THE ADDITION FORMULA FOR LITTLE q-LEGENDRE POLYNOMIALS AND THE $S U(2)$ QUANTUM GROUP*

TOM H. KOORNWINDER \dagger

Abstract

From the interpretation of little q-Jacobi polynomials as matrix elements of the irreducible unitary representations of the $\operatorname{SU}(2)$ quantum group an addition formula is derived for the little q-Legendre polynomials. It involves an expansion in terms of Wall polynomials. A product formula for little q-Legendre polynomials follows by q-integration.

Key words. quantum groups, $S U(2)$, little q-Jacobi polynomials, little q-Legendre polynomials, Wall polynomials, addition formula, product formula

AMS(MOS) subject classifications. $33 \mathrm{~A} 65,33 \mathrm{~A} 75,22 \mathrm{E} 70$

1. Introduction. Quantum groups were recently introduced by Drinfeld [5] and Woronowicz [17]. Interesting examples are provided by deformation into a noncommutative Hopf algebra of some suitable commutative Hopf algebra of functions on a specific group. The most elementary nontrivial example comes from deformation of the algebra of polynomials on $S U(2)$ (cf. Woronowicz [18]). We denote the resulting quantum group by $S U_{\mu}(2)$.

It has been proved by Vaksman and Soibelman [15], Masuda et al. [11], [12], and Koornwinder [10] that the matrix elements of the irreducible unitary representations of the quantum group $S U_{\mu}(2)$ can be expressed in terms of the little q-Jacobi polynomials. In the present paper we use this interpretation to derive an addition formula for the little q-Legendre polynomials, i.e., for the q-analogues of the Legendre polynomials within the class of little q-Jacobi polynomials. The derivation of this formula is straightforward and analogous to a proof of the addition formula for Legendre polynomials using irreducible representations of $S U(2)$ (cf. Vilenkin [16, Chap. 3]). However, the resulting formula involves noncommuting variables. It is less easy to rewrite it equivalently as a formula involving only commuting variables. We can do this by using an infinite-dimensional irreducible *-representation of the Hopf algebra considered as a $*$-algebra. The result (Theorem 4.1) gives an expansion in terms of Wall polynomials (little q-Jacobi polynomials with the second parameter equal to zero).

Our addition formula somewhat resembles an addition formula for (continuous) q-ultraspherical polynomials derived by Rahman and Verma [14], but for that formula a (quantum) group-theoretic interpretation is not yet known. It would have been hard to find our formula without guidance from the quantum group. Indeed, that it is possible to obtain such a formula demonstrates the power and depth of the quantum group-theoretic interpretation of special functions. It turns out to be highly nontrivial to prove this formula analytically or to show that its limit case for $q \uparrow 1$ is the addition formula for Legendre polynomials. The analytic proof has been done by Rahman [13] and the limit result is proved by Van Assche and Koornwinder [2].

The contents of this paper are as follows. In $\S \S 2$ and 3 the preliminaries about q-hypergeometric orthogonal polynomials and quantum groups, respectively, are presented. The derivation of the addition formula is given in $\S 4$. Finally, a product formula for little q-Legendre polynomials is derived from the addition formula in $\S 5$.

[^0]2. Some q-hypergeometric orthogonal polynomials. Let $1 \neq q \in \mathbb{C}$. We use the familiar definitions and notation for q-shifted factorials and q-hypergeometric functions (cf. [6, Chap. 1], [10, § 2]). The little q-Jacobi polynomials
\[

p_{n}(x ; a, b \mid q):={ }_{2} \phi_{1}\left($$
\begin{array}{c}
q^{-n}, a b q^{n+1} \tag{2.1}\\
a q
\end{array}
$$; q, q x\right)
\]

occur as part of a classification by Hahn [7] of orthogonal polynomials satisfying q-difference equations. Their detailed properties as orthogonal polynomials are given by Andrews and Askey [1]. For $a=b=1$ we will call these polynomials little q-Legendre polynomials.

