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Abstract

In linear programming one can formulate many combinatorial optimization prob-
lems as optimizing a linear function over a feasible region that is a polytope. Given
a polytope P , any non-redundant description of P contains precisely one inequality
for each facet. A polytope Q is called an extension of P if π(Q) = P under some
affine mapping π. Notice that Q could be in higher dimensional space than P . The
extension complexity xc(P ) of P is defined as the minimum number of facets among
all polytopes Q that are extensions of P . If P has small extension complexity, one can
optimize over P by means of a small linear program. This motivates the study of up-
per and lower bounds on extension complexity. In fact, Yannakakis [25] showed that
the extension complexity of P is equal to the non-negative rank of the slack matrix of
P . Moreover, there is a link between extension complexity and communication com-
plexity, and one can often obtain lower bounds on extension complexity from lower
bounds on nondeterministic communication complexity. Yannakakis [25] proved an
upper bound nO(logn) for the extension complexities of the stable set polytopes of
perfect graphs. Chudnovsky et al. [6] showed that every perfect graph either forms
one of the basic perfect graphs or it admits one of the structural decompositions.
These results motivate our study of extension complexity and graph operations.

The thesis starts with a global overview of extension complexity and its connec-
tion with communication theory. We then study the extension complexity of stable
set polytopes, denoted by xc(STAB(G)), for some graphs G. One can apply graph
operations to graphs G1 and G2 to obtain another graph G0 and ask what is the
relationship between xc(STAB(G0)) and xc(STAB(G1)), xc(STAB(G2)). We also
consider some special graphs. It is not clear whether the extension complexity of the
stable set polytope of perfect graphs is polynomial or not. Nevertheless, we are able
to show that the extension complexities of the stable set polytopes of double-split
graphs are polynomial. Furthermore, we provide an upper bound on the extension
complexity of any perfect graph G depending on the depth of a decomposition tree
of G. We also study the extension complexity of other subclasses of perfect graphs
as well, for example, Meyniel graphs.
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Chapter 1

Introduction

1.1 Background

In combinatorial optimization, many algorithms are linear programming based. The
most common approach is as follows: given a combinatorial problem, one identifies
its feasible solutions with some vectors in such a way that optimizing a linear function
over the convex hull of these vectors is equivalent to solving the original problem. The
convex hull of a finite set of vectors is called a polytope. Minkowski [21] showed that
every polytope can be written as the set of solutions of a system of linear equalities
and inequalities. In other words, if one can find a linear system to describe the
polytope of the underlying problem, then this provides a linear programming based
algorithm.

One of the main obstacles behind the development of an efficient linear program-
ming based algorithm is the well-known fact that there are polytopes which require
exponentially many linear inequalities to describe it. For instance, Edmonds [12]
showed that the spanning tree polytope, i.e., the convex hull of all characteristic
vectors of spanning trees of the complete graph Kn, requires exponentially many
inequalities to define it. Nevertheless, this obstacle may be resolved if one is al-
lowed to introduce additional variables. Martin [19] used extra variables to provide
a polynomial sized linear system whose underlying polyhedron has a projection to
the spanning tree polytope. It turns out that one can often largely reduce the number
of inequalities required to describe a polytope by introducing a few extra variables.
This motivates the study of the so-called extension complexity, which for a poly-
tope P denotes the smallest number of inequalities required to describe a higher
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dimensional polytope Q whose (affine) linear projection is P .

The extension complexity of the spanning tree polytope turns out to be polyno-
mial, however it is clear that there are many polytopes whose extension complexities
are exponential. Indeed, one should not expect an efficient algorithm for NP-hard
problems, and the extension complexities of some of NP-hard problems are already
shown to be exponential. The first result of this type can be found in Fiorini et al.
[14] where the authors showed that the extension complexity of the traveling sales-
man polytope is 2Ω(

√
n), where n is the number of vertices of the underlying graph.

This answers a long standing open question by Yannakakis [25]. A more interesting
question is whether the extension complexities of the problems in the class P are
always at most polynomial. Rothvoß [22] answered this question negatively by show-
ing that the extension complexity of the perfect matching polytope of a complete
graph Kn is 2Ω(n).

Yannakakis [25] built a link between extension complexity and communication
complexity. He showed that the minimum number of rectangles needed to cover
the 1-entries of the slack matrix of the polytope P is a lower bound (known as
the rectangle covering bound) on the extension complexity of P . Furthermore, he
observed that the logarithm of the rectangle covering bound of a polytope P is
equal to the nondeterministic communication complexity of the function f whose
communication matrix is the slack matrix of P .

In this thesis, we will study the extension complexity of the stable set polytope
STAB(G) for some graphs G. The maximum stable set problem is a well-known
NP-hard problem in combinatorial optimization, which can be formulated as the
maximization of a linear function over the stable set polytope. Grötschel et al. [16]
showed that one can find the maximum stable set in polynomial time for perfect
graphs using semi-definite programming. This is so far the only known method to
find the maximum stable set in perfect graphs. Yannakakis [25] showed that the
extension complexity of the stable set polytope of perfect graphs is at most nO(logn).
In fact, it is still an open question whether the extension complexity of STAB(G) is
polynomial, when G is a perfect graph.

Chudnovsky et al. [6] showed that every perfect graph either forms one of five
types of basic perfect graphs or it admits one of two different types of structural
decomposition into simpler graphs. This motivates our study of the relationship
between xc(STAB(G0)) and xc(STAB(G1)), xc(STAB(G2)), when the graph G0 is
composed from the graphs G1 and G2.

The thesis is organized as follows. In Chapter 1 we introduce the basic notation
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and terminology which will be used throughout this thesis. Furthermore we also
collect some of the basic facts from polyhedral theory and graph theory.

In Chapter 2 we review the basics of extension complexity. We first define the ex-
tended formulation of a polytope (Section 2.1), and then introduce the non-negative
rank and the slack matrix (Section 2.2 and 2.3). The main result of this chapter is
Yannakakis’ Factorization Theorem (Section 2.4).

In Chapter 3 we give a short introduction to communication complexity the-
ory. Section 3.1 contains some basics and definitions in communication complexity.
In Section 3.2, the deterministic communication complexity and several important
quantities like the rectangle covering number are studied, and in Section 3.3 we intro-
duce the nondeterministic communication complexity and its link with the extension
complexity.

In Chapter 4 we look at the extension complexity of the stable set polytope of
a graph G0 obtained from two graphs G1 and G2 using some graph operation. In
Section 4.1, we motivate the study of the relation between extension complexity
and graph operations. In Section 4.2, 4.3 and 4.4, we study the following graph
operations: graph substitutions, graph amalgamation and clique sum.

In Chapter 5 we study the extension complexity of perfect graphs. In Section 5.1
and 5.2 we give some basic facts about the extension complexity of general perfect
graphs. In Section 5.3, the extension complexity of a subclass of perfect graphs
known as double-split graph is shown to be polynomial in the size of the graph. In
Section 5.4 and 5.5, we show an upper bound on the extension complexity of a graph
G admitting some proper 2-join decompositions or skew-partitions, in terms of the
extension complexities of some subgraphs of G. Finally, in Section 5.6, the extension
complexity of Meyniel graphs, which are a subclass of perfect graphs, is shown to be
polynomial under certain conditions.

1.2 Polyhedral Theory

We start this section by giving some basic definitions in polyhedral theory. The
material is based on Bertsimas and Tsitsiklis [3].

Definition 1.2.1. A polyhedron is a set of the form {x ∈ Rn : Ax ≤ b}, where A
is an m× n matrix and b is an m-dimensional vector. The inequalities in the linear
system Ax ≤ b are referred to as constraints.

3



Definition 1.2.2. Let v1, . . . , vk be vectors in Rn and λ1, . . . , λk be non-negative
scalars whose sum is one.

(i) The vector
∑k

i=1 λivi is called a convex combination of v1, . . . , vk;

(ii) The convex hull of v1, . . . , vk, denoted by conv. hull{v1, . . . , vk}, is the set of all
convex combinations of these vectors.

If the non-negative scalars λ1, . . . , λk are not required to sum to one, then the vector∑k
i=1 λivi is called a conic combination of v1, . . . , vk.

Definition 1.2.3. A polytope P is the convex hull of a finite number of vectors.
That is P = conv. hull{v1, . . . , vk} for some vectors v1, . . . , vk.

Definition 1.2.4. Let P be a polyhedron. An element x ∈ P is called a vertex of P
if there exists a vector c such that cTx < cTy for all y ∈ P and y 6= x.

Definition 1.2.5. Let P be a polyhedron. A vector x ∈ P is called an extreme point
of P if there do not exist two vectors y, z ∈ P and a scalar λ ∈ (0, 1) such that
x = λy + (1− λ)z.

Theorem 1.2.6. Let P be a polyhedron. A vector x ∈ P is an extreme point if and
only if it is a vertex of P .

Let A ∈ Rm×n be any matrix. For i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, we denote
the ith row of A and jth column of A by Ai ∈ Rn×1 and Aj ∈ Rm×1, respectively.

Definition 1.2.7. Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron. If an element
x∗ ∈ P satisfies AT

i x
∗ = bi, we say that the corresponding ith constraint is active or

binding at x∗. If a constraint AT
i x = bi is active at some elements of P , then this

constraint is called a tight constraint.

Minkowski [21] showed that the vertices of bounded polyhedron and polytope are
equivalent.

Theorem 1.2.8. [21] A subset P ⊆ Rn is a bounded polyhedron if and only if it is
a polytope.

We conclude this section with the famous Farkas’ Lemma, which is at the core of
linear optimization.

Theorem 1.2.9. [13] Given A ∈ Rm×d, b ∈ Rm, precisely one of the following two
statements is true:
1. there exists x ∈ Rn such that Ax = b and x ≥ 0.
2. there exists y ∈ Rm

+ such that yT b < 0 and yTA ≥ 0.
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The following is an equivalent statement of Farkas’ Lemma.

Theorem 1.2.10. [13] If the linear system Ax ≤ b implies the linear inequality
cTx ≤ d, then there exists a non-negative vector y ≥ 0 such that yTA = cT and
yT b ≤ d. Furthermore, if it also holds that {x : Ax ≤ b, cTx = d} is non-empty,
then there exists a non-negative vector y ≥ 0 such that yTA = cT and yT b = d.

1.3 Graph Theory

A graph G consists of a set of vertices, where some pairs of vertices are connected
by edges. More formally, the set of vertices of G is V (G) = {v1, . . . , vk}. The set of
edges of G, denoted by E(G), is a collection of unordered pairs of vertices. Let us
introduce some basic definitions first.

Definition 1.3.1. Let G be a graph and u be a vertex of G. The neighborhood of u,
denoted by NG(u), is defined as NG(u) := {v ∈ V (G) : {u, v} ∈ E(G)}. We simply
write N(u) when there is no ambiguity.

Definition 1.3.2. Let G be a graph and A be a subset of the vertices of G. The
subgraph induced by A, denoted by G(A), is the graph with vertex set A ⊆ V (G) and
edge set consisting of all edges of G whose both endpoints are in A. A graph G′ is
said to be an induced subgraph of G if G′ = G(A) for some A ⊆ V (G).

Definition 1.3.3. Let G be a graph. A path of G is an ordered set of vertices
v1, . . . , vk in V (G) such that {vi, vi+1} ∈ E(G) for every i = 1, . . . , k − 1. And we
say this is a path from v1 to vk.

Definition 1.3.4. Let G be a graph. A matching is a subset of edges such that no
pair of edges shares common endpoints.

Definition 1.3.5. Let G be a graph and u, v be the vertices of G. We say u is
reachable from v if there is a path from u to v in G.

Definition 1.3.6. A graph G is called connected if for each pair of vertices u and v
of G, u is reachable from v.

Definition 1.3.7. Let G be a graph and A,B be two disjoint subsets of the vertices
of G. We define

E(A) := {{u, v} ∈ E(G) : u, v ∈ A}
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and
E(A,B) := {{u, v} ∈ E(G) : u ∈ A, v ∈ B}.

So E(A) is the set of edges whose endpoints are both in A, and E(A,B) is the set of
edges crossing the vertex sets A and B.

Given a graph G, we ask whether G admits any interesting ‘structure’. The
so-called stable sets are the ‘structure’ that will be studied in this thesis.

Definition 1.3.8. A stable set (also called independent set) is a subset of the vertices
of G no two of which are adjacent. The cardinality of a largest stable set in G is
denoted by α(G).

Definition 1.3.9. A clique is a set of pairwise adjacent vertices in G. The cardi-
nality of a largest clique in G is denoted by ω(G).

In what follows, the set of stable sets and the set of cliques in G are denoted
by I(G) and C(G), respectively. Now we provide the definition of a very important
class of graphs, called perfect graphs. These have been studied extensively in the
past. The definitions of complete graphs, bipartite graphs, the line graph of a graph
and the complement of a graph are also given.

Definition 1.3.10. A graph G is said to be perfect if χ(G′) = ω(G′) for every
induced subgraph G′ of G.

Definition 1.3.11. A complete graph with r vertices, denoted by Kr, is a graph
whose edge set consists of all possible edges.

Definition 1.3.12. A bipartite graph is a graph whose vertices can be partitioned
into two independent sets.

Definition 1.3.13. A graph L is the line graph of a graph G if V (L) = E(G) and
two vertices of L are adjacent if and only if their corresponding edges share a common
endpoint in G.

Definition 1.3.14. The complement of a graph G, denoted by Ḡ, is the graph which
has the same vertex set as G, and {u, v} ∈ E(Ḡ) if and only if {u, v} /∈ E(G) for all
u, v ∈ V (G).

We may view a subset of vertices of some graphG as a binary vector of size |V (G)|.
This enables us to analyze many graph problems from a different perspective.
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Definition 1.3.15. Given a subset S ⊆ V (G) of vertices of G, the characteristic
vector of S, denoted by χS, is a |V (G)|-dimensional binary vector such that χS(u) = 1
if and only if u ∈ S. So χS is indexed by the vertices of G.

For a subset of vertices K ⊆ V (G), χS(K) ∈ {0, 1}|K| is the ‘subvector’ of χS

corresponding to the vertices of K.

Recall that a polytope is the convex hull of a finite number of vectors. The stable
set polytope defined below is the central object of study in this thesis.

Definition 1.3.16. The stable set polytope STAB(G) of a graph G is the convex
hull of the characteristic vectors of the stable sets of G. It is defined as

STAB(G) := conv. hull{χI : I is stable in G} ⊆ R|V (G)|.

From Theorem 1.2.8, we know that the stable set polytope can be described by
some linear system. Nevertheless, the proof of Theorem 1.2.8 only shows the exis-
tence and there is, in fact, so far no recipe to find such a linear system in general.
Although the description of the stable set polytope in general is not known, an ex-
plicit description of STAB(G) can be given for some special class of graphs. Chvátal
[7] provided an explicit description of the stable set polytope of perfect graphs.

Theorem 1.3.17. [7] A graph is perfect if and only if STAB(G) is characterized by
the following linear system, in the vector of variables x ∈ R|V (G)|,∑

v∈C

xv ≤ 1 ∀ C clique of G, (1.1)

x ≥ 0. (1.2)

Thus G is perfect if and only if STAB(G) = {x ∈ R|V | : x satisfies (1.1) and (1.2)}.
In what follows, the set of inequalities in (1.1) are called the clique constraints and
the set of inequalities in (1.2) are called the non-negativity constraints. Notice that
it suffices to include all the maximal clique constraints in (1.1).

7



Chapter 2

Extension Complexity

2.1 Extended Formulation

An extended formulation of a polytope is a linear system describing this polytope
possibly using additional variables. The interest of extended formulations is due to
the fact that one can often reduce the number of inequalities needed to define this
polytope when additional variables are allowed.

Definition 2.1.1 (Extended Formulation). Let P ⊆ Rd be a polytope. Consider a
linear system of the form:

Ex+ Ft = g, Êx+ F̂ t ≤ ĝ (2.1)

in variables (x, t) ∈ Rd+q, where E ∈ Rp×d, F ∈ Rp×q, Ê ∈ Rr×d, F̂ ∈ Rr×q, g ∈ Rp

and ĝ ∈ Rr for some p, q, r ∈ Z+. The linear system (2.1) is called an extended
formulation of P when x ∈ P if and only if there exists a t ∈ Rq such that the vector
(x, t) satisfies the system (2.1). The additional variable t is called the lifting variable.

The size of the extended formulation is defined as the number r of inequalities in
the system (2.1). The extended formulation is said to be in slack form if the only
inequalities are non-negativity conditions on the lifting variable t, i.e., if it is of the
form:

Ex+ Ft = g, t ≥ 0 (2.2)

and then its size is the dimension of the variable t.

In order to prove that a linear system, say the linear system (2.1), is an extended
formulation of some polytope P , one of the things we need to show is that for each
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x ∈ P , there exists a t ∈ Rq such that the vector (x, t) satisfies the system (2.1). In
fact, it suffices to show this statement for all vertices v of P .

Lemma 2.1.2. Let P ⊆ Rd be a polytope. If v ∈ V (P ) implies that there exists a
tv ∈ Rq such that the vector (v, tv) satisfies the linear system (2.1), then for each
x ∈ P , there exists a t ∈ Rq such that the vector (x, t) satisfies the system (2.1).

Proof. Let x ∈ P . Then x can be written as a convex combination of the vertices
of P , i.e., x =

∑
v∈V (P ) λv · v, where λv’s are non-negative scalars. By assumption,

for each vertex v of P , there exists a tv ∈ Rq such that the vector (v, tv) satisfies the
linear system (2.1). Then

∑
v∈V (P ) λv · (v, tv) also satisfies the linear system (2.1).

Let t =
∑

v∈V (P ) λv · tv. It holds that (x, t) satisfies the linear system (2.1).

Definition 2.1.3 (Extension). Let P ⊆ Rd be a polytope. A polytope Q ⊆ Rk is
called an extension of P if there exists a linear mapping π : Rk → Rd such that
P = π(Q). The size of the extension Q, denoted by size(Q), is defined as the number
of facets of Q.

Definition 2.1.4 (Extension Complexity). Let P ⊆ Rd be a polytope. The extension
complexity of P is defined as

xc(P ) = min{size(Q) : Q is an extension of P}.

2.2 Non-negative Rank

Given a non-negative matrix S, the non-negative rank of S is the smallest number
of rank-one matrices with non-negative entries into which S can be decomposed
additively. The non-negative rank of S is denoted by rank+(S). Formally it is
defined as follows.

