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A two-grid analysis of the combination of 

mixed finite elements and Vanka-type relaxation 

J. Molenaar 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

In this paper a two-grid algorithm is discussed for the mixed finite element discretization of Poisson's equa
tion. The algorithm is based on a Vanka-type relaxation; the grid transfer operators are selected in accor
dance with the discretization. Local mode analysis Is used to show that Vanka-type relaxation Is an efficient 
smoother indeed. By studying the Fourier transform of the error amplification matrix we find that the canon
ical grid transfer operators are sufficiently accurate for grid independent convergence. However, this con
clusion depends on the relaxation pattern used. 

I. INTRODUCTION 

313 

The Mixed Finite Element (MFE) method is widely used for the discretization of second order elliptic 
systems. For the iterative solution of the discrete systems of equations multigrid methods are pro
posed. In [I] we presented a multigrid method for the MFE-discretization of the stationary semicon
ductor equations. This multigrid method employs a symmetric block Gauss-Seidel relaxation, as pro
posed by Vanka [2], which seems to be an efficient smoother. The prolongation and restriction in this 
multigrid algorithm are the canonical choice for the lowest order Raviart-Thomas elements that are 
used in the discretization. However, a priori it is not clear whether these canonical grid transfer opera
tors are accurate enough to ensure grid independent convergence of the multigrid algorithm. There
fore we study two-grid algorithms for the model equation 

div (grad u) = 0, on 9, 
(1.1) 

u =O, on9. 

For ease of notation we only treat the case 0 CR. The Poisson equation (1.1) is discretized by the 
MFE-method (section 2). As the discretization is not stable if a sourceterm is present in (1.1) a qua
drature rule is used which lumps the equations (cf. [3]). A two-grid algorithm for the discrete system is 
presented in section 3. We study the convergence behavior of this two-grid algorithm by Fourier 
analysis. The Fourier representations of the different operators in the two-grid algorithm are derived 
in section 4. By local mode analysis we show that Vanka-type relaxation is an efficient smoother for 
the discreet system indeed (section 5). In our analysis we include the use of a relaxation parameter as 
well as different relaxation patterns: lexicographical and red-black. In section 6 we study the error 
amplification matrix of the two-grid algorithm. Surprisingly we find that the required accuracy of the 
grid transfer operators is not only determined by the order of the differential equations (cf. [4,5]), but 
also depends on the relaxation pattern used. Our conclusions are summarized in the final section. 

2. DISCRETIZATION 

To discretize the second order differential equation (1.1) by the mixed finite element method, we 
rewrite it as a system of two first order equations, 
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o-gradu = 0, 

diva= 0, 

u(O) = u(I) = 0. 

Let L 2 (Q) be the Hilbert space of square integrable functions on Q c Iii with inner product 

(u,t) = Jut dD, 
D 

and let H(div, 0) be the Hilbert space defined by 

H(div, 0) = {oloeL2(0), divoeL 2(Q)} 

with norm 

llollh(div,ll) = llolli•(ll) + lldivollh12>-
By introduction of the product space A(O) = H(div,O)XL2(0) the weak formulation of (2.1) is: 
find (o,u)eA(O), such that 

JcndO+ J udindO = 0, 'V-reH(div,fJ.), 
D D 

jtdivodO = 0, VteL2(fJ). 
D 

To discretize (2.2) we decompose the domain fJ into a set Qh of N uniform cells fJ.~, 

O~ = [ (i ~ 1) , * l i =I, ... , N, 

of size h = ~ . 

(2.la) 

(2.lb) 

(2.lc) 

(2.2a) 

(2.2b) 

(2.3) 

On this mesh lowest order Raviart-Thomas elements are defined, which 
Ah(fJ.) CA(fJ). On each cell rJi the indicator function e~ eL 2(0) is defined by 

span the subspace 

(2.4) 

For every edge at x = jh of an interval D~ a piecewise linear function ({ eH(div, fJ) is defined by 

({(E~) = 6jk> k =O, ... , N, (2.5) 

where /Sjk denotes the Kronecker delta. The discrete approximation (oh, uh) of solution (o,u) is 

oh = ~ 0£(£, 
j=O,N 

uh = ~ u~e~. (2.6) 

i=l,N 

To discretize the equation we proceed as usual and we replace A(D) in (2.2) by Ah(D) and use (E~, e~) 
as the testfunctions. After division by h for proper scaling, the resulting algebraic system for (oh, uh)r, 
i.e. the column vector of the coefficients { o~, u~} is - -

[ ~! :h ][;:] = [ n (2.7) 

The matrix elements in this system are 

.!. .1J-ki=l, 6' 
2 

,j=k, jfl.{0,N}, 1 f . k 3' (Ah)jk = h E{,EhdD = 
0 .!. ,j=k, je{O,N}, 3, 

(2.Sa) 

0, ,otherwise, 
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and 

1 
--,;. ,j=i-1, 

1 
+ h' ,j=i, 

(2.8b) 

0, , otherwise. 