The special little q-Jacobi polynomials obtained by putting $b:=0$ in (2.1) are known as Wall polynomials; cf. Chihara [3, §5, Case I], [4, Chap. 6, § 11]:

$$
\begin{equation*}
p_{n}(x ; a, 0 \mid q)={ }_{2} \phi_{1}\left(q^{-n}, 0 ; a q ; q, q x\right) \tag{2.2}
\end{equation*}
$$

(Chihara uses another notation). We will put $a:=q^{\alpha}$. These polynomials can be viewed as one of the many q-analogues of the Laguerre polynomials in view of the limit formula

$$
\lim _{q \uparrow 1} p_{n}\left((1-q) x ; q^{\alpha}, 0 \mid q\right)=L_{n}^{\alpha}(x) / L_{n}^{\alpha}(0)
$$

By specialization of the orthogonality relations for the little q-Jacobi polynomials we obtain the orthogonality relations for the Wall polynomials:
(2.3) $\frac{\left(q^{\alpha+1} ; q\right)_{\infty}}{(1-q)(q ; q)_{\infty}} \int_{0}^{1} p_{n}\left(t ; q^{\alpha}, 0 \mid q\right) p_{m}\left(t ; q^{\alpha}, 0 \mid q\right) t^{\alpha}(q t ; q)_{\infty} d_{q} t=\delta_{n, m} \frac{q^{n(\alpha+1)}(q ; q)_{n}}{\left(q^{\alpha+1} ; q\right)_{n}}$, where the q-integral is defined by

$$
\int_{0}^{1} f(t) d_{q} t:=\sum_{k=0}^{\infty} f\left(q^{k}\right)\left(q^{k}-q^{k+1}\right)
$$

and where we suppose that $0<q<1$ and $\alpha>-1$. From [3, Forms. (5.1), (5.2)] together with (2.2) we obtain the three-term recurrence relation

$$
\begin{align*}
x p_{n}(x ; a, 0 \mid q)= & -q^{n}\left(1-a q^{n+1}\right) p_{n+1}(x ; a, 0 \mid q) \\
& +q^{n}\left(1+a-a q^{n}-a q^{n+1}\right) p_{n}(x ; a, 0 \mid q) \\
& -q^{n}\left(a-a q^{n}\right) p_{n-1}(x ; a, 0 \mid q), \tag{2.4}\\
p_{-1}(x ; a, 0 \mid q)= & 0, \quad p_{0}(x ; a, 0 \mid q)=1 .
\end{align*}
$$

Put

$$
\begin{align*}
P_{n}\left(q^{k} ; q^{\alpha} \mid q\right):= & \left.\frac{\left(q^{\alpha+1} ; q\right)_{\infty}\left(q^{k+1} ; q\right)_{\infty}\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{\infty}(q ; q)_{n}}\right)^{1 / 2} \\
& \cdot(-1)^{n} q^{(k-n)(\alpha+1) / 2} p_{n}\left(q^{k} ; q^{\alpha}, 0 \mid q\right) \tag{2.5}
\end{align*}
$$

Then (2.3) can be rewritten as

$$
\begin{equation*}
\sum_{k=0}^{\infty} P_{n}\left(q^{k} ; q^{\alpha} \mid q\right) P_{m}\left(q^{k} ; q^{\alpha} \mid q\right)=\delta_{n, m}, \quad n, m=0,1,2, \cdots \tag{2.6}
\end{equation*}
$$

Since the orthogonality measure in (2.3) has compact support, the orthonormal system

$$
\left\{P_{n}\left(q^{k} ; q^{\alpha} \mid q\right)\right\}_{k=0,1,2, \cdots,} \quad n=0,1,2, \cdots
$$

is complete in the Hilbert space l^{2}. Hence, we have also the dual orthogonality relations

$$
\begin{equation*}
\sum_{n=0}^{\infty} P_{n}\left(q^{k} ; q^{\alpha} \mid q\right) P_{n}\left(q^{\prime} ; q^{\alpha} \mid q\right)=\delta_{k, l}, \quad k, l=0,1,2, \cdots \tag{2.7}
\end{equation*}
$$