Definition 2.2.1 (Non-negative rank). The non-negative rank of a matrix S ∈ Rm×n
+

is defined as

rank+(S) = min{r : S = TU, T ∈ Rm×r
+ , U ∈ Rr×n

+ }.

In what follows, S = TU above is called a non-negative decomposition with interme-
diate dimension r.

9



While computing the (usual) rank of a matrix is an easy task, computing the
non-negative rank is a non-trivial matter. Vavasis [24] showed that determining if
rank+(S) = rank(S) is NP-hard. Some procedures to implement such computation
have been investigated, see e.g. the work of Cohen and Rothblum [9].

In the rest of this subsection, we provide some basic and well-known properties
of the non-negative rank.

Lemma 2.2.2. For any non-negative matrix S ∈ Rm×n
+ , we have

(i) rank+(S) = rank+(ST );

(ii) rank+(S) ≤ min{m,n};
(iii) rank(S) ≤ rank+(S).

Proof.

(i) If S = UV , then ST = (UV )T = V TUT .

(ii) Consider the non-negative decompositions S = SIn = ImS.

(iii) The rank of S can be defined as rank(S) = min{r : S = TU, T ∈ Rm×r, U ∈
Rr×n}.

Lemma 2.2.3. Given matrices S1 ∈ Rm1×n, S2 ∈ Rm2×n
+ , S ′1 ∈ Rm×n1, S ′2 ∈ Rm×n2

+ ,
it holds that

(i) rank+(

[
S1

S2

]
) ≤ rank+(S1) + rank+(S2);

(ii) rank+(
[
S ′1 S ′2

]
) ≤ rank+(S ′1) + rank+(S ′2).

Proof. We shall prove the first statement; the second statement follows from the
first one using Lemma 2.2.2 (i). Set ri := rank+(Si) (i = 1, 2) and consider some
non-negative decompositions of S1 and S2 with intermediate dimensions r1 and r2,
respectively. Namely, S1 = T1U1 and S2 = T2U2 for some matrices T1 ∈ Rm1×r1

+ , U1 ∈
Rr1×n

+ , T2 ∈ Rm2×r2
+ , U2 ∈ Rr2×n

+ . Then

S :=

[
S1

S2

]
=

[
T1 0
0 T2

] [
U1 0
0 U2

]
,

which gives a non-negative decomposition of S with intermediate dimension r1 + r2,
and shows rank+(S) ≤ rank+(S1) + rank+(S2).
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2.3 Slack Matrix

Definition 2.3.1 (Slack matrix). Let P ⊆ Rd be a polytope. Consider a set V =
{v1, . . . , vn} ⊆ Rd containing all vertices of P , i.e., V (P ) ⊆ V , and a linear system
Ax ≤ b describing P , i.e., P = {x ∈ Rd : Ax ≤ b}, where A ∈ Rm×d and b ∈ Rm×1.
Then the m× n non-negative matrix S = (Si,j) with entries

Si,j = bi − AT
i vj

is called a slack matrix of P and we say it is induced by V and the linear system
Ax ≤ b.

Notice that the slack matrix of a polytope depends on the underlying linear
system and the point set V . As every slack matrix is non-negative, the non-negative
rank of any slack matrix is well-defined. In the next section, we will see that rank+(S)
is equal to the extension complexity of the underlying polytope P and thus rank+(S)
does not depend on the choice of the set V ⊇ V (P ) and the linear system defining
P .

Lemma 2.3.2. [25] Let S be a slack matrix of some polytope P ⊆ Rd, induced by
the linear system Ax ≤ b defining P and the point set {v1, . . . , vn} ⊇ V (P ). It holds
that rank(S) ≤ d+ 1 .

Proof. The slack matrix can be rewritten as S = b1T − AV where V =
[
v1, . . . , vn

]
is the d × n matrix using the vectors of the vertices as columns. This implies the
rank of any slack matrix is no greater than d+ 1.

2.4 Yannakakis’ Factorization Theorem

Given a polytope P , Yannakakis’ factorization theorem (see Yannakakis [25]) states
that the smallest size of an extended formulation of P equals the nonnegative rank of
its slack matrix S. This leads to a surprising connection between extension complex-
ity and communication complexity, and we shall discuss them in Section 3. Before
we provide the factorization theorem, we need the following lemmas.

Definition 2.4.1. A polyhedron P ⊆ Rd is called regular, if there exists a direction
u ∈ Rd such that −∞ < min{uTx : x ∈ P} < max{uTx : x ∈ P} <∞.
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If P is regular, then P has dimension at least 1. Moreover if P is a polytope of
dimension at least 1 or more generally if some linear image π(P ) is a polytope of
dimension at least 1, then P is regular.

Lemma 2.4.2. Consider a regular polyhedron P = {x ∈ Rd : Ax ≤ b}. Assume
that the inequality cTx ≤ d is implied by the system Ax ≤ b. Then there exist non-
negative scalars λ ∈ Rd

+ such that λTA = cT and λT b = d, i.e., cTx ≤ d is a conic
combination of inequalities in Ax ≤ b.

Proof. First of all, we show that the inequality 0Tx ≤ 1 can be written as a conic
combination of inequalities in Ax ≤ b. As P is regular, we can find a direction u such
that l1 = min{uTx : x ∈ P} and l2 = max{uTx : x ∈ P} are well-defined and l1 < l2.
Moreover the inequalities −uTx ≤ −l1 and uTx ≤ l2 are valid and tight for P . By
Farkas’ lemma (Theorem 1.2.10), they are both conic combination of the inequalities
in Ax ≤ b; moreover the sum of them is 0Tx ≤ 1 after some positive scaling.

Now consider the valid inequality cTx ≤ d. If it is tight, the result follows again
from Farkas’ lemma (Theorem 1.2.10). If it is not tight, there exists a scalar d̃ strictly
smaller than d such that cTx ≤ d̃ is tight. Now cTx ≤ d is a non-negative combination
of cTx ≤ d̃ and 0Tx ≤ 1, which are both conic combinations of inequalities of Ax ≤ b,
and thus this proves the claim.

Lemma 2.4.3. Let P be a polytope. Consider the slack matrix induced by the set
of points V = {v1, . . . , vn} ⊇ V (P ) and the linear system Ax ≤ b defining P , where
A ∈ Rm×d, b ∈ Rm×1. The following holds:

(i) Let cTx ≤ d be a valid inequality for P . Let S ′ be the slack matrix induced by
the linear system Ax ≤ b, cTx ≤ d, and the set of points V . If P is regular,
then

rank+(S ′) = rank+(S).

(ii) Let vn+1 ∈ P be any point in P . Let S ′′ be the slack matrix induced by the
linear system Ax ≤ b and the set of points V ∪ {vn+1}. Then

rank+(S ′′) = rank+(S).

Proof. By Lemma 2.2.3, we have rank+(S ′) ≤ rank+(S) and rank+(S ′′) ≤ rank+(S),
as S ′ and S ′′ are sub-matrices of S. Let S = TU be a non-negative factorization of S,
for some T ∈ Rm×r

+ , U ∈ Rr×n
+ . We shall extend this factorization to a non-negative

factorization of S ′ and S ′′ with the same intermediate dimension, which will prove
the claim.
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(i) As P is regular and the inequality cTx ≤ d is implied by the linear system
Ax ≤ b, applying Lemma 2.4.2, there exist non-negative scalars λ ∈ Rm

+ such that∑m
i=1 µiA

T
i = cT and

∑m
i=1 µibi = d. Define Tm+1 :=

∑m
i=1 µiTi ∈ R1×n. For every

j = 1, . . . , n, we have

Tm+1Uj = (
m∑
i=1

µiTi)Uj =
m∑
i=1

µi(bi − AT
i vj) = d− cTvj.

This implies S ′ =

[
T

Tm+1

]
U .

(ii) As vn+1 is a convex combination of the points in V , there exist non-negative
coefficients λ1, . . . , λn such that vn+1 =

∑n
i=1 λivi and

∑n
i=1 λi = 1. Define Un+1 :=∑n

i=1 λiU
i ∈ Rm×1. For every i = 1, . . . ,m, we have

TiU
n+1 =

n∑
j=1

λjTiU
n+1 =

n∑
j=1

λj(bi − Aivn+1) = bi − Aivn+1.

Thus S ′′ = T
[
U Un+1

]
.

By Minkowski-Weyl theorem (see Minkowski [21]), any polytope P can be alter-
natively described as the set of solutions of a linear system or as the convex hull of
a finite set of points. These descriptions are not unique and thus the slack matrix
of P is also not unique. However if P is regular, as a direct corollary of Lemma
2.4.3, then the non-negative rank of the slack matrix of P does not depend on the
choice of the linear system describing P or the set of points V ⊇ V (P ). Hence the
non-negative rank of the slack matrix of P characterizes a geometric property of P ,
it does not depend on the algebraic description of P .

The following theorem from Yannakakis [25], builds a link between the non-
negative rank of the slack matrix of P and the extension complexity of P . We
provide another version of the proof due to Fiorini et al. [14].

Theorem 2.4.4. [25] Let P = {x ∈ Rd : Ax ≤ b} be a polytope of dimension at
least 1, where A ∈ Rm×d, b ∈ Rm×1, and V = {v1, . . . , vn} ⊇ V (P ). Let S ∈ Rm×n

be the induced slack matrix. Let r be a positive integer. The following assertions are
equivalent:

(i) rank+(S) ≤ r;

(ii) P has an extension of size at most r;

13



(iii) P has an extended formulation in slack form of size at most r.

(iv) P has an extended formulation of size at most r.

Proof. (i)⇒ (ii) : By assumption, S = TU for some non-negative matrices T ∈ Rm×r
+

and U ∈ Rr×n
+ . Moreover we may assume T contains no zero-column, otherwise r

can be decreased. Let Q be a polyhedron defined by the following linear system

Ax+ Tt = b, t ≥ 0. (2.3)

So Q = {(x, t) ∈ Rd+r : (x, t) satisifes linear system (2.3)}. Since T is non-negative
and it contains no zero-columns, one can check that Q is a bounded polyhedron
and thus it is a polytope. Moreover Q has at most r facets as it is defined by r
inequalities. So Q is an extension of P of size at most r if we can show π(Q) = P .

π(Q) ⊆ P : Take any (x, t) ∈ Q, we have Tt ≥ 0 as both T and t are non-negative,
this implies Ax ≤ b and thus x ∈ P .

π(Q) ⊇ P : It suffices to show any vertex of P is contained in π(Q). Take any
vertex vj ∈ V (P ), then vj ∈ V and take the corresponding column U j ∈ Rr

+ in the
matrix U . Using the definition of slack matrix, we have

Avj + TU j = Avj + Sj = Avj + (b− Avj) = b.

This implies that the vector (vj, U
j) ∈ Rd+r is in Q and thus vj ∈ π(Q).

(ii) ⇒ (iv) : Let Q ⊆ Rk be an extension of P of size at most r. By definition,
Q is a polytope with at most r facets, thus it can be defined by some linear system
with at most r inequalities, say

Q := {y ∈ Rk : A′y = b′, By ≤ d}.

So B has at most r rows. Let π be the affine mapping such that P = π(Q), say
π(y) = Cy + c for some matrix C and vector c. Now consider the following linear
system

A′y = b′, By ≤ d, x = Cy + c

where x ∈ Rd. This linear system is an extended formulation of P , i.e., x ∈ P if and
only if there exists y ∈ Rk such that the pair (x, y) satisfies the above system. The
size of an extended formulation is the number of inequalities in the linear system,
which is at most r in this case.

(iv)⇒ (i) : Assume we have an extended formulation of P of size r given by the
following linear system

Ex+ Ft = g, Êx+ F̂ t ≤ ĝ (2.4)
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in variables (x, t) ∈ Rd+q, where E ∈ Rp×d, F ∈ Rp×q, Ê ∈ Rr×d, F̂ ∈ Rr×q, g ∈ Rp

and ĝ ∈ Rr for some p, q ∈ Z+. Furthermore let Q ⊆ Rd+r be the polyhedron defined
by the above linear system (2.4). Clearly Q is regular, as it has a linear image which
is a polytope of dimension at least 1.

Let S ′ ∈ R(r+m)×|V |
+ be the slack matrix whose first r rows correspond to the

inequalities in the linear system (2.4) and whose last m rows correspond to the
inequalities in the linear system Ax ≤ b and whose columns corresponds to the set
of points V ′ = {(v, 0) ∈ Rd+q : v ∈ V }. Now the slack matrix S is a submatrix of S ′,
since S consists of the last m rows of S ′. This implies rank+(S) ≤ rank+(S ′).

As Q is regular and each inequality in the linear system Ax ≤ b is implied by the
linear system (2.4), applying Lemma 2.4.3, we conclude that rank+(S ′) = rank+(S ′′),
where S ′′ is the submatrix of S ′ corresponding to its first r rows. It remains to notice
that rank+(S ′′) ≤ r as S ′′ has r rows, using Lemma 2.2.2. Thus rank+(S ′) ≤ r, which
in turn implies rank+(S) ≤ r.

(iii)⇒ (iv) : An extended formulation in slack form is an extended formulation.

(iv)⇒ (iii) : If P has an extended formulation of size at most r, then rank+(S) ≤
r by implication (iv) ⇒ (i). We claim that the linear system (2.3) is an extended
formulation of P in slack form of size r. Indeed, in (i)⇒ (ii), we already prove that
x ∈ P if and only if there exists a t ∈ Rr such that (x, t) satisfies the linear system
(2.3).

The central question in this field is finding good upper and lower bounds for the
extension complexity of a given polytope P . For example, a trivial lower bound
based on the dimension of P is provided below.

Lemma 2.4.5. If P is a d-dimensional polytope, then xc(P ) ≥ d+ 1.

Proof. Assume xc(P ) < d + 1. From Theorem 2.4.4, we know P has an extension
Q ⊆ Rk with at most d facets and the dimension of Q satisfies k ≥ d. Since a
k-dimensional polytope has at least k + 1 facets, Q contains at least k + 1 ≥ d + 1
facets. This is a contradiction.

This trivial lower bound is tight in the following case.

Lemma 2.4.6. xc(STAB(Kp)) = p+ 1.

Proof. From Lemma 2.4.5, we know xc(STAB(Kp)) ≥ p+ 1. As the complete graph
is perfect, it follows from Theorem 1.3.17 that the stable set polytope of Kp can be
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characterized by the following linear system

p∑
i=1

xi ≤ 1 and xi ≥ 0 ∀i = 1, . . . , p.

in variables x ∈ Rp. This is an extended formulation of size p + 1 and thus
xc(STAB(Kp)) ≤ p+ 1.
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Chapter 3

Communication Complexity

3.1 Introduction

In this chapter we introduce communication compexity and establish its connec-
tion with extension complexity via non-negative rank of slack matrices. Part of the
material is based on Kushilevitz and Nisan [17].

Let f : X × Y → Z be a function for some sets X, Y, Z. The communication
problem involves two separated parties (Alice and Bob), and each of them receives
part of the input, i.e. Alice gets x ∈ X and Bob gets y ∈ Y . The goal is to design a
protocol so that they can compute f(x, y) with the least amount of communication
between them. Here we assume that Alice and Bob have unlimited computational
power.

A communication protocol computing f is a distributed algorithm that, at each
stage, must determine whether the run terminates; if the run terminates, both par-
ties should know the outcome; and if the run has not terminated, the protocol must
specify a player who should send a bit next. If Alice is specified, the protocol also
specifies what she sends. The whole process depends solely on the bits communi-
cated so far. The cost of a protocol P on input (x, y) is the total number of bits
communicated by P on this input (x, y). The cost of a protocol P is the maximum
cost of P over all inputs (x, y). The complexity of f is defined as the minimum cost
among all protocols computing f .

We shall see that the complexity of f depends on the structure of the underlying
communication matrix, which is defined as follows.
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Definition 3.1.1. Given a function f : X × Y → Z, the communication matrix of
f is a matrix Mf ∈ R|X|×|Y | defined as (Mf )x,y = f(x, y) for every (x, y) ∈ X × Y .

3.2 Deterministic Communication

We would like to analyze the protocol from a combinatorial point of view. To this
end, the protocol is defined in terms of binary trees.

Definition 3.2.1. Let f : X × Y → Z be a function. A protocol P is a binary tree
such that

(i) Each leaf is associated with an element z ∈ Z;

(ii) Each internal node v is associated with a function av : X → {0, 1} or bv : Y →
{0, 1}.

The output of the protocol P on input (x, y) is the element z ∈ Z associated to the
leaf node reached as follows: starting from the root; at each node associated with av
walk left if and only if av(x) = 0, and at each node associated with bv walk left if and
only if bv(y) = 0. The cost of the protocol is the depth of the tree.

Definition 3.2.2. A deterministic protocol P computing f is one whose output on
input (x, y) always equals to f(x, y) for every x ∈ X and y ∈ Y .

Definition 3.2.3. Let f : X × Y → Z be a function. The deterministic commu-
nication complexity of f , denoted by D(f), is the minimum cost of P among all
deterministic protocols computing f .

There is a trivial protocol to compute function f : Alice sends her input to Bob,
then Bob calculates f(x, y) locally and sends the answer back to Alice. This yields
the following upper bound on D(f).

Proposition 3.2.4. For every function f : X × Y → Z, the deterministic commu-
nication complexity of f satisfies:

D(f) ≤ log2 |X|+ log2 |Z|.

Proof. It costs at most log2 |X| bits to send Alice’s input to Bob. Now Bob can
calculate f(x, y) locally and sending the answer back to Alice costs at most log2 |Z|
bits. This is a deterministic protocols computing f with costs log2 |X|+log2 |Z|.
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There is also a simple a lower bound onD(f). Namely, D(f) is at least log2 |range(f)|,
where range(f) = {z ∈ Z : f(x, y) = z for some (x, y) ∈ X × Y }, as either Alice or
Bob sends the answer to another party in the last step. This lower bound can be
useful if the range of f is large. However we are concerned with boolean functions
f : X ×Y → {0, 1} in the remaining discussion, and this lower bound does not help.
We will find a better bound by exploiting the tree structure of protocol P .

Definition 3.2.5. Given a protocol P and a node v from the underlying binary tree,
we define Rv to be the set of inputs (x, y) that reach node v.

As each input (x, y) results in a path from root to some leaf node, {Rl}l∈L is a
partition of the input X × Y , where L is the set of leaves. It turns out that such
a partition possesses special structure. Let us define the so-called monochromatic
rectangles first.

Definition 3.2.6. A rectangle R of X×Y is a subset R ⊆ X×Y such that R = A×B
for some A ⊆ X and B ⊆ Y .

