

For sake of simplicity, we focus on categorical data
of nominal scale, yet adaptation to ordinal scale for
other applications may be derived only with little
additional effort. Moreover, an extension to coarse
categorical covariates under ontic data imprecision
may be achieved with similar arguments.

2 Data under Ontic Imprecision:
Basic Idea and Extending some
Statistical Approaches

As argued in the introduction, it is crucial to distin-
guish between the ontic and epistemic view and thus
between random conjunctive sets and ill-known ran-
dom variables ([11, 12]). In this section we focus on
random conjunctive sets, underlying the ontic view.

2.1 General Analysis

As we regard the case of categorical data with a fi-
nite state space, it is sufficient to focus on the defi-
nition of finite random sets, which can be considered
as a simplification of the more general definition of
random closed sets. A finite random set is a map-
ping Z∗ : Ω→ P(S) such that for any A ⊆ S holds:
Z∗−1({A}) = {ω ∈ Ω : Z∗(ω) = A} ∈ A, where S de-
notes the state space, P the power set and (Ω,A) the
underlying measurable space, equipped later with a
probability measure P (e.g. [20]). In other words,
a finite random set is characterized by a measurable
mapping on the power set. Couso and Dubois call this
notion random conjunctive set or (ontic) set ([11, 12]).

The important characteristic of an ontic set is that
it represents a precise collection of elements in the
sense that there is no true element of S underlying,
but the set itself constitutes an entity of its own ([11]).
Answers like “A or B” may be regarded as an ontic set
{A, B} as there is no unique preference. Therefore,
the nature of coarse data under ontic imprecision is
well represented by the ontic view. Consequently, this
leads to a power set based view, meaning an extension
of the classical precise state space S to S∗ = P(S) \ ∅,
with the asterisk stressing ontic imprecision. Thus,
basing the analysis on S∗, and therefore regarding
coarse categories as own entities, provides the main

idea of dealing with ontic imprecision. The one and
only difference compared to the classical case is the
adapted state space S∗.

Hence, by reinterpreting the random conjunctive set
as precise random variable, classical probability theory
and all statistical methods based on it are applicable.
In other words, the idea of the adapted state space is
independent of the statistical method and exploiting
this idea further for formulating regression models
and classification trees in the next sections should be
regarded as an example.

A short example shall be given already here. It consists
of calculating the probability of respondents, who are
at least indecisive between particular options C0, by
the probability of the family of corresponding supersets
C = {T ⊆ S : C0 ⊆ T} to

PZ∗(C) =
∑

C∈C
PZ∗(C) , (1)

which is essentially a summation over singletons of the
space S∗ (cf. [11, p. 8]).

2.2 Regression Analysis

Generally, the main goal of regression analysis consists
of modelling the relation between several covariates
X and a dependent variable Y , without claiming to
describe necessarily the causal impact of variables.
In our case the dependent variable is assumed to be
coarse under ontic imprecision, whereas we address
precise covariates. As we restrict ourselves to a coarse
categorical variable of nominal scale, a multinomial
logit model is an appropriate statistical model.

2.2.1 Multinomial Logit Model

In this section it is mainly referred to [17, pp. 329-
331]. A more thorough treatment of discrete choice
models can be found for instance in [29]. We denote
by Yi ∈ S = {1, . . . , c} the random variable describing
the response of individual i = 1, . . . , n. Assuming a
multinomial logit model, the probability of occurrence
of category s ∈ {1, . . . , c− 1} for i with given covariate
values xi is set to be

P (Yi = s |xi) = πis = exp(x̃T
i βs)

1 +
∑c−1

r=1 exp(x̃T
i βr)

, (2)

with x̃T
i = (1,xT

i ) and category specific regression coef-
ficients βs = (βs0, βs1, . . . , βsp)T referring to p covari-
ates. Because of the redundancy resulting from the fact
that all probabilities add up to one, the corresponding
probability for the so-called reference category c can
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be determined by

P (Yi = c |xi) = πic = 1− πi1 − . . .− πic−1

=
(

1 +
∑c−1

r=1 exp(x̃T
i βr)

)−1
.

This corresponds to the side constraint that the re-
gression coefficients of category c are set to zero.1

Expressing Equation (2) in terms of the linear predic-
tor ηis = x̃T

i βs, one obtains the logarithmised chances
and the relative risks of category s ∈ {1, . . . , c− 1}
and reference category c by

log
(
πis

πic

)
= x̃T

i βs and πis

πic
= exp(x̃T

i βs) . (3)

Accordingly, the exponential of βsj (j = 1, . . . , p) ex-
presses how the chance for category s compared to the
reference category c changes if the value of a certain
covariate xj is increased by one unit in the case of
metric covariates or if xj is taken instead of reference
category xJ in the case of categorical covariates.

2.2.2 A Multinomial Logit Model Based
Approach under Ontic Imprecision

The redefinition of the original precise state space
S = {1, . . . , c} of Y to the state space S∗ = P(S) \ ∅ of
Y ∗ is crucial for adapting the multinomial logit model
to account for ontic imprecision, treating answers of
indecisive respondents as own categories, as already
pointed out in Section 2.1.

Consequently, the number of categories of the depen-
dent variable Y ∗ amounts to the cardinality of the
new state space S∗ (m = |S∗| = |P(S) \ ∅| = 2|S| − 1).
It formalizes the idea that no longer for each
Y ∈ {1, . . . , c} but for each Y ∗i ⊆ {1, . . . , c} prob-
abilities π∗i1, . . . , π

∗
im are modeled and coefficients

β∗1 , . . . ,β
∗
m−1 are estimated. Hence, the probability of

occurrence of category s ∈ {1, . . . ,m− 1} for i with
given covariate values xi is determined by

P ∗(Y ∗i = s |xi) = π∗is = exp(x̃T
i β∗s)

1 +
∑m−1

r=1 exp(x̃T
i β∗r )

and for reference category m by

P ∗(Y ∗i = m |xi) = π∗im = 1− π∗i1 − . . .− π∗im−1

=
(

1 +
∑m−1

r=1 exp(x̃T
i β∗r )

)−1
.

1In order to ensure identifiability it is important to include
a side constraint for the regression coefficients into the ba-
sic model. Alternatively, any other category may be chosen
as reference category or a symmetric type of constraint like∑c

r=1 βT
r = (0, . . . , 0)T can be applied (e.g. [30]).

In this way, one obtains own regression coefficients for
each coarse category, which exactly reflects the under-
lying idea that different types of indecisive respondents
are regarded as own group.

In summary, one can account for ontic imprecision
within categorical variable Y of nominal scale by in-
corporating coarse answers as own categories into a
multinomial logit model. Apart from the up to expo-
nential increase in the number of categories nothing
changes: All statistical methods refining and extending
the classical multinomial logit model, like penalization
approaches, flexible covariate modelling or random
effects under repeated measurements (e.g. [30]), and
their fundamental statistical properties, like consis-
tency and asymptotic normality of estimators, can be
transferred. In this way, the here addressed adaptation
of the multinomial logit model serves as an example for
incorporating the power set based idea into categorical
regression models.

2.3 Classification Trees

Whereas in regression we are mainly interested in the
estimation of the regression coefficients, which pro-
vide a structural interpretation of the data, in the
framework of classification trees one major goal is to
predict the value(s) of a dependent variable (called
class variable Y later on) of a future observation, based
on values of some independent, so-called feature, vari-
ables. Learning a classification tree involves recursively
partitioning the full data space as it is available in the
beginning, into disjoint subspaces by splitting with
respect to some (in-)homogeneity criterion. A most
favourable property of a single classification tree from
a statistical modelling point of view is that it still al-
lows a structural interpretation, while such is lacking
in the even more prediction orientated ensemble of
trees, so-called bags or forests.

In the framework of classification trees there are numer-
ous algorithms available that are able to deal both with
nominal and numerical variables, some even account
for missingness at random, for instance Quinlan’s ID3
[23] and Breiman’s CART [9] and their successors.
They share the concept of selecting splitting feature
variables performing the partitioning by a similarity
measure, in our context the entropy. For sake of
simplicity we confine ourselves to class and feature
variables of nominal scale.

In order to calculate the entropy and decide on a split-
ting feature variable, it is required to estimate the
class’ probabilities, classically achieved by the corre-
sponding relative frequency. Abellan and Moral [4]
introduced imprecise classification trees by changing
the estimation to involve imprecise probability mod-
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els. As a split criterion they favoured a maximum
entropy approach and presented in [4] an adaptation
of Quinlan’s ID3 algorithm, both of which for sake of
simplicity we employ.

Yet there are more general approaches, where for in-
stance the full entropy range is taken into account,
as in [18] or [13], the latter naturally growing a for-
est. Further improvements of the initial imprecise
algorithm also include the concept of bagging [2, 3].

In our analyses in Section 5.3 we grow classification
trees accordingly to [4] but relying on a Nonparametric
Predictive Inference (NPI) model for estimation of the
class probability distribution within a node instead,
yet an Imprecise Dirichlet Model would have been also
applicable; see [10] for a more detailed introduction to
NPI for categorical data and [4] or [18] for a description
on how an imprecise classification tree based on it
is actually constructed. Yet, we briefly recall the
estimation with NPI within a tree’s node.

Each node of the tree consists of a collection of obser-
vations. They are assigned to nodes in such a way that
they form the aforementioned disjoint subspaces in
an optimal way with respect to the splitting criterion.
In the context of an entropy based splitting criterion
the probability distribution of the class variable is re-
quired. In [4] the assumption of a precise probability
distribution is relaxed to a credal set leading to a max-
imum entropy split criterion approach. According to
NPI the predictive probability that for a virtual next
observation the class variable attains a value yi of its
state space is within the following interval

P (Y = yi)∈
[

max
(

0,ni − 1
n

)
,min

(
ni + 1
n

,1
)]

, (4)

with ni the number of observations having a class value
of yi and n the overall number of observations, both
with respect to the node under consideration.

In the situation where the class variable is only ob-
servable under ontic imprecision, we embed ontic sets
into the framework of classification trees properly by
a redefinition of the class variable as a finite random
set, thus basing the analysis on the power set of the
class variable space, similarly to the regression analysis.
This is a direct implementation of the crucial idea, al-
lowing us to reinterpret the ontic sets as a new precise
class variable, i.e. an answer “A or B” is interpreted
now as the precise class “AB”. Therefore, any classifi-
cation tree technique might be applied that is able to
deal with a precise classification variable, regardless of
the underlying probability model(s). This power set
based technique is frequently applied in the framework
of multi-label classification (e.g. MODEL–n in [8]).
Due to the increased number of classes the concept

of entropy correction ([27]) becomes more important,
besides substituting Y by Y ∗ in (4).

Furthermore, basically any classification technique
may be applied, after the state space of the variables
under ontic uncertainty is substituted by its power set.
The classification trees serve as a feasible example.

3 Interval-valued Forecast

We consider the same data situation, but change
our perspective and the aim of our analyses. In-
stead of modelling the underlying structure of voting
(in)decisions, we now turn to forecasts based on an
epistemic reinterpretation of our data.

Let’s assume that our main interest lies now in fore-
casting certain events by enforcing a final decision
expressed by a variable Yfinal. In the context of voting
behaviour such a situation arises when a forecast on
the election result is required. Under the assumption
that the final decision is precise and consistent with
the data collected now, this means a precise true value
is underlying the set-valued response.

In this way, set-valued elements A∗ of S∗ are no longer
interpreted as own entities, but are regarded as incom-
plete knowledge, which for every event B from the
space (S,P(S)) is given by (cf. [7, p.185])

P (Yfinal ∈ B |Y ∗ = A∗) ∈





{0}, if B ∩A∗ = ∅
{1}, if B ⊇ A∗}
[0, 1], otherwise

,

postulating that the final answer is compatible with
the initial information from the ontic view.

This corresponds to an epistemic view of modelling2.
However, models should be cautiously interpreted as
the data were originally obtained under ontic impreci-
sion, yet it may be justified for modelling purpose.

In the context of the epistemic view Couso and Dubois
([11]) consider ill-known random variables Yepist with
precise, but incomplete realizations yepist. An ill-
known random variable Yepist is a multiple-valued map-
ping Yepist : Ω→ P(S) described by the disjunctive set
of mappings

{
Yprecise : Yprecise(ω) ∈ Yepist(ω) , ∀ω ∈ Ω

}
,

where Yprecise : Ω→ S is a precise random variable.
Thus, Yepist is interpreted as the collection of several
precise models that can be deduced from incomplete
knowledge.

2First steps towards statistical modelling under epistemic
data imprecision can be found in ([21]).
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Taking the reinterpretation as disjunctive sets seriously,
the range covering the true probability of a certain
event of interest E can be expressed by Dempster’s
lower and upper probabilities ([14]) that are

PYepist(E) =
∑

Yepist(ω)⊆E

p(ω) ,

PYepist(E) =
∑

Yepist(ω)∩E 6=∅
p(ω) ,

where p is the probability mass function of P ([11]).

Thus, the proportion of an option E can be forecasted
by the sample counterparts Î(E) of the interval

I(E) =
[
PYepist(E) , PYepist(E)

]
. (5)

As the difference between the values of the lower and
the upper probability represents the lack of knowledge
induced by indecisive answers, it is apparent that the
length of this interval can be interpreted as the extent
of the underlying epistemic imprecision.

In order to account additionally for statistical uncer-
tainty due to finite sampling, confidence intervals for
I(E) may be calculated. This leads to so-called uncer-
tainty regions aiming to cover both: imprecision due
to incompleteness and statistical uncertainty ([31]).

4 Data

Until now the German Longitudinal Election Study
(GLES) ([25]) is the most elaborated German electoral
poll and currently focuses on three federal elections
(2009, 2013, 2017). The sampling method of the ini-
tial data set of the GLES 2013 is a (3-step) random
sample, which is treated here in our illustrative analy-
sis as a simple random sample. As voting intentions
before the election day are of main interest, we con-
sider the preliminary study of GLES 2013, which is a
face-to-face interview two months prior to the election
day.

To our present knowledge there is not any pre-election
study allowing indecisive respondents to express their
voting intention by multiple answers. The main ad-
vantage of GLES 2013 is that respondents are also
explicitly required to report their voting intention’s
certainty (“certainty”)3 along with the assessments of
several parties (q21a-q21h4). Those and the respon-
dent’s current voting intention5, collected in a precise

3q13 with categories “very certain”, “fairly certain”, “nei-
ther/nor” and “not certain at all”

4Each measured on a scale from “-5” (“a very negative view
of this political party”) to “+5” (“a very positive view of this
political party”)

5The German election system mixes elements of election by

case 13 case 126 case 1515

certainty very fairly neither/
certain certain nor

vote GREEN SPD CD
assessCD -1 -1 +3
assessSPD +2 +1 +3
assessFDP -4 0 0
assessLEFT -4 +1 -5
assessGREEN +4 -3 +2

⇓ ⇓ ⇓
ontic GREEN LEFT:SPD CD:GREEN:SPD

Table 1: Construction of variable “ontic” (example)

answer, allow us the construction of a variable “on-
tic”, reflecting the respondent’s indecision by multiple
answers. The procedure for our construction of the
variable “ontic” is as follows: While for all “very cer-
tain” respondents the reported party of the variable
“vote” is taken, the party or parties with maximal
assessment are chosen for the respondents that are
“fairly certain” explicitly allowing by construction in-
decision between the corresponding parties. For the
respondents that decide for “neither/nor” or “not cer-
tain at all” parties with maximal and second highest
assessments are taken.The chosen way of construction
of the variable “ontic” is to some extent arbitrary, but
at least it accounts reasonably for ontic imprecision.
In the following we focus on the second vote, as similar
steps and explanations hold for the first vote as well.

The examples in Table 1 illustrate the way of con-
struction by means of three randomly chosen respon-
dents.6As our goal consists of demonstrating the dif-
ference in results from an analysis including ontic im-
precision and a classical analysis, such a constructed
variable is required.

Partly due to the construction of variable “ontic” sev-
eral respondents had to be excluded7. All conducted
filtering steps (e.g. excluding voters of smaller parties
or non-voters) that reduced the sample of initially
2003 to 1196 respondents can be found in [22]. The
associated loss of information caused by the reduced

proportionality and by majority. The voters have two votes
(q11ab: second vote, q11aa: first vote). The second vote is
generally considered as more important, because the proportion
of seats in the German Bundestag mainly is allocated accord-
ing to the second vote. The first vote determines the direct
representative of an election district in the Bundestag.

6Translations of German abbreviations of political parties
are used here. Considered parties are: Christlich Demokratis-
che Union Deutschlands (CDU) and Christlich-Soziale Union
in Bayern (CSU) representing throughout Germany one op-
tion only (here denoted by CD), Sozialdemokratische Partei
Deutschlands (SPD), Die Linke (LEFT), Bündnis 90/Die Grü-
nen (GREEN), Freie Demokratische Partei (FDP).

7In voting studies sample loss is rather common. Usually
empirical analyses are reduced to those parties, who entered the
German Bundestag finally (e.g. [28]).
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CD SPD GREEN
495 271 125

LEFT FDP GREEN:SPD
106 39 36

CD:SPD CD:FDP GREEN:LEFT
35 18 15

LEFT:SPD CD:GREEN:SPD GREEN:LEFT:SPD
14 17 13

CD:FDP:SPD
12

Table 2: Absolute frequencies of constructed variable
“ontic” (second vote)

sample size is undesirable, but unavoidable for an ontic
analysis illustrated by this data set. Because of the
underrepresentation of indecisive persons induced by
the current design of the questionnaire, which implic-
itly excludes indecisive respondents by the preceding
filtering of the “certainty” item (cf. [22]), we expect
less marked differences between an ontic and a classical
analysis, described in the following sections.

The resulting illustrative data set containing variable
“ontic”, whose absolute frequencies are given in Table 2,
forms the basis of the following analysis.8

5 Data Analysis

The principal goal consists of comparing the results
obtained by an analysis using the constructed variable
“ontic” (cf. Section 4 and [22]) to a classical analysis
excluding all uncertain respondents. This issue will
be considered in this section with regard to the find-
ings from Section 2. Hereby, we focus on the second
vote, only where mentioned explicitly the first vote is
considered. All analyses are based on complete cases,
dependent on the variables effectively under considera-
tion. We performed our analyses with the open-source
statistical software R [24]. The code is available on
request from the authors.

5.1 General Analysis

The analysis incorporating ontic imprecision is based
on S∗ = P(S) \ ∅, where

S = {CD,SPD,GREEN,LEFT,FDP}
is the state space. Since only 13 elements of S∗ are
attained in the addressed data set, we adapted S∗ to
cover those values of variable “ontic” only (see Table 2).

If for instance the probability of respondents is of
interest that are (at least) indecisive between party

8Absolute frequencies of singletons differ from those of vari-
able “vote” due to the construction of variable “ontic”.

“SPD” and “GREEN”, according to Equation (1) all
probabilities referring to respondents that are (at least)
indecisive between both parties have to be summed
up, which can be estimated by associated relative
frequencies to

P̂Z∗
(
Z∗ ⊇ {GREEN, SPD}

)

= P̂
({
ω : Z∗(ω) = {GREEN, SPD}

})

+ P̂
({
ω : Z∗(ω) = {CD, GREEN, SPD}

})

+ P̂
({
ω : Z∗(ω) = {GREEN, LEFT, SPD}

})

= 36
1196 + 17

1196 + 13
1196 ≈ 0.06 .

The estimated proportion of indecisive respondents
is 0.13, calculated analogously. Consequently, if just
decisive respondents are considered an amount of 13%
of respondents are not taken into account. As respon-
dents are excluded because of the value of the variable
of interest itself, we are concerned with a not missing
at random situation and thus ignoring the indecisive
respondents may lead to biased results. This is partic-
ularly fatal for a theoretical understanding of voting
decisions as well as from a practical campaigners’ view,
because this percentage covers those respondents that
are of particular interest.

5.2 Regression Analysis

In order to analyse the heterogeneity within the coarse
dependent variable Y under ontic data imprecision,
the models presented in Section 2.2 are applied. The
multinomial logit model has a longstanding tradition
in the context of modelling voting behaviour9.

In our analysis the variable “ontic” represents the
coarse dependent variable, where “SPD” is chosen
as reference category. Generally, it is important to
choose all reference categories in such a way that in-
terpretations enable answering the question of inter-
est. For our illustrative purpose we use a very sim-
ple voting model with only two covariates10, namely
socio-demographical variable “religious denomination”
(q228 ) as well as variable “most important source of in-
formation” (q97 ). In both variables certain categories
were aggregated. Thus, variable “religious denomi-
nation” here only takes values “Christian” and “non-
Christian”, where the categories of “most important

9Actually, the multinomial logit model is the simplest model
of the discrete choice family. Although it has several disadvan-
tages for the modelling of voting behaviour as discussed by [6],
for the sake of our illustrative application yet the multinomial
logit model is appropriate, because it shows the basic concept in
handling data under ontic imprecision, which can be extended
analogously to more tailored models.

10Recent models of voting behaviour use policy distance,
party identification and socio-demographical variables and yield
a remarkable fit and prognostic validity (cf. [5])
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Coefficient ontic classical

CD G:S CD

intercept 0.37 −1.47 *** 0.13
rel.christ 0.32 * −0.05 0.49 ***
info.tv 0.01 −0.29 −0.01
info.np −0.05 −1.67 ** −0.01

Table 3: Comparison of results (second vote).

source of information” are translated to “television”,
“newspaper” and “other source”, the latter also cover-
ing “radio”, “internet” and “talking to other people”.
Every reclassification is subject to avoid categories
with only few observations in order to decrease sta-
tistical uncertainty. By including “most important
source of information” as a covariate into the model,
we assume that the way how voters inform themselves
of the federal election influences their voting intention.
Nevertheless, one cannot exclude an opposite (causal)
direction as respondents who vote for particular par-
ties potentially avoid or prefer certain information
sources because of the way this party is represented in
it. This needs to be kept in mind when interpreting
the model’s results.

For reasons of conciseness estimated regression co-
efficients are shown just for category “CD” and
“GREEN:SPD” (G:S) here.11 With nCD = 508 and
nG:S = 36 they form the largest groups of decisive and
indecisive respondents, respectively, such that the in-
terpretation of corresponding regression coefficients
is comparably trustworthy. Especially in the context
of estimators for indecisive groups, we remark that
some of the regression coefficients’ calculations are
based on few observations, and thus corresponding
interpretations have to be treated cautiously.

Furthermore, in context of interpretation one should
check by taking the statistical significance12 into ac-
count whether the regression coefficients vary just ran-
domly. The small sample size within several groups of
variable “ontic” may be responsible for non-significant
estimators. Thus, from an increase in sample size
statistical uncertainty is reduced and potentially sig-
nificant results can be obtained.

Considering the results of the second vote analysis pre-
sented in Table 3 (ontic)13, for Christian respondents

11Estimated regression coefficients for the other categories
may be found in [22]

12“***”, “**” and “*” denotes statistical significance of level
α = 0.01, α = 0.05 or α = 0.1, respectively.

13Covariates “religious denomination” and “most important
information source” are dummy coded with “non-Christian” and
“other source” as reference category, respectively. The estimates
quantify the difference between the group under consideration
and the reference category (rel.christ: “religious denomination”
is “Christian”; info.tv, info.np: “most important information

the probability of electing “CD” instead of “SPD” is
increased by the multiplicative factor exp(0.32) = 1.38
compared to non-Christian respondents under the ce-
teris paribus assumption of unchanged other covari-
ates.14 Furthermore, regression coefficients closely
to zero indicate that no influence of covariate “most
important information source” on the probability of
electing “CD” in comparison to the reference category
“SPD” may be verified.

The crucial property of the multinomial regression
under ontic imprecision consists of estimating own
coefficients for the different indecisive groups. For
instance, for respondents reporting “newspaper” as
their most important information source in compari-
son to those naming another information source the
probability of being indecisive between the two parties
“GREEN” and “SPD” instead of voting for “SPD” is de-
creased by the factor exp(−1.67) = 0.19 on the ceteris
paribus premise. Likewise investigations are impor-
tant for election campaigners to adjust their strategies
adequately, as they show how potential voters differ
from the core voters of a party (as here “SPD”) in the
choice of their favourable information source.

Results from a classical analysis that chooses variable
“vote” as response variable and takes only those re-
spondents into consideration that are “very certain”
or “certain” may be found in Table 3 as well, again
just displaying coefficients for “CD”.

Comparing results from both analyses, estimators of
similar magnitude are obtained throughout. In this
way, the classical and the generalized approach reflect-
ing ontic imprecision do not contradict each other.

The importance of our ontic set based modelling is
corroborated even stronger when we consider the first
vote instead. Now the analyses reveal remarkable
differences partly associated with a change in sign.
Thus, some covariates have an amplifying effect on the
dependent variable in one analysis, while in the other
analysis a weakening effect is underlying (cf. Table 4),
yet those are not statistically significant.

Although the complete case analysis and the carried
out filtering steps mainly induced by the questionnaire
design led to a further decrease in the number of in-
decisive respondents, this illustrative analysis already
shows striking differences between both analyses. Be-
cause of the here provided proof of concept for an ontic
analysis, it is strongly suggested to include the option
of reporting multiple answers such that those can be

source“ is television, newspaper, respectively).
14Despite the name “CD” and the above results indicating

a strong Christian relation, nowadays the “CD” parties under-
stand themselves as a general conservative party with members
and supporters regardless their religious affiliation.
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Coefficient ontic classical

CD G:S CD

intercept 0.33 −1.41 ** −0.12
rel.christ 0.37 ** −0.25 0.52 ***
info.tv −0.02 −0.32 0.25
info.np −0.12 −1.69 ** 0.13

Table 4: Comparison of results (first vote).

included into the analysis in an appropriate way. In
cases of large data sets with numerous indecisive re-
spondents, we even expect increased differences in the
estimation of regression coefficients.

5.3 Classification Trees Analysis

In a first scenario the settings are the same as we
explored in the regression analysis, thus considering
“ontic” coarse class variable and “religious denomina-
tion” and “most important source of information” as
split feature variables, in the same scaling as previ-
ously in section 5.2 (Scenario 1). We are considering
this setting to retain direct comparability with the re-
gression analysis, yet we are aware that a classification
tree’s ability lies in reducing the sample space by dis-
covering few favourable independent variables out of a
potentially huge number of candidates. Therefore, we
are not expecting an outstanding performance in this
scenario. As discussed above we decided in favour of
a Nonparametric Predictive Inference model as under-
lying (imprecise) model of the classification tree. We
choose the most frequent class as prediction rule in the
leaves, thus enforcing a precise result. Furthermore,
we grew imprecise classification trees on the data set
neglecting the undecided, but in this case we chose
“vote” as the dependent variable as a counter part to
the classical regression analysis. In order to assess the
predictive ability of the trees a 10-fold cross-validation
each was performed.

The results are to be found in the first row of Table 5,
with respect to the second vote. For a fair compari-
son we measure the accuracy for both data situations
by the correct classification rate (columns ontic and
classical), and furthermore in case of the ontic data
sets we checked the prediction result of “ontic” against
“vote” (column vote). Any value of “vote” which was
contained in the predicted coarse category was con-
sidered correctly classified. Furthermore the standard
deviation is reported.

As it is clearly visible the predictive ability of the impre-
cise trees is unsurprisingly poor, and an inspection of
the underlying trees reveals the culprits. The selection
of the independent variables only allows growing of 13
different trees, which only in case of a strong depen-

ontic vote classical

Scenario 1 0.407 (0.040) 0.425 (0.050) 0.446 (0.041)
Scenario 2 0.704 (0.026) 0.796 (0.031) 0.817 (0.042)

Table 5: Correct classification rate (standard devia-
tion) for second vote based on 10-fold cross-validation

dency between the independent and depend variables
leads to reasonable accuracy results. Furthermore
when looking at the relative class frequencies in the
root nodes, the category of “CD” is with over 40% by
far the most observed one. While the construction of
most trees involved at least one split, category “CD”
is still predicted in a vast majority of the tree’s leaves,
in few cases even in all.

In further analyses, we incorporated more independent
variables, allowing a higher variation in potential trees
(Scenario 2). Further splitting candidate variables
were the party identification (q119 ), the person’s social
stratum (q192 ), the sex (q1 ), general political interest
(q3 ) and the personal economic situation (q17 ). With
those and the previous variables the same analysing
steps were repeated, but now with the accuracy nearly
doubling in either scenario as the second row of Table 5
indicates. Especially the party identification has a high
influence.

Similar prediction results as above are obtained when
considering the first vote, instead of the second, dis-
played in [22]. Quite interestingly, the correct classifi-
cation rate is lower when we are predicting the “ontic”
variable than in the case when predicting “vote”. In
the second scenario there is a notable gap of around
10%, which is mainly caused by an ontic coarse class
prediction, whereas vote is (naturally) precise.

In both scenarios the classical procedure of omitting
the undecided persons leads to better results, when
just considering the predictive ability, yet with the
help of our ontic view we are able to identify hard to
classify respondents.

A major reason for the small differences between the
classical and ontic analyses is the comparably little
percentage of undecided persons (less than 10% within
the data under consideration). As mentioned in the
discussion in the regression analyses, this is partly due
to the conducted complete case analysis and the con-
struction of variable “ontic”, but more gravely imposed
by the design of the questionnaire. When allowing for
multiple answers directly in variable “vote”, we expect
an increase in the accuracy of the ontic prediction,
as the number of hard to precisely classify, indecisive
persons raises.
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5.4 Interval-valued Forecast

In Section 3 the epistemic view has been used in order
to calculate interval-valued forecast I(E), which will
be illustrated in this section.

For instance, if one is interested in the forecasted pro-
portion of respondents electing “CD”, by referring to
the absolute frequencies of variable “ontic” in Table 2
and to Equation (5), the interval-valued forecast

Î
(
{CD}

)
=
[

495
1196 ,

495 + 35 + 18 + 17 + 12
1196

]

is obtained. All fractions that are included in the
lower bound refer to respondents who vote for the
“CD” party for sure while all fractions that are used
within the calculation of the upper bound concern
respondents who generally could imagine to vote for
it. Political studies gradually proceed to calculate the
fraction of “potential voters” which corresponds to the
upper bound of interval Î(E) (cf. [1]).

Nevertheless, forecasts are commonly based on re-
spondents that are characterized by a high degree of
certainty concerning their voting intention only. In
our data example there are n = 1096 respondents that
are “very certain” or “fairly certain” according to their
voting intention, where 490 of those intend to vote
for “CD” and thus the naive estimated forecasting
probability results in

P̂naive
(
{CD}

)
= 490

1096 .

As indecisive voters may systematically differ from
respondents that are sure of their voting intention,
the proportion in terms of interval Î(E) contains valu-
able information that is not expressed by P̂naive(E).
Because of the difference between these groups it is im-
portant to treat results ignoring indecisive respondents
with caution.

In practice forecasting the proportion of a set contain-
ing more than one element is of considerable relevance:
Frequently, for instance in Germany, the main inter-
est is the voters’ percentage not just for a particular
single party, but for a coalition. In this context the
interval-valued forecast Î(E) becomes of particular
interest, as respondents that are indecisive between
the parties contained in the coalition of interest E are
incorporated for sure. Thus, these coarse observations
constitute a precise vote for the coalition (e.g. [22]).

6 Concluding Remarks

While currently data under ontic imprecision are still
neglected in statistical analysis, they could prove a

valuable source of information. Especially in context
of election studies incorporating the different types
of “The Undecided” into statistical analyses becomes
increasingly important as more and more voters decide
shortly before the election day (cf., e.g. [26]). Once
the practitioner changes the state space, the statistical
methods remain the same, as we could demonstrate.
Even as the group was comparably small and we were
forced to assess indecisiveness indirectly by construct-
ing an ontic variable, we corroborated in our data
example that including the undecided respondents did
make a difference. Therefore, as now appropriate sta-
tistical methodology has been proven to be available,
we strongly recommend allowing for multiple answers
directly within questionnaires.

As the underlying idea is somewhat generic, the in
here presented analyses by a multinomial regression
model and imprecise classification trees are just the
tip of the iceberg. One may think of more complex
methods to study the data set, mutatis mutandis.
For simplicity we restricted ourselves to the case of a
nominal scale of the variable under ontic imprecision,
yet the adaptation to an ordinal scale is achievable
with little additional effort as well. In further studies
it is worth considering not only the dependent variable
under ontic imprecision but also the covariates. In
principle, this is achievable by involving the power-set
based idea again.
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Abstract
We present a propositional logic with unary opera-
tors that speak about upper and lower probabilities.
We describe the corresponding class of models and
discuss decidability issues. We provide an infinitary
axiomatization for the logic and we prove that the ax-
iomatization is sound and strongly complete. For some
restrictions of the logic we provide finitary axiomatic
systems.
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1 Introduction

During the last few decades, uncertain reasoning has
emerged as one of main fields in computer science
and artificial intelligence. Many different tools are
developed for representing, and reasoning with, un-
certain knowledge. One particular line of research
concerns the formalization in terms of probabilistic
logic. After Nilsson [24] gave a procedure for probabilis-
tic entailment which, given probabilities of premises,
calculates bounds on the probabilities of the derived
sentences, researchers from the field started investiga-
tion about formal systems for probabilistic reasoning
[6, 7, 8, 9, 10, 13, 21, 25, 26].

However, in many applications, sharp numerical prob-
abilities appear too simple for modelling uncertainty.
This calls for developing different imprecise probability
models [4, 5, 19, 22, 28, 29, 30, 32]. In order to model
some situations of interest, some approaches use sets
of probability measures instead of one fixed measure,
and the uncertainty is represented by two boundaries
– lower and upper probabilities [12, 18]. Consider the
following example, essentially taken from [11].

Example 1 Suppose that a bag contains 10 marbles
and we know that 4 of them are red, and the remaining

6 are either black or green, but we do not know the
exact proportion (for example, it is possible that there
are no green marbles at all). The goal is to model a
situation where the person picks a marble from the bag
randomly. The cases when person picks up a red marble
(red event), when person picks up a black marble (black
event) and when person picks up a green marble (green
event) will be denoted by R, B and G, respectively.
Clearly, the probability of the red event is 0.4, but we
cannot assign strict probability to black or green event.
Therefore, we use the set of probability measures P =
{µα | α ∈ [0, 0.6]}, where µα assigns 0.4 probability to
red event, α to black event, and 0.6−α to green event.
We assign two functions to arbitrary set of probability
measures ,P , first one is P ?(X) = sup{µ(X) | µ ∈ P}
and the second one is P?(X) = inf{µ(X) | µ ∈ P}
which will be used to define a range of probabilities,
i.e. they will be an upper and a lower probability,
respectively.

Halpern and Pucella [11] provided a finitary axiomati-
zation for reasoning about linear combinations of upper
probabilities, but they proved only weak completeness
(every consistent formula is satisfiable). Their formu-
las are Boolean combinations of the expressions of the
form r1`(α1)+ · · ·+rn`(αn) ≥ rn+1, where ` is the up-
per probability operator and ri are real numbers1, for
i ∈ {1, 2, . . . , n + 1}. Since nonrestricted real-valued
formalisms are rich enough to express the type of a
proper infinitesimal {0 < x < 1

n | n = 1, 2, 3, . . . }
(see Example 3), the logic from [11] is not compact.
As an unpleasant logical consequence, for any finitary
axiomatic system, there are consistent sets of formulas
which are unsatisfiable [31].

In this paper, we propose sound and strongly com-
plete (every consistent set of formulas is satisfiable)
propositional logic for reasoning about lower and up-

1In [11], Halpern and Pucella define the rich language with
formulas with all the reals as coefficients. But, in order to
obtain decidability result, they have to restrict their language
and allow only integer coefficients, i.e. ri ∈ Z.
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per probabilities (LUPP 2), whose syntax is simpler
than the one in [11]. We extend propositional calculus
with modal-like unary operators of the form U≥s and
L≥s, where s ranges over the unit interval of rational
numbers. The intended meanings of U≥sα and L≥sα
are “the upper/lower probability of α is at least s".
The corresponding semantics consists of special types
of Kripke models (possible worlds), with addition of
sets of probability measures defined over the worlds.
In order to obtain strong completeness, we use infini-
tary inference rules. Thus our languages are countable
and formulas are finite, while only proofs are allowed
to be infinite. We also propose the restricted logics
LUPPFr(n) (for each n in N). For those logics, we
achieve compactness using only a finite set of proba-
bility values, which is still enough for many practical
applications. We propose finitary axiomatization for
LUPPFr(n).

From the technical point of view, we have modified
some of our earlier developed completion methods pre-
sented in [14, 16, 17, 25, 27]. The complete axiomatic
system for the logic is the key issue in formalizing the
reasoning about lower and upper probabilities, since
having a completeness theorem is the only formal way
to prove the correctness of the hardware and software.

The contents of this paper are as follows. In Section 2
we recall the notions of lower and upper probability,
as well as the representation theorem we use in our
axiomatization. In Section 3 we present the syntax
and semantics of LUPP and discuss its decidability.
In Section 4 we propose an axiomatization for the
logic, and we prove some auxiliary propositions. We
prove the soundness and completeness of the axiomati-
zation in Section 5. In Section 6 we present the logics
LUPPFr(n), where the probabilities are restricted to
a finite set. We conclude in Section 7.

2 Preliminaries

Let W 6= ∅ and let H be an algebra of subsets of W ,
i.e., a set of subsets of W such that:

- W ∈ H,
- if A,B ∈ H, then W \A ∈ H and A ∪B ∈ H.

A function µ : H −→ [0, 1] is a finitely additive proba-
bility measure, if the following conditions hold:

- µ(W ) = 1,
- µ(A ∪B) = µ(A) + µ(B), whenever A ∩B = ∅.
For a set P of probability measures defined on H, the
lower probability measure P? and the upper probability
measure P ? are defined by

2LUP stands for “lower and upper probability”, while the
second P indicates that the logic is propositional.

- P?(X) = inf{µ(X) | µ ∈ P}
- P ?(X) = sup{µ(X) | µ ∈ P}
for every X ∈ H. In the proof of soundness and
completeness, we will use the following basic properties
of P? and P ?:

- P?(X) ≤ P ?(X),
- P?(X) = 1− P ?(Xc),
- P ?(X ∪ Y ) ≤ P ?(X) + P ?(Y ), whenever X ∩ Y = ∅.
In order to axiomatize upper and lower probabilities,
we need to completely characterize P? and P ? with a
finite number of properties. Many complete charac-
terizations are proposed in the literature, the earliest
appears to be by Lorentz [20]. We will use the char-
acterization by Anger and Lembcke [2] (also used by
Halpern and Pucella [11, Theorem 2.3]). We start
with the definition of (n, k)-cover.

Definition 1 ((n, k)-cover) . A set A is said to be
covered n times by a multiset {{A1, . . . , Am}} of sets
if every element of A appears in at least n sets from
A1, . . . , Am, i.e., for all x ∈ A, there exists i1, . . . , in
in {1, . . . ,m} such that for all j ≤ n, x ∈ Aij . An
(n, k)-cover of (A,W ) is a multiset {{A1, . . . , Am}}
that covers W k times and covers A n+ k times.

Theorem 1 (Anger and Lembcke [2]) Let W be
a set, H an algebra of subsets of W , and f a function
f : H −→ [0, 1]. There exists a set P of probability
measures such that f = P ? iff f satisfies the following
three properties:

(1) f(∅) = 0,

(2) f(W ) = 1,

(3) for all natural numbers m,n, k and all subsets
A1, . . . , Am in H, if {{A1, . . . , Am}} is an (n, k)-
cover of (A,W ), then k + nf(A) ≤∑m

i=1 f(Ai).

3 The Logic LUPP

In this section we will describe the syntax and seman-
tics of the logic LUPP , and we discuss the decidability
problem of satisfiability of LUPP -formulas.

3.1 Syntax

Let S be the set of rational numbers from [0, 1] and let
L = {p, q, r, . . . } be a countable set of propositional
letters. The language of logic LUPP consists of the
elements of set L, classical propositional connectives
¬ and ∧ and the lists of upper probability operators
U≥s and L≥s, for every s ∈ S. The set of all classi-
cal propositional formulas over L is defined as usual,
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and we will denote it by ForC . We will denote the
propositional formulas by α, β and γ.

Definition 2 (Lower and upper probabilistic
formulas) If α ∈ ForC and s ∈ S, then a basic
lower probability formula is any formula of the form
L≥sα, and a basic upper probability formula is any for-
mula of the form U≥sα. The set of all lower and upper
probabilistic formulas, denoted by ForP , is the small-
est set containing all basic lower and upper probability
formulas which is closed under Boolean connectives.

We denote the lower and upper probabilistic formulas
by φ and ψ, possibly indexed. Let

ForLUPP = ForC ∪ ForP .

The formulas from the set ForLUPP will be denoted
by ρ and σ, possibly with subscripts.