We conclude this section with an expression of Wall polynomials in terms of $\mathrm{a}_{3} \phi_{2}$:

$$
p_{n}\left(x ; q^{\alpha}, 0 \mid q\right)=\frac{(-1)^{n} q^{n(n+2 \alpha+1) / 2} x^{n}}{\left(q^{\alpha+1} ; q\right)_{n}}{ }_{3} \phi_{2}\left(\begin{array}{c}
q^{-n}, q^{-n-\alpha}, x^{-1} \tag{2.8}\\
0,0
\end{array} ; q, q\right) .
$$

This follows by putting $b:=0$ in

$$
\begin{aligned}
{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-n}, a b q^{n+1} \\
a q
\end{array} ; q, q x\right) & =\left(q^{-n+1} x ; q\right)_{n 2} \phi_{2}\left(\begin{array}{c}
q^{-n}, q^{-n} b^{-1} \\
q a, q^{-n+1} x
\end{array} ; q, q^{n+2} a b x\right) \\
& =\frac{(q b ; q)_{n} q^{n(n-1) / 2}(-a q x)^{n}}{(q a ; q)_{n}}{ }_{3} \phi_{2}\left(\begin{array}{c}
q^{-n}, q^{-n} \alpha^{-1}, x^{-1} \\
q b, 0
\end{array} ; q, q\right) .
\end{aligned}
$$

Here we have used a transformation formula for ${ }_{2} \phi_{1}$ (cf. [6, Chap. 1]) in the first equality and reversion of summation order in the second equality (see also [8]).
3. The quantum group $\boldsymbol{S U _ { \mu }}$ (2). In the rest of this paper we fix $0 \neq \mu \in(-1,1)$. Let \mathscr{A} be the unital $*$-algebra generated by the two elements α and γ satisfying the relations

$$
\begin{aligned}
& \alpha \gamma=\mu \gamma \alpha, \quad \alpha \gamma^{*}=\mu \gamma^{*} \alpha, \quad \gamma \gamma^{*}=\gamma^{*} \gamma, \\
& \alpha^{*} \alpha+\gamma \gamma^{*}=I, \quad \alpha \alpha^{*}+\mu^{2} \gamma \gamma^{*}=I .
\end{aligned}
$$

Let $\Phi: \mathscr{A} \rightarrow \mathscr{A} \otimes \mathscr{A}$ be the unital $*$-homomorphism such that

$$
\Phi(\alpha)=\alpha \otimes \alpha-\mu \gamma^{*} \otimes \gamma, \quad \Phi(\gamma)=\gamma \otimes \alpha+\alpha^{*} \otimes \gamma
$$

Then Φ acts as a comultiplication and \mathscr{A} thus becomes a Hopf algebra with involution which we say to be associated with the compact matrix quantum group $S U_{\mu}(2)$. In the limit for $\mu \uparrow 1, \mathscr{A}$ becomes the algebra of polynomials in the matrix elements of the natural representation of $S U(2)$, and the comultiplication is then induced by the group structure of $S U(2)$.

It is possible to embed the $*$-algebra \mathscr{A} as a dense $*$-subalgebra of a C^{*}-algebra by a universal construction. The C^{*}-algebra approach is emphasized in particular by Woronowicz [17], [18]. In this paper we could work with the C^{*}-algebra, but only elements of the dense $*$-subalgebra \mathscr{A} will be needed, so we will use this latter algebra. Other references for $S U_{\mu}(2)$ besides [17] and [18], are [5], [15], [11], and [12].

The irreducible unitary co-representations of \mathscr{A} (which are called irreducible unitary representations of $S U_{\mu}(2)$ in [18] and [10]) have been completely classified [18], [9], [15], [11], [12], [10]. Up to equivalence, there is one such co-representation for each finite dimension. We will denote the co-representation of dimension $2 l+1$ by $t^{l, \mu}\left(l=0, \frac{1}{2}, 1, \cdots\right)$, and its matrix elements with respect to a suitable orthonormal basis corresponding to the quantum subgroup $U(1)$ by $t_{n, m}^{t, \mu}(n, m=-l,-l+1, \cdots, l)$. Then the co-representation property of $t^{l, \mu}$ is expressed by

$$
\begin{equation*}
\Phi\left(t_{n, m}^{l, \mu}\right)=\sum_{k=-l}^{l} t_{n, k}^{l, \mu} \otimes t_{k, m}^{l, \mu} \tag{3.1}
\end{equation*}
$$