Definition 3.2.7. A subset R ⊆ X × Y is called f -monochromatic if the value of f
is constant on R.

We will see that deterministic communication complexity and rectangles are con-
nected via the following proposition:

Proposition 3.2.8. Given a protocol P and a node v from the underlying protocol
tree, Rv is a rectangle.

Proof. We prove this by induction on the level k of the node.
The base step: When k = 0, v is the root node and every (x, y) ∈ X × Y reaches v.
Clearly X × Y is a rectangle.
Induction step: Assume the case for k − 1 is true. Pick any node v at level k whose
parent is u. By induction hypothesis, Ru = Au×Bu is a rectangle. Assume without
loss of generality that it is Alice’s turn to send the bit at u and the associated function
is au : X → {0, 1}. Assume that node v is the left child of u. Then we have

Rv = Ru ∩ {(x, y) : au(x) = 0}
= (Au ×Bu) ∩ {(x, y) : au(x) = 0}
= (Au ∩ {(x, y) : au(x) = 0})×Bu.

This shows that Rv is a rectangle. The reasoning is analogous in the case when v is
the right child of u.
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Finally we are ready to state the connection explicitly.

Proposition 3.2.9. Let f : X×Y → Z be a function and P be a protocol computing
f . If L is the set of leaves of the protocol P, then {Rl}l∈L forms a partition of X×Y
into f -monochromatic rectangles. Furthermore, the number of rectangles is precisely
the number of leaves of P.

Proof. The statement follows immediately from the fact that each input (x, y) reaches
precisely one leaf l and all inputs reaching the same leaf l have the same value z
(corresponding to the leaf l).

This connection yields the following lower bound on deterministic communication
complexity.

Corollary 3.2.10. Let f : X × Y → Z be a function. If d is a lower bound on
the number of rectangles to partition X × Y into f -monochromatic rectangles, then
D(f) ≥ log2 d.

Proof. Assume D(f) < log2 d, there exists a deterministic protocol P of f whose
cost is less than log2 d, i.e., the depth of the underlying binary tree is less than
log2 d. Then the number of leaves in the binary tree is strictly less than 2log2 d = d.
By Proposition 3.2.9, it induces a partition of X × Y using strictly less than d f -
monochromatic rectangles. This is a contradiction.

3.3 Nondeterministic Communication

We start this section with the definition of the rectangle covering number and non-
deterministic communication complexity.

Definition 3.3.1. The rectangle covering number C1(f) of some function f : X ×
Y → {0, 1} is the smallest number of monochromatic rectangles to cover the 1-entries
of its communication matrix Mf .

Definition 3.3.2. The nondeterministic communication complexity of a boolean
function f : X × Y → {0, 1} is N1(f) := dlog2C

1(f)e.

Consider an all-powerful prover who knows both inputs of Alice and Bob, and
this all-powerful prover is trying to convince them that f(x, y) = 1 by sending a cer-
tificate. Upon receiving this certificate, Alice and Bob verify it using a deterministic
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verification protocol. The cost of a proof system is the sum of the size (in bits) of
the certificate and the cost of the deterministic verification protocol. In addition,
this proof system must satisfy the following two conditions:

(i) If f(x, y) = 1, then there exists a certificate such that Alice and Bob conclude
f(x, y) = 1;

(ii) If f(x, y) = 0, then Alice and Bob always declare f(x, y) = 0 for every certifi-
cate.

We will show the following relations between the minimum cost of a proof system
for f , denoted by cf , and the rectangle covering number C1(f).

Lemma 3.3.3. cf ≤ log2C
1(f) + 2.

Proof. Let C be a covering of the 1-entries of Mf by C1(f) 1-monochromatic rect-
angles. Consider the following proof system:

(i) If f(x, y) = 1, the all-powerful prover sends the index of a 1-monochromatic
rectangle R = A × B containing the input (x, y); otherwise the all-powerful
prover sends any rectangle index. (log2C

1(f) bits);

(ii) Alice verifies if x ∈ A, and sends the result to Bob. (1 bit);

(iii) Bob verifies if y ∈ B, and sends the result to Alice. (1 bit)

This is a valid proof system and thus cf ≤ log2C
1(f) + 2.

Lemma 3.3.4. cf ≥ log2C
1(f).

Proof. Consider any proof system for f of cost cf which contains 2k1 certificates and
each of the 2k1 certificates c induces a k2-cost deterministic protocol Pc, so k1 + k2 =
cf . Let Rc be the set of (at most 2k2) 1-monochromatic rectangles corresponding to
the 1-leaves of Pc. Then the union ∪cRc is a set of at most 2k1+k2 1-monochromatic
rectangles which covers exactly the 1s of Mf . Hence 2k1+k2 ≥ C1(f).

Now we investigate the link between nondeterministic communication complexity
and extension complexity. First of all, the definitions of the support of a matrix and
the support matrix of a matrix are provided.

Definition 3.3.5. Let M be a matrix. The support of the matrix M , denoted by
supp(M), is the set of entries where the value of the matrix is not zero. It is formally
defined as

supp(M) := {(a, b) : Ma,b 6= 0}.
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Definition 3.3.6. The support matrix of some matrix S, denoted by suppmat(S),
is the matrix defined as

(suppmat(S))xy =

{
1 if Sxy 6= 0,

0 otherwise.

Theorem 3.3.7. [25] Let S be any non-negative matrix. Let f : X × Y → {0, 1} be
a boolean function whose communication matrix Mf coincides with suppmat(S). It
holds that C1(f) ≤ rank+(S).

Proof. Let r = rank+(S). Then there exists a non-negative decomposition of S with
intermediate dimension r, namely S = TU for some non-negative matrices T ∈ Rm×r

+

and U ∈ Rr×n
+ . We have

supp(suppmat(S)) = supp(S)

= supp(
r∑

i=1

T iUT
i )

= ∪ri=1 supp(T iUT
i )

= ∪ri=1 supp(T i)× supp(UT
i ).

This yields a monochromatic rectangle covering with r rectangles, namely taking
rectangles Ri = supp(T i)× supp(UT

i ) for 1 ≤ i ≤ r.

From Theorem 2.4.4, the extension complexity of a polytope P equals the non-
negative rank of its slack matrix S induced by a certain linear system and set
of points. One may define a function f whose induced communication matrix is
suppmat(S). The above theorem asserts that the rectangle covering number C1(f)
lower bounds the non-negative rank of suppmat(S). Thus Theorem 2.4.4 and Theo-
rem 3.3.7 imply the following result.

Corollary 3.3.8. [25] Let P ⊆ Rd be a polytope and S be its induced slack matrix.
Let f be the boolean function whose communication matrix is suppmat(S). Then

xc(P ) ≥ C1(f).

The above corollary asserts that the nondeterministic communication complexity
of f is a lower bound on the logarithm of the extension complexity of P . This en-
ables us to analyze the extension complexity of polytopes using the nondeterministic
communication complexity of the corresponding function.
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In the rest of this section, we consider a lower bound technique for the rectangle
covering number, called the “fooling set” technique.

Definition 3.3.9. [1] Let f : X × Y → {0, 1}. A fooling set S is a subset of X × Y
such that

(i) f(x, y) = 1 for every (x, y) ∈ S;

(ii) if (x1, y1) and (x2, y2) are two distinct pairs in S, then f(x1, y2) = 0 or
f(x2, y1) = 0.

Given a fooling set S and two distinct pairs (x1, y1) and (x2, y2) in S, a f -
monochromatic rectangle cannot contain both (x1, y1) and (x2, y2). Indeed, if this is
the case, then f(x1, y2) = 0 or f(x2, y1) = 0, and this is a contradiction. This gives
the following well-known lower bound for the rectangle covering number.

Lemma 3.3.10. [1] If S is a fooling set of f , then C1(f) ≥ |S|.

Now we provide an application of the “fooling set” technique, which allows us to
derive a tight lower bound for the extension complexity of the stable set polytope of
a disjoint union of some edges.

Lemma 3.3.11. If G = (V,E) is the disjoint union of p edges, then xc(STAB(G)) = 3p.

Proof. Notice that every induced subgraph of G is a bipartite graph and thus G is
perfect. We know that xc(STAB(G)) ≤ 3p by Theorem 1.3.17.

To see xc(STAB(G)) ≥ 3p, we consider the slack matrix S of STAB(G), induced
by the non-negativity constraints, clique constraints and the stable sets of G. As G is
perfect, these constraints characterize STAB(G) and thus xc(STAB(G)) = rank+(S).
Let f : X × Y → {0, 1} be the function whose communication matrix Mf coincides
with S. So X is indexed by the non-negativity constraints and clique constraints, and
Y is indexed by the stable sets of G. Define [p] := {1, . . . , p}. Let V = {ai, bi : i ∈ [p]}
and E = {(ai, bi) : i ∈ [p]}. For every i ∈ [p], we consider the stable sets

Ii = {ai, . . . , ap, b1, . . . , bi−1},
Ji = {a1, . . . , ai−1, bi, . . . , bp},
Ki = {a1, . . . , ap}\{ai}.

For every i ∈ [p], define the following subsets of X × Y ,

(ai ≥ 0, Ii),

(bi ≥ 0, Ji),

(ai + bi ≤ 1, Ki).
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We shall prove that the above subsets of X × Y form a fooling set of size 3p for
f . This will prove the lemma. To this end, we check the condition (i) and (ii) in
Definition 3.3.9. It is clear that each listed subset satisfies (i), thus we will check (ii)
now.

Consider two distinct subsets (ai ≥ 0, Ii) and (aj ≥ 0, Ij) for some i, j ∈ [p] and
i 6= j. Assume f(ai ≥ 0, Ij) = 1 and f(aj ≥ 0, Ii) = 1. This implies that i ≥ j and
j ≤ i, which is a contradiction. Similarly we can check the subsets (bi ≥ 0, Ji) and
(bj ≥ 0, Jj) for some i, j ∈ [p] and i 6= j. For two distinct subsets (ai + bi ≤ 1, Ki)
and (aj +bj ≤ 1, Kj) for some i, j ∈ [p] and i 6= j, it holds that f(ai+bi ≤ 1, Kj) = 0.

Now we consider two distinct subsets (ai ≥ 0, Ii) and (bj ≥ 0, Jj) for some
i, j ∈ [p] and i 6= j. Assume f(ai ≥ 0, Ji) = 1 and f(bj ≥ 0, Ii) = 1. This implies
that i ≤ j − 1 and j ≤ i− 1, which is a contradiction.

Finally let us consider two distinct subsets (ai ≥ 0, Ii) and (aj + bj ≤ 1, Kj)
for some i, j ∈ [p]. It holds that f(aj + bj ≤ 1, Ii) = 0, as the clique {aj, bj}
must intersects the stable set Ii. The same result holds for subsets (bi ≥ 0, Ji) and
(aj + bj ≤ 1, Kj), where i, j ∈ [p].

Finally, we conclude this section with an application of communication complexity
to upper bound extension complexity. At the beginning of this section, we have shown
the nondeterministic communication complexity of a function is linearly related to
the minimum cost of a proof system for this function. A proof system is called
unambiguous, if it is additionally required that for each input (x, y), there exists
precisely one certificate such that Alice and Bob conclude f(x, y) = 1.

First of all, the following result from communication complexity is needed for us.

Lemma 3.3.12. [25] If the minimum cost of an unambiguous proof system for a
function f is k, then the deterministic complexity of f is at most O(k2).

Now we are ready to prove the following upper bound for the extension complex-
ities of the stable set polytopes of perfect graphs.

Theorem 3.3.13. [25] The extension complexities of the stable set polytopes of
n-vertex perfect graphs are nO(logn).

Proof. Let G be a perfect graph with n vertices. Let S be a submatrix of the slack
matrix of STAB(G), whose rows correspond to the clique constraints and whose
columns correspond to the stable sets of G. So the rows corresponding to the non-
negative constraints are discarded. Since there are only n non-negative constraints,
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the non-negative rank of S satisfies xc(STAB(G)) ≤ rank+(S) + n by Lemma 2.2.3.
The complement of S, denoted by S̄, is a matrix of the same size, and whose entries
are defined by S̄(C, I) = 1−S(C, I) for every clique C and independent set I. Notice
that S and S̄ are binary matrices.

Let f be a boolean function whose communication matrix Mf coincides with S̄.
Now we construct an unambiguous proof system computing f . Assume Alice and
Bob receive part of the input C∗ and I∗, respectively. Now the all-powerful prover
sends a vertex v as a certificate. Then Alice verifies if v ∈ C∗ and sends the result
to Bob, and Bob verifies whether v ∈ I∗ and sends the result to Alice. Finally they
conclude S̄(C∗, I∗) = 1 if and only if v ∈ C∗ and v ∈ I∗.

If S̄(C∗, I∗) = 1, then |C∗∩I∗| = 1. Thus there exists precisely one certificate such
that Alice and Bob conclude S̄(C∗, I∗) = 1. If S̄(C∗, I∗) = 0, then C∗ ∩ I∗ = ∅ and
Alice and Bob always conclude S̄(C∗, I∗) = 0. By definition, this is an unambiguous
proof system for computing the function f , whose cost is O(log n).

Let f ′ be a function whose communication matrix Mf ′ coincides with S. Applying
Lemma 3.3.12, we know that the deterministic communication complexity of f ′ is
at most O((log n)2). This induces a monochromatic rectangle partitioning of all the
entries of S with at most 2O(log2 n) = nO(logn) rectangles. As S is a binary matrix, the
monochromatic rectangle partitioning yields a non-negative decomposition of size
nO(logn). By Theorem 2.4.4, we conclude that the extension complexity of STAB(G)
is nO(logn).
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Chapter 4

Graph Operations

4.1 Introduction

In this chapter we consider several graph operations and investigate the behavior of
the extension complexity of the stable set polytope under these graph operations.
Roughly speaking, given two graphs G1 and G2 (possibly satisfying certain condi-
tions), a graph operation produces a new graph G0 obtained by ‘composing’ the two
graphs G1 and G2. We will consider the following operations:

(i) the graph substitution operation;

(ii) the amalgam operation;

(iii) the clique sum operation.

These operations share the property that they preserve perfection: if G1 and G2

are perfect then their composition G0 too is perfect. For all these graph operations
we will upper bound the extension complexity of the stable set polytope of G0 in
terms of the extension complexities of the stable set polytopes of G1 and G2. In this
chapter, we will show that if G1 and G2 compose G0 via operation (i), (ii), or (iii)
listed above, then it holds that xc(STAB(G0)) ≤ xc(STAB(G1)) + xc(STAB(G2)).
For the amalgam operation operation, it will be used in the next section to show
that the extension complexity of Meyniel graphs is polynomial in the size (number
of vertices) of the graph.

Our study is motivated by the fact that it is still an open problem whether the
extension complexity of the stable set polytope of every perfect graph is polynomially
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bounded in terms of the size of the graph. For many classes of graphs, the graphs
in a given class admit certain structural decompositions which roughly states that
every graph in this class can be constructed via some graph operations from some
predefined basic graphs. As we will see in the next chapter, the proof of the strong
perfect graph theorem provides such a structural decomposition for perfect graphs.
In other words, given a perfect graph G, it can be decomposed into basic graphs.
Here the decomposition refers to proper 2-join decomposition or skew partitions, so
they are not the operations considered in this chapter.

Suppose we have a class of graphs that can be decomposed into some predefined
basic graphs via some graph operation. Then the decomposition process induces a
tree whose leaves represent some ‘basic’ graphs. If the decomposition used in each
step, say G is decomposed into G1 and G2, has the property that xc(STAB(G)) ≤
xc(STAB(G1)) + xc(STAB(G2)), then we obtain an upper bound on the extension
complexity of the stable set polytope of G as a function of the extension complexity
of the stable set polytope of the basic graphs and the depth of the tree. We will use
this approach in the next chapter to upper bound the extension complexity for some
Meyniel graphs

4.2 Graph Substitution

Definition 4.2.1. Let G1 = (V1, E1) and G2 = (V2, E2) be two vertex-disjoint graphs
and u be a vertex of G1. The graph-substitution operation of graphs G1 and G2,
denoted by G0 = S(G1, u,G2), is the graph G0 = (V0, E0) with

V0 = (V1\{u}) ∪ V2,

E0 = (∪v∈V2{(v, w) : (u,w) ∈ E1}) ∪ E(G1(V1\{u})) ∪ E2.

In other words, the graph-substitution operation constructs a new graph G0 by
replacing a vertex u of G1 by G2 and connecting every vertex of G2 to all neighbors
of u in G1. Lovász [18] showed that if G1 and G2 are perfect graphs, then the
constructed new graph G0 = S(G1, u,G2) is also a perfect graph.

Theorem 4.2.2. [18] The graph-substitution operation preserves perfection.

In the rest of this section, we show that the extension complexity of STAB(G0) is
no greater than the sum of the extension complexities of STAB(G1) and STAB(G2).
First of all, we need the following lemma.
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Lemma 4.2.3. Let P be a non-empty polytope. Let the linear system

Ex+ Fs = g, s ≥ 0. (4.1)

be an extended formulation of P . If the pair (x0, s0) satisfies Ex0 + Fs0 = 0 and
s0 ≥ 0, then x0 = 0.

Proof. Let (x, s) be a feasible solution of the linear system (4.1), whose existence
is guaranteed by the assumption P 6= ∅. Then (x, s) + λ · (x0, s0) also satisfies this
linear system for every λ ≥ 0. This implies x + λ · x0 ∈ P for every λ ≥ 0. As P is
a polytope, it is bounded by Definition 1.2.8. This implies x0 = 0.

Let G be a graph. If x ∈ R|V (G)| be the vector of variables corresponding to the
vertices of a graph G and S ⊆ V (G) be a subset of vertices of G, then x(S) ∈ R|S|
denotes the ‘subvector’ of x containing only entries for the vertices in S. Now we are
ready to show the main result of this section.

Theorem 4.2.4. Let G1 and G2 be two vertex-disjoint graphs and u be a vertex of
G1. Let G0 = S(G1, u,G2) be the graph obtained by replacing u by G2 in G1. It holds
that

xc(STAB(G0)) ≤ xc(STAB(G1)) + xc(STAB(G2)).

Proof. For i = 1, 2, let xi ∈ R|V (Gi)| be the vector of variables corresponding to the
vertices of Gi and let the linear system

Eixi + Fisi = gi, si ≥ 0, (4.2)

be an extended formulation (in slack form) of STAB(Gi) of size ri, with the lifting
variables si ∈ Rri . These extended formulations can be assumed to be in slack form
by Theorem 2.4.4.