We use the following abbreviations to introduce other
types of inequalities: U<sα is ¬U≥sα, L<sα is ¬L≥sα,
U≤sα is L≥1−s¬α, L≤sα is U≥1−s¬α, U=sα is U≤sα∧
U≥sα, L=sα is L≤sα ∧ L≥sα, U>sα is ¬U≤sα, L>sα
is ¬L≤sα. We also denote both α∧¬α and φ∧¬φ by
⊥ (and similarly for >).
Note that formulas are defined in the same style as
in [3, 26], i.e. neither mixing of pure propositional
formulas and lower and upper probabilistic formulas,
nor nested lower and upper probability operators is
allowed.

Example 2 Continuing Example 1, it is clear that
upper and lower probability, for the case that picked
marble is green or black, are equal to 0.6. If there
are no green marbles at all, then we obtain that lower
probability for the case that picked marble is not green
equals to 1. We can express that by the following
formula of our language:

U=0.6(G ∨B) ∧ L=0.6(G ∨B)⇒ L=1¬G.

Another example of a lower and upper probabilistic
formula is

U< 1
3
α→ L≥ 1

2
(α ∧ β),

where α, β ∈ ForC .

Next we state two formulas that are not well defined
lower and upper probabilistic formulas of the logic
LUPP :

α ∧ U=1β, U≥sU≥rα.

The first formula is not well defined since it is a Boolean
combination of pure propositional formula and an up-
per probabilistic formula, while the second formula is
not well defined lower and upper probabilistic formula
because it contains nested operators.

3.2 Semantics

The semantics for LUPP is based on the possible-
world approach.

Definition 3 (LUPP -structure) An LUPP -struc-
ture is a tuple 〈W,H,P, υ〉, where:

• W is a nonempty set of worlds.

• H is an algebra of subsets of W . The elements
of H are called measurable worlds.

• P is a set of finitely additive probability measures
defined on H.

• υ : W × L −→ {true, false} provides for each
world w ∈W a two-valued evaluation of the prim-
itive propositions, which is extended to classical
propositional formulas as usual.

For given α ∈ ForC and LUPP -structure M , let
[α]M = {w ∈ W | υ(w)(α) = true}. We will not
write the subscript M when it’s clear from context.

Definition 4 (Measurable structure) The struc-
ture M is measurable if [α]M ∈ H for every α ∈ ForC .
The class of a measurable structures of the logic LUPP
will be denoted by LUPPMeas.

Definition 5 (Satisfiability relation) The satisfi-
ability relation |=⊆ LUPPMeas × ForLUPP is defined
in the following way:

• M |= α iff υ(w)(α) = true, for all w ∈W ,

• M |= U≥sα iff P ?([α]) ≥ s,

• M |= L≥sα iff P?([α]) ≥ s,

• M |= ¬φ iff it is not the case that M |= φ,

• M |= φ ∧ ψ iff M |= φ and M |= ψ.

Definition 6 (Satisfiability of a formula) A for-
mula ρ ∈ ForLUPP is satisfiable if there is an
LUPPMeas-model M such that M |= ρ; ρ is valid
if for every LUPPMeas-model M , M |= ρ. A set of
formulas T is satisfiable if there is an LUPPMeas-
model M such that M |= ρ for every ρ ∈ T .

Example 3 Consider the set T = {¬U=0α} ∪
{U< 1

n
α | n is a positive integer}. Every finite

subset of T is LUPPMeas-satisfiable, but the set T it-
self is not. Therefore, the compactness theorem which
states that "if every finite subset of T is satisfiable,
then T is satisfiable" does not hold for LUPP .
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3.3 Decidability

Recall that Halpern and Pucella [11] provide decid-
ability result for the formulas which are Boolean com-
binations of the expressions of the form

r1`(α1) + · · ·+ rn`(αn) ≥ rn+1,

where ` is the upper probability operator and ri are
integers, for i ∈ {1, 2, . . . , n + 1}. First of all, note
that using only integers as coefficients has the same
expressive power as using all rational numbers. For
example, if we want to express 3

7`(α) ≥ 1 by using only
integers, we can reformulate the formula as 3`(α) ≥ 7,
etc. Also note that our formula U≥sα is satisfiable
iff the formula `(α) ≥ s is satisfiable in the logic
from [11]. Similarly, L≥sα is satisfiable iff the formula
−`(¬α) ≥ −(1− s) is satisfiable. Then decidability of
our logic is a consequence of decidability of the logic
from [11]. Moreover, since the problem of deciding
whether a formula of their language is satisfiable is
NP-complete [11, Theorem 5.2], we have an upper
bound of the decidability problem for LUPP . The
lower bound follows from the fact that the complexity
of decision problem for classical propositional logic
is NP-complete. Thus, the satisfiability problem for
LUPP -formulas is NP-complete as well.

4 The Axiomatization AxLUPP

We will introduce an axiomatic system for the logic
LUPP which will be denoted by AxLUPP .

Axiom schemes

(1) all instances of the classical propositional tautolo-
gies

(2) U≤1α ∧ L≤1α

(3) U≤rα→ U<sα, s > r

(4) U<sα→ U≤sα

(5) (U≤r1α1 ∧ · · · ∧ U≤rmαm) → U≤rα, if
α → ∨

J⊆{1,...,m},|J|=k+n
∧
j∈J αj and∨

J⊆{1,...,m},|J|=k
∧
j∈J αj are propositional

tautologies, where r =
∑m

i=1
ri−k

n , n 6= 0

(6) ¬(U≤r1α1 ∧ · · · ∧ U≤rm
αm), if∨

J⊆{1,...,m},|J|=k
∧
j∈J αj is a propositional

tautology and
∑m
i=1 ri < k

(7) L=1(α→ β)→ (U≥sα→ U≥sβ)

Inference Rules

(1) From ρ and ρ→ σ infer σ

(2) From α infer L≥1α

(3) From the set of premises

{φ→ U≥s− 1
k
α | k ≥ 1

s
}

infer φ→ U≥sα

(4) From the set of premises

{φ→ L≥s− 1
k
α | k ≥ 1

s
}

infer φ→ L≥sα.

We have, by Axiom 1, that the classical propositional
logic is sublogic of LUPP . Axiom 2 announce that
the upper bound for upper and lower probabilities is 1.
Axioms 5 and 6 are the logical analogue of the third
condition from Theorem 1. To see that, note that
equivalent way to say that {{A1, . . . , Am}} covers a
set A n times is that

A ⊆
⋃

J⊆{1,...,m},|J|=n

⋂

j∈J
Aj .

Therefore, the condition that the formula α →∨
J⊆{1,...,m},|J|=k+n

∧
j∈J αj is a tautology gives us

that [α] is covered n + k times by a multi-
set {{[α1], . . . , [αm]}}, while the condition that∨
J⊆{1,...,m},|J|=k

∧
j∈J αj is a propositional tautology

ensures that W = [>] is covered k times by a multi-
set {{[α1], . . . , [αm]}}. Axiom 7 is crucial for proving
that equivalent formulas have equal lower and upper
probabilities.

Rule 1 is modus ponens, Rule 2 is the lower probability
necessitation. Both Rule 3 and Rule 4 are infinitary
rules of inference and Rule 3 intuitively says that if
upper probability is arbitrary close to s then it is
at least s, while Rule 4 intuitively says that if lower
probability is arbitrary close to s then it is at least s.

Definition 7 (Inference relation)

- T ` ρ (ρ is derivable from T) if there is an at most
denumerable sequence of formulas ρ1, ρ2, . . . , ρ,
such that every ρi is an axiom or a formula from
the set T , or it is derived from the preceding for-
mulas by an inference rule;

- ` ρ (ρ is a theorem) iff ∅ ` ρ;

- T is consistent if there is at least a formula
α ∈ ForC and a formula φ ∈ ForP that are
not deducible from T , otherwise T is inconsistent;

- T is maximally consistent set if it is consistent
and:
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(1) for every α ∈ ForC , if T ` α, then α ∈ T
and L≥1α ∈ T

(2) for every φ ∈ ForP , either φ ∈ T or ¬φ ∈ T .

- T is deductively closed if for every ρ ∈ ForLUPP ,
if T ` ρ, then ρ ∈ T .

The equivalent way to say that T is inconsistent is
that T ` ⊥. Note that it is not required that for
every α ∈ ForC , either α or ¬α belongs to a maximal
consistent set (as it is done for formulas from ForP ).
Otherwise, by Rule 2, for each α we would have L≥1α
or L≥1¬α.

Theorem 2 (Deduction theorem) Let T be a set
of formulas. Then T ∪ {φ} ` ψ iff T ` φ→ ψ.

Proof. The only interesting case is when φ,ψ ∈ ForP .
(⇐) Direct consequence of Rule 1.
(⇒) Suppose that T ∪ {φ} ` ψ. We will use the
induction on the length of the inference.
The cases when either ` ψ or φ = ψ or ψ is obtained
by application of modus ponens are the same as in the
classical propositional case. Thus, let us consider the
case where ψ = L≥1α is obtained from T ∪ {φ} by an
application of Rule 2. In that case:

- T, φ ` α

- T, φ ` L≥1α by Rule 2

However, since α ∈ ForC and φ ∈ ForP , φ cannot
affect the proof of α from T ∪ {φ}, and we have:

(1) T ` α

(2) T ` L≥1α by Rule 2

(3) T ` L≥1α→ (φ→ L≥1α)

(4) T ` φ→ L≥1α by Rule 1.

Next, let us consider the case where ψ = ψ1 → U≥sα
is obtained from T ∪ {φ} by an application of Rule 3.
Then:

(1) T, φ ` ψ1 → U≥s− 1
k
α, for all k ≥ 1

s

(2) T ` φ → (ψ1 → U≥s− 1
k
α), by the induction

hypothesis

(3) T ` (φ ∧ ψ1)→ U≥s− 1
k
α

(4) T ` (φ ∧ ψ1)→ U≥sα, by Rule 3

(5) T ` φ→ ψ.

If the formula is obtained by an application of Rule 4,
the proof is similar. �

We will not always explicitly emphasize moments in
proofs where we use Deduction theorem.

Lemma 1 ` U≤rα→ L≤rα.

Proof. We consider two cases.

(1) r 6= 1. From Axiom (6) we obtain that ¬(U≤rα∧
U≤s¬α), whenever r + s < 1. Therefore U≤rα→
U>s¬α, and because that holds for every s < 1−r,
by inference rule (3) we have U≤rα→ U≥1−r¬α,
i.e. U≤rα→ L≤rα.

(2) r = 1. Direct consequence of Axiom (2). �

Consequently, we obtain that ` L≥rα → U≥rα, for
each r ∈ S.

Lemma 2

(a) ` U≥0α

(b) α ` U=1α

(c) ` U=1>

(d) ` U=0⊥

(e) ` U≥sα→ U>rα, s > r

(f) ` U>sα→ U≥sα

(g) If T ` α↔ β then T ` U≥sα↔ U≥sβ

Proof.
(a) From Axiom (2), considering ¬α, we have that
` L≥0α, and therefore, by Lemma 1 we have that
` U≥0α.
(b) Direct consequence of Inference Rule 2 and Lemma
1. The proofs of (c) and (d) are straightforward, (e)
and (f) are obtained from Axioms (3) and (4) and
contraposition, and (g) is direct consequence of Rule
(2) and Axiom (7). �

5 Soundness and Completeness

5.1 Soundness

Theorem 3 (Soundness) The axiomatic system
AxLUPP is sound with respect to the class of
LUPPMeas-models.

Proof. Our goal is to show that every in-
stance of an axiom schemata holds in every model
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and that the inference rules preserve the valid-
ity. For example, let us consider Axiom 5. Sup-
pose that α → ∨

J⊆{1,...,m},|J|=k+n
∧
j∈J αj and∨

J⊆{1,...,m},|J|=k
∧
j∈J αj are propositional tautolo-

gies, and suppose that (U≤r1α1 ∧ · · · ∧U≤rmαm) holds
in a model M = 〈W,H,P, υ〉. We already explained
that this means that a multiset {{[α1], . . . , [αm]}} is
an (n, k)-cover of ([α], [>]). Also, the inequalities
P ?([α1]) ≤ r1,. . . ,P ?([αm]) ≤ rm hold, by assumption.
Since P ? is an upper probability measure, by Theo-
rem 1, we know that k + nP ?([α]) ≤ ∑m

i=1 P
?([αi]),

so we obtain that P ?([α]) ≤
∑m

i=1
ri−k

n , n 6= 0

therefore P ?([α]) ≤ r, where r =
∑m

i=1
ri−k

n , i.e.
M |= U≤rα as well. Consider now the Axiom (7).
If M |= L=1(α → β), we have that P?([α → β]) = 1,
and therefore P ?([α ∧ ¬β]) = 1 − P?([α → β]) = 0.
Therefore P ?([α]) = P ?([α ∧ β] ∪ [α ∧ ¬β]) ≤ P ?([α ∧
β]) + P ?([α ∧ ¬β]) ≤ P ?([β]). Hence, if P ?([α]) ≥ s,
then P ?([β]) ≥ s, so M |= U≥sα→ U≥sβ. The other
axioms can be proved to be valid in a similar way and
the proof is easier.

Rule (1) is validity-preserving for the same reason
as in classical logic. Rule (2): if α holds in M =
〈W,H,P, υ〉, then [α] = W , and therefore µ([α]) = 1
for every µ ∈ P . Then P?([α]) = 1, so M |= L≥1α.
Rule (3): Suppose that M |= φ→ U≥s− 1

k
α whenever

k ≥ 1
s . If M 6|= φ, then obviously M |= φ → U≥sα.

Otherwise M |= U≥s− 1
k
α for every k ≥ 1

s , so M |=
U≥sα because of the properties of the set of reals. Rule
(4) is validity-preserving for the same reason as Rule
(3). �

5.2 Completeness

In order to prove the completeness theorem we start
with some auxiliary statements. After that, we show
how to extend a consistent set of formulas T to a
maximal consistent set of formulas T ?. Finally, we
construct the canonical model using the set T ? such
that MT? |= ρ iff ρ ∈ T ?.

Lemma 3 Let T be a consistent set of formulas.

(1) For any formula φ ∈ ForP , either T ∪ {φ} is
consistent or T ∪ {¬φ} is consistent.

(2) If ¬(φ → U≥sα) ∈ T , then there is some n > 1
s

such that T ∪ {φ→ ¬U≥s− 1
n
α} is consistent.

(3) If ¬(φ → L≥sα) ∈ T , then there is some n > 1
s

such that T ∪ {φ→ ¬L≥s− 1
n
α} is consistent.

Proof.

(1) If T ∪ {φ} ` ⊥, and T ∪ {¬φ} ` ⊥, then by
Deduction theorem we have T ` ¬φ and T ` φ.
Contradiction.

(2) Suppose that for all n > 1
s :

T, φ→ ¬U≥s− 1
n
α ` ⊥.

Therefore, by Deduction theorem and proposi-
tional reasoning, we have

T ` φ→ U≥s− 1
n
α,

and by application of Rule 3 we obtain T ` φ→
U≥sα. Contradiction with the fact that ¬(φ →
U≥sα) ∈ T .

(3) can be proved in a similar way. �

Theorem 4 Every consistent set can be extended to
a maximal consistent set.

Proof. Consider a consistent set T . By CnC(T ) we
will denote the set of all classical formulas that are
consequences of T . Let φ0, φ1, . . . be an enumeration
of all formulas from ForP . We define a sequence of
sets Ti, i = 0, 1, 2, . . . as follows:

(1) T0 = T ∪ CnC(T ) ∪ {L≥1α | α ∈ CnC(T )}

(2) for every i ≥ 0,

(a) if Ti∪{φi} is consistent, then Ti+1 = Ti∪{φi},
otherwise

(b) if φi is of the form ψ → U≥sβ, then Ti+1 =
Ti∪{¬φi, ψ → ¬U≥s− 1

n
β}, for some positive

integer n, so that Ti+1 is consistent, other-
wise

(c) if φi is of the form ψ → L≥sβ, then Ti+1 =
Ti∪{¬φi, ψ → ¬L≥s− 1

n
β}, for some positive

integer n, so that Ti+1 is consistent, other-
wise

(d) Ti+1 = Ti ∪ {¬φi}.

(3) T ? =
⋃∞
i=0 Ti.

The set T0 is obviously consistent because it contains
consequences of an consistent set. Note that existence
of the natural numbers (n) from the steps 2(b) and
2(c) of the construction is provided by Lemma 3, and
each Ti is consistent.

It still remains to show that T ? is maximal consistent
set. The steps (1) and (2) of the above construction
ensure that T ? is maximal.

T ? obviously doesn’t contain all formulas. If α ∈ ForC ,
by the construction of T0, α and ¬α can not be both
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in T0. For a formula φ ∈ ForP , the set T ? does not
contain both φ = φi and ¬φ = φj , because the set
Tmax{i,j}+1 is consistent.

Let us prove that T ? is deductively closed. If a formula
α ∈ ForC and T ` α, then by the construction of
T0, α ∈ T ? and L≥1α ∈ T ?. Let φ ∈ ForP . It
can be easily proved (induction on the length of the
inference) that if T ? ` φ, then φ ∈ T ?. Note the
fact that if φ = φj and Ti ` φ it has to be φ ∈ T ?
because Tmax{i,j}+1 is consistent. Suppose that the
sequence φ1, φ2, . . . , φ is the proof of φ from T ?. If
mentioned sequence is finite, there must be some set
Ti such that Ti ` φ, and φ ∈ T ?. Therefore, suppose
that the sequence is countably infinite. We can show
that, for every i, if φi is obtained by an application
of an arbitrary inference rule, and all the premises
belong to T ?, then, also φi ∈ T ?. If the inference
rule is finitary one, then there must be a set Tj which
contains all the premises and Tj ` φi. So, we conclude
that φi ∈ T ?. Now, consider the infinitary Rule 3. Let
φi = ψ → U≥sα be obtained from the set of premises
{φki = ψ → U≥sk

α | sk ∈ S}. By the induction
hypothesis, we have that φki ∈ T ?, for every k. If φi /∈
T ?, by step (2)(b) of the construction, there are some
l and j so that ¬(ψ → U≥sα), ψ → ¬U≥s− 1

l
α ∈ Tj .

Thus, we have that for some j′ ≥ j:
- ψ ∧ ¬U≥sα ∈ Tj′ ,
- ψ ∈ Tj′ ,
- ¬U≥s− 1

l
α, U≥s− 1

l
α ∈ Tj′ .

Contradiction with the consistency of a set Tj′ .
If we consider the infinitary Rule 4, the proof is similar.

Thus, T ? is deductively closed set which does not
contain all formulas, so it is consistent. �

Definition 8 If T ? is the maximally consistent set of
formulas, then a tuple MT? = 〈W,H,P, υ〉 is defined:

• W = {w | w |= CnC(T )} contains all classical
propositional interpretations that satisfy the set
CnC(T ),

• H = {[α] | α ∈ ForC}, where [α] = {w ∈ W |
w |= α},

• P is any set of probability measures such that
P ?([α]) = sup{s | U≥sα ∈ T ?},
• for every world w and every propositional letter
p, υ(w, p) = true iff w |= p.

Lemma 4 MT? is well defined.

Proof. The prove that H is an algebra is straightfor-
ward.

First, P ?([α]) := sup{s | U≥sα ∈ T ?} is well defined
because the value of the supremum does not depend on

the choice of element from [α], by Lemma 2(g). Let’s
prove that P ? is an upper probability measure for some
set of probability measures P. It is sufficient to prove
the three conditions from Theorem 1. The conditions
P ?(∅) = 0 and P ?(W ) = 1 are trivial. The only thing
left to prove is that if {{[α1], . . . , [αm]}} is (n, k)-cover
of ([α],W ), then k + nP ?([α]) ≤∑m

i=1 P
?([αi]).

Let P ?([αi]) = ai, i.e. sup{r | U≥rαi ∈ T ?} = ai,
i = 1, . . . ,m. For arbitrary ε > 0 there exists ratio-
nal numbers qi ∈ (ai, ai + ε) such that U≤qi

αi ∈ T ?
(otherwise U>qiαi ∈ T ? which is contradiction with
the fact that ai is supremum). Hence, we have
T ? ` U≤q1α1 ∧ · · · ∧ U≤qmαm, and by Axiom 5, we
have T ? ` U≤qα, where q =

∑m

i=1
qi−k

n , n 6= 0 i.e.,
sup{r | U≥rαi ∈ T ?} ≤ q or P ?([α]) ≤ q. There-
fore, we have P ?([α]) ≤

∑m

i=1
qi−k

n =
∑m

i=1
ai+mε−k
n ,

and because this holds for every ε > 0 we obtain
k + nP ?([α]) ≤∑m

i=1 P
?([αi]).

If n = 0, we need to show that k ≤ ∑m
i=1 P

?([αi]).
Reasoning as above, we have that T ? ` U≤q1α1 ∧ · · · ∧
U≤qmαm, for some qi ∈ (ai, ai + ε), and because of
Axiom (6), how

∨
J⊆{1,...,m},|J|=k

∧
j∈J αj are propo-

sitional tautologies, we have that
∑m
i=1 qi ≥ k. Since

that holds for every ε > 0, we obtain
∑m
i=1 ai ≥ k. �

Lemma 5 Let T ? be a maximal consistent set of for-
mulas. Then, MT? ∈ LUPPMeas.

Proof. Directly from the construction of MT? . �
Now we are ready to prove the main result of this
paper.

Theorem 5 (Strong completeness) . A set of
formulas T is consistent iff it is LUPPMeas −
satisfiable.

Proof. Direction from right to left follows from the
Soundness Theorem. For the proof of the other direc-
tion we construct LUPPMeas-model MT? and show
that for every ρ ∈ ForLUPP , MT? |= ρ iff ρ ∈ T ?. We
use the induction on the complexity of the formula.

- ρ = α ∈ ForC . If α ∈ CnC(T ), then by definition
of MT? we have MT? |= α. Conversely, if MT? |=
α, by the completeness of classical propositional
logic we have that α ∈ CnC(T ).

- Consider the case when ρ = U≥sα. If U≥sα ∈ T ?,
then sup{r | U≥rα ∈ T ?} = P ?([α]) ≥ s, and so
MT? |= U≥sα. Now, suppose that MT? |= U≥sα,
i.e. sup{r | U≥rα ∈ T ?} ≥ s. If P ?([α]) > s, then
by the properties of supremum and monotonicity
of P ?, we have U≥sα ∈ T ?. If P ?([α]) = s, then,
as a direct consequence of inference Rule 3, we
have that U≥sα ∈ T ?.
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- Next, let ρ = L≥sα, i.e. ρ = U≤1−s¬α. First, sup-
pose that U≤1−s¬α ∈ T ?. We want to show that
sup{r | U≥r¬α ∈ T ?} ≤ 1 − s, so suppose that
sup{r | U≥r¬α ∈ T ?} > 1−s. Then, there exist a
rational number q ∈ (1−s, 1−s+ε], for some ε > 0,
such that U≥qα ∈ T ?. Hence, U>1−s¬α ∈ T ?

which leads us to contradiction. So, sup{r |
U≥r¬α ∈ T ?} ≤ 1 − s, i.e. P ?([¬α]) ≤ 1 − s
and thus we obtain MT? |= L≥sα. Now, for the
other direction, suppose that MT? |= U≤1−s¬α,
i.e. sup{r | U≥r¬α ∈ T ?} ≤ 1− s. Consider the
following two cases:

(1) sup{r | U≥r¬α ∈ T ?} < 1 − s. Then, if
U>1−s¬α ∈ T ?, then also U≥1−s¬α ∈ T ?, so
sup{r | U≥r¬α ∈ T ?} ≥ 1 − s. Contradic-
tion.

(2) sup{r | U≥r¬α ∈ T ?} = 1 − s. We want
to show that then must be inf{r | U≤r¬α ∈
T ?} = 1 − s as well. First, suppose that
inf{r | U≤r¬α ∈ T ?} < 1 − s. Hence,
there exist a rational number q1 ∈ [1 −
s − ε, 1 − s) such that U≤q1¬α ∈ T ?, and
so U<1−s¬α ∈ T ?, contradiction with the
fact that U≥1−s¬α ∈ T ? (direct consequence
of inference rule (3)). Now, suppose that
inf{r | U≤r¬α ∈ T ?} > 1 − s, i.e. inf{r |
U≤r¬α ∈ T ?} = 1− s+ ε. Take an arbitrary
rational number q2 ∈ (1−s, 1−s+ε) and then
both U≤q2¬α ∈ T ? and U≥q2¬α ∈ T ? leads
us to contradiction (because of the properties
of infimum and supremum), which is impossi-
ble. Therefore, inf{r | U≤r¬α ∈ T ?} = 1− s,
or equivalently inf{r | L≥1−rα ∈ T ?} = 1−s
and then, by the inference Rule 4, we obtain
that L≥sα ∈ T ?.

- Now, let ρ = ¬ψ ∈ ForP . Then MT? |= ¬ψ iff
it is not the case that MT? |= ψ iff ψ /∈ T ? iff
¬ψ ∈ T ?.

- Finally, let ρ = φ∧ψ ∈ ForP . Then,MT? |= φ∧ψ
iff MT? |= φ and MT? |= ψ iff φ, ψ ∈ T ? iff
φ ∧ ψ ∈ T ?. �

6 The Logic LUPP Fr(n)

In this section we introduce the Logic LUPPFr(n)

which is similar to LUPP . The main difference is
that the finitely additive measures map H to N =
{0, 1

n , . . . ,
n−1
n , 1}, for a fixed positive integer n. There-

fore, we obtain countably many different logics, one for
each n. Considering the semantics, a model is the tuple
〈W,H,P, υ〉 defined as above but the set P consists of
finitely additive measures with restricted range N , i.e.,
for each µ ∈ P , µ : H −→ N . Hence, for every X ∈ H,

P ?(X) also belongs to N , becauseN is finite and there-
fore sup{µ(x) | µ ∈ P} = max{µ(x) | µ ∈ P}.
We want to show that there are finitary axiomatiza-
tions of these logics and to prove that they are sound
and complete with respect to the considered classes of
models.

For s ∈ [0, 1), let s+ = min{r ∈ N | s < r}, and if
s ∈ (0, 1], let s− = max{r ∈ N | s > r}.
The axiomatization of the logic LUPPFr(n) includes
all the axioms from Section 4, plus one more axiom:

(8) U>sα→ U≥s+α.

The inference rules of the axiomatization are rules (1)
and (2) from Section 4. Consequently, our axiomati-
zation is finite, and the proofs are finite sequences of
formulas.

Lemma 6 (a) ` U>sα↔ U≥s+α,

(b) ` U<sα↔ U≤s−α,

(c) ` ∨
s∈N U=sα,

(d) ` ∨
s∈NU=sα.

Proof. Proofs for (a) and (b) are trivial (direct conse-
quences of Axiom 8 including contrapositive).
(c) Clearly ` (U≥1α ∨ ¬U≥1α) ∧ ¬U>1α. Therefore

` (U≥1α ∧ ¬U>1α) ∨ (¬U≥1α ∧ ¬U>1α).

Since U≥1α ∧ ¬U>1α = U=1α and ` U<1α →
U≤1α we have ` U=1α ∨ U<1α. Furthermore, from
` U<1α ↔ ((U≥1−α ∨ ¬U≥1−α) ∧ U<1α) and `
(U≥sα→ U≥s−α)↔ (U<s−α→ U<sα) we obtain that
` U<1α ↔ ((U≥1−α ∧ ¬U>1−α) ∨ (U<1−α ∧ U<1α)),
and ` U=1α ∨ U=1−α ∨ U<1−α. Finally, we have that
` (

∨
s∈N U=sα) ∨ U<0α, so ` (

∨
s∈N U=sα).

(d) U=rα = U≥rα ∧ ¬U>rα, so ` U=rα → ¬U=sα,
for every s > r. Similarly, we can prove that
` U=rα→ ¬U=sα, for every s < r. As a consequence,
we obtain ` ∨

s∈NU=sα. �

The proof of the strong completeness theorem is very
similar to one presented in Section 5. We will only
explain the idea of the proof without going into the
details. First, we can prove the soundness theorem
and the deduction theorem in a straightforward way.
After that, while proving that every consistent set can
be extended to a maximal consistent set, we skip the
steps where we use infinitary inference rules, i.e. steps
2(b) and 2(c). One more fact needs some explanation.
In the proof of the strong completeness theorem we
use that if sup{r | U≥rα ∈ T ?} = s, and s ∈ S, then
U≥sα ∈ T ?. Now, we have that s must be in a set N ,
because if s /∈ N then there is some r < s such that
r+ = s+, so T ? ` U≥s+α, but s < s+. Contradiction.
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Furthermore, U≥sα ∈ T ? because of Lemma 6(d). The
rest of the proof of strong completeness theorem is
identical as in Section 5.

7 Conclusion

In this paper, we introduced the logic LUPP , whose
language is obtained by adding the operators for upper
and lower probabilities to propositional logic. We
proposed an axiomatization for the logic and proved
strong completeness. Since the logic is not compact,
the axiomatization contains infinitary rules of inference.
Then we simplified the semantics and we achieved
compactness using finite sets of probability values for
logics LUPPFr(n). For those logics we provide finitary
axiomatizations.

As a topic for further research, we propose develop-
ing a first order extension of the logics LUPP and
LUPPFr(n). To the best of our knowledge, there is
no axiomatization for first order logics for reasoning
about lower and upper probabilities. Note that such
a logic would extend classical first order logic, so the
set of all valid formulas is not recursively enumerable
[1] and no complete finitary axiomatization is possible
in this undecidable framework. On the other hand,
our completion techniques are already applied to some
first order probabilistic logics [15, 23, 26].
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Abstract
This paper develops a combinatorial description of the ex-
treme points of the core of a necessity measure on a finite
space. We use the ingredients of Dempster-Shafer theory
to characterize a necessity measure and the extreme points
of its core in terms of the Möbius inverse, as well as an in-
terpretation of the elements of the core as obtained through
a transfer of probability mass from non-elementary events
to singletons. With this understanding we derive an exact
formula for the number of extreme points of the core of a
necessity measure and obtain a constructive combinatorial
insight into how the extreme points are obtained in terms
of mass transfers. Our result sharpens the bounds for the
number of extreme points given in [15] or [14, 13]. Fur-
thermore, we determine the number of edges of the core of
a necessity measure and additionally show how our results
could be used to enumerate the extreme points of the core
of arbitrary belief functions in a not too inefficient way.

Keywords. necessity measure, core, extreme point, enu-
meration, belief function, Möbius inverse, mass transfer,
possibility measure, credal set, focal set.

1 Introduction

Let Ω = {ω1, . . . ,ωn} be a finite space and let N : 2Ω −→
[0,1] be a necessity measure.1 The core M (N) of a neces-
sity measure N is defined as the set of probability measures
dominating N:

M (N) := {P ∈Pn|∀A ∈ 2Ω : P(A)≥ N(A)},

where Pn denotes the set of all probability measures2 on
Ω. If one identifies a probability measure P with its charac-
terizing vector (P({ω1}), . . . ,P({ωn})) then the core of N
is a convex polytope3 with finite many extreme points.

1A necessity measure N : 2Ω −→ [0,1] is a map satisfying N( /0) =
0,N(Ω) = 1 and N(A∩B) = min{N(A),N(B)} for all A,B ∈ 2Ω. For a
general introduction to necessity measures, see, e.g., [6].

2Since Ω is finite here, it does not make a difference if we take finitely
additive or σ -additive probabilities.

3For basics of polytopes, see, e.g., [12].

The aim of this paper is to give a formula for the number as
well as a constructive description of these extreme points.
Since we will derive an exact formula for the number of
extreme points in this paper, we are in fact able to improve
the bounds for the number of extreme points given in [14,
13] that are not tight.

Studying the geometry of the core and describing the ex-
treme points of the core is interesting for its own, not only
in the context of necessity measures. Furthermore, for
different applications of imprecise probability theory it is
helpful to efficiently describe and compute the extreme
points of the core to make different computational tasks
tractable.

For example in decision making under partial prior infor-
mation, for one approach for computing optimal decisions
given in [19, Section 4], one needs to compute all extreme
points of the underlying imprecise probability model. Also
for statistical hypothesis testing under imprecise probabilis-
tic models one can use the extreme points of the cores of
the underlying models for the construction of Niveau-α-
Maximin-Tests tests, cf., [1, Section 4,5].

In the field of game theory, where more general set func-
tions (games) are treated, the core is an object of interest as
well, cf., e.g. [10, 18, 3]. There, for example in the context
of convex games the so-called Shapley value appears as
the center of gravity of the extreme points of the core (cf.,
[18]).

The idea of studying complex set functions (here, neces-
sity measures, or more generally, belief functions) via a
characterizing set of more easy to handle set functions
(here, classical probability measures) is also present in the
context of qualitative capacities (cf., e.g., [11]), where the
so-called possibilistic core consisting of all (qualitative)
possibility measures dominating a given qualitative capac-
ity was introduced in [7]. There, results similar to Theorem
2 of our paper and an enumerating procedure for the “ex-
treme points” of this possibilistic core (which are defined
differently in an order theoretic manner) are given.

To describe the core of necessity measures we use
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Dempster-Shafer theory4 and treat necessity measures
as special kinds of belief functions. A belief function
Bel : 2Ω −→ [0,1] is a function that is induced by a so-
called basic probability assignment m : 2Ω −→ [0,1] via

∀A ∈ 2Ω : Bel(A) = ∑
B⊆A

m(A).

The basic probability assignment m generating Bel can
be interpreted as a generalization of a probability mea-
sure that assigns probability mass not only to elementary
events but also to any arbitrary event in 2Ω\{ /0}. Since m
is thought of as a probability measure, it is assumed that
∑A∈2Ω m(A) = 1 and furthermore m( /0) = 0. Events A⊆Ω
with m(A)> 0 are called focal sets and the set of all focal
sets of a belief function Bel is denoted with F (Bel). The
motivation for introducing the basic probability assignment
is the modeling of some kind of uncertainty that cannot
be associated with exactly one state ω ∈Ω, but only with
a non-elementary event A ⊆ Ω. The belief function Bel
induced by the basic probability assignment is then of in-
terest if one wants to know for some set A, which portion
of the whole probability mass can overall be associated to
the states of A. For a given belief function Bel the basic
probability assignment m generating Bel can be recovered
from Bel by applying the so-called Möbius inversion, thus
m is also called the Möbius inverse of Bel.

Now, a necessity measure N (on a finite space) can be char-
acterized5 as a special belief function6 where all focal sets
are nested, i.e.: ∀A,B ∈F (N) : A⊆ B or B⊆ A. The core
of a belief function can be understood as the set of all prob-
ability measures that are consistent with the belief function
in the sense that every P ∈M (Bel) can be obtained via
a “transfer” of probability mass of the basic probability
assignment m from non-elementary events A ⊆ Ω to sin-
gletons {ω} ⊆ A. To make this more precise, we state the
following definition and theorem:

Definition 1 Let Bel be a belief function with correspond-
ing basic probability assignment m. A selection λ :
F (Bel) −→Pn : A 7→ λA is a mapping that assigns to
every focal set A a probability measure λA whose support
is in A. The set of all selections associated to a belief
function on a space 2Ω with |Ω| = n is denoted with Λn.
A selection λ could be understood as specifying for every
focal set A and for every state ω ∈ A, how much of mass
assigned to A should be transferred from A to ω . More
precisely, for a belief function Bel and a selection λ there
is an induced probability measure Pλ via

Pλ ({ωi}) = ∑
A∈F (Bel)

m(A) ·λA({ωi}).

4For an introduction, see, e.g., [17].
5For a proof, see, e.g., [17, p.220].
6Note that the interpretation of a necessity measure is not necessar-

ily identical to that of a belief function, in this paper we analyze only
purely mathematical properties of necessity measures in the framework of
Dempster-Shafer theory.

Theorem 1 For a belief function Bel we have

M (Bel) = {Pλ | λ ∈ Λn}.

The proof can be found in [4, Corollary 3, p.273] or, in
the context of game theory, in [5, Theorem 2]. In the
context of game theory, the set {Pλ | λ ∈ Λn} is called
selectope and the set M (ν), where ν is a game, is called
core and both sets coincide iff the Möbius inverse of the
game ν is non-negative, as is also shown in [5, Theorem
2]. Since selections are simply mappings, we can introduce
convex combinations. For selections λ ,λ ′ ∈ Λn and c ∈
[0,1] define

c ·λ +(1− c) ·λ ′ : F (Bel)−→Pn :
A 7→ c ·λA +(1− c) ·λ ′A.

Note that the probability measure associated to a convex
combination of two selections equals the convex combi-
nation of the probability measures associated to the two
selections: For λ ,λ ′ ∈ Λn and c ∈ [0,1] we have

Pcλ+(1−c)λ ′ = cPλ +(1− c)Pλ ′ .

This suggests that it is possible to characterize the extreme
points of M (Bel) in terms of the corresponding selections
in Λn.

Lemma 1 For an extreme point P = Pλ ∈M (Bel) we
have: ∀A ∈F (Bel) : ∃!ω ∈ A : λA({ω}) = 1.

Proof: Let A ∈F (Bel). If for all ω ∈ A : λA({ω}) 6= 1 then
there would exist ωi,ω j ∈ A with λA({ωi})> 0 and λA({ω j})>
0. Now set ε := min{λA({ωi}),λA({ω j})} > 0 and define the
selections µ and ν via

µB({ω}) =





λB({ω}) if B 6= A
λA({ω}) if B = A,ω /∈ {ωi,ω j}
λA({ω})+ ε if B = A,ω = ωi

λA({ω})− ε if B = A,ω = ω j

;

νB({ω}) =





λB({ω}) if B 6= A
λA({ω}) if B = A,ω /∈ {ωi,ω j}
λA({ω})− ε if B = A,ω = ωi

λA({ω})+ ε if B = A,ω = ω j

.

Then Pλ = 1
2 Pµ + 1

2 Pν and Pµ 6= Pν because

Pµ({ωi})−Pν({ωi})
= ∑

B6=A
m(B) ·µB({ωi})+m(A) ·µA({ωi})

− ∑
B6=A

m(B) ·νB({ωi})−m(A) ·νA({ωi})

= 2ε ·m(A) 6= 0.
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This is a contradiction to the assumption that Pλ is an
extreme point of M (Bel), so there exists an ω with
λA({ω}) = 1. Because λA is a probability measure, there
could be only one ω with λA(ω) = 1.

Lemma 1 suggests the following definition:

Definition 2 Let Dn := {P∈Pn | ∃!ω ∈Ω : P({ω}) = 1}
and let Bel be a belief function. Let furthermore λ be a
selection and A ∈F (Bel). If λA ∈Dn we denote by ωλ (A)
the unique ω with λA({ω}) = 1.

Theorem 2 Let Bel be a belief function and let Pλ be an
extreme point of the core of Bel. For focal sets A,A′ ∈
F (Bel) with {ωλ (A),ωλ (A′)} ⊆ A∩A′ we have

ωλ (A) = ωλ (A
′).

Proof: Assume that ωλ (A) 6= ωλ (A
′). We now show that if this

would be the case then we could construct two different elements
Pµ and Pν of the core of Bel such that Pλ = cPµ +(1− c)Pν for
some appropriate chosen c ∈ [0,1] and thus Pλ could not be an
extreme point, so ωλ (A) = ωλ (A

′): Define the selections µ and
ν as

µB(ω) =





λB(ω) if B 6= A′

1 if B = A′,ω = ωλ (A)
0 else

νB(ω) =





λB(ω) if B 6= A
1 if B = A,ω = ωλ (A

′)
0 else

.

These selections lead in fact to two different probability measures
Pµ and Pν . Now, with c =

m(A)
m(A)+m(A′) we have P∗ := c ·Pµ +

(1− c) ·Pν = Pλ . To see this, look at the three different cases
ω = ωλ (A),ω = ωλ (A

′) and ω /∈ {ωλ (A),ωλ (A
′)}:

P∗({ωλ (A)}) = c ∑
B 6=A′ ,

ωλ (B)=ωλ (A)

m(B)+m(A′) + (1− c) ∑
B 6=A,

ωλ (B)=ωλ (A)

m(B)

= ∑
B/∈{A,A′}

ωλ (B)=ωλ (A)

m(B)+ c · (m(A)+m(A′))

= ∑
B/∈{A,A′}

ωλ (B)=ωλ (A)

m(B)+m(A)

= Pλ ({ωλ (A)}).

Here, the first sum in the first equation is valid because of Lemma
1 and because all mass m(A′) is assigned by µ to ωλ (A) and the
second sum does not contain m(A) and m(A′) because the mass
m(A) and m(A′) is assigned by ν to ωλ (A

′) 6= ωλ (A).

P∗({ωλ (A
′)}) = c ∑

B 6=A′ ,
ωλ (B)=ωλ (A′)

m(B) + (1− c) ∑
B 6=A,

ωλ (B)=ωλ (A′)

m(B)+m(A)

= ∑
B/∈{A,A′}

ωλ (B)=ωλ (A′)

m(B)+(1− c)(m(A′)+m(A))

= ∑
B/∈{A,A′}

ωλ (B)=ωλ (A′)

m(B)+m(A′)

= Pλ ({ωλ (A
′)}).