The $t_{n, m}^{l, \mu}$ have been computed explicitly in terms of little q-Jacobi polynomials (cf. [15], [11], [12], [10]). Here we will only need the cases that $l=0,1,2, \cdots$ and m or $n=0$. Put

$$
\begin{gather*}
p_{l, k}^{\mu}(x):=\left[\begin{array}{c}
l \\
k
\end{array}\right]_{\mu^{2}}^{1 / 2}\left[\begin{array}{c}
l+k \\
k
\end{array}\right]_{\mu^{2}}^{1 / 2} \mu^{-k(l-k)} p_{l-k}\left(x ; \mu^{2 k}, \mu^{2 k} \mid \mu^{2}\right) \tag{3.2}\\
p_{l}^{\mu}(x):=p_{l, 0}^{\mu}(x)=p_{l}\left(x ; 1,1 \mid \mu^{2}\right) \tag{3.3}
\end{gather*}
$$

Here the notation (2.1) for the little q-Jacobi polynomials is used and (3.3) gives a little q-Legendre polynomial. Then (cf. [10, Thm. 5.3]), for $k=0,1, \cdots, l$,

$$
\begin{align*}
& t_{l, 0}^{l, \mu}=\left(\alpha^{*}\right)^{k} p_{l, k}^{\mu}\left(\gamma \gamma^{*}\right) \gamma^{k} \\
& t_{0, k}^{l, \mu}=\left(\alpha^{*}\right)^{k} p_{l, k}^{\mu}\left(\gamma \gamma^{*}\right)\left(-\mu \gamma^{*}\right)^{k} \\
& t_{-k, 0}^{l, \mu}=\left(-\mu \gamma^{*}\right)^{k} p_{l, k}^{\mu}\left(\gamma \gamma^{*}\right) \alpha^{k} \tag{3.4}\\
& t_{0,-k}^{l, \mu}=\gamma^{k} p_{l, k}^{\mu}\left(\gamma \gamma^{*}\right) \alpha^{k}
\end{align*}
$$

Hence

$$
\begin{equation*}
t_{0,0}^{l, \mu}=p_{l}^{\mu}\left(\gamma \gamma^{*}\right) \tag{3.5}
\end{equation*}
$$

The irreducible *-representations of the $*$-algebra \mathscr{A} on a Hilbert space are classified in [15, Thm. 3.2]. There is a family of one-dimensional and a family of infinite-dimensional representations, both parametrized by the unit circle. We pick one of these infinite-dimensional representations: Let \mathscr{H} be a Hilbert space with orthonormal basis e_{0}, e_{1}, \cdots. Put $e_{-1}, e_{-2}, \cdots:=0$. We define a $*$-representation of τ of \mathscr{A} on \mathscr{H} by specifying the action of the generators of \mathscr{A} :

$$
\begin{align*}
& \tau(\alpha) e_{n}:=\left(1-\mu^{2 n}\right)^{1 / 2} e_{n-1}, \\
& \tau\left(\alpha^{*}\right) e_{n}:=\left(1-\mu^{2 n+2}\right)^{1 / 2} e_{n+1}, \\
& \tau(\gamma) e_{n}:=\mu^{n} e_{n} \tag{3.6}\\
& \tau\left(\gamma^{*}\right) e_{n}:=\mu^{n} e_{n}
\end{align*}
$$

4. Proof of the addition formula. Let $l=0,1,2, \cdots$. A special case of (3.1) is

$$
\Phi\left(t_{0,0}^{l, \mu}\right)=\sum_{k=-l}^{l} t_{0, k}^{l, \mu} \otimes t_{k, 0}^{l \mu}
$$