We claim that the following linear system{
E1y1 + F1t1 = g1, t1 ≥ 0,

E2y2 + F2t2 − g2 · y1(u) = 0, t2 ≥ 0.
(4.3)

in the vector of variables yi ∈ R|V (Gi)| and ti ∈ Rri (i = 1, 2), is an extended
formulation (not in slack form) of STAB(G0) with the lifting variables (t1, t2, y1(u)) ∈
Rr1+r2+1. In what follows, y1(ū) denotes y1(V1\{u}), so y1 = (y1(ū), y1(u)) and the
vector (y1(ū), y2) is indexed by the vertices of G0.
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By definition, we need to show that (y1(ū), y2) ∈ STAB(G0) if and only if there
exists a vector (t1, t2, y1(u)) ∈ Rr1+r2+1 such that (y1, y2, t1, t2) ∈ R|V1|+|V2|+r1+r2

satisfies the linear system (4.3).

The “only if” part (=⇒): Let (y1(ū), y2) ∈ STAB(G0). From Lemma 2.1.2, it
suffices to consider the case when (y1(ū), y2) ∈ R|V0| is a vertex of STAB(G0). Then
(y1(ū), y2) ∈ {0, 1}|V0| is the characteristic vector of some stable set I of G0. Let
Ji = I ∩ V (Gi) (i = 1, 2). Clearly Ji is stable in Gi. Recall that χS denotes the
characteristic vector of some subset S of the vertices. Consider the following two
cases depending on whether the set J1 ∪ {u} is stable in G1.

(i) If J1 ∪ {u} is stable in G1, then there exists a vector s1 ∈ Rr1 such that
(χJ1∪{u}, s1) satisfies the linear system (4.2) for i = 1, as this linear system
is an extended formulation of STAB(G1). Similarly, since J2 is stable in G2,
there exists a vector s2 ∈ Rr2 such that (χJ2 , s2) satisfies the linear system (4.2)
for i = 2.

Let t1 = s1, t2 = s2 and y1(u) = 1. Then y1 = χJ1∪{u} and y2 = χJ2 . It holds
that (y1, y2, t1, t2) satisfies the linear system (4.3), due to the choice of t1, t2
and y1(u) = 1.

(ii) If J1 ∪ {u} is not stable in G1, then J2 = ∅ as N(u) ∩ J1 6= ∅. Furthermore
χJ1(u) = 0 as u /∈ J1. We know that there exists a vector s1 ∈ Rr1 such that
(χJ1 , s1) satisfies the linear system (4.2) for i = 1, as this linear system is an
extended formulation of STAB(G1).

Let t1 = s1, t2 = 0 and y1(u) = 0. Then y1 = χJ1 and y2 = 0. We have
E1y1 + F1t1 = g1, t1 ≥ 0 by the choice of t1. Furthermore E2y2 = F2t2 =
g2 · y1(u) = 0 as y2 = 0, t2 = 0 and y1(u) = 0. Thus (y1, y2, t1, t2) satisfies the
linear system (4.3).

In both cases, we have constructed lifting variables (t1, t2, y1(u)) ∈ Rr1+r2+1 such
that the vector (y1, y2, t1, t2) ∈ R|V1|+|V2|+r1+r2 satisfies the linear system (4.3).

The “if” part (⇐=): Let (y1, y2, t1, t2) ∈ R|V1|+|V2|+r1+r2 be a vector satisfying the
linear system (4.3). We distinguish the following two cases depending on the value
of y1(u):

(i) If y1(u) = 0, then y2 = 0 by Lemma 4.2.3. As the linear system (4.2) is an
extended formulation of STAB(G1), y1 is in STAB(G1). If I ⊆ V (G1) is stable
in G1 and u /∈ I, then I is also stable in G0. Thus (y1(ū), y2) ∈ STAB(G0).
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(ii) If y1(u) > 0, then the linear system (4.3) implies y1 ∈ STAB(G1) and y2
y1(u)

∈
STAB(G2). Thus we can write y1 and y2

y1(u)
as convex combination of the

vertices of STAB(G1) and STAB(G2), respectively. By definition, there exist
non-negative coefficients λI ≥ 0 summing to 1, such that y1 =

∑
I∈I(G1) λIχ

I ,

where χI is the vertex of STAB(G1) associated to the stable set I. Similarly,
y2

y1(u)
=
∑

J∈I(G2) µJχ
J for some non-negative coefficients µJ ≥ 0 summing to 1

and χJ is the vertex of STAB(G2) associated to the stable set J .

As y1(u) =
∑

I∈I(G1),I3u λI , we have

∑
I∈I(G1),I 63u

λI

(
χI

0

)
+

∑
J∈I(G2)

µJ

∑
I∈I(G1),I3u

λI

(
χI

χJ

)
=

(
y1

y1(u) ·
∑

J∈I(G2) µJχ
J

)
=

(
y1

y2

)
by the choice of λI ’s and µJ ’s. It remains to notice that∑

I∈I(G1),I 63u

λI +
∑

J∈I(G2)

µJ

∑
I∈I(G1),I3u

λI = 1

and each term in the summation is non-negative. Furthermore consider the set
of the vectors appearing in the convex combination above,

{
(
χI

0

)
: I ∈ I(G1), I 63 u} ∪ {

(
χI

χJ

)
: I ∈ I(G1), I 3 u, J ∈ I(G2)}.

Each vector in this set corresponds to a unique vertex of STAB(G0) when the
entry for the vertex u is ignored. Thus (y1(ū), y2) ∈ STAB(G0).

This proves that the linear system (4.3) is an extended formulation of STAB(G0).
The size of an extended formulation of STAB(G0) is the number of inequalities in the
linear system, which is precisely r1 + r2 in this case. If we take r1 = xc(STAB(G1))
and r2 = xc(STAB(G2)), the theorem follows immediately.

For any graphs G1 and G2, the above theorem gives an upper bound on the
extension complexity of the graph G0 obtained by replacing some vertex u ∈ V (G1)
by G2. For some special cases, a slightly tighter upper bound can be obtained. We
look at the cases when G2 is Kp or K2. From Lemma 2.4.5 and Theorem 1.3.17, we
know that xc(STAB(Kp)) = p + 1. Fiorini et al. [15] showed that xc(STAB(Kp)) =
2p. We will show that xc(STAB(G0)) ≤ xc(STAB(G1)) + p when G2 = Kp (See
Proposition 4.2.5), and xc(STAB(G0)) ≤ xc(STAB(G1)) + 3 when G2 = K2 (See
Proposition 4.2.6).
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In the remaining part of this section, we use the linear system

Ex1 + Fs1 = g, s ≥ 0 (4.4)

as an extended formulation (in slack form) of STAB(G1) of size r with the lifting
variables s1 ∈ Rr. Rearrange the columns of the matrix E if necessary, so that
E = [Eū Eu] where Eu is the column associated with the vertex u. The entries of
the variable x1 are rearranged correspondingly such that x1 = (x1(ū), x1(u)).

Proposition 4.2.5. Let G1 = (V1, E1) be a graph and u ∈ V1 be a vertex of G1. Let
G0 = S(G1, u,Kp) be the graph obtained by replacing u by Kp in G1. It holds that

xc(STAB(G0)) ≤ xc(STAB(G1)) + p.

Proof. Let y1 ∈ R|V1|−1 and y2 ∈ Rp be the vectors of variables corresponding to the
vertices of G0 from V (G1)\{u} and V (Kp), respectively. So y1 is only indexed by
the vertices in V (G1)\{u} now. We will show that the following linear system (4.5)
is an extended formulation of STAB(G0) with the lifting variables t ∈ Rr:

[
Eū Eu · · · Eu

] [y1

y2

]
+ Ft = g, t ≥ 0, y2 ≥ 0. (4.5)

As the size of this linear system (4.5) is r + p, this suffices to prove the claim. By
definition, we need to show that (y1, y2) ∈ STAB(G0) if and only if there exists a
vector t ∈ Rr such that (y1, y2, t) ∈ R|V0|+r satisfies the linear system (4.5).

The “only if” part (=⇒): Let (y1, y2) ∈ STAB(G0). From Lemma 2.1.2, it suffices
to consider the case when (y1, y2) ∈ R|V0| is a vertex of STAB(G0). In other words,
(y1, y2) ∈ {0, 1}|V0| is the characteristic vector of some stable set I of G0. Since at
most one of the vertices from Kp can be included in the stable set I, we have that∑

v∈V (Kp) y2(v) = |I ∩ V (Kp)| ∈ {0, 1}.

We now define a vector x1 ∈ R|V1| indexed by V (G1) as follows: Take x1(u) =∑
v∈V (Kp) y2(v) ∈ {0, 1}, x1(ū) = y1 ∈ R|V1|−1, so x1 = (x1(ū), x1(u)) ∈ {0, 1}|V1|.

Now x1 can be considered as the characteristic vector of a subset of vertices J of G1

when the last entry is indexed by the vertex u. We claim that J is a stable set of
G1. Indeed, if x1(u) = |I ∩V (Kp)| = 1, then I ∩N(u) = ∅ and J = (I\V (Kp))∪{u}
is stable in G1; and if x1(u) = |I ∩ V (Kp)| = 0, then I ⊆ V (G1) and J = I is
stable in G1. Thus x1 ∈ STAB(G1) and there exists a vector s1 ∈ Rr such that
(x1, s1) ∈ R|V1|+r satisfies the linear system (4.4), as this linear system (4.4) is an
extended formulation of STAB(G1). Let t = s1 ∈ Rr. It can be easily shown that
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(y1, y2, t) ∈ R|V0|+r satisfies the linear system (4.5) using the feasibility of (x1, s1) for
the linear system (4.4).

The “if” part (⇐=): Let (y1, y2, t) ∈ R|V0|+r be a feasible solution of the linear
system (4.5). We need to show (y1, y2) ∈ STAB(G0). It is not hard to see that the
following linear system ∑

v∈V (Kp)

x2(v) ≤ 1, x2 ≥ 0, (4.6)

in variable x2 ∈ Rp, provides the linear inequality description of STAB(Kp). Apply-
ing the argument used in the proof of Theorem 4.2.4 to the extended formulation
(4.4) of STAB(G1) and the extended formulation (4.6) of STAB(Kp), we can con-
clude that the following linear system is an extended formulation of STAB(G0) with
lifting variables (x′1(u), s′): 

Ex′1 + Fs′ = g, s′ ≥ 0,∑
v∈V (Kp) x

′
2(v) ≤ x′1(u),

x′2 ≥ 0.

(4.7)

Hence x′1, x′2 and s′ are variables living in R|V (G1)|, Rp and r, respectively.

As the vector (y1, y2, t) satisfies the linear system (4.5), it also satisfies the fol-
lowing relation,

E

[
y1∑

v∈V (Kp) y2(v)

]
+ Ft = g, t ≥ 0, y2 ≥ 0.

This implies that the vector (y1,
∑

v∈V (Kp) y2(v)) satisfies the linear system (4.4)

which is an extended formulation of STAB(G1). Thus (y1,
∑

v∈V (Kp) y2(v)) ∈ STAB(G1)

and thus
∑

v∈V (Kp) y2(v) ≤ 1. Let x′1(u) =
∑

v∈V (Kp) y2(v) ∈ R, x′1(ū) = y1 ∈ R|V1|−1,

x′1 = (x′1(ū), x′1(u)) ∈ R|V1|, x′2 = y2 ∈ Rp and s′ = t ∈ Rp. Then (x′1, x
′
2, s
′) ∈

R|V1|+p+r satisfies the linear system (4.7). As the linear system (4.7) is an extended
formulation of STAB(G0), this implies (y1, y2) = (x′1(ū), x′2) ∈ STAB(G0).

Proposition 4.2.6. Let G1 = (V1, E1) be a graph and u ∈ V1 be a vertex. Let
G0 = S(G1, u,K2) be the graph obtained by replacing u by K2 in G1. It holds that

xc(STAB(G0)) ≤ xc(STAB(G1)) + 3.
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Proof. Let y1 ∈ R|V1|−1 and y2 ∈ R2 be the vectors of variables corresponding to the
vertices of G0 from V (G1)\{u} and V (K2), respectively. Denote the two vertices
of G2 by u1 and u2, respectively. So y2 = (y2(u1), y2(u2)). We will show that the
following linear system (4.8) is an extended formulation of STAB(G0) with lifting
variables t1 ∈ Rr and t2 ∈ R:[
Eū Eu Eu

] [y1

y2

]
+
[
F −Eu

] [t1
t2

]
= g, t1 ≥ 0, t2 ≥ 0, y2(u1) ≥ t2, y2(u1) ≥ t2.

(4.8)
As the size of this extended formulation (4.8) is r + 3, this will prove the claim. By
definition, we need to show that (y1, y2) ∈ STAB(G0) if and only if there exists a
vector (t1, t2) ∈ Rr+1 such that (y1, y2, t1, t2) ∈ R|V0|+r1+r2 satisfies the linear system
(4.8).

The “only if” part (=⇒): Let (y1, y2) ∈ STAB(G0). From Lemma 2.1.2, it
suffices to consider the case when (y1, y2) ∈ R|V0| is a vertex of STAB(G0). Then
(y1, y2) ∈ {0, 1}|V0| is the characteristic vector of some stable set I of G0. Consider
the following two cases depending on the cardinality of |I ∩ V (K2)| which is equal
to y2(u1) + y2(u2):

(i) If |I ∩ V (K2)| ≤ 1, then (y1, y2(u1) + y2(u2)) ∈ {0, 1}|V1| is the characteristic
vector of some stable set ofG1. Indeed, if |I∩V (K2)| = 1, thenN(u)∩I = ∅ and
(I∩V (G1))∪{u} is stable in G1; and if |I∩V (K2)| = 0, then y2(u1)+y2(u2) = 0
and we know that y1 corresponds to some stable set in G1. We know that there
exists a vector s1 ∈ Rr such that (y1, y2(u1) + y2(u2), s1) ∈ R|V1|+r satisfies the
linear system (4.4), as the linear system (4.4) is an extended formulation of
STAB(G1).

Let t1 = s1 and t2 = 0. Using the feasibility of (y1, y2(u1) + y2(u2), s1) for the
linear system (4.4), we get that (y1, y2, t1, t2) satisfies the linear system (4.8);

(ii) If |I ∩ V (K2)| = 2, then y2(u1) + y2(u2) = 2 and (y1, 1) ∈ R|V1| is the char-
acteristic vector of some stable set of G1. As the linear system (4.4) is an
extended formulation of STAB(G1), there exists a vector s1 ∈ Rr such that
(y1, 1, s1) ∈ R|V1|+r satisfies the linear system (4.4).

Let t1 = s1 and t2 = 1. Using the feasibility of (y1, 1, s1) for the linear system
(4.4) and the relation y2(u1) + y2(u2) = 2, one can show that (y1, y2, t1, t2)
satisfies the linear system (4.8);

In both cases, we have constructed the lifting variables (t1, t2) ∈ Rr+1 such that the
vector (y1, y2, t1, t2) ∈ R|V0|+r1+r2 satisfies the linear system (4.8).
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The “if” part (⇐=): Consider any feasible solution (y1, y2, t1, t2) ∈ R|V0|+r1+r2 of
(4.8). We need to show that (y1, y2) ∈ STAB(G0). The stable set polytope of K2

can be characterized by STAB(K2) = {x2 ∈ R2 : 0 ≤ x2 ≤ 1}. From the proof of
Theorem 4.2.4, the following linear system{

Ex′1 + Fs′ = g, s′ ≥ 0

0 ≤ x′2(v) ≤ x′1(u) ∀ v ∈ V (K2)
(4.9)

is an extended formulation of STAB(G0) with lifting variables (x′1(u), s′) ∈ Rr+1.

As the vector (y1, y2, t1, t2) satisfies the linear system (4.8), it also satisfies the
following relation,

E

[
y1

y2(u1) + y2(u2)− t2

]
+ Ft1 = g, t1 ≥ 0, t2 ≥ 0, y2(u1) ≥ t2, y2(u1) ≥ t2.

This implies the vector (y1, y2(u1) + y2(u2) − t2, t1) satisfies the linear system (4.4)
which is an extended formulation of STAB(G1), thus (y1, y2(u1) + y2(u2) − t2, t1) ∈
STAB(G1) and y2(u1)+y2(u2)−t2 ≤ 1. Take x1(u)′ = y2(u1)+y2(u2)−t2, x1(ū)′ = y1,
x′1 = (x1(ū)′, x1(u)′), x′2 = y2 and s′ = t. Then (x′1, x

′
2, s
′) satisfies the linear system

(4.9). As this linear system (4.9) is an extended formulation of STAB(G0) and this
implies that (y1, y2) = (x′1(ū), x′2) ∈ STAB(G0).

Finally, we provide an application of the graph substitution operation. Given a
graph G, if one recognizes that G can be composed from some ‘basic’ graphs via
graph substitution operation, then the result in this section immediately yields an
upper bound on xc(STAB(G)).

Lemma 4.2.7. Let G = (V,E) be the complement of a disjoint union of q edges. It
holds that xc(STAB(G)) ≤ 4q + 1.

Proof. By Lemma 2.4.6, the extension complexity of a complete graph Kq satisfies
xc(Kq) = q + 1. Now for each vertex u ∈ V (Kq), we substitute u by an independent
set K2 of size 2. The resulting graph is G. From Proposition 4.2.6, each substitution
increases the extension complexity by at most 3 and there are q substitutions, thus
xc(STAB(G)) ≤ 4q + 1.

4.3 Amalgam Operation

Definition 4.3.1. [4] Let G1 and G2 be graphs. Let vk ∈ V (Gk) and Ck ⊆ N(vk),
for k = 1, 2, such that
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(i) C1 and C2 are cliques of the same cardinality;

(ii) N(v1)\C1 = ∅ if and only if N(v2)\C2 = ∅;
(iii) {(u,w) : u ∈ Ck, w ∈ N(vk)\Ck} ⊆ E(Gk) (k = 1, 2).

The amalgam composition of the graphs G1 and G2 generates a new graph, de-
noted by G0 = (G1, v1, C1) Φ (G2, v2, C2), using the following procedure:

(a) identify the cliques C1 and C2, and the new clique is denoted by C;

(b) add all possible edges between the vertex sets N(v1)\C1 and N(v2)\C2;

(c) delete the vertices v1 and v2.

Conversely, if for a graph G0, there exist two triples (Gk, vk, Ck) (k = 1, 2) satisfying
(i), (ii), (iii) such that G0 = (G1, v1, C1) Φ (G2, v2, C2), then G0 is said to be amalgam
decomposed into the graphs G1 and G2.