Analogously, here, the first sum in the first equation does not
contain m(A) and m(A′) because these masses are assigned by
µ to ωλ (A) 6= ωλ (A

′) and in the second sum the mass m(A) is
assigned by ν to ωλ (A

′). For ω /∈ {ωλ (A),ωλ (A
′)} we have

P∗({ω}) = c ∑
B 6=A′

ωλ (B)=ω

m(B)+(1− c) ∑
B 6=A

ωλ (B)=ω

m(B)

= ∑
B/∈{A,A′}

ωλ (B)=ω

m(B) = Pλ ({ω}).

Here, the masses m(A) and m(A′) essentially play no role, because
they are not assigned to ω by neither µ nor ν .

2 Description of the Core of a Necessity
Measure

Now we are prepared to describe the extreme points of
the core of a necessity measure. As already mentioned, a
necessity measure N is a belief function where the focal
sets are nested. This enables a concise description of the
extreme points of the core:

Theorem 3 Let N be a necessity measure with focal sets
F (N) = {A1 ⊂ A2 ⊂ . . . ⊂ Ak}. The number of extreme
points of the core M (N) is given by

|ext(M (N))|= |A1| ·
k

∏
i=2

(|Ai\Ai−1|+1) . (1)

Furthermore, the set of extreme points can be described as

ext(M (N)) = {Pλ | λ ∈ Λext
n }

with Λext
n = {λ ∈ Λn | ∀Al ∈ F (N) : λAl ∈

Dn & ωλ (Al) ∈ Al−1⇒ ωλ (Al) = ωλ (Al−1)}.

Proof: We firstly show that the number of extreme points is
lower or equal to |A1| ·∏k

i=2 (|Ai\Ai−1|+1). For this we only
have to observe that we could inductively look at the focal sets
of N starting from the smallest focal set A1. For a given extreme
point Pλ , the mass assigned to A1 can be assigned to any ω ∈
A1, for which one has |A1| possibilities. Then, for the second
focal set A2 one has |A2\A1| possibilities to assign the mass of
A2 outside of A1 and only one possibility to assign the mass
into A1 because in this case, the element ω ∈ A1, to which the
mass is assigned, is, because of Theorem 2, already determined
as ω = ωλ (A1), so for the assignment of the mass m(A2), we
have maximal |Ai\Ai−1|+ 1 possibilities and so on. This gives
maximal |A1| ·∏k

i=2 (|Ai\Ai−1|+1) possibilities for constructing
an extreme point.

Now we still have to show that the extreme points constructed
in the above manner are all actually extreme points and that they

On the number and characterization of the extreme points of the core of necessity measures on finite spaces

279



are all pairwise different. For this, we can analogously look at
ascending focal elements. To see that any Pλ with λ ∈ Λext

n is
in fact an extreme point we firstly assume that Pλ is the convex
combination of r extreme points Pµi with µi in Λext

n and show that
then necessarily Pλ = Pµ1 = . . .= Pµr which shows that Pλ is an
extreme point of M (N):

Since Pλ is such that λ ∈ Λext
n , all mass of A1 is assigned by

λ to exactly one ω ∈ A1 and no other mass m(B) is assigned
by λ to some other ω ∈ A1, so Pλ (A1\{ωλ (A1)}) = 0. This
implies that for all Pµi we also have Pµi(A1\{ωλ (A1)})= 0 and so
λ (A1)= µ1(A1)= . . .= µr(A1). Now, look at A2. If λ assigns the
mass of A2 somewhere into A1 (namely to ωλ (A1)), then no mass
at all is assigned by λ to some ω ∈ A2\A1 and thus necessarily
all µi also have to assign all the mass into A1 (namely to ωλ (A1)),
so, in this cases we have λ (A2) = µ1(A2) = . . . = µr(A2). If λ
assigns all mass of A2 somewhere into A2\A1, then every µi also
has to assign the mass of A2 outside A1 because if there was a Pµi

that assigns the mass of A2 into A1 then we would have Pµi(A1)>
Bel(A1) = Pλ (A1) because if λ assigns the mass of A2 not into
A1, then λ assigns also the mass of all further A3, . . . ,Ak not into
A1 and thus Pλ (A1) = Bel(A1). But if Pµi(A1) > Pλ (A1) then
because Pλ is assumed to be a convex combination of Pµ1 , . . . ,Pµr ,
there has to be a Pµ j with Pµ j < Pλ (A1) = Bel(A1). This is a
contradiction to the fact that Pµ j dominates Bel. So, in fact, in
this case all µ’s assign the mass of A2 outside of A1 and thus
exactly to ωλ (A2) because Pλ (A2\{ωλ (A2)}) = 0. The same
argumentation for all further A3, . . . ,Ak shows that altogether
λ (Al) = µ1(Al) = . . .= µr(Al) for l = 1, . . . ,k and so Pλ = Pµ1 =
. . .= Pµr .

To finally see that selections λ ,λ ′ with at least one focal set
Al with ωλ (Al) 6= ωλ ′(Al) lead to different Pλ and Pλ ′ look at
the smallest focal set Al with ωλ (Al) 6= ωλ ′(Al). If l = 1 then
Pλ ({ωλ (Al)})> 0 and Pλ ′({ωλ (Al)}) = 0 so Pλ and Pλ ′ are dif-
ferent. If l > 1 then we have ωλ (Al) /∈ Al−1 or ωλ ′A(l) /∈ Al−1
because if both ωλ (Al) and ωλ ′(Al) were in Al−1 then also
ωλ (Al−1) and ωλ ′(Al−1) would differ which would be a contra-
diction to the minimality of l. So assume without loss of generality
ωλ (Al) /∈ Al−1. Then Pλ ({ωλ (Al)})> 0 but Pλ ′({ωλ (Al)}) = 0
because λ ′ assigns all mass of focal sets A⊇ Al either outside of
Al or to ωλ ′(Al) and all other focal sets A⊆ Al−1 do not contain
ωλ (Al).

With Theorem 3 we have a precise constructive description
of the extreme points of the core of a necessity measure. It
turns out that it is possible to give furthermore a formula
for the number of edges of the core. For this purpose we
can use the fact that if two extreme points P and P′ are
connected through an edge of the core, then they differ
exactly at two states and thus the difference of P and P′

is of the form P−P′ = (0, . . . ,0,ε,0, . . . ,−ε,0 . . . ,0) for
some ε ∈R. This result is given in [20] that more generally
treats capacities of order 2.

Definition 3 Let Bel be a belief function with focal ele-
ments F (Bel) = {A1, . . . ,Ak} and let Pλ be an extreme
point of the core of Bel induced by a selection λ . The

characteristic χ of λ is defined7 as

χ : F (Bel)→Ω
.∪ {0} :

Ai 7→
{

0 if ∃ j < i : ωλ (A j) = ωλ (Ai)

ωλ (Ai) else
.

Lemma 2 Let N be a necessity measure with focal sets
F (N)= {A1⊂A2⊂ . . .⊂Ak} and Pλ and Pλ ′ two different
extreme points of M (N) induced by selections λ and λ ′
with corresponding characteristics χ and χ ′. Then Pλ and
Pλ ′ are adjacent (meaning connected through an edge of
M (N)) if and only if there is exactly one focal set A with
χ(A) 6= χ ′(A).

Proof: Assume that Pλ and Pλ ′ are adjacent and that there are
two different focal sets where the characteristics χ and χ ′ differ.
Look particularly at the smallest set Al and some other set Ar
where χ and χ ′ differ. Then Pλ and Pλ ′ differ at the two different
states ωλ (Al) and ωλ ′(Al). Since furthermore either ωλ (Ar) or
ωλ ′(Ar) is not in Al there exists a third state ωλ (Ar) or ωλ ′(Ar)
where Pλ and Pλ ′ differ, so Pλ and Pλ ′ could not be adjacent. This
shows that in fact adjacent extreme points have characteristics
that differ only on one focal set.

Let now λ and λ ′ be two selections with associated characteristics
χ and χ ′ that differ only on one focal set Al . For arbitrary ω ∈Ω
let i(ω) denote the index of the smallest focal set that contains
ω . Then for ω /∈ {ωλ (Al),ωλ ′(Al)} we have that Pλ ({ω}) = 0
if χ(Ai(ω)) 6= ω and otherwise if χ(Ai(ω)) = ω that

Pλ ({ω}) =





m(Ai(ω))+∑B∈{Ai(ω),...,Ak}
χ(B)=0

m(B) if i(ω)> l,

m(Ai(ω))+∑B∈{Ai(ω),...,Al−1}
χ(B)=0

m(B) if i(ω)< l.

So Pλ ({ω}) = Pλ ′({ω}). This means that Pλ and Pλ ′ differ at
most at two states (namely ωλ (Al) and ω ′λ (Al)) and since they are
different, they differ exactly at two states. Unfortunately, extreme
points that differ only at two states need not to be adjacent (see
for example the belief function of section 4) but in the case of
necessity measures this is the case. In fact, one can show with the
concepts of [20] that for extreme points with associated character-
istics that differ only at one focal set (or equivalently, for extreme
points that differ only at two states,) there exist permutations σ
and µ such that Pλ = pσ , Pλ ′ = pµ and the associated equivalence
classes [pσ ] and [pµ ] are neighboured in the network and thus Pλ
and Pλ ′ are adjacent. Details about this can be given upon request.

From Lemma 2 it follows that every extreme point Pλ has
|A1|−1+∑k

i=1(|Ai\Ai−1|) adjacent extreme points. With
this we can count the number of edges of M (N):

7Note that this definition depends on the numbering of the focal sets.
For the special case of necessity measures the focal sets are assumed to
be numbered in increasing cardinality.
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Theorem 4 Let N be a necessity measure with focal
sets F (N) = {A1 ⊂ A2 ⊂ . . . ⊂ Ak}. The number
|edges(M (N))| of edges of the core M (N) is given by

1
2
· |A1| ·

k

∏
i=2

(|Ai\Ai−1|+1) · (|A1|−1+
k

∑
i=2
|Ai\Ai−1|).

Proof: The statement about the number of edges follows simply
by counting for all extreme points Pλ all adjacent extreme points
Pλ ′ that form an edge with Pλ and by taking into account that with
this, every edge is counted two times.

We now compare our result with results given in [14, 13].
There, the results are given in the language of possibility
measures Π that are defined in a dual way as Π : 2Ω −→
[0,1] : A 7→ 1−N(Ac) and are then join preserving map-
pings particularly satisfying Π(A) = maxω∈A Π({ω}) and
are thus uniquely defined through πi := Π({ωi}). Further-
more, in the sequel we assume 0 < π1 ≤ π2 ≤ . . .≤ πn = 1
to simplify presentation. In [14, 13] the set S := {i ∈
{1, . . . ,n− 2} | πi+1 > πi} ∪ {n− 1} and its cardinality
s := |S| play an important role in establishing bounds for
the number of extreme points. In terms of the necessity
measure N the set S writes as S = {i ∈ {1, . . . ,n− 2} |
{ωi+1, . . . ,n} ∈F (N)}∪{n−1} and s equals the number
of non-elementary focal sets.

Theorem 5 ([14, 13]) 8 Let N be a necessity measure with
associated possibility measure Π satisfying 0 < π1 ≤ . . .≤
πn = 1. Let s denote the number of non-elementary focal
sets of N (or equivalently the cardinality of the set S = {i ∈
{1, . . . ,n−2} | πi+1 > πi}∪{n−1}). Then the core M (N)
is a n−1 dimensional simple polytope9 with n−1+s facets.
The number of extreme points is bounded by

|ext(M (N))| ≥ s(n−2)+2, (2)

|ext(M (N))| ≤
(

n−2+ s−b n−2
2 c

b n−1
2 c

)
+ (3)

(
n−2+ s−b n−1

2 c
b n−2

2 c

)

and by

|ext(M (N)| ≤ 2s
s

∏
j=1

(i j− i j−1) (4)

where i0 = 0 and i1, i2, . . . , is denote the increasingly or-
dered indices of the set S.

3 Illustration of the Results

We can now illustrate our results via an example taken
from [14, Example 2, p.242]. There, Ω = {ω1, . . . ,ω5}

8Note that unfortunately the bounds given in [14, Theorem 2] are
misprinted, the correct bounds can be found in [13].

9A d-dimensional polytope is called simple, if all vertices are con-
tained in exactly d facets.
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Figure 1: Illustration of the core of Example 2 given in
[14].

and a possibility measure Π is given by π1 = 0, π2 = π3 =
0.5, π4 = 0.75, π5 = 1. This translates to an associated
necessity measure N with focal elements A1 = {ω5}, A2 =
{ω4,ω5} and A3 = {ω2,ω3,ω4,ω5} and masses m(A1) =
0.25, m(A2) = 0.25, m(A3) = 0.5. Because of π1 = 0 we
have P({ω1})= 0 for all P∈M (N) and thus state ω1 plays
essentially no role and the core M (N) is a 3-dimensional
polytope that is uniquely described by the second, third and
fourth component of all probability vectors p of the core.

Figure 1 depicts the core of N. One can see its 6 extreme
points, its 9 edges and its 5 facets. This is in accordance
with Theorem 3, Theorem 4 and Theorem 5:

|ext(M (N))|= 1 ·2 ·3 = 6

|edges(M (N))|= 1
2
·1 ·2 ·3 · (0+1+2) = 9

| fac(M (N))|= 5−2+2 = 5.

Furthermore, exactly 0+1+2 = 3 edges meet at every ex-
treme point as argued in the leader of Theorem 4. The digit
sequence at every extreme point in Figure 1 indicates the
characteristic of the corresponding selection. For example
the sequence 503 at the extreme point in the foreground
means that the mass of A1 is assigned to ω5, the mass of
A2 is assigned to the same ω as the mass of A1 (thus to
ω5) and the mass of A3 is assigned to ω3. One can see that
the characteristics of two different extreme points differ
exactly at one position if and only if they are adjacent.

The extreme point with characteristic 500 is in a sense
distinguished because it is obtained as all mass is assigned
to one state ω5. For every arbitrary necessity measure there
exists (at least) one such degenerate extreme point p ∈Dn,
namely p = (0, . . . ,1). (If the smallest focal set contains k
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n−1 s 2n−1 l1 u1 u2 l3 u3
2 2 4 4 4 4 4 4
2 1 4 3 3 4 3 3
3 3 8 8 8 8 8 8
3 2 8 6 6 6 6 6
3 1 8 4 4 4 4 4
4 4 16 14 20 16 16 16
4 3 16 11 14 16 12 12
4 2 16 8 9 16 8 9
8 8 256 58 660 256 256 256
8 7 256 51 450 256 192 192
8 6 256 44 294 256 128 144
8 5 256 37 182 256 80 108
9 9 512 74 1430 512 512 512
9 8 512 66 990 512 384 384
9 7 512 58 660 512 256 288
9 6 512 50 420 512 160 216
10 5 1024 47 378 1024 112 243
15 5 32768 72 1584 7776 192 1024
20 5 1048576 97 5005 32768 272 3125
20 10 1048576 192 277134 1048576 6144 59049
m·s s 2m·s s(m·s−1)+2 (

(m+1)s+1−bm·s+1
2 c

bm·s
2 c

)+(
(m+1)s+1−bm·s

2 c
bm·s+1

2 c ) 2s·ms 2s−1·((m−1)s+2) (m+1)s

Table 1: Different bounds for the number of extreme points of the core of a necessity measure for different sizes of n−1
and s.

elements then there are even k degenerate extreme points).
This extreme point p is adjacent to extreme points of the
form (0, . . . ,πk, . . . ,1−πk) obtained bay assigning all mass
m(A) to ωk if ωk ∈ A and to ωn else.

Additionally, we can investigate the behaviour of the differ-
ent bounds for the number of extreme points for different
sizes of n−1 and s. Table 1 shows the exponential bound
2n−1 given in [15], the lower bound l1 and the upper bound
u1 of [14] (these are here the inequalities (2) and (3)) and
the upper bound u2 of [13] (here inequality (4)) obtained
by maximizing (4) under fixed sizes of n−1 and s). Addi-
tionally, the herein established bounds l3 and u3 obtained
via minimizing/maximizing (1) for fixed n− 1 and s are
given in the last columns. The last row shows the general
situation when n− 1 is a multiple of s. The sharp upper
bound u3 is obtained by choosing s focal sets A1, . . . ,As
with cardinality |Al |= l ·m+1 where m = (n−1)/s. One
can see that for fixed m this bound is exponential in s and in
the special case of m = 1 we get the bound 2s = 21·s = 2n−1

of [15]. For higher m the expansion rate of the exponential
growth of the extreme points in dependence on s is greater.
If the “density” 1

m of focal sets decreases and n is fixed,

then the number (m+ 1)s = (m+ 1)
n−1

m decreases. For a
fixed number of focal sets the number of extreme points
is polynomial in the reciprocal m of the density of focal
elements.

Our result on the description of the extreme points suggests

that it is possible to enumerate all extreme points in a time
proportional to (m+1)s · s because for every extreme point
one needs to add s mass values m(A) to some state ω∗ ∈ A
as p(ω∗) = p(ω∗)+m(A) to obtain this extreme point.

To get an impression about the possible gain in efficiency,
we compare the term (m+1)s ·s with the time two standard
enumeration procedures need to enumerate the extreme
points. We used implementations of firstly the Double
Description Method (cf., [8, 16]) and secondly the Reverse
Search Method (cf., [2]) to enumerate the extreme points
for different values of m and s and necessity measures that
maximize the number of extreme points for given values of
m and s.

Figure 2 shows the logarithm of the execution time10 t
in seconds in dependence of s (or m respectively) for the
Double Description Method11 where the value of m (or
s respectively) was fixed at different levels. The term
ln((m+1)s · s) = s ln(m+1)+ ln(s) is approximately lin-
early increasing in s (with slope roughly ln(m+ 1)) and
logarithmically increasing in m. Compared to this, the log
of computation time increases seemingly linearly in s, but
with higher slopes. For example for m = 7 the slope of
ln(t) is around 4 whereas the slope of ln((m+1)s · s) is

10We used a personal computer (64 bit) with an Intel(R) Xeon(R) CPU
(E5-2650v2, 2.60 Ghz, 2 cores).

11 We used the r-package rcdd (cf., [9]) which is an interface to the C++
implementation [8] of the Double Description Method.
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Figure 2: Different execution times of the Double Description Method together with the logarithm of a multiple of the term
(m+1)s · s (grey dashed lines) expected for an efficient enumerating procedure that uses our result.
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Figure 3: Different execution times of the Reverse Search Method together with the logarithm of a multiple of the term
(m+1)s · s (grey dashed lines) and the logarithm of a multiple of the term (m+1)s · (ms)2 (grey lines).
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somewhere around 2.3, so the expansion rate of the seem-
ingly exponential growth of computation time is larger than
the computation time expected for an ideal enumeration
procedure. Also the growing of ln(t) in dependence on m
seems to be linearly, so computation time seems to grow
also exponentially in m and not polynomially as would be
the case with an ideal enumeration procedure.

Figure 3 shows the results for the Reverse Search Method.12

For this method it is known (cf., [2, Theorem 6.2]) that for
simple polytopes the time complexity for enumerating the
extreme points is O(kn) per vertex, where n is the number
of variables and k is the number of inequalities in the H-
representation of the polytope. This would translate in our
case to a time complexity of O((m+1)s · (ms)2) since we
have (m+1)s vertices of a polytope of dimension n−1 =
m · s that could be described by O(n−1) inequalities (cf.,
[14, p.238]).

It turns out that the execution times are mostly smaller for
the Reverse Search Method compared to the Double De-
scription Method. In Figure 3 the grey dashed lines again
display the logarithm of a multiple of the term (m+1)s · s,
whereas the grey solid lines show the logarithm of a mul-
tiple of the term (m+ 1)s · (ms)2. One can see that the
theoretical time complexity of the Reverse Search Method
is roughly in accordance with the actually obtained execu-
tion times and that one could still gain some improvement
of performance if one uses our results to enumerate the ex-
treme points instead of using the Reverse Search Method.

4 Extension to Belief Functions

With the insight of Theorem 3 and its proof we have not
only an exact formula for the number of the extreme points
of the core of a necessity measure but also a possibility
to efficiently enumerate all extreme points. If we now
extend our focus from necessity measures to arbitrary belief
functions, then the analysis is more difficult, but Lemma 1
and Theorem 2 still hold. In the case of a necessity measure
it was possible to look recursively at ascending focal sets
and decide for every focal set if the corresponding mass
should be assigned somewhere into the previous focal set
(and then the previous focal set would already determine
to which exact ω the mass should be assigned to actually
obtain an extreme point) or if the mass should be assigned
somewhere outside of the previous focal set and then every
possible assignment would in fact lead to an extreme point.

If the focal sets are not nested then in the first place it is not
clear with which focal set one should start some recursive
procedure and how to proceed the recursion. But it is still
possible to do a not too inefficient recursion that could
generate a set of candidates of extreme points that actually
includes all extreme points. One can (totally) order the

12We used the library lrslib, see http://cgm.cs.mcgill.ca/ avis/C/lrs.html.

no. ωλ (Ai) Pλ
1 5 5 4 5 0 0 0 0.2 0.8
2 5 5 3 5 0 0 0.2 0 0.8
3 5 5 3 3 0 0 0.6 0 0.4
4 5 5 2 5 0 0.2 0 0 0.8
5 5 5 2 2 0 0.6 0 0 0.4
6 5 4 4 4 0 0 0 0.8 0.2
7 5 4 3 3 0 0 0.6 0.2 0.2
8 5 4 2 2 0 0.6 0 0.2 0.2

Table 2: Summary of altogether 8 candidates of selections
that could lead to extreme points.

focal sets in an arbitrary way that at least respects the order
of set inclusion of the focal sets to make the recursion not
unnecessarily ineffective. One possibility would be to order
the focal sets according to their cardinality or another sort
of rank function. (The linear ranking via cardinality is then
not completely determined, so here comes some sort of
arbitrariness into play). Then one could analogously go
through ascending focal sets Ai and decide with the help
of Theorem 2 to which state ω ∈ Ai the mass m(Ai) should
be assigned to actually obtain an extreme point. Then
for a possible candidate of a selection λ that is already
determined on the focal sets A1, . . . ,Al one has to decide
for the assignment of the mass m(Al+1) to some ω∗ ∈ Al+1
if this candidate ω∗ is contained in some previous focal
set A ∈ {A1, . . . ,Al}. If this is the case and if furthermore
ωλ (A) ∈ Al+1 and ωλ (A) 6= ω∗ the assignment of the mass
m(Al+1) to this ω∗ could be excluded, because it could
not lead to an extreme point. (Note that in the case of a
necessity measure it was enough to look only at the direct
predecessor set Al .)

We now shortly illustrate this recursive procedure via an
example. Take Ω = {ω1, . . . ,ω5} and focal sets A1 = {ω5},
A2 = {ω4,ω5}, A3 = {ω2,ω3,ω4}, A4 = {ω2,ω3,ω4,ω5}.
The indices indicate the ordering of the focal sets, here
corresponding to the cardinality of the focal sets. In terms
of focal sets this example is like the example above with
the only exception that we added the focal set A3 to make
the focal sets not nested. As masses take for example
m(A1) = 0.2, m(A2) = 0.2, m(A3) = 0.2, m(A4) = 0.4.

Table 2 shows all 8 selections obtained by the recursive
procedure that could possibly lead to extreme points. The
second column describes the corresponding selections. For
example the digit sequence 5535 means that the masses
of A1,A2 and A4 are assigned to ω5 and the mass of A3
is assigned to ω3. This is similar to the digit sequence
describing the characteristics in Figure 1, but note that for
example selections 2 and 3 have the same characteristic and
this is the only reason for choosing this description. The
third column shows the 5 components of the corresponding
extreme point candidates.
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Figure 4 shows the resulting core of the belief function for
this example (black) together with the core of the necessity
measure of the previous example (grey). One can see that
compared to the necessity measure, the belief function has
an extra facet and altogether 8 extreme points. In contrast
to necessity measures, here for example the extreme points
no. 1 and no. 8 differ only at two states but are not adjacent.
Furthermore, for this example all 8 candidates of Table
2 are in fact extreme points, but this is generally not the
case. A simple counterexample is Ω = {ω1,ω2,ω3} and
focal sets A1 = {ω1,ω2}, A2 = {ω1,ω3}, A3 = {ω2,ω3}.
Then Theorem 2 could not exclude any selection candidate.
But for example with m(A1) = m(A2) = m(A3) =

1
3 and

a selection with characteristic 132 we get an associated
point p = ( 1

3 ,
1
3 ,

1
3 ). But this point is no extreme point of

the core because it is a convex combination of the actual
extreme points p1 = (0, 2

3 ,
1
3 ) and p2 = ( 2

3 ,0,
1
3 ) obtained

by the selections with characteristics 232 and 113.

To exclude selections that do not lead to extreme points
one can simultaneously consider the characterization of
the extreme points given e.g. in [4, Proposition 9, p.274,
Proposition 13, p.277]: Every extreme point of the core
of a belief function (or even more generally a capacity
of order 2) can be obtained via a total order < on Ω and
an associated selection λ that assigns all mass of a focal
set A to the greatest element (w.r.t. <) of A. The selec-
tion with characteristic 132 of the above counterexample
is obviously no λ associated to some total order < be-
cause from ωλ ({ω1,ω2}) = ω1 it follows ω2 < ω1 and
with ωλ ({ω1,ω3}) = 3 we have ω1 < ω3, so ω2 < ω3, but
this is in contradiction with ωλ ({ω2,ω3}) = ω2. So with
this “double description” of the extreme points one could
exclude candidates of selections that do not lead to extreme
points.13 If we do this, then finally the question remains, if
we possibly enumerate some of the extreme points more
than one time with this modified procedure. Fortunately,
we are able to show that this is not the case:

Theorem 6 Let λ1 and λ2 be two different selections in-
duced by some orderings <1 and <2 on Ω. Assume further-
more that for i = 1,2 and for all focal sets A and A′ the
relation

{ωλi(A),ωλi(A
′)} ⊆ A∩A′ =⇒ ωλi(A) = ωλi(A

′)

of Theorem 2 is satisfied. Then the associated extreme
points Pλ1 and Pλ2 are different.

Proof: Look at the (non-empty) system D := {A ∈ F (Bel) |
ωλ1

(A) 6= ωλ2
(A)}. Then take that set B ∈ D such that the as-

sociated ωλ2
(B) is minimal w.r.t. <1. Then the mass of B is

transferred by λ2 to ω :=ωλ2
(B), so Pλ2

({ω}) = . . .+m(B)+ . . .,

13Another way to exclude transportations that do not lead to extreme
points would be to check, if the selection is consistent in the sense of
[5, p.25], cf. also Lemma 2 therein. Furthermore, also in the context of
qualitative capacities the situation is similar, cf., [7, p.13].
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Figure 4: Comparison of the core of a necessity measure
and a belief function.

but the mass of B is not transferred by λ1 to ω . If Pλ1
({ω}) =

Pλ2
({ω}) then there has to be another set B̃ ∈ D whose mass is

transferred by λ1 to ω but not by λ2 to ω , so for the element
ω̃ := ωλ2

(B̃) ∈ B̃ we have ω̃ <1 ω , but this is in contradiction
to the minimality of ωλ2

(B) w.r.t. <1. So Pλ1
({ω}) 6= Pλ2

({ω})
and the two extreme points Pλ1

and Pλ2
are different.

With this we can efficiently enumerate the extreme points
of an arbitrary belief function (on a finite space).

If the only task is to compute all extreme points, then an-
other nice option of preprocessing could be simplifying in
some situations: One could firstly factorize the space Ω
according to the equivalence relation∼ of indistinguishabil-
ity: Two states ω and ω ′ are indistinguishable if every focal
set A either contains both ω and ω ′ or contains neither ω
nor ω ′. Especially if there are only few focal sets on a big
space Ω then the quotient space W := Ω/∼ could be much
smaller. One can then look at the associated belief function
Bel/∼ : 2W −→ [0,1] : A 7→Bel(

⋃
A) and compute in a first

step the extreme points of Bel/∼. The extreme points of the
original belief function Bel can then be obtained by decid-
ing in a second step for every extreme point P/∼ of Bel/∼
and every equivalence class w = [ω] with P/∼({w}) > 0
to which ω ∈ w the mass P/∼({w}) assigned to the equiva-
lence class w should be further assigned.

5 Conclusion

In this paper we worked out a combinatorial description of
the extreme points of a necessity measure on a finite space.
We treated necessity measures as special kinds of belief
functions and were thus able to apply parts of our results
also to arbitrary belief functions. Based on this we gave
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a possible procedure of seemingly efficiently enumerating
the extreme points of belief functions.

For the case of arbitrary belief functions we did not ex-
plicitly analyze the complexity of enumeration procedures
that use our results. This is a possible direction of further
research.

Related to this there are a lot of further combinatorial ques-
tions. For instance: Is there a non-trivial bound for the
number of extreme points in terms of the number of focal
sets? Or: What is the maximal number of extreme points of
a belief function where the set of focal elements builds an
ordered set (w.r.t. set inclusion) that has a fixed width?14

Another direction of further research could be to analyze
which parts of the given theorems and considerations of
this paper still hold in the case of capacities of order 2 that
are not belief functions.
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Abstract
We explore how imprecise continuous time Markov
chains can improve traditional reliability models based
on precise continuous time Markov chains. Specifically,
we analyse the reliability of power networks under very
weak statistical assumptions, explicitly accounting for
non-stationary failure and repair rates and the limited
accuracy by which common cause failure rates can be
estimated. Bounds on typical quantities of interest
are derived, namely the expected time spent in sys-
tem failure state, as well as the expected number of
transitions to that state. A worked numerical exam-
ple demonstrates the theoretical techniques described.
Interestingly, the number of iterations required for
convergence is observed to be much lower than current
theoretical bounds.

1 Introduction

This paper is an initial exploration to apply recent
advances in imprecise continuous time Markov chains
to the reliability analysis of power networks.

A typical power network consists of multiple redundant
power lines, and works as long as at least one of the
power lines is working. A problem of interest occurs
when single events can lead to the failure of multiple
power lines, such as for instance a landslide causing
collapse of a pylon carrying two power lines. Such
events are called common cause failures. In this case,
faults in different lines are not statistically indepen-
dent, and require special care in modelling, estimation,
and validation. In practice, a majority of power out-
ages are due to common cause failure, and therefore
modelling this type of failure is vital.

Because common cause failures are very hard to quan-
tify statistically [4], methods from imprecise proba-
bility theory have been introduced that allow accu-
rate yet robust prediction of behaviour under rela-
tively weak statistical assumptions [7,9,10]. We model

the power networks using imprecise continuous time
Markov chains [5,6], which have not previously received
much attention in the literature. We are particularly
interested in the amount of time spent in the state
where all power lines have failed, as well as the number
of visits to this state. Whereas [7] considered imme-
diate repair only, here we explicitly model repair as
well.

Modelling repair requires much more sophisticated
mathematical methods which have been only very
recently developed, namely imprecise continuous time
Markov chains [6]. Following [6], we will discretise our
imprecise continuous time Markov chain and use lower
and upper transition operators [2]. In this framework,
practical calculations such as calculating lower and
upper long run probabilities can be done via linear
programming [6]. Throughout, we exploit the fact
that repair times of power lines are much shorter than
failure times. We use this fact to get a reasonable
approximation for the expected number of times that
the system visits the totally failed state, as well as the
expected amount of time that it spends there, in a
given time period. For the imprecise case, we derive
simple bounds on these quantities.

The structure of the paper is as follows. Section 2 looks
at how we can use continuous time Markov chains
to model a power network with two components, ac-
counting for common cause failure and non-immediate
repair. Section 3 generalises this setting to imprecise
continuous time Markov chains, and works through a
detailed example. Section 4 concludes the paper.

2 Continuous Time Markov Chains

2.1 Definition

We start with reviewing the basic definition and prop-
erties of continuous time Markov chains.

Definition 1 A continuous time Markov chain is a
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family (Xt)t∈R of random variables taking values in a
finite state space S, such that for all s < t and δt > 0,
Xt+δt is independent of Xs conditionally on Xt, and

P (Xt+δt = j | Xt = i) = Iij + δtQij + oij(δt) (1)

where limδt→0+ oij(δt)/δt = 0, I is the identity matrix,
and Q is called the rate matrix.

In particular, the above process is stationary, that is,
the transition probabilities P (Xt+δt = j | Xt = i) do
not depend on t. For i 6= j, the values Qij are non-
negative and describe the rate at which the process
switches from state i to state j. The rows of Q must
sum to zero because, by Eq. (1),

∑

j∈S
Qij = −

∑

j∈S

oij(δt)
δt

(2)

which tends to zero as δt→ 0, so all diagonal elements
Qii will be non-positive.

The above definition implies that for any fixed time t
there is a transition matrix Tt such that

P (Xs+t = j | Xs = i) = (Tt)ij . (3)

The transition matrix is a function of t and satisfies
Kolmogorov’s forward and backward equations:

d

dt
Tt = TtQ (4)

and

d

dt
Tt = QTt (5)

respectively, with the initial condition T0 = I. It is
well known that in the stationary case, i.e. when Q is
constant in time, the solution of the above equations
is

Tt = etQ, (6)

where etQ is the matrix exponential of tQ.

2.2 Inference

We briefly review the details of doing inference on
precise continuous time Markov chains.

Typically, we are interested in the expectation of some
function of the state at time t, conditional on some
initial state at time 0. It follows from Eq. (6) that for
any f : S → R

E(f(Xt) | X0 = i)

=
∑

j∈S
P (Xt = j | X0 = i)f(j) = [etQf ]i (7)

where f is interpreted as a column vector in the last
expression.

Equation (7) lies at the basis of all practical calcu-
lations with continuous time Markov chains in this
paper. For example,

P (Xt = j | X0 = i) = E(Ij(Xt) | X0 = i) (8)
=
[
etQIj

]
i

=
[
etQ
]
ij
, (9)

where Ij denotes the indicator function interpreted as
a column vector:

Ij(k) :=
{

1 if k = j

0 otherwise
(10)

A wide variety of methods is available for calculating
the matrix exponential; see [3] for a review and dis-
cussion. For small dimensions, the following method
is slow but simple and sufficiently effective for the
purpose of this paper. Equation (1) suggests that a
continuous time Markov chain is a limit of discrete
time Markov chains. Specifically,

T ′δt := I + δtQ (11)

maps the rate matrix Q to a discrete time Markov
chain transition matrix T ′δt, provided that δt is small
enough so that none of the diagonal entries of T ′δt are
negative. It can then be shown that

etQ = lim
n→∞

(T ′t/n)n (12)

For practical calculations, we can take n to be a power
of 2, so (T ′t/n)n can be evaluated by repeated squar-
ing, requiring only log2 n matrix multiplications [12].
Although this method is conceptually and computa-
tionally simple, it may produce numerically unstable
results. An improvement is to use Padé approxima-
tion, which also allows for error analysis [3, pp. 9–10].
Essentially, we calculate

etQ ' [Rmm(tQ/n)]n (13)

where Rmm is a known polynomial, and again we take
n to be a power of 2 so we can use repeated squaring.
Suitable values for m and n, as a function of the 2-
norm of tQ, can be found in [3, p. 11, Table 1].

Concerning the limit behaviour for t→∞, the follow-
ing definition and theorem are of importance.

Definition 2 A probability mass function π on S is a
stationary distribution for a continuous time Markov
chain if

πQ = 0. (14)
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Theorem 3 If there is a unique stationary distribu-
tion π for a continuous time Markov chain, then

lim
t→∞

[
etQ
]
ij

= πj . (15)

In words, the limit behaviour does not depend on the
initial state when πQ = 0 has a unique solution for π.
In that case, π describes that unique limit behaviour.

For analysis and design of power systems, we are typi-
cally interested in the following quantities:

(i) the expected amount of time spent in a particular
state i during a time period of length τ ; it is easily
shown that this expectation is simply equal to

αi := τπi; (16)

(ii) the expected number of transitions to state i dur-
ing a time period of length τ ; this can be shown
to be equal to

βi := −τπiQii. (17)

2.3 Example

Although the methods described in this paper apply
in principle to arbitrary power networks, for demon-
strating the ideas of the paper, following [7], we will
consider a simple network consisting of just two power
lines, called A and B. We can set up a continuous
time Markov chain to model this system as follows [1].
The state space is S = {AB,A,B, ∅}, where the labels
of the states denote the non-faulty components (i.e.
both A and B are non-faulty in AB, whereas both are
faulty in ∅). Using the basic parameter model [4, 10],
we can model common cause failures by assigning all
failures to any one of the following three events:

• AI : independent failure of A.
• BI : independent failure of B.
• CAB : common cause failure of both A and B.

Using standard notation from the literature on com-
mon cause failure modelling, denote by qA1 the rate of
AI , qB1 the rate of BI and q2 the rate of CAB. Simi-
larly, let rA be the repair rate of A and rB the repair
rate of B—for simplicity we exclude simultaneous re-
pair; extending the analysis to allow for this possibility
is trivial. The rate matrix is then

Q =



−qA

1 −qB
1 −q2 qB

1 qA
1 q2

rB −qA
1 −q2−rB 0 qA

1 +q2

rA 0 −qB
1 −q2−rA qB

1 +q2
0 rA rB −rA−rB




(18)
The corresponding digraph of the continuous time
Markov chain is depicted in Fig. 1.

To estimate the rate parameters qA1 , qB1 , q2, we assume
that the chain spends most of its time in state AB,

AB B

A ∅

qA1

qB1 q2

rA

rB qB1 + q2

qA1 + q2

rA

rB

Figure 1: Markov chain for failure with non-instant
repair. The nodes show non-faulty power lines.

AB B

A ∅

qA1

qB1

q2

∞

∞

∞

Figure 2: Markov chain for failure with instant repair.

which is reasonable, as repair times are much shorter
than failure times. Therefore, from the point of view of
AB, we can assume instant repair (see Fig. 2), leading
us precisely to the situation discussed in [7]. We know
from the theory of continuous time Markov chains
that the number of transitions from each state are
Poisson distributed. If we then make the simplifying
assumption that all failures occur from AB, then the
process reduces to three independent Poisson processes,
each generating one of the events AI , BI and CAB .

Let nA be the number of single failures of A, nB the
number of single failures of B, and nAB the number of
double failures. Similarly, let TAB denote the amount
of time spent in state AB. We will use the data
from the example in [7] where two circuits, A and
B, have been observed for 12 years. A experienced 7
failures in this time, and B 4 failures, with 3 of these
failures being double failures. So, using our notation,
and under the approximate assumption of immediate
repair, we have:

nA = 4, nB = 1, nAB = 3, (19)
TAB = 12, (20)
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leading to the following maximum likelihood estimates:

q̃A1 = nA
TAB

= 1/3 (21)

q̃B1 = nB
TAB

= 1/12 (22)

q̃2 = nAB
TAB

= 1/4 (23)

We have no repair time data, but a mean time to
repair of 12 hours is not entirely unrealistic, so we take
rA = rB = 730. The rate matrix is then:

Q =




− 2
3

1
12

1
3

1
4

730 −730− 7
12 0 7

12
730 0 −730− 1

3
1
3

0 730 730 −1460


 (24)

The unique stationary distribution is

π =




9.989× 10−1

2.851× 10−4

6.271× 10−4

1.713× 10−4


 (25)

The expected amount of time spent in the state ∅ in a
period of 10 years, is

α∅ = 10 years× 1.713× 10−4 = 0.625 days. (26)

and the expected number of visits to ∅ in a 10 year
period is

β∅ = −10× π∅Q∅∅ = 2.501 (27)

3 Continuous Time Imprecise Markov
Chains

3.1 Motivation

The example of the previous section suffers from a
number of issues:

• the Markov assumption of Xt+δt being indepen-
dent of Xs for s < t conditionally on Xt may not
be realistic, particularly for repair;
• the transition rates may not be constant in time,
but are usually affected by a variety of factors;
and
• estimation of the rates themselves is difficult, due
to the lack of data, as extensively discussed in
[7, 10].

Specifically, under constant transition rates, repair
times are exponentially distributed, and are indepen-
dent of the history of the system. But this is usually
not the case. In some cases the repair may be vir-
tually immediate, as a minor failure in a power line

may be detected by a computer and then corrected
immediately, but in other cases there may be need
for an engineer to go out and work on the line, which
obviously takes time. So, repairs times will often fol-
low a bimodal distribution rather than an exponential
distribution.

Similarly, failure rates often follow a so-called bathtub
curve due to burn-in and wear-out effects, and can be
affected in quite complex ways by the repair history of
the system. A full modelling of these details requires
a lot of data and expert knowledge.

It seems therefore convenient to consider our transition
rates as not being fixed, but instead being bounded
by an interval, to cover a range of distributions that
is more likely to occur in reality, without having to be
too precise about the details of this distribution, or
on how this distribution depends on the history of the
system.