Hence, by (3.4) and (3.5),

$$
\begin{align*}
p_{l}^{\mu}\left(\Phi\left(\gamma \gamma^{*}\right)\right)= & p_{l}^{\mu}\left(\gamma \gamma^{*}\right) \otimes p_{l}^{\mu}\left(\gamma \gamma^{*}\right) \\
& +\sum_{k=1}^{l}\left(\alpha^{*}\right)^{k} p_{l, k}^{\mu}\left(\gamma \gamma^{*}\right)\left(-\mu \gamma^{*}\right)^{k} \otimes\left(\alpha^{*}\right)^{k} p_{l, k}^{\mu}\left(\gamma \gamma^{*}\right) \gamma^{k} \tag{4.1}\\
& +\sum_{k=1}^{l} \gamma^{k} p_{l, k}^{\mu}\left(\gamma \gamma^{*}\right) \alpha^{k} \otimes\left(-\mu \gamma^{*}\right)^{k} p_{l, k}^{\mu}\left(\gamma \gamma^{*}\right) \alpha^{k} .
\end{align*}
$$

This formula might already be called an addition formula for little q-Legendre polynomials p_{l}^{μ}. It involves noncommuting variables. In the limit, for $\mu \uparrow 1$, the variables commute and (4.1) becomes the classical addition formula for Legendre polynomials. In three steps we will rewrite (4.1) into a formula involving commuting variables: First, we represent (4.1) as an operator identity on the Hilbert space $\mathscr{H} \otimes \mathscr{H}$ by using the representation $\tau \otimes \tau$ (cf. (3.6)). Second, we let these operators act on the standard basis of $\mathscr{H} \otimes \mathscr{H}$. Thus we obtain a family of vector identities in $\mathscr{H} \otimes \mathscr{H}$. Third, we take inner products with respect to another suitable orthonormal basis of $\mathscr{H} \otimes \mathscr{H}$. This will yield a family of scalar identities.

Apply $\tau \otimes \tau$ to both sides of (4.1) and let both sides of the resulting operator equality act on $e_{x+y} \otimes e_{y}$. Then

$$
p_{l}^{\mu}\left((\tau \otimes \tau) \Phi\left(\gamma \gamma^{*}\right)\right) e_{x+y} \otimes e_{y}=p_{l}^{\mu}\left(\mu^{2 x+2 y}\right) p_{l}^{\mu}\left(\mu^{2 y}\right) e_{x+y} \otimes e_{y}
$$

$$
\begin{align*}
& +\sum_{k=1}^{l}(-1)^{k} \mu^{k(x+2 y+1)}\left(\mu^{2(x+y+1)} ; \mu^{2}\right)_{k}^{1 / 2}\left(\mu^{2(y+1)} ; \mu^{2}\right)_{k}^{1 / 2} \\
& \cdot p_{l, k}^{\mu}\left(\mu^{2 x+2 y}\right) p_{l, k}^{\mu}\left(\mu^{2 y}\right) e_{x+y+k} \otimes e_{y+k} \tag{4.2}\\
& +\sum_{k=1}^{l}(-1)^{k} \mu^{k(x+2 y-2 k+1)}\left(\mu^{2(x+y)} ; \mu^{-2}\right)_{k}^{1 / 2}\left(\mu^{2 y} ; \mu^{-2}\right)_{k}^{1 / 2} \\
& \cdot p_{l, k}^{\mu}\left(\mu^{2 x+2 y-2 k}\right) p_{l, k}^{\mu}\left(\mu^{2 y-2 k}\right) e_{x+y-k} \otimes e_{y-k} .
\end{align*}
$$

(Remember the convention that $e_{n}=0$ for $n<0$.)
In order to say more about the left-hand side of (4.2) we consider the action of

$$
\Phi\left(\gamma \gamma^{*}\right)=\left(\gamma \otimes \alpha+\alpha^{*} \otimes \gamma\right)\left(\gamma^{*} \otimes \alpha^{*}+\alpha \otimes \gamma^{*}\right)
$$

on $e_{x+y} \otimes e_{y}$. We obtain

$$
\begin{aligned}
(\tau \otimes \tau) & \left(\Phi\left(\gamma \gamma^{*}\right)\right) e_{x+y} \otimes e_{y} \\
= & \mu^{x+2 y+1}\left(1-\mu^{2 x+2 y+2}\right)^{1 / 2}\left(1-\mu^{2 y+2}\right)^{1 / 2} e_{x+y+1} \otimes e_{y+1} \\
& +\left(\mu^{2 x+2 y}+\mu^{2 y}-\mu^{2 x+4 y}-\mu^{2 x+4 y+2}\right) e_{x+y} \otimes e_{y} \\
& +\mu^{x+2 y-1}\left(1-\mu^{2 x+2 y}\right)^{1 / 2}\left(1-\mu^{2 y}\right)^{1 / 2} e_{x+y-1} \otimes e_{y-1} .
\end{aligned}
$$