Figure 4.1: Amalgamation of G1 and G2

Burlet and Fonlupt [4] showed that the amalgam composition preserves perfec-
tion.

Theorem 4.3.2. [4] The amalgam composition preserves perfection.

Burlet and Fonlupt [5] constructed a linear system defining STAB(G0) by using
the linear systems defining STAB(G1) and STAB(G2). We follow the same line of
reasoning as in [5] to show that the extension complexity of STAB(G0) is at most the
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sum of the extension complexities of STAB(G1) and STAB(G2). After the completion
of this section, we found that a recent result in Conforti et al. [10] already gives the
same upper bound in a more general setting.

Theorem 4.3.3. Let G0 be a graph such that G0 can be amalgam decomposed into
some graphs G1 and G2. It holds that

xc(STAB(G0)) ≤ xc(STAB(G1)) + xc(STAB(G2)).

Proof. By definition, there exist two triples (Gk, vk, Ck) (k = 1, 2) satisfying (i), (ii), (iii)
in Definition 4.3.1, such that G0 = (G1, v1, C1) Φ (G2, v2, C2). Let Vk := V (Gk) and
Ek := E(Gk) (k = 0, 1, 2). Let xk ∈ R|Vk| be the vector of variables corresponding to
the vertices of Gk and let the linear system

Akxk ≤ bk (4.10)

define the stable set polytope STAB(Gk) (k = 1, 2).

Let y = (y(V0), y(v1), y(v2)) ∈ R|V0|+2 be the vector of variables corresponding
to the vertices of G0 and the vertices v1 and v2. So y(V0) ∈ R|V0| is indexed by
the vertices of G0. The entries y(v1) ∈ R and y(v2) ∈ R represent the vertices v1

and v2, respectively. Notice that V0 ∪ {v1, v2} = (V1\C1) ∪ (V2\C2) ∪ C. Define
V0k := (Vk\Ck) ∪ C for k = 1, 2. Thus V0k contains the vertex vk and the vertices of
G0 generated from Gk and hence the vector y(V0k) ∈ R|Vk| is indexed by the vertex
vk and by the vertices of G0 generated from Gk for k = 1, 2.

Consider the following linear system obtained from the linear systems (4.10),{
Aky(V0k) ≤ bk, k = 1, 2,

y(v1) + y(v2) +
∑

v∈C y(v) = 1.
(4.11)

The linear systems A1y(V01) ≤ b1 and A2y(V02) ≤ b2 in (4.11) are called the first set
of constraints and the second set of constraints, respectively. The last equation in
(4.11) is denoted by the auxiliary constraint.

LetQ := {y ∈ R|V0|+2 : y satisfies the linear system (4.11)} be the polyhedron de-
fined by the linear system (4.11). From the linear systems (4.10), we know that the
linear system Aky(V0k) ≤ bk defines the stable set polytope of Gk (k = 1, 2), and
thus Q is bounded. From Theorem 1.2.8, Q is a polytope. We claim that this
polytope Q is an extension of P under the linear mapping π defined by π(y) =
π(y(V0), y(v1), y(v2)) = y(V0). By definition, we need to show that STAB(G0) =
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π(Q). As both STAB(G0) and π(Q) are convex sets, it suffices to show that each
vertex of STAB(G0) is contained in π(Q) and vice versa.

To show STAB(G0) ⊆ π(Q): Let y(V0) ∈ R|V0| be a vertex of STAB(G0). Then
y(V0) ∈ {0, 1}|V0| is the characteristic vector of some stable set I of G0. We need
to find the lifting variables (y(v1), y(v2)) ∈ R2 such that y = (y(V0), y(v1), y(v2)) ∈
R|V0|+2 satisfies the linear system (4.11). This shows that y ∈ Q. As π(y) = y(V0) and
y(V0) was an arbitrarily picked vertex of STAB(G0), this proves that STAB(G0) ⊆
π(Q).

For k = 1, 2, define Jk ⊆ Vk as follows: If v ∈ |I ∩ C|, then v′ ∈ Jk, where
v′ ∈ Ck ⊆ Vk is the vertex corresponding to v ∈ C before the identification of C1 and
C2; If v ∈ |I ∩ (Vk\Ck)|, then v ∈ Jk; and these are the only vertices included in Jk.
It is clear that Jk is stable in Gk, and vk /∈ Jk . Recall that χJk is the characteristic
vector of Jk. Consider the following cases depending on the cardinality of I ∩ C:

(i) |I ∩ C| = 1: Let y(v1) = y(v2) = 0. Then y(V0k) = χJk ∈ STAB(Gk) (k = 1, 2).
Thus the first and second sets of constraints in the linear system (4.11) are
satisfied. As |I∩C| = 1, we have

∑
v∈C y(v) = 1 and y(v1)+y(v2)+

∑
v∈C y(v) =

1. Thus the auxiliary constraint in the linear system (4.11) is also satisfied.

(ii) |I ∩ C| = 0 and J1 ∪ {v1} is stable in G1: Let y(v1) = 1 and y(v2) = 0. Then
y(V01) = χJ1∪{v1} ∈ STAB(G1) and y(V02) = χJ2 ∈ STAB(G2). As |I ∩ C| = 0,
we have

∑
v∈C y(v) = 0 and thus y(v1) + y(v2) +

∑
v∈C y(v) = 1. Thus all the

constraints in the linear system (4.11) are satisfied.

(iii) |I ∩ C| = 0 and J1 ∪ {v1} is not stable in G1: In this case, we must have
J1 ∩ (NG1(v1)\C1) 6= ∅. This implies J2 ∩ (NG2(v2)\C2) = ∅ and thus J2 ∪ {v2}
is stable in G2. Then the result follows in the same way as in the second case.

In all cases, we have constructed the lifting variables (y(v1), y(v2)) ∈ R2 such that
y = (y(V0), y(v1), y(v2)) ∈ R|V0|+2 satisfies the linear system (4.11).

To show STAB(G0) ⊇ π(Q): Let y = (y(V0), y(v1), y(v2)) ∈ R|V0|+2 be a vertex
of Q. So y satisfies the linear system (4.11). We need to show that π(y) = y(V0) is
contained in STAB(G0). From the first two sets of constraints in the linear system
(4.11), we know that y(V0k) ∈ STAB(Gk) (k = 1, 2), and thus 0 ≤ y ≤ 1. We will
show that y is actually a 0-1 vector. Consider the following two cases depending on
the value of y on C ∪ {v1, v2}:

(i) 0 < y(u) < 1 for some vertex u ∈ C: For k = 1, 2, as y(V0k) ∈ STAB(Gk),
there exists a vertex y∗k of STAB(Gk) such that
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(a) y∗k(u) = 1;

(b) If a constraint from the kth set of constraint is active at y(V0k), then this
constraint is also active at y∗k.

So y∗k ∈ {0, 1}|Vk| is the characteristic vector of some independent set in Gk

(k = 1, 2). Since y∗1 and y∗2 agree on C, they uniquely determine the 0-1 vector
y∗ ∈ R|V0|+2. As y∗(V0k) = y∗k ∈ STAB(Gk) (k = 1, 2) by construction, y∗

satisfies the first two sets of constraints in the linear system (4.11) and this
implies that y∗(v) = 0 for every vertex v ∈ (C\{u}) ∪ {v1, v2} and y∗(u) = 1.
Hence it holds that y∗(v1) + y∗(v2) +

∑
v∈C y

∗(v) = y∗(u) = 1. Thus the
auxiliary constraint is also satisfied at y∗. This implies y∗ ∈ Q.

(ii) y(v) = 0 for every v ∈ C and y(v1) ∈ (0, 1): In this case, it holds that∑
v∈C y(v) = 0 and thus the auxiliary constraint gives that y(v1) + y(v2) = 1.

So y(v2) = 1− y(v1) ∈ (0, 1). For k = 1, 2, as y(V0k) ∈ STAB(Gk), there exists
a vertex y∗k of STAB(Gk) such that

(a) y∗k(vk) = k − 1;

(b) If a constraint from the kth set of constraint is active at y(V0k), then this
constraint is also active at y∗k.

Similar to case (i), the vectors y∗1 and y∗2 uniquely determine the 0-1 vector
y∗ ∈ R|V (G0)|+2 and y∗ satisfies the first two sets of constraint in the linear
system (4.11). Since y(v) = 0 for every v ∈ C, from (b) above, we have
that y∗(v) = 0 for every v ∈ C, and thus

∑
v∈C y

∗(v) = 0. This implies that
y∗(v1) + y∗(v2) +

∑
v∈C y

∗(v) = y∗(v2) = 1. Therefore the auxiliary constraint
is also satisfied at y∗. This implies y∗ ∈ Q.

(iii) y(v) = 0 for every v ∈ C and y(v1) ∈ {0, 1}: In this case, it holds that∑
v∈C y(v) = 0, and thus the auxiliary constraint gives that y(v1) + y(v2) = 1.

If y(v1) = 1, then y(v) = 0 for every v ∈ N(v1)\C1. Using the fact that the
kth set of constraints defines the stable set polytope STAB(Gk) (k = 1, 2), and
y(v) = 0 for every v ∈ C ∪ (NG1(v1)\C1), one can show that y has to be 0-1,
otherwise it contradicts that y is a vertex. If y(v1) = 0, then y(v2) = 1 and the
same argument as above can be applied.

In the first two cases, we have constructed a feasible solution y∗ ∈ Q such that
if a constraint in the linear system (4.11) is active at y, then this constraint is also
active at y∗ and y 6= y∗. This contradicts the assumption that y is a vertex of Q.
Thus y is a 0-1 vector in all of the cases.

38



Now we can prove that π(y) ∈ STAB(G0) using the fact that y is a 0-1 vector.
Assume π(y) /∈ STAB(G0). As y is a 0-1 vector, there must be some adjacent vertices
u, v ∈ V0 such that y(u) = y(v) = 1. Since y(V0k) ∈ STAB(Gk) (k = 1, 2), from
the definition of amalgamation, we must have y(u) = y(v) = 1 for some vertices u ∈
NG1(v1)\C1 and v ∈ NG2(v2)\C2. But this implies that y(v1) = y(v2) =

∑
v∈C y(v) =

0 and thus the auxiliary constraint is not satisfied at y. This is a contradiction. Thus
π(y) ∈ STAB(G0). This finishes the proof the claim that the polytope Q defined by
the linear system (4.11) is an extension of P .

Now we are going to construct an extended formulation of STAB(G0) using the
extended formulation of STAB(G1) and STAB(G2). Let the vectors xk ∈ R|Vk| and
y = (y(V0), y(v1), y(v2)) ∈ R|V0|+2 be defined as before. Let the linear system

Ekxk + Fksk = gk, sk ≥ 0 (4.12)

be an extended formulation (in slack form) of STAB(Gk) of size rk with lifting vari-
ables sk ∈ Rrk , for k = 1, 2. We claim that the following linear system{

Eky(V0k) + Fktk = gk, tk ≥ 0, k = 1, 2,

y(v1) + y(v2) +
∑

v∈C y(v) = 1.
(4.13)

is an extended formulation of STAB(G0) of size r1 +r2 with lifting variables t1 ∈ Rr1 ,
t2 ∈ Rr2 , y(v1) ∈ R and y(v2) ∈ R. By definition, we need to show that y(V0) ∈
STAB(G0) if and only if there exists a vector (y(v1), y(v1), t1, t2) ∈ Rr1+r2+2 such
that (y(V0), y(v1), y(v2), t1, t2) ∈ R|V0|+r1+r2+2 satisfies the linear system (4.13).

The “only if” part (=⇒): Let y(V0) ∈ STAB(G0). Since the polytope Q defined
by the linear system (4.11) is an extension of P , there exists a vector (y(v1), y(v2)) ∈
R2 such that y = (y(V0), y(v1), y(v2)) ∈ R|V0|+2 is in Q, i.e., y satisfies the linear
system (4.11). From the auxiliary constraint of the linear system (4.11), we know
that y(v1) + y(v2) +

∑
v∈C y(v) = 1 and thus the last equation in the linear system

(4.13) is satisfied at y.

From the first two sets of constraints in (4.11), we know that y(V0k) ∈ STAB(Gk)
(k = 1, 2). As the linear system (4.12) is an extended formulation of STAB(Gk)
and y(V0k) ∈ STAB(Gk), there exists a vector sk ∈ Rrk such that (y(V0k), sk)
satisfies the linear system (4.12) (k = 1, 2). Let t1 = s2 and t2 = s2. Then
y = (y(V0), y(v1), y(v2), t1, t2) ∈ R|V0|+r1+r2+2 satisfies the linear system (4.13) by
construction.

The “if” part (⇐=): Let (y(V0), y(v1), y(v2), t1, t2) ∈ R|V0|+r1+r2+2 be a feasible
solution of the linear system (4.13). Then (y(V0), y(v1), y(v2)) ∈ R|V0|+r+2 satisfies
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the linear system (4.11). This implies π(y(V0), y(v1), y(v2)) = y(V0) ∈ STAB(G0)
as the polytope Q defined by the linear system (4.11) is an extension of STAB(G0)
under π.

This shows that the linear system (4.13) is an extended formulation of STAB(G0).
The size of this extended formulation is clearly r1 + r2. The theorem follows if we
take r1 = xc(STAB(G1)) and r2 = xc(STAB(G2)).

4.4 Clique Sum

Definition 4.4.1. [2] Let G1 = (V1, E1) and G2 = (V2, E2) be graphs such that the
vertex-intersection V1 ∩ V2 is a clique in both G1 and G2. The clique sum of G1 and
G2, denoted by G1 ⊕G2, is a graph G0 = (V0, E0) with

V0 = V1 ∪ V2 and E0 = E1 ∪ E2.

It is well-known that clique-sum operation preserve perfection.

Proposition 4.4.2. The clique sum operation preserves perfection.

Proof. Let G1 and G2 be perfect graphs. Let G0 be the clique-sum composed graph
from G1 and G2. It is not hard to see that ω(G0) = max{ω(G1), ω(G2)} and χ(G0) =
max{χ(G1), χ(G2)}. As G1 and G2 are perfect, it holds that ω(G1) = χ(G1) and
ω(G2) = χ(G2). Therefore ω(G0) = χ(G0). The same arguments hold if we consider
a subgraph of G0 which can be considered as the clique sum of some subgraphs of
G1 and G2. Thus G0 is also perfect.

Chvátal [7] showed the following polyhedral consequences of the clique-sum op-
eration.

Theorem 4.4.3. [7] Let G1 = (V1, E1) and G2 = (V2, E2) be graphs such that the
vertex-intersection V1 ∩ V2 is a clique in both G1 and G2. Let G0 = G1 ⊕ G2 be the
clique sum of G1 and G2. If the linear system∑

v∈V1

a1
i (v) · xi(v) ≤ b1

i , i = 1, . . . , n1,

defines the stable set polytope of G1, and the linear system∑
v∈V2

a2
i (v) · yi(v) ≤ b2

i , i = 1, . . . , n2,
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defines the stable set polytope of G2, then the union of these linear systems, with the
variables for the vertices in V1 ∩ V2 identified, i.e., the following linear system{∑

v∈V1
a1
i (v) · zi(v) ≤ b1

i , i = 1, . . . , n1,∑
v∈V2

a2
i (v) · zi(v) ≤ b2

i , i = 1, . . . , n2.

defines the stable set polytope of G0.

This result has a direct corollary that the extension complexity of STAB(G0) is
upper bounded by the sum of the extension complexities of STAB(G1) and STAB(G2).

Corollary 4.4.4. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs such that the
vertex-intersection V1 ∩ V2 is a clique in both G1 and G2. Let G0 = G1 ⊕ G2 be the
clique sum of G1 and G2. It holds that

xc(STAB(G0)) ≤ xc(STAB(G1)) + xc(STAB(G2)).

If one does not assume that the vertex-intersection V1 ∩ V2 is a clique in the
definition of clique-sum composition, then one gets the definition of the subgraph
identification operation which is a generalization of the clique sum operation. The
subgraph identification does not preserve perfection in general.

Consider another graph operation called disjoint union.

Definition 4.4.5. Let G1 = (V1, E1) and G2 = (V2, E2) be two vertex-disjoint graphs.
The disjoint union of G1 and G2, denoted by G1 ∪G2, is a graph G0 = (V0, E0) with

V0 = V1 ∪ V2 and E0 = E1 ∪ E2.

Clearly disjoint union is a special case of clique sum when K = ∅. Thus we have
the following result about the extension complexity of STAB(G1 ∪ G2) as a direct
consequence of Corollary 4.4.4.

Corollary 4.4.6. Let G1 and G2 be two vertex-disjoint graphs. Let G0 = G1 ∪ G2

be the disjoint union of G1 and G2. It holds that

xc(STAB(G0)) ≤ xc(STAB(G1)) + xc(STAB(G2)).

This result can also be proven easily without using Theorem 4.4.4. The interesting
question is whether the inequality xc(STAB(G0)) ≥ xc(STAB(G1)) + xc(STAB(G2))
also holds. Intuitively this is true, but this is not known currently.
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Chapter 5

Perfect Graphs

5.1 Introduction

The maximum stable set problem is difficult to solve in general. However, it can be
solved efficiently on some classes of graphs. Grötschel et al. [16] showed that the
maximum stable set for perfect graphs may be found in polynomial time using semi-
definite programming. This is so far the only known method to solve the maximum
stable set problem in perfect graphs in polynomial time and it is still an open question
whether this is also possible using linear programming. This motivates the study of
the extension complexity of the stable set polytope of perfect graphs.

A graph G is a Berge graph if neither G nor Ḡ contains an odd-length induced
cycle of length 5 or more. The strong perfect graph theorem states that a graph G
is perfect if and only if G is a Berge graph. The recent proof of the strong perfect
graph theorem in Chudnovsky et al. [6], which characterizes perfect graphs in terms
of forbidden induced subgraphs, relies on a structural decomposition result for perfect
graphs. This result says (roughly) that any perfect graph G either belongs to one of
the following basic classes:

(i) bipartite graphs and their complements;

(ii) line graphs of bipartite graphs and their complements;

(iii) double-split graphs;

or one of G, Ḡ admits one of the following decompositions:

(a) proper 2-join;
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(b) balanced skew partition.