As already mentioned, another source of severe uncer-
tainty concerns the common cause failures, which are
very hard to quantify. We will follow [7, 10] and use
a robust Bayesian approach to bound our estimates,
allowing robust prediction of behaviour under rela-
tively weak statistical assumptions. Eventually, this
leaves us with a set of rate matrices Q bounded by
linear constraints. How can we interpret such a set as
a statistical process?

3.2 Definitions

Consider a non-stationary non-Markovian continuous
time process whose generator

Qij(t, tn, xn, . . . , t0, x0) := lim
δt→0+

P (Xt+δt=j|Xt=i,Xtn=xn, . . . , Xt0=x0)− Iij
δt

(28)

(where t > tn > · · · > t0) is an arbitrary function
of time and history which is only required to satisfy
Q(t, tn, xn, . . . , t0, x0) ∈ Q for all t, n, tn, xn, . . . , t0,
and x0. Here, Q is a set of transition rate matrices—
note that the set Q itself does not depend on time
or history. A simple way to do our inference, which
imposes very few assumptions about the additional
structure of the process, is then to perform a sensitiv-
ity analysis over all these continuous time processes.
Specifically, we are interested in the lower expectation
of a function of the state at time t for a given initial
state at time 0:

Definition 4 Let t > 0. The lower transition opera-
tor T t : RS → RS is defined by

[T tf ]i := E(f(Xt) | X0 = i) (29)
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The upper transition operator is defined through con-
jugacy: T tf = −T t(−f).

A clever way of calculating T t goes via the so-called
lower rate operator, provided that the set Q of rate
matrices has a particular structure:

Definition 5 We say that Q has separately specified
rows if

Q =







Q1∗
Q2∗
...


 : Qi∗ ∈ Qi∗





(30)

where Qi∗ := {Qi∗ : Q ∈ Q}, and Qi∗ denotes the ith
row of Q.

In other words, Q has separately specified rows if the
set of matrices attained by forming matrices with any
combination of rows from matrices in Q (where the
first row can be chosen from any of the first rows of
matrices in Q and so on) is again Q. For example,

Q :=
{[
−a a
a −a

]
: a ∈ [0, 1]

}
(31)

does not have separately specified rows, but

Q :=
{[
−a a
b −b

]
: a, b ∈ [0, 1]

}
(32)

has separately specified rows.

Definition 6 An interval rate matrix is a compact
and convex set of rate matrices with separately specified
rows.

Definition 7 Let Q be an interval rate matrix. The
corresponding lower rate operator Q : RS → RS is
defined by

[
Qf
]
i

:= min
Q∈Q

[Qf ]i = min
Qi∗∈Qi∗

Qi∗f (33)

for any function f : S → R on the state space S.

The upper rate operator Q is defined through conju-
gacy: Qf := −Q(−f). The properties of lower and
upper rate operators are studied extensively in [6].

Clearly, it holds that

[Qf ]i ≤ [Qf ]i ≤ [Qf ]i (34)

for every i ∈ S, f : S → R, and Q ∈ Q. But we
can make an even stronger statement. Because Q
has separately specified rows, for any specific f , these
bounds can be attained for the same Q independently
of i ∈ S. Specifically, for every f , there is a Q ∈ Q
such that for all i ∈ S we have that [Qf ]i = [Qf ]i.

A similarly result holds for the upper bound. This
property substantially simplifies calculations.

What makes Q so important is that it entirely de-
termines T t, through the following generalisation of
Kolmogorov’s backward equation [6]:

d

dt
T t = QT t. (35)

Calculating T t amounts to solving this non-linear dif-
ferential equation with initial condition T 0 = I. For
a specific vector f , if we denote T tf by f

t
, then we

must simply solve the differential equation

d

dt
f
t

= Qf
t
. (36)

subject to the initial condition f0 = f . This equation
has been extensively studied in [6], where the existence
of the solution is proved [6, Corollary 2] and numerical
algorithms are proposed [6, Section 4].

Unfortunately, those algorithms provide no direct way
to determine the limit distribution for t→∞, which
is the main interest of this paper. In particular, the
error bounds provided in [6] become too conservative
in the long term limit.

Practical calculations of the solutions of Eq. (36) are
done by approximations using some kind of discreti-
sation. The simplest method is uniform grid dis-
cretisation, which approximates T t by T ′

n
t/n, where

T ′δt : RS → RS is defined by
[
T ′δtf

]
i

:=
[(
I + δtQ

)
f
]
i
. (37)

It can now be shown that [5]:
[
f
t

]
i

= lim
n→∞

[
T ′
n
t/nf

]
i
. (38)

which generalises Eq. (12).

3.3 Inference

Equation (38) allows us, in principle, to calculate the
limit behaviour for t→∞.

Definition 8 The lower and upper stationary proba-
bility mass functions are defined by

πi := lim
t→∞

P (Xt = i | X0 = j) (39)

πi := lim
t→∞

P (Xt = i | X0 = j) (40)

provided that the right hand side does not depend on j.

Clearly, we have that

πi = lim
t→∞

lim
n→∞

[
T ′
n
t/nIi

]
j

(41)

Using imprecise continuous time Markov chains for assessing the reliability of power networks . . .

291



with a similar equality for πi. Obviously, it would be
much nicer to have a generalisation of the equality
πQ = 0 for imprecise continuous time Markov chains;
this is under investigation.

For our power system analysis, we are interested in
bounds on the expected amount of time spent in state
i during a time period of length τ . A simple heuristic
bound is easily shown to be

αi := τπi αi := τπi (42)

To see this, consider the problem for a discrete time
Markov chain. The lower expected number of steps
spent in state i during N time steps satisfies:

E

(
N∑

n=1
IXM+n=i

∣∣∣∣∣X0 = j

)

≥
N∑

n=1
P (XM+n = i | X0 = j) (43)

for large M , where we used the superadditivity of the
lower expectation operator [11, p. 76, §2.6.1(e)] [8].
Now apply this formula for the discretised chain with
M = t/δt and N = τ/δt, note that the duration of
each step is δt, and that P (XM+n = i | X0 = j) ' πi
for large M .

Similarly, a simple heuristic bound on the expected
number of transitions to state i during a time period
of length τ is:

β
i

:= τ
∑

j 6=i
πj [QIi]j βi := τ

∑

j 6=i
πj [QIi]j (44)

To see this, again consider the problem for a discrete
time Markov chain. The lower expected number of
transitions to state i during N time steps satisfies:

E

(
N∑

n=1
IXM+n+1=i∩XM+n 6=i

∣∣∣∣∣X0 = k

)
(45)

≥
N∑

n=1
P (XM+n+1 = i ∩XM+n 6= i | X0 = k)

(46)

≥
N∑

n=1

∑

j 6=i
P (XM+n+1 = i | XM+n = j)

× P (XM+n = j | X0 = k) (47)

for large M , where we used the superadditivity [11,
p. 76, §2.6.1(e)] [8] the multiplication rule [11, p. 296,
§6.3.5(14)] [8] of the lower expectation operator, and
the Markov property. Now apply this formula for the
discretised chain with M = t/δt and N = τ/δt, and

note that P (XM+n = j | X0 = k) ' πj for large M ,
and that

P (XM+n+1 = i | XM+n = j) = δt [QIi]j (48)

for all j 6= i.

These discrete time analyses also say something about
the continuous time process because, loosely speaking,
the fraction of time that the continuous time process
spends on jumping is zero, making the error in these
bounds infinitesimally small, provided that δt is in-
finitesimally small as well.

3.4 Example

We now demonstrate how imprecise continuous time
Markov chains can be used to model our power network.
For qA1 , qB1 , and q2, we use the data and intervals for
failure rates derived in the example in [10], under the
approximate assumption of immediate repair, which
seems reasonable as the system will spend most of
its time in state AB. In this data, A and B are two
identical distribution lines, and the intervals for the
expected failure rates are:

qA1 ∈ [0.32, 0.37] (49)
qB1 ∈ [0.32, 0.37] (50)
q2 ∈ [0.19, 0.24] (51)

expressed as failures per year. In this study, we did
not have repair time data. Through expert elicitation,
we judge repair rates between 6 and 12 hours to be
reasonable:

rA ∈ [730, 1460] (52)
rB ∈ [730, 1460] (53)

expressed as number of repairs per year.

It may be worth noting that we are not assuming
that repairs will happen at a fixed but unknown time
between 6 and 12 hours. We are also not assuming
that repair time has an exponential density

f(t) = λ exp(−λt) (54)

with λ ∈ [λ, λ], where λ = 730 (rate for a 12 hour mean
repair time) and λ = 1460 (rate for a 6 hour mean
repair time). The exponential distribution is strongly
skewed to the left, with a peak at 0. Although the
parametric form of the actual distribution may deviate
from the exponential, the feature of having a peak at
0 does reflect an important characteristic of network
repairs, as many failures can be fixed remotely (such as
for instance a circuit breaker tripping due to a power
surge from lightning). Some repairs may also take
much longer than 12 hours. An exponential shape is
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judged to be a reasonable approximation for repair in
the literature [1]. But in this paper, we actually allow
a much more general class of distributions for repair,
as we allow the rate to vary in time in an arbitrary way
between 6 and 12 hours; intuitively, the corresponding
set of densities is

f(t) = λ(t) exp
(
−
∫ t

0
λ(s) ds

)
(55)

where λ(t) is an arbitrary function of time satisfy-
ing λ(t) ∈ [λ, λ], and which may also depend on the
full system history—only the bounds are assumed to
be independent of time and history. Our paramet-
ric assumptions are thus much weaker than what is
usually assumed in the literature, thereby providing
additional confidence in inferences, whilst at the same
time making computations more efficient.

We let Q be an interval rate matrix defined through
Eq. (18) and the above constraints. Specifically, with

QL =




−0.98 0.32 0.32 0.19
730 −1460.61 0 0.51
730 0 −1460.61 0.51
0 730 730 −2920




(56)

QU =




−0.83 0.37 0.37 0.24
1460 −730.51 0 0.61
1460 0 −730.51 0.61

0 1460 1460 −1460




(57)

we take

Q := [QL, QU ] =
{
Q : QL ≤ Q ≤ QU ,

∀i ∈ S,
∑

j∈S
Qij = 0

}
(58)

which has separately specified rows, and therefore it
is indeed an interval rate matrix. Note that simply
taking the set of all rate matrices of Eq. (18) for all
parameters in the above mentioned intervals leads to
a set of rate matrices that does not have separately
specified rows.

We can now evaluate the lower and upper stationary
distributions via Eqs. (37) and (41), where Q and Q
are evaluated through linear programming. To choose
sufficiently large values for t and n, we increased the
values until empirical convergence was observed. An
interesting observation here is that the values required
were much lower than some theoretical bounds derived
in the literature (see for example [6]). We suspect
that this is due to some additional structure of our
problem (for instance, rows summing to zero), which in
turn raises interesting theoretical questions concerning
computation.

In our case, t = 0.02 (which roughly corresponds to
one week) and n = 80 were found to be sufficiently
large. For reference, the second largest eigenvalue of
the transition matrix, for some extreme selections in
Q, was at most 0.817, and 0.81780 = 9.830× 10−8, so
it seems intuitively reasonable to expect convergence
to be of the order 9.830× 10−8. In any case, taking
say t = 0.04 and n = 320 (this corresponds to a
doubling of the time t and a halving of the time step
t/n) leads to no further changes in the following results
up to 4 significant digits, which empirically confirms
convergence. For the stationary distribution, we find:

π =




9.985× 10−1

2.623× 10−4

2.623× 10−4

6.513× 10−5


 π =




9.994× 10−1

7.252× 10−4

7.252× 10−4

1.647× 10−4


 (59)

Concerning the time we expect to spend in state ∅,
say for a period τ of 10 years, we immediately find

[α∅, α∅] = [6.513× 10−4, 1.647× 10−3] years (60)
= [5.705, 14.427] hours (61)

Similarly, the expected number of visits to ∅ in that
same period is

[β∅, β∅] = [1.900, 2.407] (62)

where we used:
[
QI∅

]
AB

= 0.19
[
QI∅

]
AB

= 0.24 (63)
[
QI∅

]
A

= 0.51
[
QI∅

]
A

= 0.61 (64)
[
QI∅

]
B

= 0.51
[
QI∅

]
B

= 0.61 (65)

4 Conclusions

We have looked at a model for dealing with common
cause failures in power networks with two power lines,
where intervals for the failure and repair rates are used
to allow us to make accurate yet robust prediction of
behaviour under relatively weak statistical assump-
tions. Using imprecise Markov chains allows for the
case where failure and repair rates are not constant in
time, and allows us to properly capture the uncertainty
regarding common cause failures which are very hard
to quantify. For all these reasons, imprecise continuous
time Markov chains have a lot of potential to improve
traditional reliability models based on precise Markov
chains.

We still assumed that the Markov property [1] holds
which, while possibly an unrealistic assumption, is one
that is still prevalent in the standard literature.

One disadvantage of the linear programming approach
[6] for finding the limit behaviour for t→∞ is that it

Using imprecise continuous time Markov chains for assessing the reliability of power networks . . .

293



is quite inefficient compared to the standard precise
method of solving a linear system. An interesting piece
of future research would be to see if we could find new
algorithms that work much faster to identify bounds
on the stationary distribution.

Another interesting follow up to this paper could be
extending the model to apply it to a power network
with more than two power lines. Similarly to what is
detailed in [7], there would be difficulties in finding
intervals for parameters relating to common cause
events, because multiple failures can occur in many
more ways when three or more power lines are involved.

Finally, we observed empirically that the number of
steps required for convergence is much lower than
current theoretical bounds. We suspect this is due to
the specific structure of our rate matrices. This raises
the question as to how current theoretical bounds can
be improved for these cases.
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Abstract
Classification algorithms based on different forms of
support vector machines (SVMs) for dealing with
interval-valued training data are proposed in the pa-
per. L2-norm and L∞-norm SVMs are used for con-
structing the algorithms. The main idea allowing
us to represent the complex optimization problems
as a set of simple linear or quadratic programming
problems is to approximate the Gaussian kernel by
the well-known triangular and Epanechnikov kernels.
The minimax strategy is used to choose an optimal
probability distribution from the set and to construct
optimal separating functions.

Keywords. Classification, support vector machine,
kernel, interval-valued data, minimax strategy, lin-
ear programming, quadratic programming, extreme
points.

1 Introduction

The binary classification problem can be formally writ-
ten as follows. Given n training data (examples, pat-
terns) S = {(x1, y1), (x2, y2), ..., (xn, yn)}, in which
xi ∈ Rm represents a feature vector involving m fea-
tures and yi ∈ {−1, 1} indices the class of the associ-
ated examples, the task of classification is to construct
an accurate classifier c : Rm → {−1, 1} that maxi-
mizes the probability that c(x) = yi for i = 1, ..., n.
Generally xi may belong to an arbitrary set X , but we
consider the special case X = Rm for simplicity. One
of the ways for classification is to find a real valued
separating function f(x,w, b) having parameters w
and b such that w = (w1, ..., wm) ∈ Rm and b ∈ R, for
example, f(x,w, b) = 〈w,x〉+ b. Here 〈w,x〉 denotes
the dot product of two vectors w and x. The sign of
the function determines the class label prediction or
c(x). We also introduce the notation x(k)

i for the k-th
element of the vector xi.

There are a lot of classification algorithms, but most

of them are based on using a training set consisting of
precise or point-valued data. However, training exam-
ples in many real applications can be obtained only
in the interval form. Interval-valued data may result
from imperfection of measurement tools or imprecision
of expert information, from missing data. It should be
noted that the interval-valued data can be regarded as
a special case of a more general form of imprecise data.
For example, we cannot observe some feature, but we
know that the difference between values of the feature
for data from different classes is less than some known
value. In this case, we have imprecise training data.

Many classification algorithms have been presented for
dealing with interval-valued data [11, 14, 17]. Most al-
gorithms use an obvious approach when interval-valued
observations are replaced by precise values based on
some additional assumptions, for example, by taking
middle points of intervals [12]. This approach is rather
efficient when intervals are small and do not intersect
each other. If intervals in training data are very large,
then this approach may lead to incorrect classification.

One of the classification algorithms taking into account
all points of intervals has been proposed by Utkin
and Coolen [21]. However, this algorithm uses a weak
assumption which restricts its usage. According to this
assumption, the separating function f is monotone, for
example, linear, because its lower and upper bounds
in this case are determined only by the bounds of
pattern intervals. However, in spite of the restricted
application of the algorithm, it looks for “optimal”
points to some extent of the expected classification risk,
but not for points of intervals of training data. This
is an important peculiarity of the algorithm. Similar
approaches have been used by Hüllermeier [10], by
Antonucci et al. [1] in their interesting classification
algorithms under interval and fuzzy training data.

We propose a general approach for constructing ro-
bust classification algorithms dealing with imprecise
training data which can be represented in the form of
closed intervals or some compact convex sets of values
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of training data. In contrast to the algorithms where
intervals are replaced by points, the proposed algo-
rithm searches for optimal precise points by applying
the robust or maximin strategy of decision. In fact,
we select a single probability distribution or a point
in the interval of expected risk values in accordance
with a certain decision strategy instead of points in
intervals of training data.

We use the term robust in the sense defined by Xu et
al. [26]. The robustness property means here reducing
sensitivity of a classifier to incorrect replacement of
intervals by point-valued analogues. There are dif-
ferent definitions of robustness. We use robustness
stemmed from the robust optimization where a mini-
max optimization is performed over all possible values
of intervals. This definition differs from robustness
in statistics which studies how an estimator behaves
under a small perturbation of the statistics model.

In order to construct new classification algorithms
dealing with interval-valued training data, we propose
to use the following three ideas:

1. Interval-valued observations produce a set of prob-
ability distributions such that the lower and upper
expected classification risk measures can be deter-
mined in terms of the belief functions in a simple
way.

2. There are many variants of SVMs. It is proposed
to choose standard L2-norm SVM. Moreover, it is
proposed to use one of the L∞-norm SVMs such
that constraints in its dual form do not depend
on vectors of observations xi, i = 1, ..., n. This
allows us to solve the corresponding optimization
problem by using extreme points of the polytope
produced by the constraints.

3. It is proposed to replace the Gaussian kernel by
the well-known triangular kernel and Epanech-
nikov kernel which can be regarded as two approx-
imations of the Gaussian kernel. This replacement
allows us to get a set of linear or quadratic opti-
mization problems with variables xi restricted by
intervals Ai, i = 1, ..., n.

It should be noted that the idea of approximating the
Gaussian kernel by the triangular kernel in one-class
classification problems has been studied by the authors
[22]. This idea and other ones are exploited below for
constructing new binary classification algorithms.

2 A Standard L2-Norm SVM by
Precise Data

Suppose we have training data (x1, y1), ..., (xn, yn) ∈
Rm×{−1,+1}. Let φ be a feature map Rm → G such
that the data points are mapped into an alternative
higher-dimensional feature space G. In other words,
this is a map into an inner product space G such that
the inner product in the image of φ can be computed by
evaluating some simple kernel K(x,y) = (φ(x), φ(y)),
such as the Gaussian kernel

K(x,y) = exp
(
−‖x− y‖2

/σ2
)
.

Here σ is the kernel parameter determining the geo-
metrical structure of the mapped samples in the kernel
space [24]. It is important to note that Gaussian ker-
nels are very popular because they support many com-
plex models and are rather flexible. Moreover, they
show good features and strong learning capability [25].

The SVM minimizes the empirical risk measure

R = n−1
n∑

i=1
l(xi),

as an approximation of the expected risk, which can
be regarded as a bound depending on the so-called VC
dimension introduced by Vapnik [23]. Here l is a loss
function. The minimization of the above functional is
an ill-posed problem because it admits an infinite num-
ber of solutions. In order to overcome this difficulty,
regularization theory [19] provides a framework for
solving the problem by adding appropriate constraints
on the solution. This can be done by introducing a
smoothness or penalty term J(f) and a tuning “cost”
parameter C which balances the tradeoff between the
empirical risk measure and the penalty term. As a
result, a general class of regularization problems has
the form:

min
f

(
C
∑

l(xi) + J(f)
)
.

Standard penalty terms are the Ls-norms such that
Ls = ‖w‖s, s > 0. In particular, the most popular
penalty in the SVM classifier is ‖w‖2. Hence, the
SVM classifier can be represented in the form of the
following convex optimization problem (the quadratic
programming problem):

min
ξ,w,b

R = min
ξ,w,b

(
1
2 ‖w‖2 + C

n∑

i=1
ξi

)
, (1)

subject to

ξi ≥ 0, yi (〈w,φ(xi)〉+ b) ≥ 1− ξi, i = 1, ..., n. (2)
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Here ξi, i = 1, ..., n, are the slack variables. The
quantity Cξi is the “penalty” for any data point xi
that either lies within the margin on the correct side
of the hyperplane (ξi ≤ 1) or on the wrong side of
the hyperplane (ξi > 1). The above optimization
problem is obtained under condition that the so-called
hinge loss function is used, i.e., l(x) = max(0, 1 −
yif 〈w,φ(xi)〉).
Instead of minimizing the primary objective function
(1), a dual objective function, the so-called Lagrangian,
can be formed of which the saddle point is the optimum.
The dual programming problem is of the form:

max
α




n∑

i=1
αi −

1
2

n∑

i=1

n∑

j=1
αiαjyiyjK(xi,xj)


 , (3)

subject to
n∑

i=1
αiyi = 0, 0 ≤ αi ≤ C, i = 1, ..., n. (4)

After substituting the obtained solution into the ex-
pression for the decision function f , we get the “dual”
separating function

f(x) =
n∑

i=1
αiyiK(xi,x) + b.

The above SVM is often called the L2-norm SVM
due to the definition of the regularization term. The
parameter b is defined by using support vectors xi from
the following equation b = yj −

∑n
i=1 αiyiK(xi,xj).

At the same time, there are other forms of the SVM
defined by different Ls-norms of the penalty term. It
turns out that the SVM with the L∞-norm can be
very useful when we deal with interval-valued data.

3 Interval-Valued Training Data and
Belief Functions

Suppose we have training data (x1, y1), ..., (xn, yn).
We again have two classes, i.e., yi ∈ {−1, 1}. How-
ever, in contrast to training data considered in the
previous sections, xi are interval-valued, i.e., xi ∈ Ai,
i = 1, ..., n. Here Ai = [a(1)

i , a
(1)
i ] × ... × [a(m)

i , a
(m)
i ],

i.e., a(k)
i ≤ x

(k)
i ≤ a

(k)
i , k = 1, ...,m; a(k)

i , a(k)
i are

bounds for values of the k-th feature in the i-th train-
ing example.

There are several ways in which one could deal with
interval-valued data. In this paper, we consider the
expected risk by interval-valued data in the framework
of belief functions or Dempster-Shafer theory. Below,

we give some basic definitions in the framework of
belief functions.

Let X be a universal set under interest, usually referred
to in evidence theory as the frame of discernment. Sup-
pose n observations were made of an element u ∈ X ,
each of which resulted in an imprecise (non-specific)
measurement given by a set A of values. Let ci de-
note the number of occurrences of the set Ai ⊆ X ,
and Po(X ) the set of all subsets of X (power set of
X ). A frequency function m, called basic probability
assignment (BPA), can be defined such that [6, 16]:

m : Po(X )→ [0, 1], m(∅) = 0,
∑

A∈Po(X )

m(A) = 1.

According to [6], this function can be obtained as
follows:

m(Ai) = ci/n.

According to [16], the belief Bel(A) and plausibility
Pl(A) of an event A ⊆ X can be defined as

Bel(A) =
∑

Ai:Ai⊆A
m(Ai),

Pl(A) =
∑

Ai:Ai∩A 6=∅
m(Ai).

As pointed out in [9], a belief function can formally be
defined as a function satisfying axioms which can be
viewed as a weakening of the Kolmogorov axioms that
characterize probability functions. Therefore, it seems
reasonable to understand a belief function as a gener-
alized probability function [6] and the belief Bel(A)
and plausibility Pl(A) measures can be regarded as
lower and upper bounds for the probability of A, i.e.,
Bel(A) ≤ Pr(A) ≤ Pl(A). This implies that for a
function l(x), we can define the lower expectation R
and the upper expectation R of the function l(x) in
the framework of belief functions as follows [13, 18]:

R =
n∑

i=1
m(Ai) inf

xi∈Ai

l(xi),

R =
n∑

i=1
m(Ai) sup

xi∈Ai

l(xi).

The above definition provides a simpler way for deter-
mining the bounds for the expected risk. By using the
assumption accepted in the empirical expected risk,
we can conclude that m(Ai) = 1/n for all i = 1, ..., n.
Hence, we get

R = 1
n

n∑

i=1
inf

xi∈Ai

l(xi), R = 1
n

n∑

i=1
sup

xi∈Ai

l(xi).
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It follows from the above that we have the interval
[R,R] of the expected risk measure instead of its pre-
cise value. In order to use this interval in solving the
classification problem, we have to determine a strategy
of decision making which selects one point within this
interval for searching optimal classification parameters
w, ξ and b in (1)-(2) or α1, ..., αn in (3)-(4).

One of the well-known and popular ways for dealing
with the interval of the expected risk is to use the
minimax (pessimistic or robust) strategy. According
to the minimax strategy, we select a probability dis-
tribution from the set of distributions such that the
expected risk R achieves its maximum for fixed values
of parameters. It should be noted that the “optimal”
probability distributions may be different for differ-
ent values of parameters. If to return to the interval
[R,R], then the minimax strategy assumes the largest
risk, i.e., the upper bound R. The minimax strategy
can be explained in a simple way. We do not know a
precise probability distribution and every distribution
from their predefined set can be selected. Therefore,
we should take the “worst” distribution providing the
largest value of the expected risk. The minimax cri-
terion can be interpreted as an insurance against the
worst case because it aims at minimizing the expected
loss in the least favorable case [15]. This criterion of
decision making can be regarded as the well-known
Γ-minimax [4, 7].

Robust algorithms have been exploited in classifica-
tion problems due to the opportunity to avoid some
strong assumptions underlying the standard classifica-
tion algorithms. As pointed out by Xu et al. [26], the
use of robust optimization in classification is not new.
One of the popular robust classification algorithms is
based on the assumption that inputs are subject to an
additive noise, i.e., x∗i = xi+ 4xi, where noise 4xi is
governed by a certain distribution. The simplest way
for dealing with noise is to assume that every “true”
data point is only known to belong to the interior of an
Euclidean ball centered at the “nominal” data point xi
and each point can move around within the Euclidean
ball. This algorithm has a very clear intuitive geomet-
ric interpretation [3]. One can see that the algorithm
with interval-valued data and the robust algorithms
[3, 26] are very close.

Finally, we can write the optimization problem for
computing the optimal classification parameters (w,
ξ, b or α, b) as follows:

R = sup
xi∈Ai,i=1,...,n

min
ξ,w,b

n∑

i=1
l(xi),

4 L2-Norm SVM by Interval-Valued
Data

4.1 A General Problem and a New Kernel

Let us rewrite the objective function of problem (3)-(4)
by taking into account interval-valued elements of the
training set

sup
xi∈Ai,i=1,...,n

max
α

×




n∑

i=1
αi −

1
2

n∑

i=1

n∑

j=1
αiαjyiyjK(xi,xj)


 . (5)

This is a nonlinear optimization problem whose so-
lution is generally a hard problem. Therefore, we
propose a method for its solution which can reduce
this problem to a finite set of linear programming
problems.

One of the ideas underlying the proposed algorithm
is to approximate the Gaussian kernel K(x,y) by
another kernel which could somehow simplify the op-
timization problem. It is proposed to introduce a new
kernel function

K1(x,y) = max{0, 1− ‖x− y‖1
/σ2}, (6)

This is the well-known triangular kernel. Its main
peculiarity is that K1 is linear. This peculiarity allows
us to solve the above optimization problem.

Let us fix the values of α and write the dual optimiza-
tion problem with the introduced kernel K1 having
optimization variables xi ∈ Ai, i = 1, ..., n:

inf
xi,i=1,...,n


1

2

n∑

i=1

n∑

j=1
αiαjyiyjGij −

n∑

i=1
αi


 , (7)

subject to

Gij = max
{

0, 1− ‖xi − xj‖1

σ2

}
, i, j = 1, ..., n, (8)

a
(k)
i ≤ x(k)

i ≤ a(k)
i , k = 1, ...,m, i = 1, ..., n. (9)

Here Gij is a new variable such that Gij = K1(xi,xj).

We do not add constraints (4) to the set of constraints
(8)-(9) because the values of α are fixed, i.e., we con-
sider the problem with variables xi, i = 1, ..., n. One
can see from (7)-(9) that this problem is linear in case
of the triangular kernel. According to some general
results from linear programming theory, an optimal
solution to the above problem is achieved at extreme

L.V. Utkin, A.I. Chekh, & Y.A. Zhuk

298



points or vertices of the polytope produced only by
constraints (8)-(9). This is the first main feature of
the proposed approach and the main reason for in-
troducing the triangular kernels. Moreover, it can be
seen from constraints (8)-(9) that they do not depend
on variables α. This implies that the extreme points
do not depend on α. This is the second feature which
is used below. The linearity of the above problem
and the independence of vertices of the polytope of
variables α allow us to represent the initial optimiza-
tion problem with objective function (5) as a finite set
of standard quadratic programming problems which
are formed by substituting extreme points x∗i of the
polytope produced by (8)-(9) into the kernel function
K1(xi,xj) instead of xi.

We do not consider details of the optimization prob-
lem representation as a set of quadratic programming
problems. However, we discuss about a set of extreme
points x∗i , i = 1, ..., n. It is interesting to note that Gij
totally depends on xi, i = 1, ..., n. This implies that
only constraints for xi define the extreme points which
are trivial and coincide with the bounds of intervals
Ai, i = 1, ..., n. Moreover, we do not need to represent
constraints (8) in the form of standard inequalities. By
enumerating the extreme points x∗i , we compute all
values Gij and substitute them into objective function
(7). Finally, we have one of the standard quadratic pro-
gramming problems corresponding to one combination
of bounds of intervals Ai, i = 1, ..., n, whose solution
can be found, for example, by means of the packages
“kernlab”, “e1071”, “wSVM” in the R-project.

The optimal values of α correspond to the largest
value of objective function (7) over all extreme points
x∗i . After substituting the obtained solution into the
expression for the decision function f , we get

f(x) =
n∑

i=1
αiyiK(xi,x) + b. (10)

If we have n∗ ≤ n interval-valued observations such
that all their features are interval-valued, then we have
to solve mn∗ quadratic programming problems. Of
course, when n∗ is rather large or the training examples
are characterized by many interval-valued features m,
then the obtained algorithm leads to extremely hard
computations. Therefore, we propose below another
classification algorithm whose complexity does not
depend on the number of features m.

5 L∞-Norm SVM

5.1 The Primal Form

We aim to find such a form of the SVM that would sep-
arate classification parameters, for example, α1, ..., αn,

and intervals of x1, ...,xn. The SVM whose dual form
satisfies this condition was proposed by Zhou et al. in
[27]. It is based on using the L∞-norm for writing
the regularization term ‖w‖. The L∞-norm leads to
one of the possible variants of the SVM. Suppose that
we have fixed precise values x1, ...,xn from A1, ...,An,
respectively. According to [27], the optimization prob-
lem for computing the separating function parameters
is of the form:

minR = min
(
−r + C

n∑

i=1
ξi

)
, (11)

subject to

yj

(
n∑

i=1
αiyiK(xi,xj) + b

)
≥ r − ξj , j = 1, ..., n,

(12)
− 1 ≤ αi ≤ 1, i = 1, ..., n, (13)
r ≥ 0, ξj ≥ 0, j = 1, ..., n. (14)

Here αj , ξj , j = 1, ..., n, r, b are optimization variables;
C ≥ 0 is a constant. One can see that the separat-
ing function f is written in constraints in terms of
Lagrange multipliers αi (see (10)).

The authors of [27] show that the VC dimension in
this case is bounded and the separating function f can
be approached by minimizing the empirical expected
risk measure. It is indicated in [27] that training
SVMs is simpler than the L2-norm SVMs, especially
for large-scale problems.

5.2 The Dual Form

It should be noted that the SVM algorithm proposed
by Zhou et al. in [27] is an interesting version of
the SVM. However, its direct use does not help us in
solving the classification problem with interval-valued
data, which is viewed as a optimization problem with
the objective function

R = max
xi

min
r,b,αj ,ξj

(
−r + C

n∑

i=1
ξi

)
,

and constraints (12)-(14), xi ∈ Ai, i = 1, ..., n.

Another advantage of the above SVM is very important
for us. This is a special form of the dual problem which
allows us to get a simple way for dealing with interval-
valued data. Therefore, let us write the dual form for
the above problem by fixed xi, i = 1, ..., n.

First of all, we replace the variables αj in (11)-(14)
by non-negative variables aj ≥ 0 and cj ≥ 0 in order
to have only non-negative variables, i.e., αj = aj − cj .
By using the standard method for constructing the
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dual form, we get the following linear programming
problem:

max
n∑

i=1
(−gi − hi) ,

subject to gi, hi ≥ 0,

n∑

i=1
zi ≥ 1, 0 ≤ zj ≤ C, j = 1, ..., n,

n∑

i=1
ziyi = 0,

gj − hj = yj

(
n∑

i=1
ziyiK(xj ,xi)

)
, j = 1, ..., n.

Here z = (z1, ..., zn), gi, hi, i = 1, ..., n, are optimiza-
tion variables. By substituting the last constraint
into the objective function, we get another objective
function

max
n∑

i=1


−2gi − yi




n∑

j=1
zjyjK(xi,xj)




 .

Note that the maximum of the objective function is
achieved when variable gi is as small as possible, i.e.,
gi = 0 for all i = 1, ..., n. Hence, we get the following
simplified optimization problem

min
z

n∑

i=1
yi




n∑

j=1
zjyjK(xi,xj)


 , (15)

subject to

n∑

i=1
zi ≥ 1, 0 ≤ zj ≤ C, j = 1, ..., n, (16)

n∑

i=1
ziyi = 0. (17)

At first glance, the above dual form of the optimization
problem does not differ from the primal form from
the viewpoint of its use. However, one can see that
constraints of the dual form do not contain terms
K(xi,xj) and do not contain vectors xi. This is a
very important feature of the dual form, which allows
us to introduce interval-valued data into the SVM. It
should be noted that the same property cannot be
obtained by considering the standard SVM based on
the L1-norm or the L2-norm. Therefore, problem (15)-
(17) plays a key role in constructing the algorithm of
classification with interval-valued data.

5.3 Extreme Points of the Polytope

If we assume that the values of K(xi,xj) are precisely
known, i.e., the values xi, i = 1, ..., n, are precise or
fixed, then one of the ways for solving the linear pro-
gramming problem (15)-(17) is to find the extreme
points or vertices of the polytope produced by con-
straints (16)-(17) and denoted by z(l), l = 1, ..., N .
Here N is the total number of extreme points. An
optimal solution to the above problem is achieved at
one of the extreme points.

Proposition 1 Let n− and n+ be numbers of train-
ing examples in classes labelled y = −1 and y = 1,
respectively. All extreme points of the polytope pro-
duced by constraints (16)-(17) can be divided into two
subsets. The first subset consists of

N1 =
min(n−,n+)∑

t=d1/2Ce

(
n−
t

)(
n+
t

)

extreme points such that every point contains t ele-
ments from every class equal to C and other elements
are 0. Here t is an integer determined from the condi-
tion

1
2C < t ≤ min(n−, n+).

Let s be an integer determined from the condition

1
2C − 1 ≤ s < min

(
1

2C , n−, n+

)
.

If there exists s ≥ 0, then the second subset consists of

N2 = (n− − s)(n+ − s)
(
n−
s

)(
n+
s

)

extreme points such that every point contains s (if
there exists s > 0) elements from every class equal to
C, one element from every class is 1/2 − sC, other
elements are 0.

Proposition 1 can be regarded as an extension of Propo-
sition 5 in [20].

5.4 L∞-Norm SVM by Interval-Valued Data

Let us rewrite the objective function of problem (15)-
(17) by taking into account the interval-valued ele-
ments of the training set

min
l=1,...,N

min
xi∈Ai,i=1,...,n

n∑

i=1

n∑

j=1
z

(l)
j yiyjK(xi,xj). (18)

By having extreme points, we can replace the opti-
mization problem (15)-(17) by a set of N = N1 +N2
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(see Proposition 1) objective functions provided above.
However, we cannot solve the obtained set of optimiza-
tion problems with variables xi ∈ Ai, i = 1, ..., n, in a
simple way because the function K(xi,xj) is nonlinear.
Therefore, we again apply the idea of replacement the
Gaussian kernel by its approximations. According to
this idea, the Gaussian kernel can be approximated
by another kernel which could somehow simplify the
optimization problem. It is proposed to introduce two
kernel functions

K1(x,y) = max{0, 1− ‖x− y‖1
/σ2},

K2(x,y) = max{0, 1− ‖x− y‖2
/σ2}.

Both the kernels can be regarded as approximations
of the Gaussian kernel. The first one is the triangular
kernel considered in the previous sections. The second
kernel is known as the Epanechnikov kernel.

Let us fix the values of z(l) = (z(l)
1 , ..., z

(l)
n ) and write

the dual optimization problem with the introduced
kernels Kr, r = 1, 2, for the l-th extreme point z(l) of
(16)-(17) as follows:

min
xi,i=1,...,n

n∑

i=1

n∑

j=1
z

(l)
j yiyjGij , (19)

subject to
Gij = max

{
0, 1− ‖xi − xj‖r /σ2} , i, j = 1, ..., n,

(20)
a

(k)
i ≤ x(k)

i ≤ a(k)
i , k = 1, ...,m, i = 1, ..., n. (21)

Here x(j)
i is the value of the j-th feature of the i-th ex-

ample; Gij is a new variable such that Gij = K(xi,xj);
r is 1 or 2 if we use the triangular or Epanechnikov
kernel, respectively.

Finally, we get the set of N linear programming prob-
lems in case of using the triangular kernel. In case of
the Epanechnikov kernel, we have the same number of
quadratically constrained linear programs (QCLPs). It
can be numerically solved by means of several methods,
for example, by using the sequential quadratic pro-
gramming [5] which efficiently implemented by means
of SNOP [8]. The optimal values of xi correspond to
the smallest value of objective function (19) over all
extreme points x∗i .

It is interesting to note that the number N of opti-
mization problems does not depend on the number
of features m. This is an important peculiarity of
the proposed algorithm, which allows us to apply the
algorithm to application problems with many features.

The function f(x) can be rewritten in terms of La-
grange multipliers as

f(x) =
n∑

i=1
α∗i yiK(x∗i ,x) + b.

However, we do not know the optimal values of αi be-
cause we used the dual optimization problem. Here we
have two ways for computing the separating function.
The first way is based on the fact that, by knowing the
optimal solution z∗ of the dual problem, the optimal
solution α∗ of the primal problem can be found by
well-known algorithms. In particular, if the algorithm
is implemented by using R-project, then the function
“solveLP” in the package “linprog” has the output
variable “con$dual” which provides the dual solution.

The second way is simpler. If we know precise optimal
values x∗i of intervals Ai, i = 1, ..., n, then we can
return to the initial problem (11)-(14) or to its dual
form (15)-(17) and solve them by given fixed x∗i .

5.5 Comments about Constraints with the
Triangular and Epanechnikov Kernels

It should be noted that constraints (20) are written
in the short form. In order to solve the corresponding
optimization problems, they have to be represented
by the standard linear or quadratic inequalities. We
do not consider in detail the representation of (20)
because it is trivial due to the following two tricks.

First, the “standard” representation of (20) depends
on the sign of the product yiyj . If yiyj ≥ 0, then we
get two constraints of the form:

Gij ≥ 1− ‖xi − xj‖r /σ2, Gij ≥ 0.

If yiyj < 0, then we use the well-known equation
max (0, w) = w/2 + |w/2| .
Second, in order to represent the absolute values,
we use interesting results proposed by Beaumont [2].
According to [2], if we know some interval of val-
ues [w,w] ⊂ R of a variable w, then we can write
∀w ∈ [w,w], |w| ≤ uw + v, where

u = |w| − |w|
w − w , v = w|w| − w|w|

w − w .

6 Conclusion Remarks

New classification algorithms dealing with interval-
valued training data have been proposed in the pa-
per. A part of proposed algorithms using the trian-
gular kernel instead of the Gaussian kernel comes to
a finite set of simple linear programming problems
whose solution does not meet difficulties. Another
part using the triangular kernel comes to a finite set
of quadratic programming problems whose solution
are implemented by many standard procedures. The
third part of algorithms is based on quadratically con-
strained linear programs which can be solved by using

Classification SVM algorithms with interval-valued training data using triangular and Epanechnikov kernels

301



the package “cplexAPI” available in several program-
ming languages, for instance, in R-project.