Hence, if

$$
f:=\sum_{y=0}^{\infty} c_{y} e_{x+y} \otimes e_{y}
$$

belongs to $\mathscr{H} \otimes \mathscr{H}$, then

$$
(\tau \otimes \tau)\left(\Phi\left(\gamma \gamma^{*}\right)\right) f=\sum_{y=0}^{\infty}\left[c_{y-1} \mu^{x+2 y-1}\left(1-\mu^{2 x+2 y}\right)^{1 / 2}\left(1-\mu^{2 y}\right)^{1 / 2}\right.
$$

$$
\begin{align*}
& +c_{y}\left(\mu^{2 x+2 y}+\mu^{2 y}-\mu^{2 x+4 y}-\mu^{2 x+4 y+2}\right) \tag{4.3}\\
& \left.+c_{y+1} \mu^{x+2 y+1}\left(1-\mu^{2 x+2 y+2}\right)^{1 / 2}\left(1-\mu^{2 y+2}\right)^{1 / 2}\right] e_{x+y} \otimes e_{y} .
\end{align*}
$$

Now choose

$$
c_{y}:=P_{y}\left(\mu^{2 z} ; \mu^{2 x} \mid \mu^{2}\right)
$$

where P_{y} is defined in terms of Wall polynomials by (2.5). Then $f \in \mathscr{H} \otimes \mathscr{H}$ and, by (2.4), the expression in square brackets on the right-hand side of (4.3) is equal to $\mu^{2 z} c_{y}$. Define

$$
\begin{equation*}
f_{z}^{x}:=\sum_{y=0}^{\infty} P_{y}\left(\mu^{2 z} ; \mu^{2 x} \mid \mu^{2}\right) e_{x+y} \otimes e_{y} \tag{4.4}
\end{equation*}
$$

Then, by the orthogonality relations (2.7), the vectors $\left\{f_{z}^{x}\right\}_{z=0,1,2, \cdots}$ form an orthonormal basis of

$$
\begin{equation*}
\bigoplus_{y=0}^{\infty} \mathbb{C} e_{x+y} \otimes e_{y} \tag{4.5}
\end{equation*}
$$

We also have

$$
\begin{equation*}
(\tau \otimes \tau)\left(\Phi\left(\gamma \gamma^{*}\right)\right) f_{z}^{x}=\mu^{2 z} f_{z}^{x} \tag{4.6}
\end{equation*}
$$

Now take the inner product of both sides of (4.2) with respect to f_{z}^{x} and apply (4.4), (4.6), and the self-adjointness of $\Phi\left(\gamma \gamma^{*}\right)$ acting on $\mathscr{H} \otimes \mathscr{H}$. Assume also the convention that $P_{n}:=0$ and $p_{n}:=0$ for $n<0$. Then we obtain

$$
\begin{aligned}
p_{l}^{\mu}\left(\mu^{2 z}\right) P_{y}\left(\mu^{2 z} ; \mu^{2 x} \mid \mu^{2}\right)= & p_{l}^{\mu}\left(\mu^{2 x+2 y}\right) p_{l}^{\mu}\left(\mu^{2 y}\right) P_{y}\left(\mu^{2 z} ; \mu^{2 x} \mid \mu^{2}\right) \\
& +\sum_{k=1}^{l}(-1)^{k} \mu^{k(x+2 y+1)}\left(\mu^{2(x+y+1)} ; \mu^{2}\right)_{k}^{1 / 2}\left(\mu^{2(y+1)} ; \mu^{2}\right)_{k}^{1 / 2} \\
& \cdot p_{l, k}^{\mu}\left(\mu^{2 x+2 y}\right) p_{l, k}^{\mu}\left(\mu^{2 y}\right) P_{y+k}\left(\mu^{2 z} ; \mu^{2 x} \mid \mu^{2}\right) \\
& +\sum_{k=1}^{l}(-1)^{k} \mu^{k(x+2 y-2 k+1)}\left(\mu^{2(x+y)} ; \mu^{-2}\right)_{k}^{1 / 2}\left(\mu^{2 y} ; \mu^{-2}\right)_{k}^{1 / 2} \\
& \cdot p_{l, k}^{\mu}\left(\mu^{2 x+2 y-2 k}\right) p_{l, k}^{\mu}\left(\mu^{2 y-2 k}\right) P_{y-k}\left(\mu^{2 z} ; \mu^{2 x} \mid \mu^{2}\right) .
\end{aligned}
$$