It is well-known that the stable set polytopes of the basic perfect graphs (i) and
(ii) above have polynomial-sized linear programs. Thus the extension complexities of
the stable set polytopes of these graphs are polynomial. In Section 5.3, we will show
that the extension complexity of the stable set polytope of (iii) double-split graphs is
also polynomial in the size (number of vertices) of the graph. Furthermore if a graph
G admits the decompositions (a) or (b), then we show that the extension complexity
of STAB(G) is upper bounded by some linear functions in the extension complexities
of the stable set polytope of some subgraphs of G. This is done in Section 5.4 for
the 2-join operation and in Section 5.5 for the skew partition operation.

Although this does not settle the question whether the extension complexity of
the stable set polytope of any perfect graph is polynomial in the size (number of
vertices) of the graph, we do obtain a positive result for perfect graphs which has
a decomposition tree whose depth is logarithmic in its number of vertices. Further-
more, we also consider a subclass of perfect graphs known as decomposable Meyniel
graphs. We showed that the extension complexities of the stable set polytopes of
decomposable Meyniel graphs are also polynomial. In Section 5.6 we show that the
extension complexity of the stable set polytope of any decomposable Meyniel graph
is polynomial. For this we use our result about the amalgam operation from Chapter
4 and we in fact show that the extension complexity is at most cubic in the number
of vertices.

5.2 The Extension Complexity of Perfect Graphs

In this section, we provide some general results about the extension complexity of
perfect graphs.

Let G be a perfect graph. Then we know that STAB(G) can be characterized
by the non-negativity constraints and the clique constraints as stated in Theorem
1.3.17. In what follows, the slack matrix of STAB(G), where the rows are indexed by
the non-negativity constraints and a set of clique constraints containing all maximal
clique constraints, and the columns by all independent sets of G, is denoted by SG.
Notice that it suffices to include all the maximal clique constraints and the non-
negative constraints to the linear system defining STAB(G), as each clique of G is
contained in some maximal clique of G. From Lemma 2.4.3 and Theorem 2.4.4, we
know that rank+(SG) = xc(STAB(G)), i.e., the non-negative rank of the slack matrix
SG coincides with the extension complexity of the stable set polytope of G.
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We give an example to illustrate the structure of SG when G is a cycle of length 4.
AssumeG = (V,E) is C4, where V = {a, b, c, d} and E = {{a, b}, {b, c}, {c, d}, {d, a}}.
The maximal cliques of G are precisely the set of edges. The collection of the stable
sets in G is given by I(G) = {∅, {a}, {b}, {c}, {d}, {a, c}, {b, d}}. Thus SG is an 8 by
7 matrix as follows,

SG =

∅ {a} {b} {c} {d} {a, c} {b, d}



xa ≥ 0 0 1 0 0 0 1 0
xb ≥ 0 0 0 1 0 0 0 1
xc ≥ 0 0 0 0 1 0 1 0
xd ≥ 0 0 0 0 0 1 0 1

xa + xb ≤ 1 1 0 0 1 1 0 0
xb + xc ≤ 1 1 1 0 0 1 0 0
xc + xd ≤ 1 1 1 1 0 0 0 0
xa + xd ≤ 1 1 0 1 1 0 0 0

.

In what follows, S ′G denotes the submatrix of SG corresponding to the rows of
non-negative constraints, and S ′′G denotes the submatrix of SG corresponding to the
rows of clique constraints. Then each column of S ′G is precisely the characteristic
vector of the stable set associated to that column. The rows and columns of the
submatrix S ′′G can be indexed by the cliques and the stable sets of G, respectively.
Notice that S ′′G(C, I) = 1− |C ∩ I|, where C is a clique and I is a stable set of G.

The number of rows of SG is at most the number of vertices |V (G)| plus the
number of cliques in G. From Lemma 2.2.2, we immediately have that

xc(STAB(G)) ≤ |V (G)|+ number of cliques in G.

If one only includes the maximal clique constraints, then it yields the following
sharper upper bound on xc(STAB(G)).

Lemma 5.2.1. [25] Let G be a perfect graph. If G has at most k maximal cliques,
then xc(STAB(G)) ≤ |V (G)|+ k.

One can also show that the extension complexity of a perfect graph G is linearly
related to that of its complement.

Lemma 5.2.2. [25] Let G be a perfect graph. It holds that

xc(STAB(Ḡ)) ≤ xc(STAB(G)) + |V (G)|.
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Proof. The slack matrix SG of G has the form SG =

[
S ′G
S ′′G

]
. Recall that S ′′G has

one row for every clique C and one column for every stable set I of G; and the
corresponding entry is S(C, I) = 1 − |C ∩ I|. Notice that a clique in G is a stable

set in Ḡ and a stable set in G is a clique in Ḡ. Thus the slack matrix SḠ =

[
S ′
Ḡ

S ′′
Ḡ

]
of

G satisfies that S ′′
Ḡ

= (S ′′G)T .

Applying Lemma 2.2.2, Lemma 2.2.3 and Theorem 2.4.4, we have

xc(STAB(Ḡ)) = rank+(SḠ)

= rank+(

[
S ′
Ḡ

S ′′
Ḡ

]
)

≤ rank+(S ′Ḡ) + rank+(S ′′Ḡ)

≤ |V (G)|+ rank+(S ′′G).

as the number of rows of S ′
Ḡ

is |V (G)| and S ′′
Ḡ

= (S ′′G)T . Now S ′′G is a subma-
trix of SG whose non-negative rank equals xc(STAB(G)), by Lemma 2.2.3, we have
rank+(S ′′G) ≤ rank+(SG) = xc(STAB(G)). This finishes the proof.

Finally, we provide some well-known upper bounds on the extension complexities
of the stable set polytopes of basic perfect graphs.

Proposition 5.2.3. [23] If G is a bipartite graph, then xc(STAB(G)) ≤ |V (G)|+ |E(G)|
and xc(STAB(Ḡ)) ≤ 2 · |V (G)|+ |E(G)|.

Proof. Each edge in the bipartite graph G is a clique and there are no other cliques
in G. From Theorem 5.2.1, we have that xc(STAB(G)) ≤ |V (G)|+ |E(G)|. Applying
Lemma 5.2.2, we have that xc(STAB(Ḡ)) ≤ 2 · |V (G)|+ |E(G)|.

Proposition 5.2.4. Let G be a bipartite graph. The following linear system∑
j:(i,j)∈E

xi,j ≤ 1 ∀ i ∈ V (G) (5.1)

x ≥ 0 (5.2)

in the vector of variables x ∈ R|E(G)|, defines the matching polytope of G.

Proposition 5.2.5. If G is the line graph of a bipartite graph G′, then

xc(STAB(G)) ≤ |V (G)|+ |E(G)| and xc(STAB(Ḡ)) ≤ 2 · |V (G)|+ |E(G)|.
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Proof. An independent set in G corresponds to a matching in G′. Thus we have that
xc(STAB(G)) ≤ |V (G)|+ |E(G)|, using Proposition 5.2.3 and 5.2.4. The inequality
xc(STAB(Ḡ)) ≤ 2 · |V (G)|+ |E(G)| follows from Lemma 5.2.2.

5.3 Double-Split Graphs

If x ∈ Z is a strictly positive integer, we denote {1, . . . , x} by [x].

Definition 5.3.1. [6] A graph G = (V,E) is called a double-split graph if its vertex
set can be partitioned into two sets V1 and V2 such that:

(i) G(V1) is a disjoint union of edges, where

V1 = {ai, bi : i ∈ [p]} and E1 = {{ai, bi} : i ∈ [p]};

(ii) G(V2) is the complement of a disjoint union of edges, where

V2 = {xi, yi : i ∈ [q]} and E2 = {{xi, yj} : i 6= j and i, j ∈ [q]};

(iii) For every i ∈ [p] and j ∈ [q], precisely one of the following is true

{{ai, xj}, {bi, yj}} ⊆ E or {{ai, yj}, {bi, xj}} ⊆ E.

Let p, q be positive integers. Let Li ⊆ [q] be a subset of [q], for every i ∈ [p].
Then we define Gp,q,L as a double split graph such that there exist a vertex partition
(V1;V2) satisfying G(V1) is a disjoint union of p edges, G(V2) is the complement of a
disjoint union of q edges, and the edges between vertex sets V1 and V2 are given by
E(V1, V2) = ∪pi=1{{ai, xj} : j ∈ Li}.

Lemma 5.3.2. [6] Double-split graphs are perfect.

We shall provide an upper bound on the extension complexity of the stable set
polytope of any double-split graph G. Towards this end, we consider its slack matrix
SG. Thus we will list all the maximal cliques and the stable sets in G below.

Given a subset I ⊆ [q], we define xI := {xi ∈ V2 : i ∈ I} and yĪ := {yi ∈ V2 : i ∈
Ī}. The set Ck of the maximal cliques in G(Vk) (k = 1, 2) are given by

C1 := {{ai, bi} : i ∈ [p]},
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C2 := {xI ∪ yĪ : ∀ I ⊆ [q]}.
We also need the mixed maximal clique constraints. For every i ∈ [p], define Li :=
{j : {ai, xj} ∈ E} ⊆ [q]. The set of the mixed maximal cliques is given by

MC := {{ai} ∪ xLi
∪ yL̄i

, {bi} ∪ xL̄i
∪ yLi

: ∀i ∈ [p]}.

Finally, let Ri be the collection of the non-negative constraints and the maximal
clique constraints of the stable set polytope of G(Vi) (i = 1, 2). Let MR be the set
of constraints associated to the mixed cliques in MC.

As the set of cliques C1 ∪ C2 ∪MC contains all the maximal cliques in G, the
constraints in R1 ∪ R2 ∪MR contains all the maximal clique constraints and the
non-negativity constraints for G.

Now we consider the stable sets in G. Let Ik be the collection of the stable sets
of Gk for k = 1, 2. Then

I1 := {∅} ∪ {ai, bi : ∀i ∈ [p]} ∪ {aJ ∪ bK ∀J ⊆ [p], K ⊆ J̄},

I2 := {∅} ∪ {xi, yi, {xi, yi} : ∀i ∈ [q]}.

Let MI be the collection of the mixed stable sets in G,

MI :={{xj} ∪ aJ ∪ bK : ∀J ⊆ [p], K ⊆ J̄ s.t. j ∈ L̄i ∀i ∈ J and j ∈ Li ∀i ∈ K}
∪{{yj} ∪ aJ ∪ bK : ∀I ⊆ [p], K ⊆ J̄ s.t. j ∈ Li ∀i ∈ J and j ∈ L̄i ∀i ∈ K}.

It is easy to verify that I1 ∪ I2 ∪MI contains precisely all the stable sets in G.
Now we can prove the main result in this section.

Theorem 5.3.3. Let G = Gp,q,L be a double-split graph. It holds that

xc(STAB(G)) ≤ 5p+ 4q + 3.

Proof. As double-split graphs are perfect, STAB(G) can be described by the non-
negativity constraints and the clique constraints according to Theorem 1.3.17. Thus
the constraints in R1 ∪R2 ∪MR and the stable sets in I1 ∪I2 ∪MI induce a slack
matrix SG whose non-negative rank equals the extension complexity of STAB(G),
which has the following form:

SG =

I1 I2 MI( )R1 S1,1 S1,2 S1,3

R2 S2,1 S2,2 S2,3

MR S3,1 S3,2 S3,3

.
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Notice that SGk
is the slack matrix of the graph Gk, induced by the constraints Rk

and the stable sets Ik (k = 1, 2). As Gk is perfect, we also have that xc(STAB(Gk)) =
rank+(SGk

).

For k = 1, 2, the submatrix Sk,k is precisely the slack matrix SGk
and each column

of Sk,3 is a duplication of some column in Sk,k, this implies that rank+(
[
Sk,k Sk,3

]
) =

rank+(SGk
).

As each row of S1,2 and S2,1 is either all-zeros or all-ones, it holds that rank+(S2,1) =
rank+(S1,2) = 1. Finally, rank+(

[
S3,1 S3,2 S3,2

]
) ≤ 2p as this matrix has only 2p

rows.

Applying Lemma 2.2.3 to SG, we conclude that the non-negative rank of S is
upper bounded by

rank+(SG) ≤ rank+(
[
S1,1 S1,3

]
) + rank+(S1,2)

+ rank+(
[
S2,2 S2,3

]
) + rank+(S2,1)

+ rank+(
[
S3,1 S3,2 S3,2

]
)

≤ rank+(SG1) + rank+(SG2) + 2p+ 2.

As G1 is a disjoint union of p edges and G2 is the complement of a disjoint union
of q edges, from Lemma 3.3.11 and 4.2.7, we know that rank+(SG1) = 3p and
rank+(SG2) ≤ 4q + 1. Finally, applying the Factorization Theorem 2.4.4, we ob-
tain that

xc(STAB(G)) = rank+(SG) ≤ 5p+ 4q + 3.

This finishes the proof.

This upper bound on the extension complexity of the stable set polytope of
double-split graphs enables us to conclude the following result.

Lemma 5.3.4. If G is a basic perfect graph, then xc(STAB(G)) ≤ 2 · |V (G)|2.

5.4 Proper 2-Join Decompositions

Definition 5.4.1. (see [6]) A proper 2-join of G is a partition of the vertices of G
into two sets (X1;X2) such that there exist disjoint nonempty subsets Ak, Bk ⊆ Xk

for k = 1, 2 satisfying:

(i) the edges between X1 and X2 are given by:
{{u, v} : u ∈ A1, v ∈ A2} ∪ {{u, v} : u ∈ B1, v ∈ B2}.
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(ii) for k = 1, 2, every component C of G(Xk) satisfies that V (C) ∩ Ak 6= ∅ and
V (C) ∩Bk 6= ∅.

(iii) for k = 1, 2, if |Ak| = |Bk| = 1 and G(Xk) is a path connecting the two vertices
in Ak and Bk, then its length is odd and at least 3.

In fact, we only need the first property in the definition of proper 2-join to prove
the result in this section.

Let G be a perfect graph admitting a proper 2-join. We shall give an upper bound
for xc(STAB(G)) in terms of xc(STAB(G(X1))) and xc(STAB(G(X2))). Towards this
end, we consider its slack matrix of SG. Similar to the previous section, we list all
the maximal cliques and the stable sets in G below.

Define Dk := Xk\(Ak ∪ Bk) (k = 1, 2). From the definition of a proper 2-join of
the graph G, the following subsets of vertices are cliques of the graph G.

C1 := C(G(X1)),

C2 := C(G(X2)),

CA := {D1 ∪D2 : Dk ∈ C(G(Ak)) for k = 1, 2},
CB := {D1 ∪D2 : Dk ∈ C(G(Bk)) for k = 1, 2}.

Notice that Ck contains all the maximal cliques within the vertex set Xk (k = 1, 2).
CA and CB contain all the maximal cliques whose intersection with X1 and X2 is not
empty. Thus every maximal clique of G is contained in C1 ∪ C2 ∪ CA ∪ CB.

Let Rk be the collection of the non-negativity constraints and the clique con-
straints of the graph G(Xk) (k = 1, 2). Let MRl be the collection of the clique
constraints associated to the cliques in Cl (l ∈ {A,B}). Thus the constraints in
R1 ∪R2 ∪MRA ∪MRB characterize the stable set polytope of G.

Now we consider the stable sets of G. The stable sets within the vertex set Xk

are given by
Ik = {I : I ∈ I(G(Xk))} for k = 1, 2.

Let MIk (k = 1, . . . , 4) be a collection of the mixed stable sets of G defined as

MI1 := {I ∪ J : I ∈ I(G(D1)), J ∈ I(G(D2 ∪ A2 ∪B2))},
MI2 := {I ∪ J : I ∈ I(G(D1 ∪ A1)), J ∈ I(G(D2 ∪B2))},
MI3 := {I ∪ J : I ∈ I(G(D1 ∪B1)), J ∈ I(G(D2 ∪ A2))},
MI4 := {I ∪ J : I ∈ I(G(D1 ∪ A1 ∪B1)), J ∈ I(G(D2))}.
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It is not hard to see that I1 ∪ I2 ∪ (∪4
k=1MIk) contains all the stable sets of G.

Theorem 5.4.2. Let G be a perfect graph admitting a proper 2-join decomposition.
Let (X1;X2) be a proper 2-join partition of vertices of G. It holds that

xc(STAB(G)) ≤ 3 · (xc(STAB(G(X1))) + xc(STAB(G(X2)))) + 2.

Proof. As G is perfect, STAB(G) can be described by the non-negativity constraints
and the clique constraints in according to Theorem 1.3.17. Thus the constraints in
R1 ∪ R2 ∪MCA ∪MCB and the stable sets I1 ∪ I2 ∪ (∪4

k=1MIk) induce a slack
matrix SG whose non-negative rank equals the extension complexity of STAB(G),
which has the following form,

SG =

I1 I2 MI1 MI2 MI3 MI4


R1 S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

R2 S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

MRA S3,1 S3,2 S3,3 S3,4 S3,5 S3,6

MRB S4,1 S4,2 S4,3 S4,4 S4,5 S4,6

.

Let SG(Xk) be the slack matrix of the graph G(Xk) induced by the constraints Rk

and the stable sets Ik (k = 1, 2). AsG(Xk) is perfect, we have that xc(STAB(G(Xk)) =
rank+(SG(Xk)) (k = 1, 2).

For k = 1, 2, the submatrix Sk,k coincides with the slack matrix SG(Xk) of
STAB(G(Xk)) and each column in the submatrix

[
Sk,3 · · · Sk,6

]
is a duplication

of some column in Sk,k. Thus rank+(
[
Sk,k Sk,3 Sk,4 Sk,5 Sk,6

]
) = rank+(SG(Xk)),

by Lemma 2.2.3.

As each row of the submatrices S1,2 and S2,1 is either all-zeros or all-ones, we
have that rank+(S1,2) = rank+(S2,1) = 1.

The submatrix S3,1 is also a submatrix of S1,1. Each column of the submatrices
S3,4 and S3,6 is a duplication of some column in S3,1. By Lemma 2.2.3, this implies

rank+(
[
S3,1 S3,4 S3,6

]
) ≤ rank+(S1,1) = rank+(SG(X1)).

Similarly we have

rank+(
[
S3,2 S3,3 S3,5

]
) ≤ rank+(SG(X2)),

rank+(
[
S4,1 S4,5 S4,6

]
) ≤ rank+(SG(X1)),

rank+(
[
S4,2 S4,3 S4,4

]
) ≤ rank+(SG(X2)).
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Applying Lemma 2.2.3 to SG, we conclude that the non-negative rank of S is
upper bounded by

rank+(SG) ≤ rank+(
[
S1,1 S1,3 S1,4 S1,5 S1,6

]
) + rank+(S1,2)

+ rank+(
[
S2,2 S2,3 S2,4 S2,5 S2,6

]
) + rank+(S2,1)

+ rank+(
[
S3,1 S3,4 S3,6

]
) + rank+(

[
S3,2 S3,3 S3,5

]
)

+ rank+(
[
S4,1 S4,5 S4,6

]
) + rank+(

[
S4,2 S4,3 S4,4

]
)

≤ 3 · (rank+(SG(X1)) + rank+(SG(X2))) + 2.