It is important to note that the proposed algorithms
indirectly find “optimal” points of intervals correspond-
ing to the robust or maximin decision strategy. How-
ever, they fundamentally differ from the algorithm
using some point-valued counterpart of intervals. The
obtained “optimal” points of intervals are optimal in
the sense that they maximize the expected classifica-
tion error or risk if we apply the robust or maximin
strategy. These “optimal” points compose a single
probability distribution among a set of distributions
produced by intervals in the framework of Dempster-
Shafer theory.

Of course, all algorithms have a bottle neck which is
their complexity. However, the proposed algorithms
should not be used when a training set is large and
intervals are rather small. Moreover, the algorithms
based on the L2-norm SVM should be used when the
number of features is small. At the same time, the
algorithms based on the L∞-norm SVM do not depend
on the number of features. It does not mean that the
value m does not impact on the complexity of these
algorithms. One can see from constraints (21) that
the number of constraints strongly depends on m.

Finally, we have to stress on the main idea allowing
us to construct the above algorithms. This is the
replacement of the Gaussian kernel by the triangular
and Epanechnikov kernels. This idea can be also
used for constructing the support vector regression
algorithms when dependent as well as independent
variables are interval-valued.

Acknowledgement

The reported study was partially supported by RFBR,
research project No. 15-01-01414-a.

References

[1] A. Antonucci, R. de Rosa, A. Giusti, and F. Cuz-
zolin. Temporal data classification by imprecise
dynamical models. In Proc. of the 8th Interna-
tional Symposium on Imprecise Probability: The-
ories and Applications, pages 13–22, Compiegne,
France, 2013. SIPTA.

[2] O. Beaumont. Solving interval linear systems with
linear programming techniques. Linear Algebra
and Its Applications, 281:293–309, 1998.

[3] A. Ben-Tal, L.E. Ghaoui, and A. Nemirovski.
Robust optimization. Princeton University Press,
Princeton, New Jersey, 2009.

[4] J.O. Berger. Statistical Decision Theory and
Bayesian Analysis. Springer-Verlag, New York,
1985.

[5] P.T. Boggs and J.W. Tolle. Sequential quadratic
programming. Acta numerica, 4:1–51, 1995.

[6] A.P. Dempster. Upper and lower probabilities
induced by a multi-valued mapping. Annales of
Mathematical Statistics, 38(2):325–339, 1967.

[7] I. Gilboa and D. Schmeidler. Maxmin expected
utility with non-unique prior. Journal of Mathe-
matical Economics, 18(2):141–153, 1989.

[8] P.E. Gill, W. Murray, and M.A. Saunders.
SNOPT: An SQP algorithm for large-scale con-
strained optimization. SIAM Journal on Opti-
mization, 12(4):979–1006, 2002.

[9] J.Y. Halpern and R. Fagin. Two views of belief:
Belief as generalized probability and belief as
evidence. Artificial Intelligence, 54(3):275–317,
1992.

[10] E. Hullermeier. Learning from imprecise and fuzzy
observations: Data disambiguation through gener-
alized loss minimization. International Journal of
Approximate Reasoning, 55(7):1519–1534, 2014.

[11] H. Ishibuchi, H. Tanaka, and N. Fukuoka. Dis-
criminant analysis of multi-dimensional interval
data and its application to chemical sensing. In-
ternational Journal of General Systems, 16(4):311–
329, 1990.

[12] E.A. Lima Neto and F.A.T. de Carvalho. Centre
and range method to fitting a linear regression
model on symbolic interval data. Computational
Statistics and Data Analysis, 52:1500–1515, 2008.

[13] H.T. Nguyen and E.A. Walker. On decision
making using belief functions. In R.Y. Yager,
M. Fedrizzi, and J. Kacprzyk, editors, Advances
in the Dempster-Shafer theory of evidence, pages
311–330. Wiley, New York, 1994.

[14] P. Nivlet, F. Fournier, and J.-J. Royer. Interval
discriminant analysis: An efficient method to in-
tegrate errors in supervised pattern recognition.
In Second International Symposium on Impre-
cise Probabilities and Their Applications, pages
284–292, Ithaca, NY, USA, 2001.

[15] C.P. Robert. The Bayesian Choice. Springer, New
York, 1994.

[16] G. Shafer. A Mathematical Theory of Evidence.
Princeton University Press, 1976.

L.V. Utkin, A.I. Chekh, & Y.A. Zhuk

302



[17] A. Silva and P. Brito. Linear discriminant analysis
for interval data. Computational Statistics, 21:289–
308, 2006.

[18] T.M. Strat. Decision analysis using belief func-
tions. International Journal of Approximate Rea-
soning, 4(5):391–418, 1990.

[19] A.N. Tikhonov and V.Y. Arsenin. Solution of Ill-
Posed Problems. W.H. Winston, Washington DC,
1977.

[20] L.V. Utkin. A framework for imprecise robust one-
class classification models. International Journal
of Machine Learning and Cybernetics, 5(3): 379-
393, 2014.

[21] L.V. Utkin and F.P.A. Coolen. Interval-valued
regression and classification models in the
framework of machine learning. In F. Coolen,
G. de Cooman, Th. Fetz, and M. Oberguggen-
berger, editors, Proc. of the Seventh Int. Sym-
posium on Imprecise Probabilities: Theories and
Applications, ISIPTA’11, pages 371–380, Inns-
bruck, Austria, 2011. SIPTA.

[22] L.V. Utkin, Y.A. Zhuk, and A.I. Chekh. A robust
one-class classification model with interval-valued
data based on belief functions and minimax strat-
egy. In Petra Perner, editor, Machine Learning
and Data Mining in Pattern Recognition, volume
8556 of Lecture Notes in Computer Science, pages
107–118. Springer, 2014.

[23] V. Vapnik. Statistical Learning Theory. Wiley,
New York, 1998.

[24] J. Wang, H. Lu, K.N. Plataniotis, and J. Lu.
Gaussian kernel optimization for pattern classi-
fication. Pattern Recognition, 42(7):1237 – 1247,
2009.

[25] W. Wang, Z. Xu, W. Lu, and X. Zhang. Determi-
nation of the spread parameter in the Gaussian
kernel for classification and regression. Neurocom-
puting, 55(3):643–663, 2003.

[26] H. Xu, C. Caramanis, and S. Mannor. Robust-
ness and regularization of support vector ma-
chines. The Journal of Machine Learning Re-
search, 10(7):1485–1510, 2009.

[27] Weida Zhou, Li Zhang, and Licheng Jiao. Linear
programming support vector machines. Pattern
Recognition, 35(12):2927–2936, 2002.

Classification SVM algorithms with interval-valued training data using triangular and Epanechnikov kernels

303





Modelling Indifference with Choice Functions

Arthur Van Camp and Gert de Cooman
Ghent University

SYSTeMS Research Group
{Arthur.VanCamp,Gert.deCooman}@UGent.be

Enrique Miranda
University of Oviedo

Department of Statistics and Operations Research
mirandaenrique@uniovi.es

Erik Quaeghebeur
Centrum Wiskunde & Informatica
Algorithms & Complexity Group

Erik.Quaeghebeur@cwi.nl

Abstract
We investigate how to model indifference with choice func-
tions. We take the coherence axioms for choice functions
proposed by Seidenfeld, Schervisch and Kadane as a source
of inspiration, but modify them to strengthen the connec-
tion with desirability. We discuss the properties of choice
functions that are coherent under our modified set of ax-
ioms and the connection with desirability. Once this is
in place, we present an axiomatisation of indifference in
terms of desirability. On this we build our characterisation
of indifference in terms of choice functions.

Keywords. Choice function, coherence, indifference, set
of desirable gambles, maximality, E-admissibility.

1 Introduction

The language of classical probability—(probability) mass
functions, say—is insufficiently versatile and powerful to
describe certain aspects of beliefs, such as indecision. Im-
precise probability uncertainty models, such as coherent
lower previsions and coherent sets of desirable gambles,
are often used to remedy this. Coherent sets of desirable
gambles in particular play a crucial role in theories of con-
servative reasoning [16], predictive inference [10], credal
networks [6], and so on. They have many advantages, such
as mathematical elegance and the lack of problems for
conditioning on an event with (lower) probability zero.
However, they are not capable of modelling beliefs corre-
sponding to ‘or’ statements, such as the belief that a coin
has two equal sides of unknown type—twice heads or twice
tails. It turns out such more general types of assessments
can be modelled with choice functions.

To allow for incomparability, Seidenfeld, Schervisch and
Kadane [23] introduce axioms for rational choice expressed
by choice functions that are a weakened version of the ones
suggested by Rubin [18]. We modify them slightly, in order
to allow for Walley–Sen maximality [28, 26] to be coher-
ent, and we drop their Archimedean continuity axiom to
allow for a more direct connection with coherent sets of

desirable gambles. We introduce our notion of coherence
for choice functions in Section 2. We work with abstract
vectors (called options), rather than horse lotteries or gam-
bles: this will allow us to deal with indifference without
too many mathematical difficulties, later on in this paper.
Because we are interested in conservative reasoning with
coherent choice functions, we introduce an ‘is not more
informative than’ ordering, which allows us to consider
the most conservative choice function compatible with an
assessment as an infimum associated with this partial order.

In Section 3, we relate our theory of coherent choice func-
tions to coherent sets of desirable options, and identify
the most conservative coherent choice function compat-
ible with a coherent set of desirable options as the one
associated with Walley–Sen maximality: it selects the un-
dominated options under the strict partial order generated
by a coherent set of desirable options, and is therefore fully
based on binary choice.

In Section 4, we show that there are other general classes
of coherent choice functions not based on binary choice,
and we relate them to each other.

An important aspect of any uncertainty theory is how it
deals with indifference. Adding indifference to the picture
typically reduces the complexity of the modelling effort.
Also, knowing how to model indifference opens up a path
towards modelling symmetry, which has many important
practical applications. As an example of both aspects, the
permutation symmetry that lies behind exchangeability has
important applications in statistical modelling, and reduces
the complexity of the modelling effort, as is exemplified by
de Finetti’s representation theorem [12]. Our treatment here
lays the foundation for dealing with, say, exchangeability
for choice functions.

In Section 5, we give an intuitive definition of indifference
for choice functions that reduces to the existing account for
sets of desirable gambles (options). We exhibit the power
and simplicity of our definition of indifference in an inter-
esting example.
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2 Choice Functions on Option Sets

Consider a real vector space V , provided with the vector
addition + and scalar multiplication. We denote by 0 the
additive identity, or null vector. For any subsets O1 and O2
of V and any λ in R, we define λO1 ∶= {λu ∶ u ∈ O1} and
O1 +O2 ∶= {u+ v ∶ u ∈ O1,v ∈ O2}. Elements u of V are in-
tended as abstract representations of options amongst which
a subject can express his preferences, by specifying, as we
shall see below, choice functions. Mostly, options will be
real-valued maps on the possibility space, also called gam-
bles. We want to work with the more abstract notion of
options—elements of some general vector space—because
in Section 5, we will need choice functions defined on
equivalence classes of options. These constitute a vector
space—and hence are abstract options themselves—but can
no longer be interpreted easily and directly as gambles.

We denote by Q(V) the set of all non-empty finite subsets
of V , a strict subset of the power set of V . Elements O
of Q(V) are the option sets amongst which a subject can
choose his preferred options. When it is clear what vector
space of options we are talking about, we will omit explicit
mention of V and simply write Q.
Definition 1. A choice function C on Q is a map

C∶Q→Q∪{∅}∶O↦C(O) such that C(O) ⊆O.

We collect all choice functions in the set C.

The idea underlying this definition is that a choice func-
tion C selects the set C(O) of ‘best’ options in the option
set O. Our definition resembles the one commonly used in
the literature [1, 23, 25], except for a not unusual restriction
to finite option sets [13, 19, 24].

2.1 Rationality Axioms

Seidenfeld et al. [23, Section 3] call a choice function C
coherent if there is a non-empty set of probability-utility
pairs S such that C(O) is the set of options in O that max-
imise expected utility for some probability-utility pair in S .
They also provide an axiomatisation for this type of co-
herence, based on the one for binary preferences [2]. One
of their axioms is an ‘Archimedean’ continuity condition,
and another one is a convexity condition, necessary for the
connection with a set of probability-utility pairs.

We prefer to define coherence directly in terms of ax-
ioms, without reference to probabilities and utilities. In
such a context, we see no compelling reason to adopt an
Archimedean axiom, all the more so because we are inter-
ested in establishing the connection between choice func-
tions and Walley’s sets of desirable gambles Walley [29],
which violate this axiom. Furthermore, the convexity con-
dition does not allow for choice functions that select the
undominated options under some partial ordering, which is
something we find natural, and shall need later on.

We will weaken their axioms in Section 2.1.2 by dropping
the Archimedean condition and by replacing their convexity
condition with a weaker variant. On the other hand, our
second axiom is a strengthened version of theirs, needed
for the conditioning we intend to discuss in a later paper.

2.1.1 Some Useful Definitions

We call N the set of all (positive) integers, and N0 ∶=N∪{0}. Also, we call R>0 the set of all (strictly) positive real
numbers, and R≥0 ∶=R>0∪{0}.

Given any subset O of V , we define the linear hull span(O)
as the set of all finite linear combinations of elements of O:

span(O) ∶= { n∑
k=1

λkuk ∶ n ∈N,λk ∈R,uk ∈O} ⊆ V,
the positive hull posi(O) as the set of all positive finite
linear combinations of elements of O:

posi(O) ∶= { n∑
k=1

λkuk ∶ n ∈N,λk ∈R>0,uk ∈O} ⊆ V,
and the convex hull CH(O) as the set of convex combina-
tions of elements of O:

CH(O) ∶={ n∑
k=1

αkuk ∶n ∈N,αk ∈R≥0,
n∑

k=1
αk =1,uk ∈O}⊆V.

A subset O of V is called a convex cone if it is closed under
positive finite linear combinations, i.e. if posi(O) = O. A
convex cone K is called proper if K∩−K = {0}.

With any proper convex cone K ⊆ V such that 0 ∈ K, we
associate an ordering ⪯ on V , defined for all u and v in V
as follows:

u ⪯K v⇔ v−u ∈ K⇔ 0 ⪯K v−u⇔ u−v ⪯K 0.

We also write u ⪰K v for v ⪯K u. The ordering ⪯K is actu-
ally a vector ordering: it is a partial order (reflexive, anti-
symmetric and transitive) that satisfies the following two
characteristic properties:

u1 ⪯K u2⇔ u1+v ⪯K u2+v; (1)
u1 ⪯K u2⇔ λu1 ⪯K λu2, (2)

for all u1,u2,v in V and λ in R>0. Conversely, given a vector
ordering ⪯, the proper convex cone K from which it is
derived can always be retrieved byK={u ∈V ∶u⪰ 0}. When
the abstract options are gambles, K will usually be the
non-negative orthant, and the ordering ⪯ is then pointwise.
When the options are equivalence classes, as in Section 5.2,
the ordering will be the induced ordering on equivalence
classes, as defined in Eq. (10).

The vector space of options V , ordered by the vector or-
dering ⪯K, is called an ordered vector space ⟨V,⪯K⟩. We
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shall refrain from explicitly mentioning the actual proper
convex cone K we are using, and simply write V to mean
the ordered vector space, and ⪯ for the associated vector
ordering.

Finally, with any vector ordering ⪯, we associate the strict
partial ordering ≺ as follows:

u≺ v⇔(u⪯ v and u≠ v)⇔ v−u ∈K∖{0} for all u,v in V .

We call u positive if u ≻ 0, and collect all positive options
in the convex cone V≻0 ∶= K∖{0}.

2.1.2 Rationality axioms for choice functions

Definition 2. We call a choice function C on Q(V) coher-
ent if for all O,O1,O2 in Q, u,v in V and λ in R>0:

C1. C(O) ≠ ∅;
C2. if u ≺ v then {v} =C({u,v});
C3. a. if C(O2) ⊆O2∖O1 and O1 ⊆O2 ⊆O

then C(O) ⊆O∖O1;
b. if C(O2) ⊆O1 and O ⊆O2∖O1

then C(O2∖O) ⊆O1;
C4. a. if O1 ⊆C(O2) then λO1 ⊆C(λO2);

b. if O1 ⊆C(O2) then O1+{u} ⊆C(O2+{u});
C5. if O ⊆CH({u,v}) then {u,v}∩C(O∪{u,v}) ≠ ∅.1

We collect all coherent choice functions on V in the set C̄.

Parts C3a and C3b of Axiom C3 are respectively known
as Sen’s condition α and Aizerman’s condition. They are
more commonly written as, respectively:

(O1∩C(O2) = ∅ and O1 ⊆O2 ⊆O)⇒O1∩C(O) = ∅ (3)

and

(O1∩C(O2) = ∅ and O ⊆O1)⇒O1∩C(O2∖O) = ∅ (4)

for all O,O1,O2 in Q.

Proposition 1. The following statements hold for any co-
herent choice function C:

(i) λC(O) + {u} = C(λO +{u}) for all O in Q, λ in
R>0 and u in V;

(ii) for all u1,u2 in V such that u1 ⪯ u2, all O in Q and
all v in O∖{u1,u2}:

a. if u2 ∈O and v ∉C(O∪{u1}) then v ∉C(O);
b. if u1 ∈O and v ∉C(O)

then v ∉C({u2}∪O∖{u1});

1This axiom is not needed to prove the results in this paper, and all
results remain valid without it. We include it because it seems reasonable:
the version with rational convex combinations can be derived from our
other axioms, so C5 amounts to requiring some very weak continuity. More
importantly, this axiom is instrumental for the proofs of some results not
included in this paper due to space limitations; because of this, we prefer
to keep a unified set of axioms in all of our work in this topic.

(iii) C is insensitive to the omission of non-chosen op-
tions [9, Definition 11]: C(O′) =C(O) for all O,O′
in Q such that C(O) ⊆O′ ⊆O;

(iv) C(C(O)) =C(O) for all O in Q.

For Bradley [3], any choice function must at least satisfy
property (iv). Seidenfeld et al. [23] impose the two proper-
ties (ii)a and (ii)b as rationality axioms [23, Axiom 4]. Our
proofs for them rely quite heavily on, amongst other things,
Axiom C2, which is a strengthened version of another of
their rationality axioms. This does not imply, however, that
our rationality axioms are stronger than theirs, since we
have dropped their Archimedean axiom [23, Axiom 3],
and replaced their convexity axiom [23, Axiom 2b] by our
strictly weaker variant C5.

2.2 The ‘Is Not More Informative Than’ Relation

Because we are interested in conservative reasoning with
choice functions, we look for the implications of a given as-
sessment that are as ‘uninformative’ as possible. Therefore,
we need some binary relation ⊑ on C, having the specific
interpretation of being ‘not more informative than’, or, in
other words, ‘at least as uninformative as’.

Definition 3. Given two choice functions C1 and C2 in C,
we call C1 not more informative than C2—and we write
C1 ⊑C2—if (∀O ∈ Q)C1(O) ⊇C2(O).

This intuitive way of ordering choice functions is also used
by Bradley [3], and in earlier work by the authors [27]. The
underlying idea is that a choice function is more informative
when it chooses more specifically, or restrictively, amongst
the available options.

Since by definition ⊑ is a product ordering of set inclusions,
the following result is immediate [5].

Proposition 2. The structure (C;⊑) is a complete lattice:

(i) it is a partially ordered set, or poset, meaning that
the binary relation ⊑ on C is reflexive, antisymmetric
and transitive;

(ii) for any subset C′ of C, its infimum infC′ and its
supremum supC′ with respect to the ordering ⊑ exist
in C, and are given by infC′(O) = ⋃C∈C′C(O) and
supC′(O) = ⋂C∈C′C(O) for all O in Q.

The idea is that infC′ is the most informative model that
is not more informative than any of the models in C′, and
supC′ the least informative model that is not less informa-
tive than any of the models in C′.
We also consider the poset (C̄;⊑), where C̄ ⊆ C inherits the
partial order ⊑ from C.

Proposition 3. (C̄;⊑) is complete infimum-semilattice: C̄ is
closed under arbitrary non-empty infima, so infC′ ∈ C̄ for
any non-empty subset C′ of C̄.
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3 Relation with Sets of Desirable Options

Choice functions cannot be characterised using pairwise
comparison of options,2 meaning that a binary relation on
options does not uniquely determine a choice function. In
this section, we study the ones that do correspond to a
pairwise comparison of options.

3.1 Sets of Desirable Options

Sets of desirable options are a generalisation of sets of
desirable gambles. Gambles are real-valued maps on a pos-
sibility space X , interpreted as uncertain rewards. Such
gambles can be seen as vectors in the vector space RX .
Here we generalise this notion by looking at a general
(abstract) vector space V of (abstract) options, rather than
gambles. We shall see that sets of desirable options amount
to a pairwise comparison of options and therefore corre-
spond to a special kind of choice functions.

A set of desirable options D is simply a subset of the vector
space of options V . We collect all sets of desirable options
in the setD. As we did for choice functions, we pay special
attention to coherent sets of desirable options.

Definition 4. A set of desirable options D is called coher-
ent if for all u and v in V and λ in R>0:

D1. 0 ∉D;
D2. V≻0 ⊆D;
D3. if u ∈D then λu ∈D;
D4. if u,v ∈D then u+v ∈D.

We collect all coherent sets of desirable options in the set D̄.

Axioms D3 and D4 turn coherent sets of desirable options D
into cones—posi(D) =D. They include the positive options
due to Axiom D2, and do not contain the zero option due to
Axiom D1. As an immediate consequence, their intersection
with V≺0 ∶= −V≻0 is empty. As usual, we may associate
with the cone D a strict partial order ½ on V , by letting
u½ v⇔ 0½ v−u⇔ v−u ∈D, so D = {u ∈ V ∶ 0½ u} [8, 16].

3.2 The ‘Is Not More Informative Than’ Relation

As for choice functions, sets of desirable options can be
ordered according to a ‘not more informative than’ relation.

Definition 5. Given two sets of desirable options D1,D2 inD, we call D1 not more informative than D2 when D1 ⊆D2.

Because the ordering of sets of desirable options ⊆ is just
set inclusion, it is a partial ordering on D, and the poset(D;⊆) is a complete lattice, with supremum operator ⋃,
and infimum operator ⋂.

2An equivalent representation of a coherent choice function C is a
binary relation ⊲ onQ—on sets of options—defined through O1 ⊲ O2⇔
O1∩C(O1∪O2) = ∅ for all O1,O2 inQ. This binary relation ⊲ is a strict
partial order onQ [14].

Proposition 4. (D̄;⊆) is a complete infimum-semilattice,
or alternatively, D̄ is an intersection structure—closed un-
der arbitrary non-empty intersections.

Proposition 4 guarantees us that there is a unique least
informative set of desirable options in D̄, called the vacuous
set of desirable options Dv.

Proposition 5. The least informative (smallest) set of de-
sirable options Dv is given by Dv ∶= V≻0.

It will be useful to also consider the maximally informative,
or maximal coherent sets of desirable options.3 They are the
undominated elements of the complete infimum-semilattice(D̄;⊆); we collect them into a set D̂:

D̂ ∶= {D ∈ D̄ ∶ (∀D′ ∈ D̄)(D ⊆D′⇒D =D′)}.
First we prove a useful proposition that will allow us to
characterise these maximal elements very elegantly.

Proposition 6. Given any coherent set of desirable options
D and any non-zero option u ∉D, then posi(D∪{−u}) is a
coherent set of desirable options.

Proposition 7. A coherent set of desirable options D is
maximal if and only if

(∀u ∈ V ∖{0})(u ∈D or −u ∈D). (5)

Proposition 8. For any coherent set of desirable options D,
its set of dominating maximal coherent sets of desirable
options D̂D ∶= {D̂ ∈ D̂ ∶D ⊆ D̂} is non-empty.

Proposition 9. (D̄;⊆) is dually atomic, meaning that any
coherent set of desirable options D is the infimum of its non-
empty set of dominating maximal coherent sets of desirable
options D̂D : D = infD̂D .

3.3 Connection Between Choice Functions and Sets
of Desirable Options

In this section, we establish a connection between choice
functions and sets of desirable options.

Definition 6. Given a choice functions C, we say that
an option v is chosen above some option u whenever
u ∉ C({u,v}), or equivalently whenever v ≠ u and {v} =
C({u,v}). Similarly, given a set of desirable options D, we
say that an option v is preferred to some option u whenever
v−u ∈D, or equivalently, u ½ v. We call a choice function
C and a set of desirable options D compatible when

u ∉C({u,v})⇔ v−u ∈D⇔ u ½ v for all u,v ∈ V .

Compatibility means that the behaviour of a choice func-
tion restricted to pairs of options reflects the behaviour of a

3The discussion in the rest of this section is based on similar discus-
sions about sets of desirable gambles [8, 4, 17]. We repeat the details here
mutatis mutandis to make the paper more self-contained.
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set of desirable options.4 So, a choice function C will have
at most one compatible set of desirable options, whereas
conversely, a set of desirable options D may have many
compatible choice functions: compatibility only directly in-
fluences the behaviour of a choice function on doubletons.

3.3.1 From Choice Functions to Desirability

We begin by studying the properties of the set of desirable
options compatible with a given coherent choice function.

Proposition 10. Given a coherent choice function C in C̄,
there is a unique compatible coherent set of desirable op-
tions DC , given by DC ∶= {u ∈ V ∶ 0 ∉C({0,u})}.

3.3.2 From Desirability to Choice Functions

We collect in C̄D all the compatible coherent choice func-
tions with the given coherent set of desirable options D:

C̄D ∶={C ∈ C̄ ∶ (∀u,v ∈ V)(v ∉C({u,v})⇔ u−v ∈D)}={C ∈ C̄ ∶DC =D}.
Proposition 11. Given a coherent set of desirable op-
tions D, the infimum—most uninformative element—inf C̄D
of its set of compatible coherent choice functions C̄D is the
coherent choice function CD , defined by

CD(O) ∶={u ∈O ∶ (∀v ∈O)v−u ∉D}={u ∈O ∶ (∀v ∈O)u /½ v} for all O in Q. (6)

The coherent choice function CD is the least informative
choice function that is compatible with a coherent set of
desirable options D: it is based on the binary ordering
represented by D and nothing else. As we shall see in
Proposition 17, there are other coherent choice functions C
compatible with D, but they encode more information than
just the binary ordering represented by D. Proposition 11
is especially interesting because it shows that the most
conservative choice function based on a strict partial order
of options, is the choice function based on maximality—the
one that selects the undominated options under the strict
partial order ½ associated with a coherent set of desirable
options D. Any choice function that is based on maximality
under such a strict partial order is coherent.

Proposition 3 guarantees that there is a unique smallest—
least informative—coherent choice function. We shall call
it the vacuous choice function, and denoted it by Cv.

Proposition 12. The vacuous choice function Cv is given
by Cv(O) = CDv(O) = {u ∈ O ∶ (∀v ∈ O)u ⊀ v} for all O
in Q. It selects from any set of options the ones that are
undominated under the strict vector ordering ≺.

4See Ref. [21] for an axiomatisation of imprecise preferences in the
context of binary comparisons of horse lotteries.

Example 1. Consider, as a simple example, the case that
the vector ordering is total, meaning that for any u,v
in V , either u ≺ v, v ≺ u or u = v. It then follows from
Proposition 12 that, for any coherent choice function C,
C(O) ⊆Cv(O) = maxO for all O ∈ Q, where maxO is the
unique largest element of the finite option set O according
to the strict total ordering ≺. But then Axiom C1 guarantees
that C(O) =Cv(O) =maxO for all O ∈Q, so Cv is the only
coherent choice function.

3.3.3 Properties of the Relation Between Choice
Functions and Desirability

Since sets of desirable options represent only pairwise com-
parison, and are therefore generally less expressive than
choice functions, we expect that going from a choice func-
tion to a compatible set of desirable options leads to a loss
of information, whereas going the opposite route does not.
This is confirmed by Propositions 13 and 14, but in partic-
ular by their Corollary 15. Example 2 in Section 4 further
on shows that the inequalities in these results can be strict.

Proposition 13. Consider any set of coherent choice
functions C′ ⊆ C̄. Then DinfC′ = inf{DC ∶ C ∈ C′} and
Cinf{DC ∶C∈C′} ⊑ infC′, and therefore also CDinfC′ ⊑ infC′.
Proposition 14. Consider any set of coherent sets of de-
sirable options D′ ⊆ D̄ and any coherent set of desir-
able options D′. Then Dinf{CD ∶D∈D′} = infD′ and therefore
DCD′ =D′. Moreover, CinfD′ ⊑ inf{CD ∶D ∈ D′}.

Corollary 15. Consider any coherent set of desirable op-
tions D ∈ D̄ and any coherent choice function C ∈ C̄. Then
D =DCD and CDC ⊑C.

4 Other Types of Coherent Choice
Functions

There are other types of coherent choice functions than the
ones ‘based on maximality’, derived from a coherent set of
desirable options by selecting undominated elements as in
Eq. (6). For instance, any infimum of such coherent choice
functions is still coherent.

Definition 7. For any set of coherent sets of desirable op-
tions D′ ⊆ D̄, we define the ‘infimum of maximality’ choice
function as CD′ ∶= inf{CD ∶D ∈ D′}.

Proposition 16. Consider any set of coherent sets of desir-
able optionsD′ ⊆ D̄, then CD′ is a coherent choice function.

We now consider two special cases of these infimum of
maximality choice functions. In Definition 8, we focus only
on sets of maximal coherent sets of desirable options.

Definition 8. If D′ ⊆ D̂ is a set of maximal coherent set
of desirable options, the coherent choice function CD′ is
called M-admissible. We shall also denote it by CMD′ as a
reminder that the infimum is taken over maximal sets.
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In particular, we can consider the M-admissible choice
functions for the set D′ = D̂D of all maximal coherent set
of desirable options that include a coherent set of desirable
options D. In order not to burden the notation, we let

CM
D ∶=CMD̂D

= inf{CD̂ ∶ D̂ ∈ D̂ and D ⊆ D̂}. (7)

Proposition 17. Consider any coherent set of desirable
options D′ ∈ D̄. Then D′ =DCM

D′ and CD′ ⊑CM
D′ .

The inequality in Proposition 17 can be strict—meaning
that CD′ ⊏ CM

D′ for some coherent set of desirable options
D′—as is shown in Example 3.

As another special case, we consider choice functions asso-
ciated with Levi’s [15, Chapter 5] notion of E-admissibility,
as suggested by Seidenfeld et al. [23], and Troffaes [26].
They are based on a non-empty set of mass functions. Con-
sider a finite possibility space X , and maps from X to R
(also called gambles), forming the vector space V =RX of
finite dimension ∣X ∣. The vector ordering ⪯ we associate
with this vector space is the pointwise ordering of real num-
bers: u ⪯ v⇔(∀x ∈ X)ux ≤ vx, where, for instance, ux is
the x-component of the option u. We call any map p∶V →R
with (∀x ∈ X)p(x) ≥ 0 and ∑x∈X p(x) = 1 a (probability)
mass function, and we associate an expectation Ep with p
by letting Ep(u) ∶= ∑x∈X p(x)ux for all u in V .

With a mass function p, we associate a set of desirable
options

Dp ∶= V≻0∪{u ∈ V ∶ Ep(u) > 0} (8)

and a choice function Cp defined for all O in Q by

Cp(O) ∶= {u ∈O ∶ (∀v ∈O)(Ep(u) ≥ Ep(v) and u⊀ v)}.
(9)

Proposition 18. The set of desirable options Dp and the
choice function Cp are coherent and compatible, and more-
over Cp =CDp .

This result allows us to introduce the following, second
special case of ‘infimum of maximality’ choice functions.

Definition 9. With any non-empty set of mass func-
tions K,5 we associate the corresponding E-admissible
choice function CE

K ∶= inf{Cp ∶ p ∈K} =C{Dp ∶p∈K}.
Proposition 19. Given any non-empty set of mass func-
tions K, we have for all O in Q that

CE
K(O) = {u ∈O ∶ (∃p ∈K)u ∈ argmax

v∈O
Ep(v)}∩Cv(O).

The following proposition establishes a connection between
M-admissible and E-admissible choice functions.

5Although Levi’s notion of E-admissibility was originally [15, Chap-
ter 5] concerned with convex closed sets of mass functions, we impose no
such requirement here on the set K.

Proposition 20. For any non-empty set of mass func-
tions K, CE

K ⊑CMD̂K
, where D̂K ∶= ⋃p∈K D̂Dp ⊆ D̂.

The following examples show why choice functions are
more powerful than sets of desirable options as uncertainty
representations, and elucidates the difference between E-
admissible and M-admissible choice functions.
Example 2. Consider the situation where you have a coin
with two identical sides of unknown type: either both sides
are heads (H), or both sides are tails (T). The random vari-
able that represents the outcome of a coin flip assumes a
value in the finite possibility space X ∶= {H,T}. The op-
tions we consider are gambles: real-valued functions on X ,
which constitute the two-dimensional vector space RX , or-
dered by the pointwise order. We model this situation using
(a) coherent sets of desirable options, (b) M-admissible
choice functions, and (c) E-admissible choice functions. In
all three cases we start from two simple models: one that
describes practical certainty of H and another that describes
practical certainty of T, and we take their infimum—the
most informative model that is still less informative than
both—as a candidate model for the coin problem.

For (a), we use two coherent sets of desirable options
DH and DT, expressing practical certainty of H and T, re-
spectively, given by the maximal sets of desirable options
DH ∶= V≻0∪{u ∈ V ∶ uH > 0} and DT ∶= V≻0∪{u ∈ V ∶ uT > 0},
where uH and uT denote the values of the gamble u in H
and T, respectively. The model for the coin with two identi-
cal sides is then DH∩DT = V≻0. This vacuous model Dv is
incapable of distinguishing between this situation and the
one where we are completely ignorant about the coin.

For an approach (b) that distinguishes between these two
situations, we draw inspiration from Proposition 13: instead
of working with the sets of desirable options themselves,
we move to the corresponding choice functions CH ∶=CDH
and CT ∶=CDT , where

CH(O) = {u ∈O ∶ (∀v ∈O)v−u ∉DH}= argmax{uH ∶ u ∈O}∩Cv(O) for all O in Q
CT(O) = argmax{uT ∶ u ∈O}∩Cv(O) for all O in Q.

We infer that ∣CH(O)∣ = ∣CT(O)∣ = 1 for every O in Q.
The M-admissible choice function we are looking for is
CM{DH,DT} = inf{CH,CT}, which selects at most two options
from each option set. It is given by

CM{DH,DT}(O)
= (argmax{uH ∶ u ∈O}∪argmax{uT ∶ u ∈O})∩Cv(O)

for all O in Q, and differs from the vacuous choice func-
tion Cv. Indeed, consider the particular option set O ={u,v,w}, where u = (1,0), v = (0,1) and w = (1/2,1/2). Then
CM{DH,DT}(O) = {u,v} ≠O =Cv(O).

For (c), the set of mass functions K consists of the two
degenerate mass functions: K ={pH, pT}, where pH = (1,0)
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and pT = (0,1). The corresponding expectations EH ∶= EpH
and ET ∶= EpT satisfy EH(u) = uH and ET(u) = uT for all u
in V . So we see that CpH =CH and CpT =CT, and therefore
this approach leads to the same choice function as the
previous one: CE{pH,pT} =CM{DH,DT} = inf{CH,CT}.

Example 3. We consider the same finite possibility spaceX ∶= {H,T} as in Example 2, with the same option space
and vector ordering. Also consider the vacuous set of de-
sirable options Dv and the option set O ∶= {0,u,v}, where
u = (1,−1/4) and v = (−1/4,1). Because all options in O are
pointwise undominated in O, we find that CDv(O) =O. On
the other hand, it follows from the definition in Eq. (7) that

0 ∈CM
Dv(O)⇔ (∃D̂ ∈ D̂Dv)(u ∉ D̂ and v ∉ D̂),

also taking into account Axiom D1. But u ∉ D̂ and v ∉ D̂ im-
plies that −u ∈ D̂ and −v ∈ D̂ by Proposition 7, and therefore
also −u−v ∈ D̂ by Axiom D4. But −u−v = (−3/4,−3/4) ≺ 0,
contradicting the coherence [Axiom D1] of D̂. This means
that 0 ∉CM

Dv
(O), so CD′ ⊏CM

D′ .
This same example shows that Cv =CD̄ ⊏CD̂ =CM

Dv
.

To conclude this section, we want to mention that there
are other popular choice rules besides maximality and
E-admissibility, such as, amongst others, Γ-maximin, Γ-
maximax and interval dominance [26]. However, they are
not coherent: none of them satisfies Axiom C4b.

5 Indifference

5.1 Indifference and Desirability

For sets of desirable options, there is a systematic way
of modelling indifference [8, 7, 17]. Let us recall what it
means to express an assessment of indifference there.

In addition to a subject’s set of desirable options D—the
options he strictly prefers to the zero option—we can also
consider the options that he considers to be equivalent to
the zero option. We call these options indifferent. A set of
indifferent options I is simply a subset of V , but as before
with desirable options, we pay special attention to coherent
sets of indifferent options.

Definition 10. A set of indifferent options I is called co-
herent if for all u,v in V and λ in R:

I1. 0 ∈ I;
I2. if u ∈ V≻0∪V≺0 then u ∉ I;
I3. if u ∈ I then λu ∈ I;
I4. if u,v ∈ I then u+v ∈ I.

Taken together, Axioms I3 and I4 are equivalent to imposing
that span(I) = I, and due to Axiom I1, I is non-empty and
therefore a linear subspace of V .

The interaction between indifferent and desirable options

is subject to rationality criteria as well: they should be
compatible with one another.
Definition 11. Given a set of desirable options D and a
coherent set of indifferent options I, we call D compatible
with I if D+ I ⊆D.

The idea behind Definition 11 is that adding an indifferent
option to a desirable option does not make it non-desirable.

Since D ⊆D+I due to Axiom I1, compatibility of D and I is
equivalent to D+I =D. An immediate consequence of com-
patibility between a coherent set of desirable options D and
a coherent set of indifferent options I is that D∩I =∅, mean-
ing that no option can be assessed as desirable—strictly
preferred to the zero option—and indifferent—equivalent
to the zero option—at the same time.

5.2 Indifference and Quotient Spaces

In order to introduce indifference for choice functions, we
shall build on a coherent set of indifferent options I, as
defined in Definition 10. Two options u and v are considered
to be indifferent, to a subject, whenever v−u is indifferent to
the zero option, or in other words v−u ∈ I. The idea behind
indifference for choice functions will be that we identify
indifferent options, and choose between equivalence classes
of indifferent options, rather than between single options.
We begin by formalising this idea.

We can collect all options that are indifferent to an option
u ∈ V into the equivalence class

[u] ∶= {v ∈ V ∶ v−u ∈ I} = {u}+ I.

Of course, [0] = {0}+ I = I is a linear subspace, and the[u] = {u}+ I affine subspaces of V . The set of all these
equivalence classes is the quotient space

V/I ∶= {[u] ∶ u ∈ V} = {{u}+ I ∶ u ∈ V}.
This quotient space is a vector space under the vector addi-
tion, given by

[u]+[v] = {u}+I+{v}+I = {u+v}+I = [u+v] for u,v ∈ V,
and the scalar multiplication, given by

λ [u] = λ({u}+ I) = {λu}+ I = [λu],
for u ∈ V and λ ∈R. [0] = I is the additive identity of V/I.
That we identify indifferent options, and therefore express
preferences between equivalence classes of indifferent op-
tions, essentially means that we define choice functions onQ(V/I). But in order to characterise coherence for such
choice functions, we need to introduce a convenient vector
ordering on V/I, that is appropriately related to the vec-
tor ordering on V; see Section 2.1. For two elements [u]
and [v] of V/I, we define

[u] ⪯ [v]⇔ (∃w ∈ I)u ⪯ v+w, (10)
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and as usual, the strict variant of the vector ordering on V/I
is characterised by

[u] ≺ [v]⇔ ([u] ⪯ [v] and [u] ≠ [v]).
Proposition 21. The ordering ⪯ on V/I is a vector order-
ing, and [u] ≺ [v]⇔ (∃w ∈ I)u ≺ v+w for any u,v in V .

We use the notation O/I ∶= {[u] ∶ u ∈ O} for the option set
of equivalence classes [u] associated with the options u in
an option set O in Q(V). ⋅/I is an onto map from Q(V) toQ(V/I) that preserves set inclusion.

Proposition 22. Given any two option sets O1 and O2 inQ(V) such that O1 ⊆O2, then O1/I ⊆O2/I.
5.3 Quotient Spaces and Sets of Desirable Options

We use this quotient space to prove interesting characteri-
sations of indifference for sets of desirable options.

Proposition 23. A set of desirable options D ⊆ V is com-
patible with a coherent set of indifferent options I if and
only if there is some (representing) set of desirable options
D′ ⊆ V/I such that D = {u ∶ [u] ∈D′} = ⋃D′. Moreover, the
representing set of desirable options is unique and given
by D′ =D/I ∶= {[u] ∶ u ∈D}.