Finally substitute (3.2), (3.3), and (2.5) in (4.7) and replace μ^{2} by q. Then we obtain the following theorem.

Theorem 4.1 (addition formula for little q-Legendre polynomials). For $x, y, z=$ $0,1,2, \cdots$ we have

$$
\begin{align*}
p_{l}\left(q^{z} ;\right. & 1,1 \mid q) p_{y}\left(q^{z} ; q^{x}, 0 \mid q\right) \\
= & p_{l}\left(q^{x+y} ; 1,1 \mid q\right) p_{l}\left(q^{y} ; 1,1 \mid q\right) p_{y}\left(q^{z} ; q^{x}, 0 \mid q\right) \\
& +\sum_{k=1}^{l} \frac{(q ; q)_{x+y+k}(q ; q)_{l+k} q^{k(y-l+k)}}{(q ; q)_{x+y}(q ; q)_{l-k}(q ; q)_{k}^{2}} \\
& \cdot p_{l-k}\left(q^{x+y} ; q^{k}, q^{k} \mid q\right) p_{l-k}\left(q^{y} ; q^{k}, q^{k} \mid q\right) p_{y+k}\left(q^{z} ; q^{x}, 0 \mid q\right) \tag{4.8}\\
& +\sum_{k=1}^{l} \frac{(q ; q)_{y}(q ; q)_{l+k} q^{k(x+y-l+1)}}{(q ; q)_{y-k}(q ; q)_{l-k}(q ; q)_{k}^{2}} \\
& \cdot p_{l-k}\left(q^{x+y-k} ; q^{k}, q^{k} \mid q\right) p_{l-k}\left(q^{y-k} ; q^{k}, q^{k} \mid q\right) p_{y-k}\left(q^{z} ; q^{x}, 0 \mid q\right)
\end{align*}
$$

Remark 4.1. We could have derived the final result (4.8) from (4.1) as well by using one of the other members of the series of infinite-dimensional irreducible *-representations of \mathscr{A} as given by [15, Thm. 3.2]. The same result would also have been obtained by use of the faithful *-representation of \mathscr{A} given in [18, Thm. 1.2]. Furthermore, it can be shown that formula (4.8) taken for all $x, y, z=0,1,2, \cdots$ and with $q=\mu^{2}$ is equivalent to (4.1).

Remark 4.2. It is possible to give a more conceptual interpretation of the occurrence of Wall polynomials in the addition formula. Namely, it can be shown that Wall polynomials have an interpretation as Clebsch-Gordan coefficients for the decomposition of the $*$-representation $(\tau \otimes \tau) \circ \Phi$ of \mathscr{A} as a direct integral of irreducible *representations of \mathscr{A}.
5. The product formula for little \boldsymbol{q}-Legendre polynomials. If we multiply both sides of (4.7) with $P_{y}\left(\mu^{2 z} ; \mu^{2 x} \mid \mu^{2}\right)$ and sum over z, then by (2.6) we obtain the product formula

$$
p_{l}^{\mu}\left(\mu^{2 x+2 y}\right) p_{l}^{\mu}\left(\mu^{2 y}\right)=\sum_{z=0}^{\infty} p_{l}^{\mu}\left(\mu^{2 x}\right)\left(P_{y}\left(\mu^{2 z} ; \mu^{2 x} \mid \mu^{2}\right)\right)^{2}
$$

After substituting (3.3), (2.5), and (2.8) and after replacing x by $x-y$ and μ^{2} by q, we get the desired product formula.