From the Factorization Theorem 2.4.4, we know that xc(STAB(G′)) = rank+(SG′)
for any perfect graph G′, and thus the claim is proven.

Finally, we use the above theorem to provide an upper bound for perfect graphs
which can be decomposed into basic perfect graphs using some proper 2-join de-
compositions. Recall that basic perfect graphs are (i) the bipartite graphs and their
complements; (ii) line graphs of bipartite graphs and their complements; (iii) double-
split graphs.

Theorem 5.4.3. Assume G is a perfect graph which can be decomposed into basic
perfect graphs, using proper 2-join decompositions. Let d denote the depth of a de-
composition tree representing a decomposition of G into basic perfect graphs by means
of proper 2-join decompositions. Then,

xc(STAB(G)) ≤ 4d · 2 · |V (G)|2 = 22d+1|V (G)|2.

Proof. We use the result of Theorem 5.4.2, which implies that

xc(STAB(G)) ≤ 4 · (xc(STAB(G(X1))) + xc(STAB(G(X2)))),

if G has a proper 2-join decomposition with partition (X1;X2).

Denote by G1, . . . , GL the basic perfect graphs corresponding to the leaves of the
decomposition tree of G. By iteratively applying the above result, we get

xc(STAB(G)) ≤ 4d

L∑
l=1

xc(STAB(Gl)).

Now by Lemma 5.3.4,

L∑
l=1

xc(STAB(Gl)) ≤ 2 ·
L∑
l=1

|V (Gl)|2 ≤ 2 · (
L∑
l=1

|V (Gl)|)2 ≤ 2 · |V (G)|2,
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since the vertex sets of the graphs Gl partition the vertex set of G. This gives the
result.

5.5 Skew Partitions

Definition 5.5.1. [8] A skew partition of some graph G is a partition (A1;B1;A2;B2)
of V (G) such that all edges between A1 and A2 are present in G and no edges between
B1 and B2.

The decomposition used in the proof of the strong perfect graph theorem adds
more conditions to skew partitions, namely balanced skew partitions. We say P is
an anti-path of G if P is a path in Ḡ.

Definition 5.5.2. [6] A skew partition is said to be balanced if

(i) every induced path in G between nonadjacent vertices in A1 ∪A2 with interior
in B1 ∪B2 is of even length;

(ii) every induced antipath in G between adjacent vertices in B1 ∪B2 with interior
in A1 ∪ A2 is of even length;

Let G be a graph admitting a skew partition, say (A1;B1;A2;B2). In this section,
we show that the extension complexity of G can be linearly upper bounded by the
extension complexity of some subgraphs of G. Similar to the previous section, we
shall list a set of cliques of G containing all the maximal cliques and the stable sets
in G first.

The following subsets of vertices are the cliques of G,

C1 = C(G(A1 ∪B1)),

C2 = C(G(A2 ∪B2)),

C3 = {C ∪ C ′ ∈ C(G) : C ∈ C(G(A2)), C ′ ∈ C(G(A1 ∪B1))},
C4 = {C ∪ C ′ ∈ C(G) : C ∈ C(G(A1)), C ′ ∈ C(G(A2 ∪B2))}.

The following subsets of vertices are the stable sets of G,

I1 = I(G(A1 ∪B1)),

I2 = I(G(A2 ∪B2)),

I3 = {I ∪ I ′ ∈ I(G) : I ∈ I(G(B2)), I ′ ∈ I(G(A1 ∪B1))},
I4 = {I ∪ I ′ ∈ I(G) : I ∈ I(G(B1)), I ′ ∈ I(G(A2 ∪B2))}.
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By definition, all edges between A1 and A2 are present in G and no edges between
B1 and B2, thus ∪4

k=1Ck contains all the cliques in G and ∪4
k=1Ik contains all the

stable sets in G.

Let Rk be the collection of the non-negativity constraints and the clique con-
straints associated to cliques in Ck (k = 1, 2). Let Rk be the collection of clique
constraints associated to cliques in Ck (k = 3, 4).

Theorem 5.5.3. Let G be a perfect graph admitting some skew partitions. Let
(A1;B1;A2;B2) be a skew partition of vertices of G. Then

xc(STAB(G)) ≤ 3 · (xc(STAB(G(A1 ∪B1))) + xc(STAB(G(A2 ∪B2))))

+ xc(STAB(G(A1 ∪B2))) + xc(STAB(G(A2 ∪B1))) + 2.

Proof. As G is perfect, STAB(G) can be described by the non-negativity constraints
and the clique constraints in according to Theorem 1.3.17. Thus the constraints in
∪4

k=1Rk and the stable sets in ∪4
k=1Ik induce a slack matrix SG whose non-negative

rank equals the extension complexity of STAB(G), which has the following form,

SG =

I1 I2 I3 I4


R1 S1,1 S1,2 S1,3 S1,4

R2 S2,1 S2,2 S2,3 S2,4

R3 S3,1 S3,2 S3,3 S3,4

R4 S4,1 S4,2 S4,3 S4,4

.

It is easy to see that Si,i = SG(Ai∪Bi), i.e., it coincides with the slack matrix
of STAB(G(Ai ∪ Bi)), and Si,3, Si,4, S3,i, S4,i, Si+2,i+2 are submatrix of SG(Ai∪Bi), for
i = 1, 2. Furthermore, S1,2 and S2,1 are matrices whose rows are either all-ones or
all-zeros.

Finally, S3,4 is a submatrix of SG(A1∪B2), i.e., a submatrix of the slack matrix of
STAB(G(A1∪B2)). Because the clique and the stable set defining the corresponding
entries in S3,4 only intersect within A1 ∪B2. Similarly, one can conclude that S4,3 is
a submatrix of SG(A2∪B1).

Applying Lemma 2.2.3 to SG, we obtain the following upper bounded on the
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non-negative rank of S,

rank+(SG) ≤ rank+(
[
S1,1 S1,3 S1,4

]
) + rank+(S1,2)

+ rank+(
[
S2,1 S2,3 S2,4

]
) + rank+(S2,2)

+ rank+(
[
S3,1 S3,3

]
) + rank+(S3,2) + rank+(S3,4)

+ rank+(
[
S4,1 S4,4

]
) + rank+(S4,2) + + rank+(S4,3)

= 3 · (rank+(SG(A1∪B1)) + rank+(SG(A2∪B2)))

+ rank+(SG(A1∪B2)) + rank+(SG(A2∪B1)) + 2.

From the Factorization Theorem 2.4.4, we know that xc(STAB(G′)) = rank+(SG′)
for any perfect graph G′, and thus the claim is proven.

Now the theorem above provides an upper bound for perfect graphs which can
be decomposed into basic perfect graphs using some skew partition decompositions.

Theorem 5.5.4. Assume G is a perfect graph which can be decomposed into basic
perfect graphs, using skew partition decompositions. Let d denote the depth of a
decomposition tree representing a decomposition of G into basic perfect graphs by
means of skew partitions. Then,

xc(STAB(G)) ≤ 42d · 2 · |V (G)|2 = 24d+1 · |V (G)|2.

Proof. We use Theorem 5.5.3 which implies that

xc(STAB(G)) ≤ 4 · (xc(Ĝ1) + xc(Ĝ2) + xc(Ĝ3) + xc(Ĝ3)),

where Ĝ1, Ĝ2, Ĝ3, Ĝ4 are induced subgraphs of G such that
∑4

i=1 |V (Gi)| = 2·|V (G)|.
Let G1, . . . , GL denote the basic perfect graphs corresponding to the leaves of the

decomposition tree of G. Then,

xc(STAB(G)) ≤ 4d
∑
l

xc(STAB(Gl)) ≤ 2 · 4d
∑
l

|V (Gl)|2 ≤ 2 · 4d(
∑
l

|V (Gl)|)2.

Next we claim that
∑

l |V (Gl)| ≤ 2d · |V (G)|. Indeed if the graphs G′1, G
′
2, G

′
3, G

′
4

are the children of the graph G′ in the decomposition tree and u is a vertex of the
graph G′, then u is in the vertex sets of precisely two of the graphs G′1, G

′
2, G

′
3, G

′
4.

Combining we get:

xc(STAB(G)) ≤ 2 · 42d|V (G)|2 = 24d+1 · |V (G)|2.
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The following theorem is a direct consequence of Theorem 5.5.4 and Theorem
5.4.3.

Theorem 5.5.5. Assume G is a perfect graph which can be decomposed into basic
perfect graphs, using 2-join or skew partition decompositions. Let d denote the depth
of a decomposition tree representing a decomposition of G into basic perfect graphs
by means of 2-join or skew partition decompositions. Then,

xc(STAB(G)) ≤ 24d+1 · |V (G)|2.

Corollary 5.5.6. Let G be a perfect graph. If G is decomposed into basic perfect
graphs, using 2-join or skew partition decompositions; and the depth d of a decom-
position tree is logarithmic in |V (G)|, namely d ≤ c · log |V (G)| for some constant
c > 0, then the extension complexity of STAB(G) satisfies

xc(STAB(G)) ≤ c′ · |V (G)|4c+2,

for some constant c′ > 0.

5.6 Meyniel Graphs

As it is still an open question whether there exists a polynomial-sized extended
formulation for the stable set polytope of perfect graphs, it is interesting to look
at some subclasses of perfect graphs. In this section we consider Meyniel graphs,
which form a subclass of perfect graphs. Meyniel [20] introduced Meyniel graphs
and showed that every Meyniel graph is perfect. We provide a cubic upper bound
for the extension complexity of the stable set polytope of any decomposable Meyniel
graph.

Definition 5.6.1. [20] A graph is Meyniel if every odd cycle of length at least 5
contains at least 2 chords.

Theorem 5.6.2. [20] Every Meyniel graph is perfect.

In Section 4, we have already defined the amalgam composition of two graphs G1

and G2. Conversely, we have also defined the amalgam decomposition of G1, if such
a decomposition exists.

In what follows, we use the same symbol as in the definition of the amalgam
operation (see Definition 4.3.1). In addition, Rk denotes N(vk)\Ck and Nk denotes

55



Vk\(Ck ∪ {vk}) (k = 1, 2). Furthermore, V0k denotes (Vk\Ck) ∪ C (k = 1, 2). So V0k

contains the vertex vk and the vertices of G0 generated from Gk.

Given a clique K in G0, we say K is mixed if K ∩ N1 6= ∅ and K ∩ N2 6= ∅,
otherwise K is not mixed. Notice that if K is mixed, then K = C ∪ A1 ∪ A2 for
some non-empty subsets A1 ⊆ R1, A2 ⊆ R2; if K is not mixed, then K ⊆ N1 ∪ C or
K ⊆ N2 ∪ C.

Definition 5.6.3. [4] An amalgam decomposition of G0 into G1 and G2 is said to
be proper if |V (Gk)| < |V (G)| (k = 1, 2). Notice that |V (Gk)\Ck| ≥ 3 (k = 1, 2) in
this case.

Burlet and Fonlupt [4] introduced the following notion of basic Meyniel graph and
showed that certain Meyniel graphs can be properly decomposed into basic Meyniel
graphs.

Definition 5.6.4. [4] A basic Meyniel graph G is a connected graph, where V (G)
can be partitioned into a triple (A;K;S) such that

(i) G(A) is a 2-connected bipartite graph containing at least one cycle;

(ii) G(K) is a clique and (u, v) ∈ E for every u ∈ A and v ∈ K;

(iii) G(S) is a stable set and |N(v) ∩ A| ≤ 1 for every v ∈ S.

Definition 5.6.5. Let G be a Meyniel graph. If one can decompose G into basic
Meyniel graphs using a number of proper amalgam decompositions, then G is said to
be a decomposable Meyniel graph.

Notice that a basic Meyniel graph is a decomposable Meyniel graph. Furthermore
if G1 and G2 are a proper amalgam decomposition of a decomposable Meyniel graph,
then G1 and G2 are also decomposable Meyniel graphs. Given a decomposable
Meyniel graph G, there can be different ways to decompose it into basic Meyniel
graphs. Thus we introduce so-called decomposition tree of G as follows.

Definition 5.6.6. A decomposition tree of G0 is a binary tree whose nodes are
associated to some graphs such that:

(i) the root node is associated to G0;

(ii) each leaf node is associated to a basic Meyniel graph;

(iii) if node k is associated to the graph Gk (k = 0, 1, 2) and nodes 1, 2 are the
children of node 0, then G1 and G2 are a proper amalgam decomposition of the
graph G0.
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Clearly if we have a procedure to decompose G into basic Meyniel graphs using
some proper amalgam decompositions, then it induces a decomposition tree of G.
The converse is also true. Notice that the number of internal nodes in a decompo-
sition tree of G is precisely the number of proper amalgam decompositions used in
the decomposition process.

In the rest of this section, we prove that the extension complexity of the stable
set polytope of any decomposable Meyniel graph is polynomial in the number of its
vertices. The proof relies on the fact that there exists a decomposition tree of G
whose size is not too large.

Lemma 5.6.7. Let G be a basic Meyniel graph. It holds that

(i) ω(G) = |K|+ 2;

(ii) xc(STAB(G)) ≤ |V (G)|+ |S|+ |E(G(A))|.

Proof. Let A,K, S be as defined in Definition 5.6.4. Let C be a maximal clique of
G. Consider the following two cases depending on the cardinality of C ∩ S:

(a) C ∩ S 6= ∅: Let {x} = C ∩ S. Then C = {x} ∪N(x). As |N(x) ∩ A| ≤ 1 and
|N(x) ∩ K| ≤ |K|, it holds that |C| ≤ |K| + 2. Thus there are precisely |S|
maximal cliques meeting the set S.

(b) C ∩ S = ∅: We must have C = K ∪ {a, b} for some {a, b} ∈ E(G(A)) and
|C| = |K| + 2. Thus there are precisely |E(G(A))| maximal cliques disjoint
from the set S.

The first claim (i) follows directly from the analysis above. Recall that SG is the
slack matrix of STAB(G). Since the number of maximal cliques in G is precisely
|S| + |E(G(A))|, from Lemma 5.2.1, it follows that rank+(SG) ≤ |V (G)| + |S| +
|E(G(A))|. Applying Theorem 2.4.4, we have that xc(STAB(G)) = rank+(SG) and
the second claim follows.

Lemma 5.6.8. Let G be a basic Meyniel graph. It holds that

xc(STAB(G)) ≤ |V (G)|+ |E(G)| −
(
|K|
2

)
− |A| · |K|.

Proof. Let us show that |S| + |E(G(A))| ≤ |E(G)| −
(|K|

2

)
− |A| · |K|. Consider the

set of edges in G: there are
(|K|

2

)
edges in G(K), |E(G(A))| edges in G(A), |A| · |K|

crossing edges between A and K, and at least |S| edges going out of S as G is
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connected and S is a stable set. Thus |E(G)| ≥
(|K|

2

)
+ |E(G(A))| + |A| · |K| + |S|.

The claim then follows from (ii) in Lemma 5.6.7.

Let us introduce a graph parameter which is essential to provide a good upper
bound on the extension complexity of STAB(G), where G is a decomposable Meyniel
graph. Define the following graph parameter based on the number of vertices and
edges in G, and the clique number of G,

f(G) := |V (G)|+ |E(G)| −
(
ω(G)− 2

2

)
− 4 · (ω(G)− 2).

We will see that if G is a decomposable Meyniel graph, then ω(G) ≥ 2 (See Lemma
5.6.16) and thus the function f is well-defined. Let us show some properties of the
graph parameter f(G) first.

Lemma 5.6.9. Let G be a basic Meyniel graph. It holds that xc(STAB(G)) ≤ f(G).

Proof. As G is a basic Meyniel graph, we have ω(G) = |K|+ 2 and |A| ≥ 4 as G(A)
is a 2-connected bipartite graph containing at least one cycle. The claim then follows
from Lemma 5.6.8.

Lemma 5.6.10. Let G1 and G2 be an amalgam decomposition of the graph G0. It
holds that

f(G1) + f(G2) ≤ f(G) + 6.

Proof. By the definition of amalgam decompositions, there exist two triples (Gk, vk, Ck)
(k = 1, 2) satisfying the conditions (i),(ii),(iii) in the Definition 4.3.1, such that
G = (G1, v1, C1) Φ (G2, v2, C2).

Let ωk denote ω(Gk) (k = 0, 1, 2). The following relations hold:

|V (G1)|+ |V (G2)| − |V (G)| = |K|+ 2,

|E(G1)|+ |E(G2)| − |E(G)| = |R1|+ |R2| − |R1| · |R2|+
(
|K|
2

)
+ 2|K|.

Using the relations above, we obtain that

f(G1) + f(G2)− f(G) = 3 · |K|+ |R1|+ |R2| − |R1| · |R2| − 4 · (ω1 + ω2 − ω) + 10

+

(
|K|
2

)
+

(
ω − 2

2

)
−
(
ω1 − 2

2

)
−
(
ω2 − 2

2

)
.
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We can check that g(|R1|, |R2|) := |R1| + |R2| − |R1| · |R2| ≤ 1. The inequality
is true if |R1| = |R2| = 0. Now consider the case when |R1| ≥ 1 and |R2| ≥ 1.
We can rewrite the function to get g(|R1|, |R2|) = |R1| · (1 − |R2|) + |R2|, and thus
g(|R1|, |R2|) is a linear function in |R1| if |R2| is a constant. As 1−|R2| ≤ 0, the slope
of this linear function is non-positive and thus it is a decreasing function in |R1|. By
symmetry, the same result holds if we fix |R1|. Thus g(|R1|, |R2|) ≤ g(1, 1) ≤ 1.

Let K be a maximum clique of G0. We distinguish the following two cases
depending on whether K is mixed:

(i) K is not mixed, i.e., say K ⊆ V01. Then there exists a clique of size |K| in G1

and thus ω1 ≥ ω. It also holds that ω1 ≤ ω + 1. Indeed, if this is not the case,
then there exist a clique K ′ in G1 whose cardinality is ω+ 2 and thus K ′\{v1}
is clique of size at least ω + 1 in G1. This implies that there exist a clique in
G0 whose cardinality is at least ω + 1, and we have a contradiction. Hence, it
holds that ω1 = ω or ω1 = ω + 1. We also note that |C| ≤ ω2 − 1 as C ∪ {v2}
is a clique in G2.