This, together with the definition of compatibility, shows
that the correspondence between sets of desirable options
on V and (their representing) sets of desirable options onV/I is one-to-one and onto. It also preserves coherence.

Proposition 24. Consider any set of desirable options
D ⊆ V that is compatible with a coherent set of indiffer-
ent options I, and its representing set of desirable options
D/I ⊆ V/I. Then D is coherent if and only if D/I is.

5.4 Quotient Spaces and Choice Functions

The discussion above inspires us to combine indifference
with choice functions in the following manner: a choice
function expresses indifference if its behaviour is com-
pletely determined by a choice function on the equivalence
classes of indifferent options.

Definition 12. We call a choice function C on Q(V) com-
patible with a coherent set of indifferent options I if there
is some representing choice function C′ on Q(V/I) such
that C(O) = {u ∈O ∶ [u] ∈C′(O/I)} for all O in Q(V).

This definition allows for characterisations that are similar
to the ones for desirability in Propositions 23 and 24. If a
choice function on Q(V) is compatible with I then the rep-
resenting choice function on Q(V/I) is necessarily unique,
and we denote it by C/I:
Proposition 25. For any choice function C on Q(V) that
is compatible with some coherent set of indifferent options I,
the unique representing choice function C/I on Q(V/I) is

given by C/I(O/I) ∶=C(O)/I for all O in Q(V). Hence
also

C(O) =O∩(⋃C/I(O/I)) for all O in Q(V).

This, together with the definition of compatibility, shows
that the correspondence between choice functions onQ(V)
and (their representing) choice functions onQ(V/I) is one-
to-one and onto. It also preserves coherence.

Proposition 26. Consider any choice function C on Q(V)
that is compatible with a coherent set of indifferent op-
tions I, and its representing choice function C/I onQ(V/I).
Then C is coherent if and only if C/I is.

To conclude this general discussion of indifference for
choice functions, we mention that it is closed under ar-
bitrary infima, which enables conservative inference under
indifference: we can consider the least informative choice
function that is compatible with some assessments and is
still compatible with a coherent set of indifferent options.

Proposition 27. Consider any coherent set of indifferent
options I, and any non-empty collection of coherent choice
functions {Ci ∶ i ∈ I} that are compatible with I, then its
coherent infimum inf{Ci ∶ i ∈ I} is compatible with I as well,
and C/I = inf{Ci/I ∶ i ∈ I}.

5.5 Relation with Desirability

First, we consider a coherent choice function C compat-
ible with some coherent set of indifferent options I, and
check whether the corresponding coherent set of desirable
options DC is also compatible with I.

Proposition 28. Consider any coherent set of indifferent
options I, and any compatible coherent choice function C,
then the corresponding coherent set of desirable options DC
is also compatible with I, and DC/I =DC/I .
Next, and conversely, we consider a coherent set of de-
sirable options D compatible with I, and check whether
the corresponding coherent choice functions CD is also
compatible with I.

Proposition 29. Consider any coherent set of indifferent
options I, and any compatible coherent set of desirable
options D, then the corresponding coherent choice func-
tion CD is also compatible with I, and CD/I =CD/I .
5.6 Example

To exhibit the power and simplicity of our definition of
indifference, we reconsider the finite possibility space X ∶={H,T} of Example 2, where the vector space V is again the
two-dimensional vector space RX of real-valued functions
on X , or gambles, and the vector ordering ⪯ is the usual
pointwise ordering of gambles.
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We want to express indifference between heads and tails, or
in other words between IH and IT, where IH ∶= (1,0) and
IT ∶= (0,1). This means that IH − IT is considered equiva-
lent to the zero gamble, so the linear space of all gambles
that are equivalent to zero—or in other words, the set of
indifferent gambles (or options)—is then given by

I = {λ(IH− IT) ∶ λ ∈R} = {u ∈RX ∶ Ep(u) = 0},
where Ep is the expectation associated with the uniform
mass function p = (1/2,1/2) on {H,T}, associated with a fair
coin: Ep(u) ∶= 1

2 [uH+uT]. So, for any option u in RX—any
real-valued function on X :

[u] = {u}+ I = {v ∈RX ∶ Ep(v) = Ep(u)},
which tells us that the equivalence class [u] can be charac-
terised by the common uniform expectation Ep(u) of its
elements. Therefore, RX /I has unit dimension, and we can
identify it with the real line R. The vector ordering between
equivalence classes is given by, using Eq. (10):

[u] ⪯ [v]⇔ (∃λ ∈R)u ⪯ v+λ(IH− IT)⇔ (∃λ ∈R)(uH ≤ vH+λ and uT ≤ vT−λ)⇔ (∃λ ∈R)uH−vH ≤ λ ≤ −uT+vT⇔ uH−vH ≤ −uT+vT⇔ Ep(u) ≤ Ep(v),
and similarly [u] ≺ [v]⇔ Ep(u) < Ep(v) for all u,v in RX .
Hence, the strict vector ordering ≺ on RX /I is total, so we
infer from the argumentation in Example 1 that there is
only one representing choice function, namely the vacuous
one. Therefore, there is only one choice function C onQ(RX ) that is compatible with I, namely, the one that
has the vacuous choice function Cv on Q(RX /I) as its
representation C/I. Recall that for any O in Q(RX ):

Cv(O/I) = {[u] ∶ (∀[v] ∈O/I)[u]⊀ [v]}= {[u] ∶ (∀[v] ∈O/I)[v] ⪯ [u]}= {[u] ∶ (∀[v] ∈O/I)Ep(v) ≤ Ep(u)},
and therefore

C(O) ∶= {u ∈O ∶ (∀v ∈O)Ep(v) ≤ Ep(u)} =CE{p}(O).
The indifference assessment between heads and tails leaves
us no choice but to use an E-admissible model for a proba-
bility mass function, associated with a fair coin.

The choice function C is therefore based on E-admissibility,
but is not compatible with M-admissibility. To see this,
consider the set of options O ∶= {w,0,−w} with w ∶= (1,−1),
so wH+wT = 0. Hence C(O) =O.

But no M-admissible choice function will select 0 in O:
observe that 0 ∉CD̂(O) for all D̂ ∈ D′, because 0 ∈CD̂(O)
would imply that {w,−w}∩ D̂ = ∅, contradicting that D̂ is
a maximal set of desirable options by Proposition 7.

6 Conclusion

We have developed a theory of conservative reasoning with
choice functions, and related coherent choice functions
to coherent sets of desirable options, showing that choice
functions are indeed more informative than sets of desir-
able options as a tool for conservative reasoning. We have
also provided an intuitive definition for indifference that
subsumes the usual definition for sets of desirable options.

We still intend to address conditioning for choice functions,
and look for an elegant conditioning rule that subsumes
the one for sets of desirable options—and therefore also
Bayes’s rule. Another problem to tackle is related to indif-
ference: Seidenfeld [20] (see also [3]) has given another el-
egant definition for indifference for choice functions, which
he has also linked to sequential coherence. We know that
our definition implies his, but the question whether the two
approaches are equivalent is still open. The connection with
sequential coherence is also an open issue, and we expect
Axiom C3 will play an important role in resolving it.
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Abstract
This paper studies the composition operator for credal
sets introduced at the last ISIPTA conference in more
detail. Our main attention is devoted to the relation-
ship between a special type of compositional model,
so-called perfect sequences of credal sets, and those
of (precise) probability distributions, with the goal of
finding the relationship between credal compositional
models and credal networks. We prove that a perfect
sequence of credal sets is a convex hull of perfect se-
quences of extreme points of these credal sets. Finally,
we reveal the relationship among credal networks (in
a general sense), perfect sequences of credal sets and
separately specified credal networks.

Keywords. Credal sets, strong independence, credal
networks, separate specification, compositional mod-
els.

1 Introduction

The most widely used models managing uncertainty
and multidimensionality are, at present, the so-called
probabilistic graphical Markov models. The problem of
multidimensionality is solved in these models with the
help of the concept of conditional independence, which
enables factorisation of a multidimensional probability
distribution into small parts (marginals, conditionals
or just factors). Among them, the most popular are
Bayesian networks. Therefore, it is not very surprising
that analogous models have also been studied in several
theories of imprecise probability [1, 2, 3].

Credal networks represent a generalisation of Bayesian
networks capable of dealing with imprecision. Compo-
sitional models for credal sets, on the other hand, are
intended to be a generalisation of compositional mod-
els for precise probabilities [6, 7, 8]. As the equivalence
between Bayesian networks and precise compositional
models is well known [9], it also seems quite natural
to ask a similar question in this more general case.

Compositional models have also been introduced in
possibility theory [13, 14] (where these models are
parameterised by a continuous t-norm) and a few years
ago in evidence theory [10, 11] as well. In all these
frameworks the original idea is preserved but certain
slight differences between them are present.

Although Bayesian networks and (precise) probabilis-
tic compositional models represent the same class
of distributions, they do not do it in the same way.
Namely, Bayesian networks use conditional distribu-
tions, whereas compositional models consist of uncon-
ditional distributions. Naturally, both types of models
contain the same information but, while some marginal
distributions are explicitly expressed in compositional
models, it may happen that their computation from
the corresponding Bayesian network is rather compu-
tationally expensive.

Furthermore, the research concerning the relationship
between compositional models in evidence theory and
evidential networks [15] revealed an aspect that is
probably even more important. Even though any
evidential network (with a proper conditioning rule and
conditional independence concept) can be expressed
as a compositional model, if we do it in the opposite
way and transform a compositional model into an
evidential network, we may realise that the model is
more imprecise than the original one. This is caused
by the fact that conditioning increases imprecision.

In [16] we introduced a composition operator for credal
sets, but due to the problem of discontinuity it needs
a revision. This task seems to be rather difficult and
has not been satisfactorily solved yet. Therefore, we
decided to postpone its definition for the general case
to the future and now we deal only with the case of
projective credal sets, as this approach is sufficient for
the topic of this paper.

The goal of this paper is to show that the composition
operator for credal sets is worth developing, as compo-
sitional models seem to be a reasonable counterpart of
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credal networks. We prove that the perfect sequence
of credal sets is a convex hull of perfect sequences of
extreme points of these credal sets. We prove that any
separately specified credal network can be expressed
in the form of a perfect sequence of credal sets, and
any perfect sequence of credal sets can be expressed
as a credal network (in a general sense). Finally, we
present an algorithm for transforming a compositional
model to a credal network.

This contribution is organized as follows. In Section 2
we summarise the basic concepts and notation. Def-
inition of the operator of composition is recalled in
Section 3, which is completely devoted to its basic
properties and those of compositional models. Finally,
in Section 4 the relationship between credal networks
and compositional models is studied.

2 Basic Concepts and Notation

In this section we will recall the basic concepts and
notation necessary for understanding the paper.

2.1 Variables and Distributions

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be a
system of variables, each Xi having its values in a
finite set Xi, and XN = X1 ×X2 × . . .×Xn be the
Cartesian product of these sets.

In this paper we will deal with groups of variables on
subspaces of the Cartesian product. Let us note that
XK will denote a group of variables {Xi}i∈K with
values in

XK =×i∈KXi

throughout the paper.

Any group of variables XK can be described by a prob-
ability distribution (sometimes also called probability
function)

P : XK −→ [0, 1],
such that

∑
xK∈XK

P (xK) = 1.

Having two probability distributions P1 and P2 of XK ,
we say that P1 is absolutely continuous with respect
to P2 (and denote P1 � P2) if for any xK ∈ XK

P2(xK) = 0 =⇒ P1(xK) = 0.

This concept plays an important role in the definition
of the composition operator.

2.2 Credal Sets

A credal setM(XK) describing a group of variables
XK is defined as a closed convex set of probability
measures describing the values of these variables.1

1For K = ∅ let us setM(X∅) ≡ 1.

In order to simplify the expression of operations with
credal sets, it is often considered [12] that a credal set is
the set of probability distributions associated with the
probability measures in it. Under such consideration,
a credal set can be expressed as a convex hull of its
extreme distributions

M(XK) = CH{ext(M(XK ))}.

Consider a credal set describing XK , i.e., M(XK).
For each L ⊂ K its marginal credal set M(XL) is
obtained by element-wise marginalisation, i.e.,

M(XL) = CH{P ↓L : P ∈ ext(M(XK))}, (1)

where P ↓L denotes the marginal distribution of P
on XL.

Having two credal setsM1 andM2 describing XK and
XL, respectively (assuming that K, L ⊆ N), we say
that these credal sets are projective if their marginals
describing the common variables coincide, i.e., if

M1(XK∩L) =M2(XK∩L). (2)

Let us note that if K and L are disjoint, then
M1 and M2 are always projective, as M1(X∅) =
M2(X∅) ≡ 1.

Conditional credal sets are obtained from the joint
ones by point-wise conditioning of the extreme points
and subsequent linear combination of the resulting con-
ditional distributions. More formally: LetM(XK∪L)
(K ∩ L = ∅) be a credal set describing (groups of)
variables XK∪L. Then for any xL ∈ XL

M(XK |xL)
= CH{P (XK |xL) : P ∈ ext(M(XK∪L))}, (3)

is a conditional credal set describing XK given
XL = xL.

2.3 Strong Independence

Among numerous definitions of independence for credal
sets [4] we have chosen strong independence, as it
seems to be the most appropriate for multidimensional
models.

We say that (groups of) variables XK and XL (K and
L disjoint) are strongly independent with respect to
M(XK∪L) iff (in terms of probability distributions)

M(XK∪L) = CH{P1 · P2 : P1 ∈ ext(M(XK)),
P2 ∈ ext(M(XL))}. (4)

Again, several generalisations of this notion to con-
ditional independence already exist, see, e.g., [12],
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but since the following definition is suggested by the
authors as the most appropriate for the marginal prob-
lem, it seems to be a suitable concept in our case as
well, since the composition operator can also be used
as a tool for solving the marginal problem, as shown
(within the framework of possibility theory), e.g., in
[14].

Given three groups of variables XK , XL and XM

(where K, L, M are mutually disjoint subsets of N
such that K and L are nonempty), we say in a way
analogous2 to [12] that XK and XL are condition-
ally strongly independent given XM under the global
setM(XK∪L∪M ) (we will denote this relationship by
K ⊥⊥ L|M) iff

M(XK∪L∪M )
= CH{(P1 · P2)/P

↓M

1 : P1 ∈ ext(M(XK∪M )),
P2 ∈ ext(M(XL∪M )), P ↓M1 = P ↓M2 } . (5)

This definition is a generalisation of stochastic condi-
tional independence: if M(XK∪L∪M ) is a singleton,
thenM(XK∪M ) andM(XL∪M ) are also (projective)
singletons and the definition is reduced to the defini-
tion of stochastic conditional independence.

3 Compositional Models

In this section we will summarise the achieved results
concerning compositional models for credal sets. Most
of them are presented without proofs; missing proofs
can be found in [16]. The concept of the composi-
tion operator is presented first in a precise probability
framework, as it seems to be useful for better under-
standing to the concept.

3.1 Composition Operator and Its
Properties

Now, let us recall the definition of composition of two
credal sets. Consider two index sets K, L ⊂ N . We
do not put any restrictions on K and L; they may be
but need not be disjoint, and one may be a subset of
the other.

In order to enable the reader to understand this con-
cept, let us first present the definition of composition
for precise probabilities [6]. Let P1 and P2 be two
probability distributions of (groups of) variables XK

and XL; then

(P1 . P2)(XK∪L) = P1(XK) · P2(XL)
P2(XK∩L) , (6)

2Let us note that our definitions somehow differ from those
presented in [12]: the authors there require point-wise satisfac-
tion in (4) and (5), which leads to non-convexity. In [5], this
type of independence is called complete.

whenever P1(XK∩L) � P2((XK∩L); otherwise, it re-
mains undefined.

Let M1 and M2 be credal sets describing XK and
XL, respectively. Our original goal in [16] was to
define a new credal set, denoted byM1 .M2, which
will be describing XK∪L and will contain all of the
information contained inM1 and, as much as possible,
inM2.

The required properties are met by Definition 1 in [16]3.
However, the definition exhibits a kind of discontinuity
and should be reconsidered. Therefore, we will only
deal with the composition of projective credal sets in
this paper.

Definition 1 For two projective credal setsM1 and
M2 describing XK and XL, their composition M1 .
M2 is defined by the following expression:

(M1 .M2)(XK∪L)
= CH{(P1 · P2)/P

↓K∩L

2 : P1 ∈ ext(M1(XK)),
P2 ∈ ext(M2(XL)), P ↓K∩L

1 = P ↓K∩L
2 }.

The following lemma, proven in [16], contains basic
properties possessed by this composition operator.

Lemma 1 For two projective credal setsM1 andM2
describing XK and XL, respectively, the following
properties hold true:

(i) M1 .M2 is a credal set describing XK∪L.

(ii) (M1 .M2)(XK) =M1(XK) and
(M1 .M2)(XL) =M2(XL).

(iii) M1 .M2 =M2 .M1.

As the operator is, at present, defined only for projec-
tive sets, it is commutative, as suggested by (iii) of
this lemma. Furthermore, it follows from (ii) that the
operator keeps both marginals. Both of these proper-
ties are typical in other settings exactly for the case
of projective marginals.

Despite these facts, it remains non-associative (in gen-
eral), as can be seen from the following example.

Example 1 Let X1 and X2 be two binary variables
and

M1(X1) = CH{[0.2, 0, 8], [0.5, 0.5]}
and

M2(X2) = CH{[0.3, 0.7], [0.6, 0.4]}
3Let us note that the definition is based on Moral’s concept

of conditional independence with relaxing convexity.
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be two credal sets describing X1 and X2, respectively;
further let

M3(X1X2) = CH{[0.2, 0, 0.1, 0.7], [0.5, 0, 0.1, 0.4]}

be another credal set describing both X1 and X2.
Here [a, b] means P (x1) = a and P (x̄1) = b, and
similarly [a, b, c, d] means P (x1x2) = a, P (x1x̄2) = b,
P (x̄1x2) = c and P (x̄1x̄2) = d.

Using (1) to M3(X1X2), one can realise that both
M1(X1) andM2(X2) are marginal toM3(X1X2).

M1 .M2 is obtained via Definition 1:

(M1 .M2)(X1X2)
= CH{[0.06, 0.14, 0.24, 0.56], [0.12, 0.48, 0.08, 0.32]

[0.15, 0.35, 0.15, 0.35], [0.3, 0.2, 0.3, 0.2]},

butM1 .M2 cannot be composed withM3, as they
are not projective. On the other hand

(M2 .M3)(X1X2)
= CH{[0.2, 0, 0.1, 0.7], [0.5, 0, 0.1, 0.4]},

as follows from (ii) of Lemma 1 and similarly, for the
same reason,

(M1 . (M2 .M3))(X1X2)
= CH{[0.2, 0, 0.1, 0.7], [0.5, 0, 0.1, 0.4]}. ♦

The following theorem, also proven in [16], expresses
the relationship between strong independence and the
operator of composition. It is, together with Lemma 1,
the most important assertion enabling us to introduce
multidimensional models.

Theorem 1 LetM be a credal set describing XK∪L

with marginalsM(XK) andM(XL). Then

M(XK∪L) = (M↓K .M↓L)(XK∪L)

iff
(K \ L) ⊥⊥ (L \K)|(K ∩ L).

3.2 Perfect Sequences of Credal Sets

In this subsection we will recall repetitive application
of the composition operator with the goal to create
a multidimensional model. Since the operator is not
associative, as demonstrated in Example 1, we have
to specify in which order the low-dimensional credal
sets are composed together. To make the formulae
more transparent, we will omit parentheses in the case
the operator is to be applied from left to right, i.e., in
what follows

M1 .M2 .M3 . · · · .Mm−1 .Mm (7)
= (· · · ((M1 .M2) .M3) . · · · .Mm−1) .Mm.

Furthermore, we will always assumeMi to be a credal
set describing XKi

and callM1,M2,M3, . . . ,Mm a
generating sequence of model (7).

The reader familiar with some papers on probabilistic,
possibilistic or evidential compositional models knows
that one of the most important notions in this theory is
that of a so-called perfect sequence, already introduced
in [16] also for credal sets. Let us recall it here.

Definition 2 A generating sequence of credal sets
M1,M2, . . . ,Mn is called perfect if

M1 .M2 = M2 .M1,

M1 .M2 .M3 = M3 . (M1 .M2),
...

M1 .M2 . · · · .Mm = Mm . (M1 . · · · .Mm−1).

Let us note that the concept of perfect sequence of
probability distributions is a special case of this defi-
nition, in the case of all credal sets being singletons.

It is evident that the necessary condition for perfect-
ness is pairwise projectivity (i.e., (2) holds for any pair
of credal sets from the generating sequence in ques-
tion) of low-dimensional credal sets. However, from
Example 1 one can easily see that this condition need
not be sufficient.

Therefore a stronger, necessary and sufficient condition,
expressed by the following assertion, must be fulfilled.

Lemma 2 A generating sequenceM1,M2, . . . ,Mm

is perfect iff the pairs of credal sets Mj and
(M1 . · · · .Mj−1) are projective, i.e., if

Mj(XKj∩(K1∪···∪Kj−1))
= (M1 . · · · .Mj−1)(XKj∩(K1∪···∪Kj−1)),

for all j = 2, 3, . . . , m.

From Definition 2 one can hardly identify the prop-
erties of perfect sequences beyond the algebraic ones;
the most important one is expressed by the follow-
ing characterisation theorem, which also suggests why
these sequences are called perfect.

Theorem 2 A generating sequence of credal sets
M1,M2,. . . ,Mm is perfect iff all the credal sets from
this sequence are marginal to the composed credal set
M1 .M2 . · · · .Mm:

(M1 .M2 . · · · .Mm)(XKj ) =Mj(XKj ),

for all j = 1, . . . , m.

The following (almost trivial) assertion, which brings
the sufficient condition for perfectness, resembles as-
sertions concerning decomposable models.
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Theorem 3 Let a generating sequence of pairwise
projective credal sets M1,M2, . . . ,Mm be such that
K1, K2, . . . , Km satisfies the following running inter-
section property:

∀j = 2, 3, . . . , m ∃`(1 ≤ ` < j)
such that Kj ∩ (K1 ∪ · · · ∪Kj−1) ⊆ K`.

Then the sequenceM1,M2, . . . ,Mm is perfect.

It should be emphasised that the running intersection
property of K1, K2, . . . , Km is a sufficient condition
to guarantee perfectness of a generating sequence of
pairwise projective assignments. By no means is this
condition necessary, as already demonstrated in [16].

Therefore, not only is perfectness of a sequence a
structural property connected with the properties of
K1, K2, . . . , Km but it also depends on specific values
of the respective basic assignments.

3.3 Perfect Sequence as Convex Hull

In this subsection we will study the relationship be-
tween perfect sequences of credal sets and those of
a probability distribution. Before doing that, let us
present a simple lemma necessary for the proof of the
main theorem.

Lemma 3 LetM1 andM2 be two projective credal
sets describing XK and XL, respectively. Then

{ext((M1 .M2)(XK ∪XL))} (8)
⊆ {P1 . P2 : P1 ∈ ext(M1(XK)),

P2 ∈ ext(M2(XL)), P ↓K∩L
1 = P ↓K∩L

2 }.

Proof. By Definition 1, (M1 .M2)(XK∪L) is the con-
vex hull of the set of probability distributions from the
set on the right-hand side of (8), taking into account
the definition of the composition operator for precise
probabilities. Therefore its extreme points must also
belong to this set. ut
Equality need not hold in (8), as can be seen from the
following simple example.

Example 2 Let

M1(X1) = CH{[0.2, 0.8], [0.5, 0.5]}

and
M2(X2) = CH{[0.5, 0.5], [0.8, 0.2]}

be two credal sets describing X1 and X2, respectively.
Then, as mentioned above,M1(X1) andM2(X2) are
projective, and therefore M1 . M2 is obtained by

Definition 1:

(M1 .M2)(X1X2) (9)
= CH{[0.1, 0.4, 0.1, 0.4], [0.16, 0.04, 0.64, 0.16],

[0.25, 0.25, 0.25, 0.25], [0.4, 0.1, 0.4, 0.1]},

nevertheless [0.25, 0.25, 0.25, 0.25] is not an extreme
point of (9) because it can be obtained as a linear com-
bination of [0.1, 0.4, 0.1, 0.4] and [0.4, 0.1, 0.4, 0.1]. ♦

Theorem 4 Let M1,M2,. . . ,Mm be a perfect se-
quence of credal sets such that each Mi, i = 1, . . . m,
is the convex hull of its extreme points, i.e.,

Mi(XKi
) = CH{Pi : Pi ∈ ext(Mi(XKi

))}.

Then
M1 .M2 . · · · .Mm

is a convex hull of all

P1 . P2 . . . . . Pm

such that each Pi ∈ ext(Mi(XKi
)), and

P1, P2, . . . , Pm form a perfect sequence.

Proof. Let us prove the assertion by induction. For
m = 2 it is obvious as it follows directly from Defini-
tion 1. Let us suppose that

M1 .M2 . · · · .Mj

= CH{P1 . P2 . . . . . Pj , Pi ∈ ext(Mi),
P1, P2, . . . , Pj is perfect}

for 2 ≤ j < m and prove that

M1 .M2 . · · · .Mj+1 (10)
= CH{P1 . P2 . . . . . Pj+1, Pi ∈ ext(Mi),

P1, P2, . . . , Pj+1 is perfect}

holds as well.

By convention (7)

M1 .M2 . . . . .Mj .Mj+1

= (· · ·M1 .M2 . · · · .Mj) .Mj+1

and sinceM1 .M2 .. . ..Mj andMj+1 are projective,
we can apply Definition 1 to these credal sets to obtain

(M1 .M2 . · · · .Mj) .Mj+1

= CH{Qj ·
Pj+1

P
↓(K1∪···∪Kj)∩Kj+1
j+1

,

Qj ∈ ext(M1 .M2 . · · · .Mj),
Pj+1 ∈ ext(Mj+1),
Q
↓(K1∪···∪Kj)∩Kj+1
j = P

↓(K1∪···∪Kj)∩Kj+1
j+1 }.

Credal compositional models and credal networks

319



However, due to Lemma 3

Qj ∈ {P1 . P2 . . . . . Pj , Pi ∈ ext(Mi),
P1, P2, . . . , Pj is perfect}.

Let us denote by P ∗1 , P ∗2 , . . . , P ∗j a perfect sequence
such that

Qj = P ∗1 . P ∗2 . . . . . P ∗j .

Then, due to Lemma 2 (applied to precise probabil-
ity distributions) P ∗1 , P ∗2 , . . . , P ∗j , Pj+1 forms a perfect
sequence. Therefore

M1 .M2 . · · · .Mj+1

⊆ CH{P1 . P2 . . . . . Pj+1, Pi ∈ ext(Mi),
P1, P2, . . . , Pj+1 is perfect}.

Let, on the other hand, P1, P2, . . . , Pj+1 be a per-
fect sequence of distributions such that each
Pi ∈ ext(Mi). Then

P1 . P2 . . . . . Pj+1 ∈M1 .M2 . · · · .Mj+1,

and therefore also

CH{P1 . P2 . . . . . Pj+1, P1, P2, . . . , Pj+1 is perfect}
⊆ M1 .M2 . · · · .Mj+1.

Therefore (10) is satisfied. ut

Example 3 Let M1(X1) and M2(X2) be the two
credal sets from Example 2,

M3(X1X2X3)
= CH{[0.1, 0, 0.3, 0.1, 0.05, 0.05, 0.1, 0.3],

[0.16, 0, 0.03, 0.01, 0.32, 0.32, 0.04, 0.12],
[0.4, 0, 0.075, 0.025, 0.2, 0.2, 0.025, 0.075]}

and

M4(X3X4)
= CH{[0.44, 0.11, 0.18, 0.27], [0.56, 0.14, 0.12, 0.18],

[0.33, 0.22, 0.09, 0.36], [0.42, 0.28, 0.06, 0.24]}.

These credal sets form a perfect sequence
M1,M2,M3,M4, since M1 . M2 is marginal
toM3, andM3 andM4 are projective, as from (1)
one gets

M3(X3) = CH{[0.55, 0.45], [0.7, 0.3]} =M4(X3).

The credal setM1 .M2 .M3 .M4(X1, X2, X3, X4)
is then expressed as

M1 .M2 .M3 .M4 (11)
= CH{[0.08, 0.02, 0, 0, 0.24, 0.06, 0.04, 0.06, 0.04,

0.01, 0.02, 0.03, 0.08, 0.02, 0.12, 0.18],

[0.06, 0.04, 0, 0, 0.18, 0.12, 0.02, 0.08, 0.03,

0.02, 0.01, 0.04, 0.06, 0.04, 0.06, 0.24],
[0.128, 0.032, 0, 0, 0.024, 0.006, 0.004,

0.006, 0.256, 0.064, 0.128, 0.192,

0.032, 0.008, 0.048, 0.072],
[0.096, 0.064, 0, 0, 0.018, 0.012, 0.002,

0.008, 0.192, 0.128, 0.064, 0.256,

0.024, 0.016, 0.024, 0.096],
[0.32, 0.08, 0, 0, 0.06, 0.015, 0.015, 0.01, 0.16,

0.04, 0.08, 0.12, 0.02, 0.005, 0.03, 0.015],
[0.24, 0.16, 0, 0, 0.045, 0.03, 0.005, 0.02, 0.12,

0.08, 0.04, 0.16, 0.015, 0.01, 0.015, 0.06]}.
This credal set can be obtained either directly by
successive application of Definition 1 or as a convex
hull of P i1

1 .P i2
2 .P i3

3 .P i4
4 , where any P i1

1 , P i2
2 , P i3

3 , P i4
4

forms a perfect sequence, and any P
ij

j ∈ ext(Mj). In
this example we have six perfect sequences, namely

P 1
1 , P 1

2 , P 1
3 , P 1

4 ; P 1
1 , P 1

2 , P 1
3 , P 3

4 ;
P 1

1 , P 2
2 , P 2

3 , P 1
4 ; P 1

1 , P 2
2 , P 2

3 , P 3
4 ; (12)

P 2
1 , P 2

2 , P 3
3 , P 2

4 ; P 2
1 , P 2

2 , P 3
3 , P 4

4 ,

where

P 1
1 = [0.2, 0.8], P 2

1 = [0.5, 0.5],
P 1

2 = [0.5, 0.5], P 2
2 = [0.8, 0.2],

P 1
3 = [0.1, 0, 0.3, 0.1, 0.05, 0.05, 0.1, 0.3],

P 2
3 = [0.16, 0, 0.03, 0.01, 0.32, 0.32, 0.04, 0.12],

P 3
3 = [0.4, 0, 0.075, 0.025, 0.2, 0.2, 0.025, 0.075],

P 1
4 = [0.44, 0.11, 0.18, 0.27],

P 2
4 = [0.56, 0.14, 0.12, 0.18],

P 3
4 = [0.33, 0.22, 0.09, 0.36],

P 4
4 = [0.42, 0.28, 0.06, 0.24]. ♦

As we stated in the Introduction, in the precise prob-
ability framework any multidimensional distribution
representable by a Bayesian network can also be repre-
sented in the form of a perfect sequence, and vice versa.
An analogous result, although somewhat weaker, for
perfect sequences of credal sets will be presented in
the next section.

4 Credal Networks

In this section we will deal with credal networks and
their relationship to credal compositional models.

4.1 Basic Concepts

A credal network [1] over XN is (in analogy to Bayesian
networks) a pair (G, {P1, . . . , Pk}) such that, for any
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i = 1, . . . , k, (G, Pi), is a Bayesian network over XN ,
i.e., each Pi is a system of conditional probability
distribution forming the joint distribution of XN ,
P i(XN ).

The resulting model is a credal set, which is the convex
hull of the Bayesian networks, i.e.,

CH{P 1(XN ), . . . , P k(XN )}.
It is evident that this definition loses the attractiveness
of Bayesian networks, where the overall information
is computed from local pieces of information. Let us
denote by CN (XN ) the class of all credal networks
over XN .

The most popular (and also most effective) type of
credal networks is represented by those called sep-
arately specified. A separately specified credal net-
work over XN is a pair (G, M), where M is a set
of conditional credal sets M(Xi|pa(Xi)) for each
Xi ∈ XN , and pa(Xi) denotes the set of parent vari-
ables of Xi. Here the overall model is, in analogy to
Bayesian networks, obtained as a strong extension of
theM(Xi|pa(Xi)), i ∈ N . Analogous to the previous
paragraph, let us denote by SCN (XN ) the class of all
separately specified credal networks over XN .

Nevertheless, a lot of situations exist in which sepa-
rately specified credal networks either cannot be used
or their use leads to less specific models. For more
details, the reader is referred to [1]; one extremely
simple example can be found in the next subsection
(Example 5).

4.2 Credal Networks and Perfect Sequences
of Credal Sets

In this subsection we will prove, using the preceding
results, a relationship between credal networks and
perfect sequences of credal sets. For this purpose,
let us denote by CM(XN ) the class of compositional
models over XN .

Theorem 5 For any XN

SCN (XN ) ⊂ CM(XN ) ⊂ CN (XN ). (13)

Proof. Let

(G,M(Xi|pa(Xi)), i ∈ N) (14)

be a separately specified credal network over XN and
N be ordered in such a way that i > j ∈ pa(i) for each
i ∈ N . The overall model (joint credal set describing
XN ) is then obtained as a strong extension of credal
sets from (14).

Let us define Mi(Xi ∪ pa(Xi)) as a strong ex-
tension of M(Xi|pa(Xi)) and M(pa(Xi)), where

M(pa(Xi)) is a marginal of the strong extension of
M(Xj |pa(Xj)), j = 1, . . . , i − 1. Now it easily fol-
lows that any Mi(Xi ∪ pa(Xi)) is a marginal of
the strong extension of (14). Therefore, credal sets
M1(X1), . . . ,Mn(Xi ∪ pa(Xn)) form a perfect se-
quence defining the same joint model as (14).

IfM1(XK1), . . . ,Mm(XKm) is perfect, then according
to Theorem 4

M1 .M2 . · · · .Mm

= CH{P1 . P2 . . . . . Pm, Pi ∈ ext(Mi),
P1, P2, . . . , Pm is perfect}.

For any perfect sequence P1, P2, . . . , Pm a Bayesian
network exists representing the distribution

P1 . . . . . Pm

such that, for each variable Xj , ` ∈ {1, . . . , m} exists
such that ({Xj} ∪ pa(Xj)) ⊂ {Xi}i∈K`

. Therefore,

M1 .M2 . · · · .Mm = CH{(Gi, Pi), 1, . . . , k}.

As any perfect sequence represents the same system
of conditional independences, it is evident that any
Bayesian network can be defined on the same graph
G, which concludes the proof. ut
For the description of an algorithm reconstructing a
credal network from a perfect sequence of credal sets
the reader is referred to the following subsection.

The following simple examples demonstrate that the
inclusions in (13) are proper.

Example 4 Let X1 and X2 be two binary variables
and P1 and P2 be defined as follows

P1(x1) = 0.4 P1(x2|x1) = 0.25 P1(x2|x̄1) = 0.5,
P2(x1) = 0.6 P2(x2|x1) = 0.5 P2(x2|x̄1) = 0.25.

They form, together with the graph X1 −→ X2, two
Bayesian networks. The corresponding credal network
is

CH{[0.1, 0.3, 0.3, 0.3], [0.3, 0.3, 0.1, 0.3]}. (15)

From these distributions one can get the following
credal sets forming a perfect sequence

M1(X1) = CH{[0.4, 0.6], [0.6, 0.4]},

M2(X1X2) = CH{[0.1, 0.3, 0.3, 0.3], [0.2, 0.2, 0.15, 0.45]}
{[0.15, 0.45, 0.2, 0.2], [0.3, 0.3, 0.1, 0.3]}.

It is evident that M1 .M2(X1X2) = M2(X1X2),
which also contains other Bayesian networks not con-
tained in (15). ♦
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Example 5 Let

M1(X1X2)
= CH{[0.2, 0.2, 0, 0.6], [0.1, 0.4, 0.1, 0.4],

[0.25, 0.25, 0.25, 0.25], [0.2, 0.3, 0.3, 0.2]}.

be a credal set describing variables X1 and X2 with
values in X1 and X2 (Xi = {xi, x̄i}), respectively.
From its extreme points we obtain the following
distributions:

P1(x2) = 0.2 P1(x1|x2) = 1 P1(x1|x̄2) = 0.25
P2(x2) = 0.2 P2(x1|x2) = 0.5 P2(x1|x̄2) = 0.5
P3(x2) = 0.5 P3(x1|x2) = 0.5 P3(x1|x̄2) = 0.5
P4(x2) = 0.5 P4(x1|x2) = 0.4 P2(x1|x̄2) = 0.6.

These are, together with the graph X2 −→ X1, four
Bayesian networks. Their convex hull is exactly the
set M1(X1X2). Nevertheless, it is not a separately
specified credal network. To obtain that, we need the
credal setsM(X2),M(X1|x2) andM(X1|x̄2).

Using (1) and (3), we obtain

M(X2) = CH{[0.2, 0.8], [0.5, 0.5]},
M(X1|x2) = CH{[1, 0], [0.4, 0.6]},
M(X1|x̄2) = CH{[0.25, 0.75], [0.6, 0.4]}.

The strong extension of these credal sets is

M̃1(X1X2)
= CH{[0.2, 0.2, 0, 0.6], [0.2, 0.48, 0, 0.32],

[0.08, 0.2, 0.12, 0.6], [0.08, 0.48, 0.12, 0.32],
[0.5, 0.125, 0, 0.375], [0.5, 0.3, 0, 0.2],
[0.2, 0.125, 0.3, 0.375], [0.2, 0.3, 0.3, 0.2]}.

which is less precise than the original model. ♦

It can be viewed as an advantage of compositional
models that they are based on “local knowledge” even
in cases when the credal network is not separately
specified.

4.3 From Perfect Sequence to Credal
Network

In this subsection we will present an algorithm for
transforming a perfect sequence of credal sets to a
credal network and we will illustrate its application
on a simple example.

Having a perfect sequenceM1,M2, . . . ,Mm (M` be-
ing a credal set describing XK`

), we first order all of
the variables for which at least one of the credal sets
M` is defined in such a way that first we order (in an
arbitrary way) variables for whichM1 is defined, then

���� ����
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@
@@R
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��	

?

X1 X2

X3

X4

Figure 1: Graph of credal network generated from a
perfect sequence

variables fromM2 that are not contained inM1, etc.
Finally we have

{X1, X2, X3, . . . , Xn} = {Xi}i∈K1∪...∪Km
.

Then we get a graph of the constructed evidential
network in the following way:

(i) the nodes are all the variables X1, X2, X3, . . . , Xn;

(ii) there is an edge (Xi → Xj) if there exists a credal
setM` such that both i, j ∈ K`, j 6∈ K1 ∪ . . . ∪
K`−1 and either i ∈ K1 ∪ . . . ∪K`−1 or i < j.

Having the structure of the credal network, i.e., graph
G, one can obtain the systems of conditional probabil-
ity distributions from corresponding perfect sequences
of probability distributions.

Evidently, for each j the requirement j ∈ K`, j 6∈
K1∪. . .∪K`−1 is met exactly for one ` ∈ {1, . . . , n}. It
means that all the parents of node Xj must be from the
respective set {Xi}i∈K`

and therefore the necessary
conditional probability distributions P i(Xj |pa(Xj))
can easily be computed from probability distribution
P i

` .

Example 3 (Continued) From perfect sequence

M1,M2,M3,M4,

we get the following ordering of variables

X1, X2, X3, X4

and the structure of the credal network as suggested
in Figure 1. From six perfect sequences of probability
distributions (12) one gets six systems of conditional
probability distributions:

P 1
1 (X1), P 1

2 (X2), P3(X3|X1X2), P 1
4 (X4|X3),

P 1
1 (X1), P 1

2 (X2), P3(X3|X1X2), P 2
4 (X4|X3),
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P 1
1 (X1), P 2

2 (X2), P3(X3|X1X2), P 1
4 (X4|X3),

P 1
1 (X1), P 2

2 (X2), P3(X3|X1X2), P 2
4 (X4|X3),

P 2
1 (X1), P 2

2 (X2), P3(X3|X1X2), P 1
4 (X4|X3),

P 2
1 (X1), P 2

2 (X2), P3(X3|X1X2), P 2
4 (X4|X3),

where

P 1
1 (X1 = x1) = 0.2, P 2

1 (X1 = x1) = 0.5,

P 1
2 (X2 = x2) = 0.5, P 2

2 (X2 = x2) = 0.8,

P3(X3 = x3|X1 = x1, X2 = x2) = 1,

P3(X3 = x3|X1 = x1, X2 = x̄2) = 0.75,

P3(X3 = x3|X1 = x̄1, X2 = x2) = 0.5,

P3(X3 = x3|X1 = x̄1, X2 = x̄2) = 0.25,

P 1
4 (X4 = x4|X3 = x3) = 0.8,

P 1
4 (X4 = x4|X3 = x̄3) = 0.4,

P 2
4 (X4 = x4|X3 = x3) = 0.4,

P 2
4 (X4 = x4|X3 = x̄3) = 0.2.