Theorem 5.1. For $x, y=0,1,2, \cdots$ we have

$$
p_{l}\left(q^{x} ; 1,1 \mid q\right) p_{l}\left(q^{y} ; 1,1 \mid q\right)=(1-q) \sum_{z=0}^{\infty} p_{l}\left(q^{z} ; 1,1 \mid q\right) K\left(q^{x}, q^{y}, q^{z} \mid q\right) q^{z}
$$

with

$$
\begin{gathered}
K\left(q^{x}, q^{y}, q^{z} \mid q\right):=\frac{\left(q^{x+1} ; q\right)_{x}\left(q^{y+1} ; q\right)_{x}\left(q^{z+1} ; q\right)_{x} q^{x+x z+y z}}{(q ; q)_{x}^{2}(1-q)} \\
\cdot\left\{{ }_{3} \phi_{2}\left(\begin{array}{c}
q^{-x}, q^{-y}, q^{-z} \\
0,0
\end{array} q^{-z}, q\right)\right\}^{2}
\end{gathered}
$$

REFERENCES

[1] G. E. Andrews and R. Askey, Enumeration of partitions: The role of Eulerian series and q-orthogonal polynomials, in Higher Combinatorics, M.Aigner, ed., D. Reidel, Dordrecht, the Netherlands, 1977, pp. 3-26.
[2] W. Van Assche and T. H. Koornwinder, Asymptotic behaviour for Wall polynomials and the addition formula for little q-Legendre polynomials, SIAM J. Math. Anal., this issue (1991), pp. 301302.
[3] T. S. Chihara, Orthogonal polynomials with Brenke type generating functions, Duke Math. J., 35 (1968), pp. 505-518.
[4] , An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[5] V. G. Drinfeld, Quantum groups, in Proc. International Congress of Mathematicians, Berkeley, 1986, American Mathematical Society, Providence, RI, 1987, pp. 798-820.
[6] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, U.K., 1990.
[7] W. HAHN, Über Orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nachr., 2 (1949), pp. 4-34, 379.
[8] M. E. H. Ismail and J. A. Wilson, Asymptotic and generating relations for the q-Jacobi and ${ }_{4} \phi_{3}$ polynomials, J. Approx. Theory, 36 (1982), pp. 43-54.
[9] M. Jimbo, A q-analogue of $U(g)$ and the Yang-Baxter equation, Lett. Math. Phys., 10 (1985), pp. 63-69.
[10] T. H. KOORNWINDER, Representations of the twisted $S U(2)$ quantum group and some q-hypergeometric orthogonal polynomials, Nederl. Akad. Wetensch. Indag. Math., 51 (1989), pp. 97-117.
[11] T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi, and K. Ueno, Representations of quantum groups and a q-analogue of orthogonal polynomials, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), pp. 559-564.
[12] , Representations of the quantum group $S U_{q}(2)$ and the little q-Jacobi polynomials, J. Funct. Anal., to appear.
[13] M. RAhman, A simple proof of Koornwinder's addition formula for the little q-Legendre polynomials, Proc. Amer. Math. Soc., 107 (1989), pp. 373-381.
[14] M. Rahman and A. Verma, Product and addition formula for the continuous q-ultraspherical polynomials, SIAM J. Math. Anal., 17 (1986), pp. 1461-1474.
[15] L. L. Vaksman and Ya. S. Soibelman, Algebra of functions on the quantum group $S U(2)$, Funct. Anal. Appl., 22 (1988), pp. 170-181.
[16] N. Ya. Vilenkin, Special functions and the theory of group representations, Amer. Math. Soc. Transl. 22, American Mathematical Society, Providence, RI, 1968.
[17] S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys., 111 (1987), pp. 613-665.
[18] , Twisted $S U(2)$ group. An example of a non-commutative differential calculus, Publ. Res. Inst. Math. Sci., 23 (1987), pp. 117-181.

[^0]: * Received by the editors March 13, 1989; accepted for publication (in revised form) October 10, 1989.
 \dagger CWI: Centre for Mathematics and Computer Science, Postbus 4079, 1009 AB Amsterdam, the Netherlands.