If ω1 = ω, then

f(G1) + f(G2)− f(G) ≤ 3 · (ω2 − 1)− 4 · ω2 + 11 +

(
ω2 − 1

2

)
−
(
ω2 − 2

2

)
= 6.

If ω1 = ω + 1, then

f(G1) + f(G2)− f(G) ≤ 3 · (ω2 − 1)− 4 · (ω2 + 1) + 11

+

(
ω2 − 1

2

)
+

(
ω − 2

2

)
−
(
ω − 1

2

)
−
(
ω2 − 2

2

)
= 4− ω
≤ 3.

The last inequality follows from ω ≥ 1.

(ii) K is mixed. In this case, K = C∪A1∪A2 for some non-empty subsets A1 ⊆ R1

and A2 ⊆ R2. Thus |C| = ω − |A1| − |A2|. Let Bk := Rk\Ak for k = 1, 2. So
|Rk| = |Ak| + |Bk| for k = 1, 2. As (K\A2) ∪ {v1} is a clique in G1, it holds
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that ω1 ≥ ω − A2 + 1. Similarly ω2 ≥ ω − A1 + 1. Now we have

f(G1) + f(G2)− f(G)

= 3 · (ω − |A1| − |A2|) + |R1|+ |R2| − |R1| · |R2| − 4 · (ω − |A1|+ 1 + ω − |A2|+ 1− ω) + 10

+

(
ω − |A1| − |A2|

2

)
+

(
ω − 2

2

)
−
(
ω − |A1| − 1

2

)
−
(
ω − A2 − 1

2

)
= −1 · (ω − |A1| − |A2|) + |R1|+ |R2| − |R1| · |R2|+ 2

+
1

2
(ω2 + |A1|2 + |A2|2 − 2 · ω · |A1| − 2 · ω · |A2|+ 2 · |A1| · |A2| − ω + |A1|+ |A2|)

+
1

2
(ω2 − 5 · ω + 6)

− 1

2
(ω2 − 2 · ω · |A1|+ |A1|2 − 3 · ω + 3 · |A1|+ 2)

− 1

2
(ω2 − 2 · ω · |A2|+ |A2|2 − 3 · ω + 3 · |A2|+ 2)

= −ω + |A1| · |A2|+ |R1|+ |R2| − |R1| · |R2|+ 3

≤ 3.

The last inequality uses the fact that −ω+|A1|·|A2|+|R1|+|R2|−|R1|·|R2| ≤ 0.
As ω ≥ |A1|+ |A2|, it suffices to show the inequality

|R1|+ |R2| − |R1| · |R2| ≤ |A1|+ |A2| − |A1| · |A2|.

To this end, we show the optimal value of the following optimization problem
is at least |R1|+ |R2| − |R1| · |R2|.

min
|A1|,|A2|

{|A1|+ |A2| − |A1| · |A2| : 1 ≤ |Ak| ≤ |Rk| and Ak ∈ Z(k = 1, 2)}.

Since there are only finitely many possible choices for the value of the pair
(|A1|, |A2|), the minimum must exists. In fact, the minimum is attained at
(|A1|, |A2|) = (|R1|, |R2|). Assume this not the case, say |A1| < |R1|, then the
pair (|A1|+ 1, |A2|) yields strictly smaller objective value.

In both cases, f(G1) + f(G2) − f(G) is upper bounded by 6. This finishes the
proof.

As mentioned earlier, we need to provide an upper bound on the number of
proper amalgam decompositions needed to decompose G into basic Meyniel graphs.
Following Burlet and Fonlupt [4], we introduce the following graph parameter.

60



Definition 5.6.11. Let G be a decomposable Meyniel graph. Define N(G) to be the
largest number of internal nodes among all the decomposition trees of G.

By definition, if G is a decomposable Meyniel graph, then any proper amalgam
decompositions of G into basic Meyniel graphs involve at most N(G) proper amalgam
decompositions.

Lemma 5.6.12. Let G be a decomposable Meyniel graph. Let T be a decomposition
tree of G with N(G) internal nodes. Let G1, . . . , GL be the basic Meyniel graphs
associated to the leaves of T . It holds that

L∑
l=1

f(Gl) ≤ f(G) + 6 ·N(G).

Proof. We prove the statement by induction on N(G). If N(G) = 0, then G is a
basic Meyniel graph. If N(G) = 1, then G is amalgam decomposed into two basic
Meyniel graphs G1 and G2, and the result follows from Lemma 5.6.10. (This case is
in fact not needed, we include it for clarity.)

Assume now N(G) ≥ 2. Let G1 and G2 be children of G in T . So G is amalgam
decomposed into G1 and G2 in our decomposition process. We have

N(G) = N(G1) +N(G2) + 1. (5.3)

Then each basic Meyniel graph Gl corresponds to a leaf in the subtree rooted at G1

or to a leaf in the subtree rooted at G2. For k = 1, 2, let Lk denote the set of indices l
for which Gl corresponds to a leaf in the subtree rooted at Gk. Then L = |L1|+ |L2|.

By the induction assumption, it holds that
∑

l∈Lk
f(Gl) ≤ f(Gk) + 6 · N(Gk)

(k = 1, 2). Summing these two inequalities gives

L∑
l=1

f(Gl) ≤ f(G1) + f(G2) + 6 · (N(G1) +N(G2))

≤ f(G) + 6 · (N(G1) +N(G2) + 1)

= f(G) + 6 ·N(G).

Here, the last two lines use Lemma 5.6.10 and Equation (5.3), respectively. This
concludes the proof.

Theorem 5.6.13. Let G be a decomposable Meyniel graph. It holds that

xc(STAB(G)) ≤ f(G) + 6 ·N(G).
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Proof. Let G1, . . . , GL be the basic Meyniel graphs that are associated to the leaves
in the decomposition tree of G. By iteratively applying Theorem 4.3.3, we have that
xc(G) ≤

∑L
l=1 xc(Gl). Combining with Lemma 5.6.9, we get that xc(G) ≤

∑L
l=1 f(Gl).

Now we can use Lemma 5.6.12 to derive that xc(G) ≤ f(G) + 6 ·N(G).

Now we already obtained an upper bound on xc(STAB(G)) in terms of f(G)
and N(G). The term f(G) is clearly upper bounded by |V (G)|2. It remains to
provide an upper bound for N(G). To this end, we define the graph parameter
r(G) := V (G) − ω(G). In what follows, we use the notation rk := r(Gk) and
ωk := ω(Gk) for the graph Gk (k = 0, 1, 2). Now the next lemma shows some results
of a proper amalgam decomposition and the graph parameter r(G).

Lemma 5.6.14. [4] If the graphs G1 = (V1, E1) and G2 = (V2, E2) are a proper
amalgam decomposition of the graph G0 = (V0, E0), then

(i) |Vk| < |V0|, ωk ≤ ω0, rk ≤ r0 (k = 1, 2);

(ii) r1 + r2 ≤ r0 + 1.

Proof. We follow the same notation as in Definition 4.3.1. Recall that Rk de-
notes N(vk)\Ck and Nk denotes Vk\(Ck ∪ vk) (k = 1, 2). Furthermore, V0k denotes
(Vk\Ck) ∪ C for k = 1, 2.
(i): The inequalities |Vk| < |V0| (k = 1, 2) follow directly from the definition of proper
amalgam decomposition. As G1 and G2 are a proper amalgam decomposition of G0,
it holds that |Nk| ≥ 3 (k = 1, 2) and thus ωk ≤ ω0 (k = 1, 2).

Now we prove that rk ≤ r0 (k = 1, 2). Let K be a maximum clique of G0.
Consider the following cases depending on whether K is mixed.

(a) K is mixed: Then K = C ∪ A1 ∪ A2 for some non-empty subsets A1 ⊆ R1

and A2 ⊆ R2, and thus C1 ∪ A1 ∪ {v1} is a clique in G1. This implies that
ω1 ≥ |C1|+ |A1|+ 1 = |C|+ |A1|+ 1. We have

r0 = |V0| − ω0 = |C|+ |N1|+ |N2| − (|C|+ |A1|+ |A2|),
r1 = |V1| − ω1 ≤ |C|+ |N1|+ 1− (|C|+ |A1|+ 1).

Thus r0 − r1 ≥ |N2| − |A2| ≥ 0, as A2 ⊆ R2 ⊆ N2.
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(b) K is not mixed and K ∩N1 = ∅: Then K ⊆ C ∪N2. As C1 ∪ {v1} is a clique
in G0, ω1 ≥ |C1|+ 1 = |C|+ 1. We have

r0 = |V0| − ω0 = |C|+ |N1|+ |N2| − |K ∩ (C ∪N2)),

r1 = |V1| − ω1 ≤ |C|+ |N1|+ 1− (|C|+ 1).

Thus r0 − r1 ≥ |C|+ |N2| − |K ∩ (C ∪N2)| ≥ 0.

(c) K is not mixed and K ∩ N1 6= ∅: Then G1 has a clique of size |K| and thus
ω0 ≤ ω1. As |V1| < |V0|, We have r0 − r1 = (|V0| − |V1|)− (ω0 − ω1) ≥ 1.

This proves that r1 ≤ r0. Similarly it holds that r2 ≤ r0.

(ii): Let K be a maximum clique of G0. Consider the following cases depending
on whether K is mixed.

(a) K is mixed: In this case, K = C∪A1∪A2 for some non-empty subsets A1 ⊆ R1

and A2 ⊆ R2. Thus ωk ≥ |Ak| + |C| + 1 as Ak ∪ Ck ∪ {vk} is a clique in Gk,
and |Ck| = |C| (k = 1, 2). Thus we have

ri = |Vi| − ωi ≤ |Vi| − |Ak| − |C| − 1, (k = 1, 2).

This gives

r1 + r2 ≤ (|V1| − |A1| − |C| − 1) + (|V2| − |A2| − |C| − 1)

= (|V1|+ |V2| − |C| − 2)− (|A1|+ |A2|+ |C|)
= |V0| − ω0

= r0.

(b) K is not mixed. Then K ⊆ N1 ∪ C or K ⊆ N2 ∪ C, say K ⊆ N1 ∪ C. Hence
there is a clique of size |K| in G1 and thus ω1 ≥ ω0. As C2 ∪ {v2} is a clique
in G2 and |C2| = |C|, it holds that ω2 ≥ |C| + 1. Finally, we also note that
|Vk| = |Nk|+ |C|+ 1 (k = 1, 2) and |V0| = N1|+ |N2|+ |C|. Thus we have

r1 = |V0| − ω1 ≤ |N1|+ |C|+ 1− ω0,

r2 ≤ |V2| − |C| − 1 = |N2|.
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This gives

r1 + r2 ≤ (|N1|+ |C|+ 1− ω0) + |N2|
= (N1|+ |N2|+ |C|)− ω0 + 1

= |V0| − ω0 + 1

= r0 + 1.

Lemma 5.6.15. [4] If G is a basic Meyniel graph, then ω(G) ≥ 2 and r(G) ≥ 2.

Proof. By definition, the vertex set V (G) can be partitioned into a triple (A;K;S),
where G(A) is a 2-connected bipartite graph containing at least one cycle. Thus A is
non-empty and it must contain at least 4 vertices. This implies that ω(G) ≥ 2 and
|A| ≥ 4.

From Lemma 5.6.7, we know that ω(G) = |K|+ 2 and thus

r(G) = |V (G)| − ω(G)

= (|A|+ |K|+ |S|)− (|K|+ 2)

= |A|+ |S| − 2

≥ 2.

The last inequality uses the fact that |A| ≥ 4.

Lemma 5.6.16. [4] If G is a decomposable Meyniel graph, then ω(G) ≥ 2 and
r(G) ≥ 2.

Proof. By definition, G can be properly amalgam decomposed into basic Meyniel
graphs G1, . . . , GL. Applying (i) or (ii) in Lemma 5.6.14, and Lemma 5.6.15, we
obtain that ω(G) ≥ 2 and r(G) ≥ 2.

It remains to provide an upper bound for N(G). For this we follow Burlet and
Fonlupt [4] and show that the number of nodes in a decomposition tree of G is small.
Indeed, N(G) is equal to the number of internal nodes of the decomposition tree
which is no greater than the number of nodes in the tree.

Definition 5.6.17. [4] Let G be a decomposable Meyniel graph. If T is a decompo-
sition tree of G, then GT is the family of graphs associated to the nodes of T . We
define k(G) to be the cardinality of the largest family GT among all decomposition
trees T of G.
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Theorem 5.6.18. [4] Let G0 be a decomposable Meyniel graph. It holds that

k(G0) ≤ |V0| · (r2
0 + 1).

Proof. We prove this by induction on the number of vertices |V0|. The statement is
clearly true if |V0| = 1 or |V0| = 2. Assume |V0| ≥ 3 and the statement is true for
any graph whose number of vertices is less than |V0|.

Consider a proper amalgam decomposition of G0 into basic Meyniel graphs. Let
GT0 be the family of graphs induced by the decomposition. If G0 is not a basic Meyniel
graph, we denote the children of G0 in the decomposition by G1 and G2. In this case,
we have that k(G0) = k(G1) + k(G2) + 1 as GT0 = {G0} ∪ GT1 ∪ GT2 .

If G0 is a basic Meyniel graph, then k(G0) = 1 and the theorem follows.

If G0 is not a basic Meyniel graph and precisely one of its child, say G2, is a basic
Meyniel graph, then k(G2) = 1, and k(G1) ≤ |V1| · (r2

1 + 1) by induction hypothesis.
Since G1 is in the family GT0 , it is a decomposable Meyniel graph. From (ii) in
Lemma 5.6.14, it holds that r1 ≥ 1. We have that,

k(G0) = k(G1) + k(G2) + 1 ≤ 2 + |V1| · (r2
1 + 1) ≤ (|V1|+ 1) · (r2

1 + 1).

Since |V1| < |V0| and r1 ≤ r0,

k(G0) ≤ |V0| · (r2
0 + 1).

If G0 is not a basic Meyniel graph and both G1 and G2 are not basic Meyniel
graphs. Applying the induction hypothesis, we have that

k(G0) = k(G1) + k(G2) + 1

≤ |V1| · (r2
1 + 1) + |V2| · (r2

2 + 1) + 1

≤ |V0| · (r2
1 + 1) + |V0| · (r2

2 + 1)

≤ |V0| · (r2
1 + r2

2 + 2).

Here we have used the relation |Vk| < |V0| (k = 1, 2) and |V0| ≥ 3.

From (ii) in Lemma 5.6.14, we know that 2 ≤ r1 ≤ r0, 2 ≤ r2 ≤ r0, and thus

r1r2 − r1 − r2 ≥ 0.

From Lemma 5.6.16, we know that r1+r2−1 ≤ r0, as both sides are non-negative,
we can take squares on both sides and rearrange the terms to get

r2
1 + r2

2 + 1 + 2 · (r1r2 − r1 − r2) ≤ r2
0.
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Therefore we obtain that r2
1 + r2

2 + 2 ≤ r2
0 + 1 as r1r2 − r1 − r2 ≥ 0. Thus k(G0) ≤

|V0| · r2
0 + 1 and this proves the claim.

Theorem 5.6.19. [4] Let G be a decomposable Meyniel graph. It holds that

N(G) ≤ |V (G)|3.

Proof. Recall that r(G) = |V (G)| − |ω(G)|, and ω(G) ≥ 2, thus

r(G)2 + 1 = (|V (G)| − ω(G))2 + 1

≤ (|V (G)| − 1)2 + 1

= |V (G)|2 − 2 · (|V (G)| − 1)

≤ |V (G)|2.

As N(G) ≤ k(G), the claim follows from Theorem 5.6.18 that

N(G) ≤ k(G)

≤ |V (G)| · (r(G)2 + 1)

≤ |V (G)|3.

The above theorem provides a cubic upper bound on N(G), i.e., the largest num-
ber of proper amalgam decompositions needed to decompose G into basic Meyniel
graphs. This result allows us to derive the following cubic upper bound on the
extension complexity of any decomposable Meyniel graph.

Theorem 5.6.20. Let G be a decomposable Meyniel graph. It holds that

xc(STAB(G)) ≤ 7 · |V (G)|3.

Proof. It is not hard to see that f(G) ≤ |V (G)|2. From Theorem 5.6.19, we know
that N(G) ≤ |V (G)|3. Applying Theorem 5.6.13, we obtain that xc(STAB(G)) ≤
f(G) + 6 ·N(G) ≤ 7 · |V (G)|3.

A chordal graph is one in which every cycle of length four or greater has a chord.
Chordal graphs are Meyniel graphs. The extension complexity of the stable set
polytopes of chordal graphs are polynomial, as since a chordal graph on n vertices
has at most n maximal cliques. We point out to the reader that chordal graphs
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are not captured by Theorem 5.6.20. For example, a clique of size 3 is not a basic
Meyniel graph and it also does not have a proper amalgam decomposition. This is
possibly the reason why the notion of basic Meyniel graph was later modified. In
particular, chordal graphs have been added as a new class of basic graphs (see e.g.
Chapter 10 in [11]). However we point out that it is not clear whether the result from
Theorem 5.6.19 extends to this setting (since the inequality r(G) ≥ 2 does not hold
for general chordal graphs). It follows from more general results in the recent work
[10] that the stable set polytope of general Meyniel graphs has polynomial extension
complexity.
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Chapter 6

Conclusion

In this thesis, we provided an upper bound for the extension complexity of the stable
set polytope of G0 in terms of xc(STAB(G1)) and xc(STAB(G2)), where the graph
G0 is composed from the graphs G1 and G2 via some graph operation. We considered
the following graph operations: graph substitution, graph amalgamation and clique
sum. We showed that xc(STAB(G0)) ≤ xc(STAB(G1))+xc(STAB(G2)), for all these
operations. Furthermore, this upper bound can be improved slightly for some special
graphs, e.g., Kr or K2.

As an application of the link between communication complexity and extension
complexity, we showed that the extension complexity of the stable set polytope of
the disjoint union of p edges is precisely 3p.

We also showed that the extension complexities of the stable set polytopes of all
the basic perfect graphs are polynomial. Furthermore, if a perfect graph G is decom-
posed into basic perfect graphs via proper 2-join and balanced skew partitions, then
we provide an upper bound on xc(STAB(G)) in terms of the number of vertices of
G and the depth of the induced decomposition tree. Finally, we considered a sub-
class of perfect graphs, known as Meyniel graphs and we showed that the extension
complexities of the stable set polytopes of every decomposable Meyniel graphs are
polynomial.
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