The resulting model is again a credal set (11). ♦

5 Conclusions

This paper is devoted to the further development of
the operator of composition for credal sets. Our main
attention is paid to the relationship between so-called
perfect sequences of credal sets, and those of (pre-
cise) probability distributions with the aim to find
the relationship between credal compositional models
and credal networks. We have proved that a perfect
sequence of credal sets is a convex hull of perfect se-
quences of extreme points of these credal sets. We
have also proved that perfect sequences of credal sets
form a proper subclass of credal networks and, simul-
taneously, they are a proper superclass of separately
specified credal networks. In other words, any sepa-
rately specified credal network can be expressed in the
form of credal compositional models and any perfect
sequence of credal sets can be expressed as a credal
network.

From the results presented in this paper it is evident
that compositional models for credal sets can be seen
as an alternative to credal networks. Therefore it
seems desirable to further develop the composition
operator within this framework. The first, and most
important, task will be a definition of composition in
the general case.
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Abstract
In the recent years, generalizations of support vec-
tor methods for analyzing interval-valued data have
been suggested in both the regression and classifica-
tion contexts. Standard Support Vector methods for
precise data formalize these statistical problems as
optimization problems that can be based on various
loss functions. In the case of Support Vector Regres-
sion (SVR), on which we focus here, the function that
best describes the relationship between a response and
some explanatory variables is derived as the solution
of the minimization problem associated with the ex-
pectation of some function of the residual, which is
called the risk functional. The key idea of SVR is
that even when considering an infinite-dimensional
space of arbitrary regression functions, given a finite-
dimensional data set, the function minimizing the risk
can be represented as the finite weighted sum of kernel
functions. This allows to practically determine the
SVR estimate by solving a much simpler optimization
problem, even in the case of nonlinear regression. In
case that only interval-valued observations of the vari-
ables of interest are available, it has been suggested to
minimize the minimal or maximal risk values that are
compatible with the imprecise data, yielding precise
SVR estimates on the basis of interval data. In this pa-
per, we show that also in the case of an interval-valued
response the optimal function can be represented as
the finite weighted sum of kernel functions. Thus, the
minimin and minimax SVR estimates can be obtained
by minimizing the corresponding simplified expressions
of the empirical lower and upper risks, respectively.

Keywords. Support Vector Regression, interval data,
Representer Theorem.

1 Introduction

In this paper, we deal with the generalization of Sup-
port Vector Regression (SVR) to interval data. By
SVR we denote a class of kernel-based methods for

the statistical problem of regression analysis. These
methods originated in the field of Machine Learning
(Vapnik, 1998, 1995) and recently also gained attention
in the field of Statistics (see, e.g., Hable, 2012; Christ-
mann et al., 2009; Hofmann et al., 2008; Steinwart
and Christmann, 2008). The typical goal of a regres-
sion analysis is to describe the relationship between
a response variable Y ∈ Y ⊆ R and a number d ∈ N
of explanatory variables X ∈ X ⊆ Rd by a function
f : X → R. The sought-after function f is usually
assumed to be a member of a particular space F of
considered regression functions, for example, the space
of all (affine) linear functions.

To identify which functions in F best describe the
relationship between the random variables in (X,Y ) =
V , the considered regression functions are assessed
by a loss function. Most common loss functions are
characteristics of the distribution of (some function
of) the residual Rf , which we here define by

Rf = |Y − f(X)|

for each f ∈ F . In the SVR methodology, the expecta-
tion of some usually convex error function is considered
as loss function, which is called risk functional. If the
probability distribution PV of the random vector V is
known, the distribution of Rf can be derived from it
and the best regression functions can be identified by
minimizing the chosen loss function. Yet, usually the
true distribution of the investigated variables is un-
known, but it is assumed that PV lies in some specific
set of probability measures PV . Thus, the evaluation
of each regression function also varies over possible
distributions of V .

Given the realization of an independent sample of ran-
dom variables V1 = (x1, y1), . . . , Vn = (xn, yn), with
n ∈ N, where Vi ∼ PV for all i ∈ {1, . . . , n}, we can
learn something about the distribution of the variables
of interest. In SVR, the empirical distribution P̂V of
the observations is used as a point estimate of PV and
the (regularized) risk under this particular distribu-
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tion is minimized to obtain the regression estimate.
The SVR estimate is in general unique. Moreover, the
so-called Representer Theorem states that the func-
tion minimizing the risk given the observations can
be represented as the finite weighted sum of kernel
functions. This is a key result for SVR, as it allows
to practically determine the SVR estimate by solving
a relatively simple optimization problem, even in the
case of nonlinear regression. Further details of the
SVR methodology are presented in the next section.

If the variables of interest are not observed as pre-
cise numbers but only upper and lower bounds to the
values are available, the empirical distribution P̂V is
not revealed by the observable data. We denote the
random sets describing the observables by V ∗

1 , . . . , V
∗
n

and their probability distribution by PV ∗ . If the ob-
served intervals are assumed to cover the unknown
precise values with probability one, bounds for the
empirical risk can be derived from the empirical dis-
tribution P̂V ∗ of the imprecise data. How can we use
this information to obtain an SVR estimate in this
situation? Starting from the simplified representation
of the optimal function in standard SVR, Utkin and
Coolen (2011) proposed to follow a minimin or a mini-
max approach and to minimize either the lower or the
upper (regularized) risk in order to obtain a precise
regression estimate.

In this paper, we investigate the validity of their start-
ing from the simplified representation in the general-
ized data situation. At first, we introduce the formal
framework of the SVR methodology in detail and for-
mally discuss Utkin and Coolen (2011)’s SVR general-
ization. Then, we consider the Representer Theorem
in the more general data situation. We find that also
in this case the optimal function can be represented
as the finite weighted sum of kernel functions. Finally,
after applying the discussed SVR methods to an in-
teresting problem in the area of winemaking, a short
outlook concludes the paper.

2 Methodological Framework of SVR

In this section, the formal framework of SVR with
precise data is presented. In the SVR methodology, the
set PV is assumed to contain all probability measures
on V = X × Y. In this paper, we additionally assume
that Y is a bounded subset of R. Furthermore, in SVR,
the loss assigned to a possible regression function f
and a distribution PV is the risk EPV

(f). Presupposing
measurability, the risk functional EPV

on F can be
defined for each PV ∈ PV as

EPV
: f 7→ EPV

(f) = EPV
(ψ(Rf )), (1)

where ψ is a convex mapping from R≥0 to R≥0 sat-
isfying ψ(0) = 0 and EPV

denotes the expectation
with respect to PV . For example, if ψ is defined by
ψ(r) = r2 for all r ∈ R≥0, the loss associated with a
pair (f, PV ) is given by EPV

(f) = EPV
(R2

f ). Thus, we
obtain the loss function corresponding to Least Squares
regression. Another famous example is the function
defined by ψ(r) = max{0, r − ν}, for all r ∈ R≥0 and
some ν ≥ 0, which was introduced by Vapnik (1995,
Section 6.1) and represents the so-called ν-insensitive
loss.

The convexity of the mapping ψ implies convexity of
the risk functional EPV

, that is, the risk functional
satisfies for each ρ ∈ [0, 1]

EPV
(ρ f + (1 − ρ) f ′) ≤ ρ EPV

(f) + (1 − ρ) EPV
(f ′),

for all f, f ′ ∈ F (see also Steinwart and Christmann,
2008, Lemma 2.13). As explained later, this property is
crucial to the existence of a unique optimal regression
function.

In the SVR framework, the space F of considered
regression functions from X to R is supposed to
be a Reproducing Kernel Hilbert Space (RKHS)
with associated scalar product ⟨·, ·⟩F : F → R.
An RKHS is uniquely associated with its repro-
ducing kernel function. A kernel function κ is a
positive semi-definite function on X × X , that is,∑n
i=1

∑n
j=1 αi αj κ(xi, xj) ≥ 0, for all α1, . . . , αn ∈ R,

x1, . . . , xn ∈ X , and n ∈ N. Here, we only consider
kernel functions that are moreover measurable and
bounded. If κ is the reproducing kernel function of
the RKHS F , for each x ∈ X we have κ(·, x) ∈ F and

f(x) = ⟨f, κ(·, x)⟩F ,

for all f ∈ F . From this property called reproducing
property follows that κ(x, x′) = ⟨κ(·, x), κ(·, x′)⟩F , for
all x, x′ ∈ X . A simple example for an RKHS and
its reproducing kernel is the function space associated
with the linear kernel defined by κ(x, x′) = ⟨x, x′⟩ + 1,
for all x, x′ ∈ X , which is the Hilbert space of all
(affine) linear functions from X to R. Another common
kernel function is the so-called Gaussian kernel, which
is defined for all x, x′ ∈ X by

κ(x, x′) = exp
(
− 1
σ2 ∥x− x′∥2)

,

with σ > 0. The associated RKHS is a very large
function space that is dense in the space of all continu-
ous (real-valued) functions on X . For more details on
kernels and RKHSs, see, for example, Steinwart and
Christmann (2008, Chapter 4).

To avoid obtaining too wiggly functions as descriptions
of the relationship of interest when the regression
analysis is based on a finite sample of observations,
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the risk is further supplemented by an additive penalty
for the complexity of the functions f ∈ F . Hence, in
the SVR methodology, instead of EPV

the regularized
risk functional EPV ,λ is minimized, which is defined
for all f ∈ F by

EPV ,λ(f) = EPV
(f) + λ ∥f∥2

F ,
where λ > 0 is a fixed parameter regulating the penal-
ization and ∥ · ∥F is the norm induced by the scalar
product in F . The regularization can be interpreted
as minimizing EPV

under the restriction ∥f∥2
F ≤ c, for

some c ∈ R≥0, but instead of choosing the bound c
explicitly, we fix the value of the corresponding La-
grange multiplier λ in the constrained optimization
problem.

As the functional f 7→ λ ∥f∥2
F is strictly convex by

general properties of norms and EPV
is convex because

of ψ, we have that EPV ,λ is also a strictly convex func-
tional on F . Exploiting the strict convexity of EPV ,λ,
it can be shown that an optimal function always exists
and is unique, provided that some regularity condi-
tions are fulfilled (see, e.g., Steinwart and Christmann,
2008, Lemma 5.1 and Theorem 5.2).

Given observations (x1, y1), . . . , (xn, yn) of an inde-
pendent and identically distributed random sample
V1, . . . , Vn, the SVR methodology consists in estimat-
ing PV by the corresponding empirical distribution P̂V ,
before identifying the regression estimate fP̂V ,λ

∈ F by
the minimization of EP̂V ,λ

, for some λ > 0. Like in the
general case, there always exists a unique minimizer
of the regularized risk for P̂V . Moreover, the so-called
Representer Theorem states that this unique function
fP̂V ,λ

can be represented as the linear combination of
the corresponding functions κ(·, x1), . . . , κ(·, xn), that
is, there exist weights α1, . . . , αn ∈ R such that

fP̂V ,λ
(x) =

n∑

j=1
αj κ(x, xj), (2)

for all x ∈ X (see, e.g., Steinwart and Christmann,
2008, Theorem 5.5). This expression is sometimes
called support vector expansion of fP̂V ,λ

and the op-
timal function fP̂V ,λ

is often referred to as a Support
Vector Machine (SVM). This term can be explained
historically, because Vapnik (1998, 1995) proposed to
use functions for ψ that have the property that some
of the resulting α1, . . . , αn are zero. The vectors xj for
which αj ̸= 0 are called support vectors, whence the
notion SVM. One example for such a representing func-
tion ψ is the function associated with the ν-insensitive
loss mentioned before. Nevertheless, in general, SVMs
are not sparse in this sense (see, e.g., Steinwart and
Christmann, 2008, Section 11.1).

The result of the Representer Theorem expressed in
(2) is extremely useful for the practical computation

of SVR estimates as it simplifies the associated op-
timization problems and allows to solve them even
when large RKHSs of arbitrary smooth regression
functions are considered, like, for example, the RKHS
associated with the Gaussian kernel. Given a data
set (x1, y1), . . . , (xn, yn) with empirical distribution
P̂V and a fixed λ > 0, Equation (2) tells us that fP̂V ,λ

is an element of the set Fn ⊂ F , with

Fn =
{ n∑

j=1
αj κ(·, xj) : α1, . . . , αn ∈ R

}
.

Furthermore, for all functions fα =
∑n
j=1 αj κ(·, xj),

with α = (α1, . . . , αn)T ∈ Rn, the squared norm is
given by ∥fα∥2

F =
∑n
i=1

∑n
j=1 αi αj κ(xi, xj). Hence,

the regularized risk associated with P̂V can be written
for each fα ∈ Fn as

EP̂V ,λ
(fα) = 1

n

n∑

i=1
ψ

(∣∣yi − ∑n
j=1 αj κ(xi, xj)

∣∣)

+ λ
n∑

i=1

n∑

j=1
αi αj κ(xi, xj).

As EP̂V ,λ
is convex, the SVM fP̂V ,λ

can be obtained by
solving a convex optimization problem over α ∈ Rn,
for which there are numerous efficient algorithms (see,
e.g., Boyd and Vandenberghe, 2004). For the selection
of an appropriate regularization parameter λ > 0 and
of other hyper-parameters like the parameter σ of the
Gaussian kernel, different strategies can be applied,
for instance, cross-validation (see, e.g., Steinwart and
Christmann, 2008, Section 11.3). Since we are mainly
interested in the generalization of a key theoretical
result about SVR to the situation with interval data,
we neglect the latter issues in this paper and always
consider these parameters fixed.

3 SVR with Interval Data

In this section, we investigate whether the SVR
methodology can be used for regression analysis when
the variables of interest cannot be observed as precise
numbers but only (bounded) intervals covering the val-
ues of interest are available. Utkin and Coolen (2011)
proposed a generalization of the SVR methodology
to this situation. As we will see later, the suggested
methods of Utkin and Coolen (2011) work well for
interval-valued observations of the response variable
Y , but cannot directly be extended to interval-valued
observations of the variables in X. Therefore, we also
consider here only the situation where instead of V
the random set V ∗ ∈ V∗ ⊆ 2V is observed, whose pos-
sible realizations are of the form {X} × [Y , Y ], with
X ∈ X ⊆ Rd and Y , Y ∈ Y ⊂ R such that Y ≤ Y .
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3.1 Utkin and Coolen (2011)’s SVR
Generalization

Now, we discuss the generalization of SVR proposed
by Utkin and Coolen (2011) in detail. Since in the
considered data situation the precise variables are not
observable, it is impossible to evaluate the considered
regression functions f ∈ F by EP̂V

(f), i.e., by the
risk associated with the empirical distribution of the
precise data. However, the probability distribution of
the imprecise data PV ∗ can be estimated on the basis
of the observations.

When the probability distribution PV ∗ of the observ-
able data is known, as we assume that the interval
[Y , Y ] covers the precise unobservable Y with proba-
bility one, we know that the unknown probability dis-
tribution of the precise data lies in the set [PV ∗ ] ⊆ PV
containing all distributions of the precise data, PV ,
that satisfy for all measurable events A ⊆ V the in-
equalities

PV (V ∈ A) ≥ PV ∗(V ∗ ⊆ A) and

PV (V ∈ A) ≤ PV ∗(V ∗ ∩A ̸= ∅).
(3)

By consequence, for all f ∈ F , the unknown risk
EPV

(f) lies in the interval [EPV ∗ (f), EPV ∗ (f)], where

EPV ∗ (f) = min
P ′

V
∈[PV ∗ ]

EP ′
V

(f) and

EPV ∗ (f) = max
P ′

V
∈[PV ∗ ]

EP ′
V

(f).

Hence, in the regression problem with interval-valued
response, the set [EPV ∗ (f), EPV ∗ (f)] of all possible
risk values constitutes the loss evaluation for each
f ∈ F . Of course, it is in general impossible to directly
determine an optimal function with respect to this
imprecise criterion. The central idea of the regression
methodology proposed by Utkin and Coolen (2011)
is to use the minimin or the minimax rule to solve
this problem, that is, to minimize either the lower risk
EPV ∗ or the upper risk EPV ∗ in order to identify a
single optimal regression function.

To derive expressions of the lower and upper risks,
Utkin and Coolen (2011) describe, for each regression
function f ∈ F , the set of compatible probability dis-
tributions of the residual Rf given PV ∗ by a so-called
p-box and apply results from Utkin and Destercke
(2009). Introduced by Ferson et al. (2003, Section 2),
the notion p-box designates a convex set of probabil-
ity measures for a univariate random quantity that is
bounded by a lower and an upper cumulative distribu-
tion function. In the situation considered here, given
PV ∗ , also the marginal distribution of the interval-

valued residual [Rf , Rf ], where

Rf = min
(x,y)∈V ∗

|y − f(x)| and

Rf = max
(x,y)∈V ∗

|y − f(x)| ,

is known for each f ∈ F . According to (3), the
marginal distribution of the imprecise residual im-
plies lower and upper bounds to the probabilities of
all measurable events associated with the marginal
distribution of the precise residual Rf . If we consider
these lower and upper bounds for all events of the
form (−∞, r], with r ∈ R≥0, we obtain a lower and
an upper cumulative distribution function that con-
stitute a p-box. As the p-box covers all probability
distributions of Rf that comply with the bounds at
least for the intervals (−∞, r], with r ∈ R≥0, some of
the probability measures included in the p-box may
not satisfy (3) for all measurable events, and thus,
may be incompatible with the marginal distribution of
the imprecise residual. However, the p-box obtained
in the described way from the random set [Rf , Rf ],
with f ∈ F , is the tightest outer approximation by
a p-box of the set of probability distributions of Rf
implied by this random set (see, e.g., Destercke et al.,
2008). In fact, in the present situation, for each f ∈ F ,
the upper bound of the associated p-box corresponds
to the cumulative distribution function of the lower
endpoint of the interval-valued residual [Rf , Rf ], while
the lower bound of the p-box corresponds to the cu-
mulative distribution function of the upper endpoint.
This can be seen by considering the corresponding
bounds to the probabilities of the events (−∞, r], with
r ∈ R≥0, used to derive the p-box for all f ∈ F , that
is,

PV (Rf ≤ r) ≥ PV ∗([Rf , Rf ] ⊆ (−∞, r]) and

PV (Rf ≤ r) ≤ PV ∗([Rf , Rf ] ∩ (−∞, r] ̸= ∅)

It can easily be checked that the probability distribu-
tions corresponding to the bounds of the p-box comply
with (3) for arbitrary measurable events, and thus, are
elements of [PV ∗ ]. Since, according to its definition
in (1), the risk functional EPV

is the expectation of
a convex function in Rf with minimum at zero, it
is straightforward to conclude that EPV ∗ and EPV ∗

coincide with the expected errors associated with the
marginal distributions of the lower and of the upper
residual, that is, of Rf and of Rf , respectively (see
also Utkin and Destercke, 2009, Proposition 3).

Now consider that the realization of an independent
sample of random sets V ∗

1 = A1, . . . , V
∗
n = An is ob-

served, where V ∗
i ∼ PV ∗ for all i ∈ {1, . . . , n}. Then,

by analogy with standard SVR, PV ∗ is estimated by
the empirical distribution P̂V ∗ of the imprecise data,
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and furthermore, the complexity of the estimated func-
tions is restricted by an additive penalty term. Hence,
the optimization criteria considered in the minimin
and minimax generalizations of SVR are the regular-
ized lower and upper risk, respectively. For a fixed
penalization parameter λ > 0, the regularized lower
and upper risks associated with the empirical distribu-
tion P̂V ∗ can, for each f ∈ F , be expressed as follows:

E P̂V ∗ ,λ(f) = 1
n

n∑

i=1
min

(xi,yi)∈Ai

ψ(|yi − f(xi)|) + λ ∥f∥2
F ,

E P̂V ∗ ,λ(f) = 1
n

n∑

i=1
max

(xi,yi)∈Ai

ψ(|yi − f(xi)|) + λ ∥f∥2
F ,

(4)

where ψ is again the convex mapping from R≥0 to
R≥0 representing the chosen loss.

Utkin and Coolen (2011) deduce from these expres-
sions of the regularized empirical lower and upper risks
solvable formulations of the optimization problems cor-
responding to both suggested strategies in the special
case of linear regression for different choices of the
loss function. We do not restrict the approach to this
special case here and continue to consider more general
RKHSs of regression functions. Moreover, Utkin and
Coolen (2011) start from the support vector expan-
sion (2) of the solution of the optimization problem
corresponding to standard SVR. However, it first has
to be verified that the Representer Theorem applies
to or that its statements can be transferred to the set-
ting with interval data. Only in this case, the simple
expression (2) can be used for the optimal regression
function in (4), providing the favorable starting point
for solving the corresponding optimization problems.

3.2 The Representer Theorem for SVR with
Interval-Valued Response

As mentioned in the previous subsection, the Repre-
senter Theorem implies that if an SVR analysis of a
precise data set V1 = (x1, y1), . . . , Vn = (xn, yn) with
empirical distribution P̂V is based on a convex repre-
senting function ψ, then, for all λ > 0, there exists a
unique function minimizing EP̂V ,λ

, which can be rep-
resented as (2) (see, e.g., Steinwart and Christmann,
2008, Theorem 5.5). In the proof of this theorem as it
is presented in Steinwart and Christmann (2008, The-
orem 5.5), the first steps are to show strict convexity
and continuity of EP̂V ,λ

, which provide existence and
uniqueness of the minimizing function fP̂V ,λ

∈ F , by
the corresponding arguments of the proofs of Theo-
rem 5.2 and Lemma 5.1 of Steinwart and Christmann
(2008), respectively. Then, the representation of fP̂V ,λ

as the kernel expansion of (2) is derived by exploiting
properties of the function spaces Fn and F in addition

to the existence and the uniqueness of the function
fP̂V ,λ

.

The generalized SVR methods discussed in this sec-
tion differ from the standard SVR methods only in the
expressions of their risks. Hence, we have to derive
the crucial properties of convexity and continuity for
the lower and upper risks to be able to transfer the
arguments proving the simplified expression of fP̂V ,λ

to the situation with interval-valued response. In the
following lemma, we derive for the general case that
the regularized lower and upper risks have unique min-
imizers, before we prove Theorem 1, stating that the
functions minimizing the regularized empirical lower
and upper risks can be expressed as in Equation (2).
Lemma 1. The regularized lower and upper risk func-
tionals

EPV ∗ ,λ : f 7→ EPV ∗ (f) + λ ∥f∥2
F and

EPV ∗ ,λ : f 7→ EPV ∗ (f) + λ ∥f∥2
F

have unique minimizers f minimin
PV ∗ ,λ and f minimax

PV ∗ ,λ in F ,
respectively.

Proof. Since κ is bounded, convergence in the norm
∥ · ∥F implies convergence in the norm ∥ · ∥∞, because
using the Cauchy–Schwarz inequality,

∥f∥∞ = sup
x∈X

∥f(x)∥ = sup
x∈X

∥⟨f, κ(·, x)⟩F ∥

≤ sup
x∈X

∥f∥F
√

⟨κ(·, x), κ(·, x)⟩F

= ∥f∥F sup
x∈X

√
κ(x, x)

for all f ∈ F . Therefore, the functionals EPV ∗ ,λ and
EPV ∗ ,λ are continuous on F (with respect to the norm
∥ · ∥F ), because they are the sum of the continuous
functional λ ∥ · ∥2

F with the lower and upper previsions
of ψ(Rf ), respectively, and ψ is uniformly continuous
on the relevant domain (since it is convex, and Y is
bounded).

Moreover, EPV ∗ ,λ and EPV ∗ ,λ are strictly convex func-
tionals on F , since λ ∥ · ∥2

F is strictly convex, and the
unregularized lower and upper risk functionals EPV ∗

and EPV ∗ can be shown to be convex. The proof
for the upper risk functional is simple, since EPV ∗

is the maximum of the convex functionals EP ′
V

with
P ′
V ∈ [PV ∗ ]. By contrast, the proof for the lower risk

functional is more involved. We start by noting that
for each possible realization A = {x} × [y, y] ∈ V∗ of
the random set V ∗, the function

rA : z 7→ min
y≤y≤y

|y − z| =





y − z if z < y,
0 if y ≤ z ≤ y,
z − y if y < z,
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on R is convex, and therefore ψ ◦ rA is convex too,
since ψ is convex and nondecreasing. This implies that

min
P ′

V
∈[PV ∗ ]

EP ′
V

|V ∗ (ψ(Rf ) |V ∗ = A) = (ψ ◦ rA) (f(x))

is a convex functional of f , and so is

EPV ∗ (f) = min
P ′

V
∈[PV ∗ ]

EP ′
V

(ψ(Rf ))

= EPV ∗

(
min

P ′
V

∈[PV ∗ ]
EP ′

V
|V ∗ (ψ(Rf ) |V ∗)

)
.

So far we have proven that EPV ∗ ,λ and EPV ∗ ,λ are
continuous and strictly convex functionals on F . The
desired result is implied by Theorem A.6.9 of Steinwart
and Christmann (2008), since the sets

{
f ∈ F : EPV ∗ (f) + λ ∥f∥2

F ≤ EPV ∗ (0)
}

and
{
f ∈ F : EPV ∗ (f) + λ ∥f∥2

F ≤ EPV ∗ (0)
}

are nonempty and bounded (with respect to the norm
∥ · ∥F ).

Theorem 1. There exist αminimin
1 , . . . , αminimin

n ∈ R
and αminimax

1 , . . . , αminimax
n ∈ R such that

f minimin
P̂V ∗ ,λ

: x 7→
n∑

i=1
αminimin
i κ(x, xi) and

f minimax
P̂V ∗ ,λ

: x 7→
n∑

i=1
αminimax
i κ(x, xi)

are the unique minimizers of E P̂V ∗ ,λ and E P̂V ∗ ,λ in F ,
respectively.

Proof. Let f ′ denote the orthogonal projection of a
function f ∈ F on the subspace Fn spanned by the
functions κ(·, xi) with i ∈ {1, . . . , n}. Then ∥f ′∥F ≤
∥f∥F , and f ′ is of the form

∑n
i=1 αi κ(·, xi) with

α1, . . . , αn ∈ R. Moreover, for each i ∈ {1, . . . , n}, the
orthogonality of f ′ − f and κ(·, xi) implies f ′(xi) =
f(xi), because

f ′(xi) − f(xi) = ⟨f ′ − f, κ(·, xi)⟩F = 0.

Therefore, E P̂V ∗ ,λ(f ′) ≤ E P̂V ∗ ,λ(f) and E P̂V ∗ ,λ(f ′) ≤
E P̂V ∗ ,λ(f), and the desired result is implied by Lem-
ma 1.

Hence, f(xi) can indeed be replaced by a support vec-
tor expansion in the expressions of E P̂V ∗ ,λ and E P̂V ∗ ,λ

given in (4), and the derivation of solvable formula-
tions of the corresponding optimization problems can
be based on the thereby simplified expressions of the
risks.

However, the above results cannot directly be general-
ized to accounting also for interval-valued observations
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Figure 1: Histogram plot of the red wine data set with
n = 1 599 observations. The darker a line segment the
more observations overlap this line segment.

of the explanatory variables. This is because, when V ∗

is of the form [X(1), X(1)] × . . .× [X(d), X(d)] × [Y , Y ],
in general E P̂V ∗ ,λ is no longer convex, and moreover,
Theorem 1 does not apply to E P̂V ∗ ,λ anymore.

4 SVR Analysis of Wine Quality

In this section, we analyze a data set collected to
study the quality of Vinho Verde wines from Portugal.
The data were obtained from wine samples that were
tested by the official certification entity of the system
of protected designation of origin of the Vinho Verde
wines between May 2004 and February 2007. For
each of the included 1 599 red and 4 898 white wines,
11 physicochemical characteristics and an evaluation
of the sensory quality are available. The data set
was initially analyzed by Cortez et al. (2009) and is
freely available from the UC Irvine Machine Learning
Repository (Lichman, 2013). Here, we focus on the
subsample of red Vinho Verde wines and study the
relationship between taste and alcohol content.

In the data set, the sensory quality of the wine is mea-
sured on a discrete scale ranging from 0 – very bad to
10 – excellent. These discrete quality measurements
should, in fact, be considered as coarse observations
of an underlying continuous variable taking values in
[0, 10]. Therefore, instead of analyzing the discrete
values as if they were precise measurements of the
wine quality, we consider them to be interval data
and replace the discrete values 0, 1, . . . , 9, 10 by the in-
tervals [0, 0.5], [0.5, 1.5], . . . , [8.5, 9.5], [9.5, 10], respec-
tively. The alcohol content of the wines is available as
volume percent of alcohol, which we here assume to
be measured with sufficient precision.
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Figure 2: Minimax function of the generalized SVR
analysis with linear kernel, ψ(r) = r2 for all r ∈ R≥0,
and λ = 0.0001.

Hence, we analyze the relationship between the pre-
cisely observed alcohol content and the imprecisely
observed sensory quality of the red Vinho Verde wine.
Thus, as we consider only one explanatory variable
here, the imprecise data are line segments. The ana-
lyzed data set is displayed in Figure 1, where X is the
alcohol level in percent by volume and Y corresponds
to the sensory quality. All graphs and computations
are realized in the statistical software environment R
(R Core Team, 2014), resorting amongst others to func-
tions provided by the packages kernlab (Karatzoglou
et al., 2004) and quadprog (Turlach and Weingessel,
2013).

A red wine lover would probably hypothesize that the
higher the alcohol content of a red wine, the stronger
and possibly better the taste of the wine. As also the
data suggest a positive linear relationship, in the first
instance, we choose the linear kernel function for the
SVR analysis, although SVR is not limited to linear re-
gression. Furthermore, we consider the Least Squares
loss, i.e., we set ψ(r) = r2 for all r ∈ R≥0. This config-
uration of SVR corresponds to what is also known as
Ridge regression. As the minimax approach appears
to be more cautious, we consider the corresponding
generalized SVR method of Utkin and Coolen (2011)
here. Finally, for the estimation, the regularization
parameter λ is set to 0.0001. The estimated regression
line confirms the surmise of a positive relationship
between alcohol content and sensory quality of the
Vinho Verde red wines and is displayed in Figure 2.

As the assumption of a linear relationship is very
strict, we alternatively consider the minimax SVR
method based on the Gaussian kernel with parameter
σ equal to 1. Furthermore, we consider the absolute

8 9 10 11 12 13 14 15

0

2

4

6

8

10

X

Y

Figure 3: Minimax function of the generalized SVR
analysis with Gaussian kernel, ψ(r) = r for all r ∈ R≥0,
and λ = 0.000001.

loss here represented by ψ defined as ψ(r) = r for
all r ∈ R≥0 and set λ = 0.000001. The estimated
regression function is depicted in Figure 3 and shows
an increasing tendency in those areas of the observation
space V = [8, 15] × [0, 10] where most observations are.
Hence, also the more general SVR analysis provides
evidence for a positive relationship between alcohol
content and sensory quality of red Vinho Verde wines.

5 Conclusion and Outlook

In this paper, we investigated the generalized SVR
methods for regression with interval data that were
initially proposed by Utkin and Coolen (2011). These
methods consist in minimizing either the minimal or
the maximal regularized risk compatible with the em-
pirical distribution of the imprecise data. In this paper,
we proved that the corresponding optimal functions
can be represented as the weighted sum of kernel
functions and thereby provide the so far lacking justi-
fication for the regression methods derived in Utkin
and Coolen (2011). Hence, the minimin and minimax
SVR methods constitute sensible adaptations of the
SVR methodology to interval data and yield interest-
ing results when applied to real data as in the previous
section.

We here focused on the data situation where only for
the response variable there are interval-valued obser-
vations, while the explanatory variables are precisely
observed. Unfortunately, our findings cannot simply
be generalized to account also for interval-valued obser-
vations of the explanatory variables, because then the
regularized lower risk is no longer necessarily convex
and the Representer Theorem cannot be transferred to
the regularized upper risk anymore. This means that
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for the minimin SVR method there is not necessarily
a unique optimal function and that the optimal mini-
max function cannot be expanded as in Equation (2).
This indeed limits the applicability of the minimin and
minimax SVR methods to the more restrictive setting
considered in this paper. Moreover, the meaning of
the estimated regression functions is less clear than in
the precise data case.

Furthermore, it can be argued that, in the context
of the statistical analysis of imprecise data, methods
yielding precise results are in general problematic, be-
cause a reasonable statistical method should reflect
the imprecision of the data in its result. In addition,
a responsible statistical analysis should always take
the involved statistical uncertainty into account. A
regression methodology for imprecise data allowing to
express these two types of uncertainty at the same time
constitutes the so-called Likelihood-based Imprecise
Regression (LIR) methodology introduced by Catta-
neo and Wiencierz (2012). In the LIR methodology,
each possible regression function is evaluated by the
whole set of loss values that are plausible in the light
of the data and then the set of all undominated re-
gression functions is considered as the imprecise result
of the regression analysis, which can furthermore be
interpreted as a confidence set. As it can be shown
that, for each f ∈ F , the interval [E P̂V ∗ (f), E P̂V ∗ (f)]
is the Maximum Likelihood estimate of EPV

(f) in the
situation considered in Section 3, Utkin and Coolen
(2011)’s SVR methods can be further generalized by
embedding them in the LIR framework.
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M-Estimation with Imprecise Data
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Real data often do not have the level of precision
required by conventional statistical methods. In par-
ticular, a data point can be incompletely observed,
in the sense that the only available observation is a
set known to contain the data point. An important
problem is then how to perform statistical estimation,
and in particular regression, when some (or all) data
points are incompletely observed. This problem has
recently attracted much attention in the statistical
literature in general, and at ISIPTAs in particular:
see for example Cattaneo and Wiencierz (2012); Liu
and Vandal (2011); Schollmeyer and Augustin (2015);
Utkin and Coolen (2011).

The typical setting in these works is that instead of
the precise data points xi ∈ X , only the sets si ⊆ X
are observed. It is assumed that xi ∈ si, but no
other information about xi is available. In particular,
precisely observed data points xi can be represented
by singletons si = {xi}, while missing data points
xi can be represented by observations si = X . The
statistical problem consists in estimating a quantity
of interest θ ∈ Θ on the basis of the data.

In the case of precisely observed data, most statistical
estimation methods can be expressed as M-estimators
(or slight generalizations thereof):

θ̂(x1, . . . , xn) = arg min
θ∈Θ

∑n
i=1 ρ(xi, θ), (1)

where ρ : X ×Θ → R describes some kind of estimation
error. For example, when X = Θ = R, the squared
error ρ(xi, θ) = (xi − θ)2 leads to the least squares
estimation of location.

An apparently very intuitive idea for generalizing an
estimator θ̂ to the case of incompletely observed data
is to interpret

{θ̂(x1, . . . , xn) : xi ∈ si} (2)

as the set-valued estimate based on the observations
si. However, for M-estimators an alternative approach

is possible: replacing
∑n

i=1 ρ(xi, θ) with

{∑n
i=1 ρ(xi, θ) : xi ∈ si} (3)

(or its convex hull) in the minimization task (1). Since
the quantity (3) to be minimized is set-valued, several
definitions of minimum are possible and can lead to
different kinds of estimators.

The present work investigates the imprecise minimiza-
tion approach (3) and compares it with the set of esti-
mates approach (2). Both approaches have interesting
connections with the statistical method of estimat-
ing equations, and face some difficulties in parametric
models. An important advantage of the former is the
possibility, if desired, of easily obtaining a precise esti-
mate, for example by interpreting the minimization as
a minimax problem. By contrast, the interpretation
of the set-valued estimates intrinsically tied to the
latter approach is difficult, because they mix aspects
of the different statistical concepts of point estimate
and confidence region.

Keywords. M-estimator, regression, imprecise data,
interval data, coarse data, missing data, estimating
equations, robust statistics, set-valued estimates.
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Introduction General belief functions usually bear
some internal conflict, which comes mainly from dis-
joint focal elements. Analogously there is often some
conflict between two (or more) belief functions (BFs).
This theoretical contribution introduces a new ap-
proach to conflicts of BFs. Conflicts between BFs are
here considered independently of any combination rule
and of any distance measure.

Consonant Conflicts The suggested approach is
based on consonant approximations of BFs in general;
two important special cases based on consonant inverse
pignistic and consonant inverse plausibility transfor-
mations are discussed. Their idea is based on our
previous study of conflicts of BFs [1, 2, 3].

Probabilistic approximations of belief functions were
used in several previous approaches, e.g. pignistic prob-
ability in W. Liu’s two-dimensional degree of conflict
and in pignistic conflict [2], and normalized plausibility
of singletons in plausibility conflict [1, 2].

Unfortunately, doing a probability approximation usu-
ally adds new conflicting information, which increases
internal conflict of input beliefs and also resulting
global conflict. There are many inverses of any proba-
bilistic approximation, in general (a mapping back to
original input BFs among them), nevertheless, there
are unique consonant inverses of both pignistic and
plausibility probabilistic transformations. These in-
verses are internally non-conflicting (they have no in-
ternal conflict). Thus the entire global conflict of these
approximations is the conflict between them (there is
no conflict inside them). Our present idea is use of
consonant instead of probabilistic approximations.

Definitions Let the consonant inverse contour ap-
proximation iC(Bel) of a BF Bel be the unique conso-
nant inverse of the normalized plausibility of singletons
(normalized contour function) corresponding to Bel.

Let the consonant inverse pignistic approximation
iBet(Bel) of a BF Bel be the unique consonant inverse

of the pignistic probability corresponding to Bel.

Let Bel1, Bel2 be any belief functions on any frame
Ω, iC(Beli) and iBet(Beli) be their consonant in-
verse contour and consonant inverse pignistic ap-
proximations given by consonant bbas iCmi, iBetmi.
The inverse contour conflict is defined by the formula
iC-Conf(Bel1, Bel2) =

∑
X∩Y =∅ iCm1(X)iCm2(Y ),

where X, Y ⊆ Ω. The inverse pignistic conflict
is analogously defined by iBet-Conf(Bel1, Bel2) =∑

X∩Y =∅ iBetm1(X)iBetm2(Y ), where X, Y ⊆ Ω.

Properties In [4] we have proved an equivalence
of the consonant conflict iC-Conf with the conflict
between BFs based on their con-conflicting parts [3].
For quasi Bayesian BFs (focal elements: |X|= 1 or
X =Ω) Bel1, Bel2 with bbas m1, m2 we have proved:
Conf(Bel1, Bel2) ≤∑

X∩Y =∅ m1(X)m2(Y ) for both
iC-Conf and iBet-Conf . Note that this does not
hold for general BFs. For more detail, general counter-
example, and other properties see [4].

Keywords. Belief functions, Dempster-Shafer theory,
internal conflict of a belief function, conflict between
belief functions, consonant approximation.
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We provide necessary and sufficient conditions for the
unique convergence of a continuous-time imprecise
Markov chain to a stationary distribution.

Problem Statement Consider the set of all the
continuous-time non-stationary Markov chains with
finite state space X of which the transition rate matrix
Qt is a function of time such that Qt ∈ Q, where Q
is a closed convex set of transition rate matrices that
has separately specified rows, meaning that

Q ∈ Q ⇔ (∀x ∈ X ) Q(x, ∗) ∈ Qx

where, for all x ∈ X , Qx is a closed convex set of
row vectors. We call such a set of Markov chains a
continuous-time imprecise Markov chain.

Fix any t > 0. Then for all f ∈ RX and x ∈ X , the ex-
pected value Et(f |X0 = x) of f at time t, conditional
on X0 = x, ranges over a closed interval of which we
will denote the lower bound by T t(f |x). For all x ∈ X ,
T t(·|x) is a coherent lower prevision on RX . The cor-
responding lower transition operator T t : RX → RX

is defined by

T tf(x) := T t(f |x) for all x ∈ X .

By a recent result of Škulj [1], f
t

:= T tf is the solution
to the differential equation

d

dt
f

t
= Q f

t

with initial condition f0 = f , where for all h ∈ RX :

Qh(x) := min
Q∈Q

∑

y∈X
Q(x, y)h(y) for all x ∈ X .

We study the limit behaviour of T t. In particular, we
provide necessary and sufficient conditions for Q to
be Perron-Frobenius-like (PF), meaning that there is
some P ∞ : RX → R such that, for all x ∈ X :

lim
t→+∞

T tf(x) = P ∞f for all f ∈ RX ,

or, equivalently, for T t(·|x) to converge to a stationary
distribution P ∞ that does not depend on x.

Results Our main result is that the following four
conditions are equivalent:

1. Q is PF,
2. T t is PF for some t > 0,
3. T t is PF for all t > 0,
4. Q is regularly absorbing,

where (i) for any t > 0, we say that T t is PF if
the discrete-time imprecise Markov chain that has
T t as its lower transition operator is PF, in the
sense that, for all f ∈ RX , limn→∞ T n

t f exists and
is constant and (ii) ‘regularly absorbing’ is a qual-
itative property of Q that is fully determined by
the signs of the upper transition rates to singletons
Q(x, y) := maxQ∈Q Q(x, y) and the lower transition
rates to sets Q(x, A) := minQ∈Q

∑
y∈A Q(x, y), for

x, y ∈ X , x 6= y and A ⊂ X \ {x}. See the poster for
more details.

As future work, we would like to develop coefficients of
ergodicity that characterise whether Q is PF and that
provide—tight—bounds on the rate of convergence.
So far, we have found a coefficient of ergodicity whose
positivity is sufficient—but not necessary—for Q to
be PF and which, in that case, provides a conservative
bound on the rate of convergence.

Acknowledgements Many thanks to Gert de
Cooman, Matthias C. M. Troffaes and Stavros
Lopatatzidis for stimulating discussions on the topic
of continuous-time imprecise Markov chains.
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transition rates, coefficients of ergodicity.
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Motivations Ammonites are extinct ectococled mol-
luscs belonging to the Class Cephalopoda which lived
during the Mesozoic Era. Their usefulness in Juras-
sic and Cretaceous paleontology and biostratigraphy
study is widely proved. For this reason, they are stud-
ied by several authors worldwide in order to achieve
information regarding their habitats and climate of
past world. Coherent upper conditional previsions
defined with respect to Hausdorff outer measures are
used to make a probabilistic analysis of the paleo-
environmental causes that generated complex sutural
lines. In particular, the role of hydrostatic pressure is
studied.

Sutural Lines The shell of ammonites is sub-divi-
sible in three parts: protoconch, phragmocone and
body chamber. The phragmocone is divided in cham-
bers separated by septa. The geometric projection of
septum on the inner side of the shell is the sutural
line. Every sutural line is characterized by alternation
of several elements, named saddles and lobes, which
reflect a fractal geometrical development. Sutural lines
of Toarcian (lower Jurassic) ammonites are made of
almost two separated groups. The first is close to
mathematical model of the von Koch curve and the
latter is close to mathematical model of the Cesaro
curve [1]. These two models are associated to differ-
ent hydrodynamic arrangements which correspond to
two different life strategies. The von-Koch-sutural-line
is related to good swimmer ammonites which show
hydrodynamic features as oxycone section, developed
keel, sinuous ribs and short body chambers [4]. The
Cesaro-sutural-line is related to no good swimmer am-
monites which are characterized by no hydrodynamic
features as rounded sections, little keel, strong ribs,
spines and very long body chambers [2].

Probabilistic Analysis In order to study the paleo-
environmental causes of the complexity of the sutural
lines, we interpret ammonites as complex systems
whose evolution during time is described by a finite

family of contractions; the attractor of this family rep-
resents the sutural line, whose complexity is measured
in terms of Hausdorff dimension. The hydrostatic
pressure is represented by a random variable and we
calculate the Choquet integral of this random variable
given the sutural line, which is the conditioning event
[3]. We consider a constant pressure and a strictly
monotone pressure, corresponding to different life style.
Different cases are studied according to the complexity
of the sutural line.

Conclusions The results show that the Choquet
integral of the hydrostatic pressure given the sutural
line is a mathematical tool to describe different life
styles of ammonites, which determined the complexity
in the sutural lines.

Keywords. Ammonites, sutural lines, Toarcian, von
Koch model, Cesaro model, hydrostatic pressure, Haus-
dorff dimension, Choquet integral.

References

[1] G. Damiani, Computer simulation of some am-
monoid suture lines, In Pallini et al. eds. “Atti II
Conv. Int. F.E.A., Pergola, 1987”, 221-228, 1990.

[2] A. Di Cencio, Position of spines and tubercles in
ammonites. Correlation with shape of shell and
complexity of sutural line. Hypothesis of life style.
In “XV Giornate di Paleontologia, 27-29 Maggio
2015”, Abstract Volume, (accepted).

[3] S. Doria, Characterization of a coherent upper
conditional prevision as the Choquet integral with
respect to its associated Hausdorff outer measure,
Annals of Operations Research, 33-48, 2012.

[4] F. Venturi and S. Rossi, Subasio, Origine e vicende
di un Monte Appenninico, Porzi editoriali, 1-112,
2003.

9th International Symposium on Imprecise Probability: Theories and Applications, Pescara, Italy, 2015

338



Bayesian Updating Based on Hausdorff Outer Measures
and the Role of Emotions During the Therapeutic Phase of Alliance

Serena Doria
Department of Engineering and Geology,
University G.d’Annunzio, Chieti, Italy

s.doria@dst.unich.it

Iolanda Angelucci
Psychotherapist and teacher
CTA Trainer at SSPIG-IRPIR

iolanda381@virgilio.it

Formulating diagnosis is a complex process, related
to the clinician’s ability to represent the patient’s dis-
comfort, to use error due to the incompleteness of the
information available, to make predictions about well-
being. We interpret the therapist-patient system as
a complex system, whose evolution, representing the
phase of alliance, is described by a finite family of con-
tractions that, starting from certain initial conditions,
evolve the system into the attractor; this set, char-
acterized by its own complexity, measured in terms
of the Hausdorff dimension, represents the state in
which the therapist and patient find themselves after
the phase of alliance.

Updating the Level of Knowledge and Making
a Successful Diagnosis A probabilistic approach
of the diagnostic process is proposed in which the sub-
ject’s degree of knowledge is represented with coherent
upper conditional probabilities defined by Hausdorff
outer measures [1]. Using this model, the diagnosis
is assumed to be positive when it produces a change,
that is when the subject’s level of knowledge is defined
by an a posteriori Hausdorff outer measure different
from the initial Hausdorff outer measure. We believe
that one of the roles of the therapist in the phase of the
alliance (i.e. interactive and collaborative relationship
between patient and therapist, common to different
psychotherapies, where both have an active role in
achieving therapeutic goals) is to shorten the distance
between him and the patient so that he can update
the level of cognitive and emotional understanding of
the problem the patient asks for his help for. The first
step that the therapist must take is to realize that he
is a complex system and small perturbations to the
initial state, i.e. the encounter with the patient, can
bring to totally unpredictable states, from which he
has to assess the probability of success of the diagno-
sis. The phase of the therapist-patient alliance can
be interpreted as the phase in which the complexity
is likely to increase. In the mathematical model, the
role of the therapist is represented by choosing a par-

ticular system of contractions, the similarities, that
keep unchanged some geometric properties. These
invariance of geometric properties aims to describe the
fact that some features of the therapist are repeated
at different scales, influencing the diagnostic attitude.
By iterating these contractions, the patient-therapist
system reaches a state represented by a self-similar
set, called the attractor of the system; if the attrac-
tor has zero probability with respect to the Hausdorff
measure that defines the initial level of knowledge of
the patient then another measure needs to be used to
represent the subject’s level of knowledge conditioned
to the attractor. The goal of the phase of the alliance
is therefore to have the patient to confront with an
unpredictable state, represented by a set having initial
probability of zero value.

Conclusions According to the mathematical repre-
sentation of the diagnostic process highlighted in this
work, we find similarities with the idea of Matte Blanco
[2] that emotion can undergo endless measurements.
The attractor of the system represents the unconscious
of the system therapist-patient and according to the
theory developed in [2] it is characterized by symmetry
and self-similarity.

Keywords. Iterated functions system, Hausdorff
outer measure, coherent upper conditional probabili-
ties, symmetry, self-similarity.
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In the information age a massive amount of data is
available. It can be of great benefit to use this existing
data for secondary analysis instead of collecting new
data, which might be time-consuming and expensive.
But what can be done if the required variables are not
all accessible in one single data set? The solution is
given by statistical matching: With the aid of statisti-
cal matching, information from different surveys can
be combined.

The initial situation of statistical matching [2, e.g.] are
two (or more) data sets, e.g. A and B with nA or nB

observations, respectively, that contain information on
a set of common variables X, and specific variables Y
and Z which are not jointly observed. The observation
units in the different data sets are not the same.
The objective is, on the one hand, to estimate the
joint probability distribution of all common and spe-
cific variables (macro approach) or, on the other hand,
to generate one synthetic data set, that contains infor-
mation on all variables of interest (micro approach).

data set A

data set B

synthetic
data set

yA
1 . . . yA

Q xA
1 . . . xA

P

xB
1 . . . xB

P zB
1 . . . zB

R

⇓
x1 . . . xP z1 . . . zRy1 . . . yQ

The most popular statistical matching strategies are
premised on the restrictive assumption of conditional
independence, i.e. the independence of Y and Z given
X. This technical assumption makes the joint distri-
bution of X, Y and Z identifiable and, thus, estimable
for A ∪ B (∈ R(nA+nB)×(P +Q+R)), where A ∪ B is an
incomplete i.i.d. sample from f(x, y, z) without joint
information on X, Y and Z [2, cf.].

Here, it is proposed to perform statistical matching by
graphical network models. This might be a promising
alternative to existing statistical matching approaches,
since it provides a natural form of representing condi-

tional independence. In addition, the use of auxiliary
information for solving the statistical matching prob-
lem remains possible.

In a first step, one Bayesian network [3, e.g.] has to
be created on each of the data sets to be matched.
Random variables are represented by nodes and the
dependencies between them are displayed by arcs.

X X

Y Z
& ⇒

X

Y Z
Afterwards, the individual networks can be linked
to a single one by means of graph union or graph
intersection, respectively.

The second step will be the application of credal net-
works [1, e.g.] in this setting. Thereby, the uncertainty
of the statistical matching process can be taken into
consideration by sets of compatible contingency tables.
Moreover, the strict conditional independence assump-
tion can be weakened by using independence concepts
for sets of conditional probabilities.
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Preliminaries We consider a finite-state, discrete-
time stationary linear system with a deterministic
(known) initial state X0 = x0. For all k ∈ {0, . . . , n},
the dynamics of the system is described by

Xk+1 = aXk + buk(X0:k) +Wk.

In this expression, a and b are real-valued parameters
and the state Xk and noise Wk at time k are real-
valued random variables. The control input uk at
time k is also real-valued and is taken to be some
function of the previous states x0:k. We call a tuple
of control input functions u0:n := (u0, u1, . . . , un) a
control policy. We measure the performance of such
a control policy by means of the associated linear
quadratic cost

η [u0:n|x0] :=
n∑

k=0
ruk(X0:k)2 + qX2

k+1,

where r is a strictly positive real number and q is a
non-negative real number.

The Precise Case If the uncertain noise terms Wk

are modelled by means of a probability measure, an
optimal control policy is usually required to minimise
the expected value of the cost. Under some relatively
weak technical assumptions, there will be a unique
control policy û0:n that satisfies this optimality cri-
terion. If the noise is white—if the noise terms at
different time instants are uncorrelated—then for all
k ∈ {0, . . . , n}, this optimal control policy is given by

ûk(x0:k) := −r̃kb(mk+1axk + hk), (1)

where the parameters r̃k, mk+1 and hk are derived
from the initial conditions mn+1 := q and hn+1 := 0
and, for all k ∈ {0, . . . , n}, the recursive expressions
r̃k := (r + b2mk+1)−1, mk := q + a2r̃krmk+1 and

hk := mk+1E (Wk) + ar̃k+1rhk+1, (2)

where E (Wk) is the expected value of Wk. In general,
if the noise is not white, computing the optimal control
policy û0:n is intractable.

The Imprecise Case Our contribution consists in
studying a generalised version of this problem, where
the noise is described by an imprecise uncertainty
model—a set of probability measures—and the optimal
control policies are those that are E-admissible—that
minimise the expected value of the cost for at least
one element of this set. We show that if the model
for the noise is forward irrelevant [1]—an imprecise
notion of independence—then the corresponding set
of optimal control policies is again characterised by
Eq. (1). The only difference is that hk is not given by
Eq. (2), but instead takes values in some interval. If
a ≥ 0, then for all k ∈ {0, . . . , n}, the exact lower and
upper bounds of this interval are

hk = mk+1E(Wk) + ar̃k+1rhk+1,

hk = mk+1E(Wk) + ar̃k+1rhk+1,

with hn+1 = hn+1 := 0, and E(Wk) and E(Wk) the
lower and upper expectations of Wk. If a ≤ 0, hk+1
and hk+1 switch places. At first sight, these bounds
might seem to follow trivially from Eq. (2), but this is
not the case, because the optimisation ranges over a
forward irrelevant set of probability measures, almost
none of whose members corresponds to white noise.

In this way, for any time k and state history x0:k, we
obtain an interval of optimal control inputs. Neverthe-
less, in a practical control situation, a single control
input has to be chosen. The most obvious or lazy
choice is to apply the control input which, amongst
the ones in the interval, has the lowest absolute value.
In future work, we would like to investigate how this
type of lazy control performs in practice.

Keywords. Linear system, quadratic cost, optimal
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We consider the standard model of finite decision the-
ory: An actor has to decide which action to pick from
a finite set A = {a1, . . . , an} of alternatives. However,
the utility of the chosen action depends on which state
of nature from a finite set Θ = {θ1, . . . , θm} corre-
sponds to the true description of reality. Specifically,
we assume that the utility of every pair (a, θ) ∈ A×Θ
can be evaluated by a known map u : A×Θ→ R.

Within this framework, our goal is to determine an
optimal action. However, any appropriate definition
of optimality depends on (what we assume about) the
mechanism generating the states of nature. Here, tra-
ditional decision theory mainly covers two extremes:
The mechanism follows a known probability measure
ξ on (Θ,P(Θ)) or can be compared to a game against
an omniscient enemy. Then optimality is almost unan-
imously defined by the Bernoulli-criterion (w.r.t. ξ)
or the Maximin-criterion, respectively.

In contrast, defining optimality becomes less obvious
if we consider ξ only partially known. Here, imprecise
probabilities offer a powerful framework: Uncertainty
is now described by the credal set of all the mea-
sures being compatible with our information (or by
linear partial information, see [4]). However, criteria
for optimal decision making now strongly depend on
the actor’s attitude towards ambiguity. Accordingly,
many concurring decision criteria exist: Γ-maximin,
Γ-maximax, maximality, E-admissibility [3, e.g.].

For determining optimal decisions w.r.t. these com-
plex criteria linear programming theory (LPT ) is well-
suited: By embedding decision problems into this
framework, one can draw on the whole toolbox of this
well-investigated discipline. Particularly, this allows a
computational treatment of complex decision making
in statistical standard software (e.g. R): Proposals for
linear programming based algorithms for optimizing
all criteria mentioned above are given in [1] and [2].

However, the opportunities using LPT in decision
theory are not exhausted by producing algorithms:

Applying results from LPT provides deep theoretical
insights on the connection between decision criteria as
well as on the properties of optimal actions.

Firstly, we demonstrate the computational strength
of LPT by recalling algorithms from [1] and [2] and
exemplifying their implementation in R. Additionally,
we introduce two algorithms for checking maximality
of pure actions by solving one single linear program.

Secondly, we illuminate the power of LPT apart from
algorithmic considerations: Duality theory from LPT
is used to derive connections between optimal random-
ized Γ-maximin actions and pure Bernoulli-optimal
actions w.r.t. a least favourable measure contained in
the underlying credal setM. We show that for every
randomized Γ(M)-Maximin-optimal action p∗, there
exists a pair (a∗, π∗) ∈ A×M such that Eπ∗(u(a∗, ·))
equals the Γ(M)-Maximin utility of p∗.

Keywords. decision making, imprecise probabilities,
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References
[1] L.V. Utkin, T. Augustin. Powerful algorithms for deci-

sion making under partial prior information and gen-
eral ambiguity attitudes. In: F.G. Cozman, R. Nau, T.
Seidenfeld (eds.): ISIPTA ’05, 2005, pp. 349-358.

[2] D. Kikuti, F.G. Cozman, C.P. de Campos. Partially
ordered preferences in decision trees: computing strate-
gies with imprecision in probabilities. In: R. Brafman,
U. Junker (eds.): Multidisciplinary IJCAI-05 Work-
shop on Advances in Preference Handling, 2005, pp.
118-123.

[3] N. Huntley, R. Hable, M.C.M. Troffaes. Decision mak-
ing. In: Introduction to imprecise probabilities. Ed. by
T. Augustin, F.P.A. Coolen, G. de Cooman, M.C.M.
Troffaes. Chichester: Wiley, 2014, pp. 190-206.

[4] E. Kofler, G. Menges. Entscheiden bei unvollständi-
ger Information. Springer. Berlin (Lecture Notes in
Economics and Mathematical Systems, 136), 1976.

9th International Symposium on Imprecise Probability: Theories and Applications, Pescara, Italy, 2015

342



Searching for the Most Plausible Partition:
an Evidential Reasoning Approach to Clustering

Orakanya Kanjanatarakul
Heudiasyc UMR 7253

Université de Technologie de Compiègne & CNRS
Sorbonne Universités, France

Faculty of Management Sciences
Chiang Mai Rajabhat University, Thailand

okanjana@utc.fr

Thierry Denoeux
Heudiasyc UMR 7253

Université de Technologie de Compiègne & CNRS
Sorbonne Universités, France

tdenoeux@utc.fr

Clustering can be seen as the search for a “good” parti-
tion of a set of n objects described either by attributes,
or by a dissimilarity matrix. Usual approaches are
based either on a geometric criterion, as in the k-means
algorithm, or on a finite mixture model whose parame-
ters are estimated using, e.g., the EM algorithm. Here,
we propose a different view of partitional clustering,
in which dissimilarities are seen as pieces of evidence
and represented as belief functions on the set of all
partitions of the dataset under study. Using a tech-
nique similar to the one used in [1] for the association
problem, we show that the most plausible partition
can be found for small n. We then propose a heuristic
algorithm that can handle large datasets.

Formalization Let O denote a set of n objects and
let R be the set of equivalence relations on O (this
set is in one-to-one correspondence with the set of
partitions). We assume the existence of a true equiva-
lence relation R0. Dissimilarities between objects are
considered as items of evidence about R0, which can
be represented by mass function mij with three focal
sets: the set Rij of equivalence relations containing
objects i and j, its complement ¬Rij , and R, and cor-
responding masses mij(Rij) = αij , mij(¬Rij) = βij

and mij(R) = 1 − αij − βij . After combining these
n(n−1)/2 mass functions by Dempster’s rule, we get a
mass functionm on R with contour function pl defined
by the following equation,

ln pl(R) = C +
∑

i<j

Rij ln 1− βij

1− αij
, (1)

where C is a constant. The most plausible partition
can thus be found exactly, for small n (until, say,
n ≤ 100) using a binary linear programming solver.

Hopfield Model To make the above approach fea-
sible for large n, we need a heuristic optimization
method. We show that a local maximum of ln pl(R)
defined by (1) can be found by a Hopfield neural net-
work model [2] with n neurons, in which each neuron

can be in one of c states, where c is the desired number
of clusters. The weight vij of the connection between
neurons i and j is the coefficient of Rij in (1). Starting
from random initial states, the state of each neuron i
is updated at asynchronous times, by finding k such
that

∑
j 6=i vijsjk is maximum, where sjk = 1 if neuron

j is in state k, and sjk = 0 otherwise. This algorithm
is shown to converge to a global network state that
corresponds to a local maximum of (1).

Results and Conclusions The above clustering al-
gorithm was applied to several datasets with different
characteristics, including: large numbers of objects
and/or clusters, non-metric dissimilarities, and com-
plex cluster shapes, showing good performances as
compared to existing algorithms. The definition of
constants αij and βij is problem-specific and is an
important step for ensuring good performances of the
method. The application of this approach to semi-
supervised clustering is currently under study.

Keywords. Clustering, Dempster-Shafer theory, Evi-
dence theory, belief functions, Hopfield network.

Acknowledgement This research was supported by
the Labex MS2T, which was funded by the French
Government, through the program “Investments for
the future” by the National Agency for Research (ref-
erence ANR-11-IDEX-0004-02).

References

[1] T. Denœux, N. E. Zoghby, V. Cherfaoui, and
A. Jouglet. Optimal object association in the
Dempster-Shafer framework. IEEE Transactions
on Cybernetics, 44(22):2521–2531, 2014.

[2] J. J. Hopfield. Neural networks and physical sys-
tems with emergent collective computational abili-
ties. Proceedings of the National Academy of Sci-
ences, 79:2554–2558, 1982.

9th International Symposium on Imprecise Probability: Theories and Applications, Pescara, Italy, 2015

343



Computational Methods for Imprecise Continuous-Time
Birth-Death Processes: a Preliminary Study of Flipping Times

Stavros Lopatatzidis and Jasper De Bock and Gert de Cooman
Ghent University, SYSTeMS Research Group

{Stavros.Lopatatzidis,Jasper.DeBock,Gert.deCooman}@UGent.be

We introduce the notion of flipping times for impre-
cise continuous-time birth-death processes, show how
to obtain them, and explain how they lead to new
computational methods.

The Precise Case Consider a continuous-time
Markov processes where, at any time t, the stochastic
matrix of the process Pt is derived from a transition
rate matrix Q. When Q is bounded, Pt satisfies the
Kolmogorov backward equation

d

dt
Pt = QPt. (1)

If we let ft(x) := Et(f |X0 = x), with f a real-valued
function on the finite state space X and x ∈ X an ini-
tial state, then we can rewrite Equation (1) as follows:

d

dt
ft = Qft. (2)

Combined with the boundary condition f0 = f , the
unique solution of Equation (2) is ft = eQtf .

Instead of considering a time-invariant Q, we can also
let Qt be a function of the time t. In that case, Equa-
tion (2) can be rewritten as

d

dt
ft = Qtft. (3)

In general, Equation (3) has no analytical solution.

The Imprecise Case We focus on the case where
every state in X := {0, . . . , L}, has an interval-valued
birth and/or death rate. The transition rate matrix is
then a tridiagonal matrix of the form




−λ0 λ0 0 · · · · · · · · · 0
... . . . . . . . . . . . . . . . ...
0 · · · µi −(µi + λi) λi · · · 0
... . . . . . . . . . . . . . . . ...
0 · · · · · · · · · 0 µL −µL




where, for all i ∈ {0, . . . , L − 1} and j ∈ {1, . . . , L},
λi ∈ [λ, λ] and µj ∈ [µ, µ]. We use Q to denote the the
set that consists of all these transition rate matrices.

At any time t, the only assumption we make about
Qt is that it is an element of Q. Every such possi-
ble choice of non-stationary transition rate matrices
will, by Equation (3), result in a—possibly different—
solution ft. Our goal is to calculate exact lower and
upper bounds for the set of all these solutions ft, as
denoted by f

t
and f t; we focus on the lower bound

here. As proved by Škulj [1], f
t
is the solution to

d

dt
f

t
= min

Q∈Q
Qf

t
, (4)

with boundary condition f0 = f . If Q is the con-
vex hull of a finite number of extreme transition rate
matrices—as in our case—then since the solution to
the above differential equation is continuous, we find
that there must be time points 0 = t0 < t1 < . . . <
ti < ti+1 < . . . such that, for all t ∈ [ti, ti+1], the mini-
mum in Equation (4) is obtained by the same extreme
transition rate matrix Qi ∈ Q. We call these time
points ti flipping times. The differential equation (4)
is then piecewise linear, and the solution is therefore
given by

f
t

= eQi(t−ti)eQi−1(ti−ti−1) . . . eQ1(t2−t1)eQ0(t1)f,

for t ∈ [ti, ti+1]. The difficult part is now to find
the flipping times ti and the corresponding extreme
transition rate matrices Qi. We provide computational
methods that are able to do so.

Keywords. Imprecise continuous-time Markov pro-
cess, birth-death process, flipping time. birth-death
process, flipping time.
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Empirical results of almost all scientific research are
analyzed based on frequentist null hypothesis signif-
icance tests, even though the shortcomings of such
methods are well known (consider, for instance, the
recent decision of a psychology journal to ban null
hypothesis significance tests from their articles [4]).
This work on hypothesis testing based on the Imprecise
Dirichlet Process (IDP) [2] aims to change this perspec-
tive by providing Bayesian versions of nonparametric
frequentist tests.

The Imprecise Dirichlet Process The Dirichlet
process (DP) is a natural prior for developing nonpara-
metric tests in a Bayesian framework. It is completely
defined by its prior strength s (a scalar) and its nor-
malized base measure α (a probability measure). To
overcome the problem of eliciting its infinite dimen-
sional parameter α in case of lack of prior information,
we have developed a prior near-ignorance DP model
(IDP) that consists of the set of all DPs with fixed s
and α free to vary in the set of all probability mea-
sures. Beside solving the prior elicitation problem, this
model reduces the computational costs and provides
posterior inference which are more robust with respect
to the choice of the prior.

Nonparametric Hypothesis Tests Based on the
IDP model we have developed imprecise Bayesian tests
that share strong similarities with a number of frequen-
tist statistics, and thus provide a Bayesian justification
of many traditional nonparametric tests: the sign test
[3], the Wilcoxon signed test [1], the Mann-Whitney-
Wilcoxon rank-sum test [2] (including the case for cen-
sored data [5]), the Friedman test [1] and the Kendall
tau test. In this Bayesian framework, tests are for-
mulated as decision problems where the goal is to
minimize the expected loss. Such a principled way of
balancing significance and power of the test is lacking
in the frequentist setting. Moreover, IDP based tests
automatically inform the analyst when the decision
minimizing the expected loss changes depending on

the DP base measure. In these prior-dependent cases
the test issues an indeterminate outcome. We have
empirically verified that, often, traditional tests virtu-
ally behave as random guessers in these indeterminate
instances.

Conclusions By making the elicitation of the DP
prior easier, computations faster and posterior infer-
ences more reliable, the IDP model allows performing
simple and efficient nonparametric hypothesis tests in
a Bayesian way. These tests have several advantages:
they avoid the shortcomings of the frequentist ones,
formulate the hypothesis test as a decision problem,
are conservative with respect to the choice of the prior
and automatically inform when the decision is difficult
(and thus traditional tests are not reliable). Due to all
these qualities, these test can challenge the widespread
use of nonparametric frequentist test in all areas of
scientific research.

Keywords. Dirichlet process, nonparametric hypoth-
esis testing, prior near-ignorance.
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This contribution addresses linear hyperbolic systems
with random set coefficients. We consider the problem
(∂t + Λ(x, t)∂x)u = F (x, t)u+G(x, t), (x, t) ∈ R2,

u(x, 0) = a(x), x ∈ R,

where u = (u1, . . . , un), G = (G1, . . . , Gn), Λ and F
are (n× n)-matrix functions.

The coefficient matrix Λ is real-valued and diagonal,
with entries λj , j = 1, . . . , n, given by any of the
following: (a) a random set; (b) a random field (a
stochastic process in higher dimensions); (c) a random
field whose parameters are random sets. Applications:
The addressed problem is a prototype model for wave
propagation in random media. Coefficients describing
material properties may have non-differentiable paths
and their statistical parameters might be imprecise.

Method of characteristics In the deterministic
case, the problem is often solved using the method
of characteristics [2]. After introducing random sets
as coefficients, we are still able to use this method,
obtaining a set-valued solution U .

A random set is a map X which assigns to every ω
from a probability space (Ω,Σ, P ) a subset X(ω) of a
target space E such that the upper inverses X−(B) =
{ω ∈ Ω : X(ω)∩B 6= ∅} are measurable for every Borel
subset B of E. An important tool is the fundamental
measurability theorem that states (if E is a Polish
space) the equivalence of the defining measurability
property of X−(B) for Borel, open, and closed subsets
B as well as the equivalence with the existence of a
Castaing representation. A set-valued random variable
such that X−(B) is measurable for every open set B
is called Effros-measurable. One of the goals of this
contribution is to prove that the solution given by

U(ω) = {ul1,...,ln : lj ∈ λj(ω), j = 1, . . . , n} (1)
is a random set in the space of continuous functions.

Thanks to the results of [2] and continuous depen-
dence lj 7→ ul1,...,ln

, a Castaing representation can

be immediately obtained, which leads to the Effros
measurability; the fundamental measurability theorem
completes the argument.

In the case of random field coefficients whose paths are
at least Lipschitz continuous, the continuous depen-
dence of the deterministic solution on its coefficients
is enough to prove that the stochastic solution is a
random field as well.

Random fields with non-Lipschitz paths If we
wish to include random field whose paths are not
Lipschitz continuous, we are no longer able to use the
method of characteristics in a simple way.

We manage to overcome this difficulty by changing the
entire setting and entering the algebras of Colombeau
generalized functions, combining approaches described
in [1, 2]. Colombeau generalized functions are defined
as equivalence classes of families of smooth functions,
depending on a regularization parameter ε. Measura-
bility is understood componentwise on representatives.
The Colombeau algebra is a complete metric space,
but not separable. Random fields and random sets
valued in the Colombeau algebra constitute a new
concept.

Keywords. Random sets, random fields, hyperbolic
systems, Colombeau algebra of generalized functions.
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Consider the following collection of six-sided dice:

There are four faces, each present at least once:
clubs ♣, spades ♠, diamonds ♢, and hearts ♡.
A face only becomes visible after applying a drop
of white wine to its side. There are at least three
black faces. There are either more hearts than di-
amonds or an equal number of clubs and spades.
A die is fair unless it has more black than white-
faced sides, then each of the latter is equally
more likely to land up than each of the former.

Because of the exclusive disjunctions—either/or state-
ments—in this description, the uncertainty we must model
when gambling with dice from this collection cannot be
handled using a single convex credal set, set of desirable
gambles, preference order, or other such uncertainty model.
Arguably, also non-convex credal sets are inadequate here.

I wish to discuss the following conceptual approach for
dealing with this modeling issue:

• The possibility space is restricted to observables only
(♣, ♢, ♠, and ♡) and so should not involve, e.g., the die
variant. (There are three such variants; see the gray boxes
in the top row of the diagram.)

• We consider the partial order X generated by the exclu-
sive disjunctions. (See the gray boxes and their intercon-
nections in what is in fact a Hasse diagram.)

• We attach an uncertainty model to each element of X , e.g.,
a partial preference order, that reflects the information
common to its upset in X . (In the diagram we use ⪰ for
non-strict acceptance, » for strict preference, and ≃ for
indifference [1]. Also, in the expressions, the faces denote
the corresponding indicator gamble.)

• We can furthermore assign an optimality criterion to each
element of X . Maximality and maximin variants thereof
are natural candidates, E-admissibility perhaps less so,
due to its use of individual probability measures, which
can be replaced by exclusive disjunctions.

• With any set of decision options, we can then asso-
ciate the corresponding partial order of optimal options.
Choice functions [cf. 2] may be derived as functions
thereof, for example the union of optimal options for the
maximal elements of X .

?♣ ♢ ?♠ ?♡
♠+♡ ⪰ ♣+♢ ♣+♡ ⪰ ♠+♢

♣+3♢+♠ ⪰ 3♡
5♢ ⪰ ♣+♠+♡

2♣ ♢ ?♠ ?♡
♣+♢ ≃ ♠+♡
2♠ ⪰ ♣ ⪰ ♠

2♢ ⪰ ♣

?♣ ♢ ?♠ 2♡
♣+♠ ≃ ♢+♡

2♣ ⪰ ♠ 2♠ ⪰ ♣
2♢ ≃ ♡

?♣ ♢ 2♠ ?♡
♠+♢ ≃ ♣+♡
2♣ ⪰ ♠ ⪰ ♣

2♢ ⪰ ♠

2♣ ♢ ♠ 2♡
♣ ≃ ♡ ♠ ≃ ♢

2♢ ≃ ♣
2♣ ♢ 2♠ ♡
♣ ≃ ♠ ♢ ≃ ♡

4♢ » ♣+♠
♣ ♢ 2♠ 2♡
♣ ≃ ♢ ♠ ≃ ♡

2♢ ≃ ♠
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We present an interface for eliciting sets of acceptable gam-
bles on a three-outcome possibility space, discuss an exper-
iment conducted for testing this interface, and present the
results of this experiment.

Elicitation When uncertainties are elicited from experts,
they are typically quantified as probabilities. Eliciting prob-
abilities directly from domain experts as precise numbers is
often problematic due to a lack of familiarity with probabil-
ity theory and the absence of a concrete context. Moreover,
even some of the most ardent ‘precise’ probabilists agree
that imprecise-probabilistic techniques are better suited to
deal with the results of an elicitation procedure (O’Hagan
& Oakley 2004, Sec. 3.3). Sets of acceptable gambles form
a representation for imprecise probabilities that is close to
human behavior and eliciting them directly may improve
the quality of the resulting uncertainty model.

Interface As a first step towards testing this hypothe-
sis, we designed an interface for eliciting sets of accept-
able gambles on three-outcome possibility spaces. We
started from a two-dimensional representation of the three-
dimensional space of gambles that was inspired by the
flexibility afforded under the coherence axioms: We used
the set of gambles with minimal value −1. This set of gam-
bles was projected onto the plane and a logarithmic trans-
formation was applied to obtain a representation with a
sufficiently wide range of gamble values. To implement

Draw

LoseWin

this representation, we needed to
apply a discretization and had to
develop a set of techniques for
efficiently calculating the natu-
ral extension of an assessment in
the context of a web browser, our
chosen implementation environ-
ment.

Experiment We organized a betting competition for the
2014 FIFA World Cup. For each match, sets of acceptable
gambles were elicited from participants; using the assess-
ments so obtained, we computed a bet between them, i.e., a

gamble was assigned to each participant. We were inspired
by (Walley 1991, App. I), who ran an experiment for elicit-
ing lower and upper probabilities concerning the outcome
of matches of the 1982 FIFA World Cup.

Whereas (Walley 1991, App. I) used pairwise fair bets be-
tween the participants to score them, we designed a new
algorithm for generating a single fair bet between all the
participants in the betting pool. The algorithm’s objective
was to maximize lower expected payoff over all partici-
pants, while keeping the sum of the payoffs equal to zero.

Results Participant feedback indicated that reducing the
complexity of the task and the interface would ease the elic-
itation procedure. The experiment’s results underlined that
imprecision is an essential aspect of real-life uncertainty
modeling: most assessments made were imprecise. An inter-
esting observation: the few participants who used complete,
‘precise’ models almost exclusively all had greater global
losses than winnings.
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Extensive Structures A Closed Archimedean Extensive
Structure [CAES] provides a (positive) real-valued, scalar
representation of a binary relation that is additive in a con-
catenation operation. We summarize that theory as follows.

Let D = {d1,d2, . . .} be a domain of objects. Let ⊕ be a
function from D×D →D , understood as a concatenation
operation on pair of objects. Finally, let � be a binary
relation on D×D . Five axioms for a CAES are these:

Axiom1 � is a transitive, complete weak order, with sym-
metric ≈ and asymmetric � parts.

Axiom2 (Cancellation) d1 � d2 iff d1⊕d3 � d2⊕d3.
Axiom3 (Associativity and Commutativity)

d1⊕ (d2⊕d3)≈ (d2⊕d1)⊕d3.
Axiom4 (Positivity) d1⊕d2 � d1.

Let nd = d⊕d⊕·· ·⊕d with n−1 concatenations.

Axiom5 (Archimedes) If d2 � d1, and given d3 and d4,
there exists n such that [nd2]⊕d3 � [nd1]⊕d4.

Theorem1 [1] Given a CAES, there exists a positive, real-
valued function g : D →ℜ+ where
• g(d1)� g(d2) iff d1 � d2,
• g(d1⊕d2) = g(d1)+g(d2).

and g is unique up to scalars, g′ = αg (α > 0).

We call a system that satisfies all but Axiom5 a Radically
Elementary Closed Extensive Structure [RECES].

Theorem2 [2] Given a RECES, there exists a positive,
non-standard ∗ℜ+ valued function ∗g : D → ∗ℜ+ where
• ∗g(d1)≥ ∗g(d2) iff d1 � d2,
• ∗g(d1⊕d2) =

∗g(d1)+
∗g(d2).

Regular Probability on a Finite Set as a CAES Let
Ω = {ω1, . . . ,ωn} be a finite partition and let I be a do-
main of favorable investments I = {I1,I2,I3, . . .} where
each investment scheme pays a determinate, non-negative
dollar return Ii(ω j) = xi j ≥ 0, as a function of ω . De-
fine concatenation as I1⊕I2 = I3 where x3 j = x1 j + x2 j,
j = 1, . . . ,n. Let � be a binary preference relation between
such favorable investment opportunities.

Application1 With a simple modification of Axiom4 to
include the constant I0 = 0, by Theorem1, if this system is
a CAES over I , there exists a unique regular probability
P on Ω, P (ω j) > 0, where preference is represented by
expected value: g(Ii)=∑ j P (ω j)xi j. Let /0 6=E ⊆Ω. Then,
in the usual fashion, �E , called-off preference given E,
suffices to define the conditional probability, P (·|E).

Non-Standard Probability on Ω as a RECES

Application2 Drop the Archimedean Axiom5 from Appli-
cation1 and, by Theorem2, preference is a RECES that
is represented through ∗g by a non-standard probability
∗P with non-standard expected value, and non-standard,
conditional expected value.
Application3 Modify Axiom1 in Application1 so that strict
preference is a strict partial order, �, as in [3, §4 in particu-
lar]. A corollary to Theorem1 is IP theory, where a convex
set of probabilities represents � and �E .
Application4 Continue Application3 by dropping Axiom5.
A corollary to Theorem2 is non-standard *IP theory, where
a convex set of non-standard probabilities and non-standard
conditional probabilities represent strict preference and
strict called-off preference.
Application5 Continue Application4. Replace modified
Axiom1 with Axioms 1a and 1b from [4, p. 164] in the
theory of coherent choice functions.

Conjecture This modified RECES structure characterizes
all *IP sets of non-standard probabilities on the finite set Ω.
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In reliability engineering, data about failure events is
often scarce. To arrive at meaningful estimates for the
reliability of a system, it is therefore often necessary to
also include expert information in the analysis, which
can be dealt with straightforwardly via a Bayesian
approach using an informative prior distribution.

A problem that then can arise is called prior-data con-
flict, see, e.g., [3]: from the viewpoint of the expert,
the observed data seem surprising, i.e., the informa-
tion derived from observed data is in conflict with
prior assumptions. Models based on conjugate priors
can be insensitive to prior-data conflict, in the sense
that the spread of the posterior distribution does not
increase in case of such a conflict [see 4, §A.1.2 for two
examples], thus conveying a false sense of certainty
by communicating that we know the reliability of a
system quite precisely when in fact we do not.

As was shown in [5], models using sets of conjugate
priors (generated through sets of canonical parameters)
can mitigate this issue, by leading to larger sets of
posteriors, and thus to more cautious inferences, in
case of a prior-data conflict. [See 4, §§3.1, 3.2 for
the general framework and its comparison with other
models based on sets of priors.]

Building on previous work about reliability estimation
for a simplified parallel system using sets of priors [6],
we generalize the approach presented in [1] by con-
sidering sets of conjugate priors for expressing prior
knowledge on component lifetimes. Through use of the
recently developed survival signature [2], we obtain
lower and upper bounds for the system reliability func-
tion. These posterior predictive bounds adequately
represent our knowledge on the system reliability, giv-
ing more precise probability statements as data accu-
mulate, and appropriately reflecting prior-data conflict
by wider bounds.

As an example, we consider the problem of forecasting
the reliability of a currently running new one of a kind
system, where we have vague prior information on

the lifetimes of the components the system is made
of, where the only available data consists of observed
behaviour of the system components so far, that is,
the failure times of the components that have already
failed, and the fact that the remaining components still
function, whose failure time is thus right-censored. We
present a method for taking into account surprisingly
early or late component failures in the system relia-
bility prediction, and analyse its effect on decisions
about replacements of failed components.

Keywords. System reliability, survival signature, im-
precise probability, generalized Bayesian Inference.
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In the last 15 years, the biennial ISIPTA symposia
have established themselves as a central forum for the
presentation and discussion of recent research in the
field of interval or imprecise probability (IP). Revisit-
ing our previous contribution for ISIPTA’11, where we
derived and analyzed the research network in the IP
community based on co-authorships of ISIPTA papers
until and including ISIPTA’09 [2], we want to investi-
gate more closely whether the population of ISIPTA
contributors, or the structure of the contributor pop-
ulation, has changed. We thus update the research
network by considering also the papers of subsequent
ISIPTAs, updating our R package [3] accordingly.

Besides drawing the current network graph and up-
dating the network characteristics usually studied in
scientific collaboration networks [4, 5, 7] (like, e.g., the
distribution of the number of collaborators, the num-
ber of papers per author, or the number of authors per
paper), we want to focus on the network evolution [1].
We wish to identify trends and recent developments
in network characteristics, especially with regards to
the contributor population, and study the in- and
outflow of authors in more detail by analyzing their
position in the network. We also investigate whether
trends or ‘hot topics’ are emerging from the symposia
contributions, by analyzing the paper’s keywords.

Furthermore, we consider models for scientific collabo-
ration networks, like random graphs with preferential
attachment [6, §8], to analyze the network dynamics
of the ISIPTA coauthorship network.

Keywords. Network analysis, imprecise probability,
scientific collaboration networks, network evolution.
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