If a sourceterm is present in (1.1) this discretization is not stable in the sense that the matrix, 
obtained after elimination of oh, is necessarily a M-matrix. Therefore we change the discretization by 
approximating the integral in °'(2.8a) by a repeated trapezoidal rule, 

(Ah)Jk l:::j t ~ (££(ih)€~(ih)+£~((i - l)h)£h(i- l)h)). 
i=l,N 

By this quadrature Ah is approximated by a diagonal matrix; effectively the matrix Ah is lumped. If 
oh is eliminated from the lumped system, we obtain a M-matrix indeed, even if a sourceterm is 
present. 

In this paper we analyze two-grid algorithms for the solution of the linear system (2. 7), both for the 
lumped and the non lumped case. In fact we treat the more general situation 

{ 

IC lj-kl==l, 
l-21C' j=k, jti!{O,N}, 

(Ah)jk == .! _IC' 
2 , j=k, je{O,N}, 

0, otherwise, 

(2.9) 

which implies the lumped case (JC= 0) as well as exact integration (IC= i). 
3. TwO-GRID ALGORITHM 

In this section we discuss the different operators in a two-grid algorithm for the iterative solution of 
the system of equations (2.7). The discrete fine grid operator Lh: IR2N+l-+R2N+l is defined by the 
system (2. 7), 

_ [Ah Dh) 
Lh - D[ 0 . (3.1) 

The coarse grid is obtained by cellwise coarsening, i.e. by ta.king H =2h in (2.3). This implies that the 
approximating subspaces are nested, An(O)CAh(O); hence the canonical grid transfer operators are 
available. The canonical prolongation Ph:RN+l-+IR2N+I is define on the space of coefficient vectors 
(un,unl; the canonical restriction RH:R2N+l-+IRN is the adjoint of Ph. The coarse grid operator is 
obtaTned by using the same discretization on the coarse grid On as on the fine grid Oh. If exact qua-

drature is used (IC= t ), we find that LH is the Galerkin approximation of Lh: 

(32) 

As smoothing operator Sh:R 2N+J-+R2N+J we use symmetric block Gauss-Seidel relaxation. By this 
method all cells are scanned in some determined order, and in each cell O~ the three equations 
corresponding to the testfunctions ft£~ - 1 and et are solved for <1~ - 1, o~ and u~. After each update a 
next cell is visited. In this paper we consider both lexicographical (SBGS) and red-black ordering 
(SBRB) ordering of the cells. 

Finallj we define the two-grid error amplification matrix 

(3.3) 
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where h :IR 2N 1 1 ..... 1R 2N 11 denotes the identity operator and v 1, v2 the number of pre- and post relaxa
tion sweeps, respectively. 

4. FOURIER ANALYSIS: THE COARSE GRID CORRECTION 

In order to derive Fourier representations of the different operators in the two-grid algorithm, we 
extend the domain to Q = IR and omit the boundary conditions. The coefficient vectors ah and uh are 
considered as gridfunctions defined on different discretization grids - -

lh,s = {(j-s)hjjEZ}, (4.1) 

with 

l 0, 

s = ..!.. 
2, 

The space of discrete L 2-functions on lh,so denoted by 

Lh,s(lh,,) = {fh,slfh.,: lh,s->C; h2:1fh,,((i-s)h)l2 <oo}, 
j 

is a Hilbert space. The Fourier transform FT(fh,,)= fh,s: Th-> C of a Lh,,-function is defined by 

fh,s(w) = _ ::.- 2:. e-<(j-s)hw fh,,(j-s)h), (4.2) 
V 27T jel 

with Th= ( - f, f ]. The inverse transformation is given by 

fh.,((j-s)h) = - 1- J ei(j-s)hwJh,,(w)dw. (4.3) 
V?;; WET~ 

By Parseval's equality the Fourier transformation operator FT: Lh,, ..... L 2(Th) is an unitary operator. 
Convolution or Toeplitz operators Eh: Lh,s-> Lh,s are linear operators, generated by a grid.function 

bh, o ELh,o: 

kEZ 

The Fourier transform FT(Bh)=Bh of a Toeplitz operator Bh is defined by 
- -
Bh(w) = hh, 0(w). (4.4) 

For example, the matrices Ah and Dh in (2.7) are Toeplitz operators with Fourier transforms 

Ah(w) = 1-4icsin2( \w) (4.5) 

and 

(4.6) 

In order to obtain Fourier representations of the grid transfer operators we introduce the elemen
tary prolongation P~.,: L11,, ..... Lh,,, 

(P~.Ju,,)((j-s)h) = l/JI,,<(f-s)h), j even, (4.7) 

0, j odd, 

and the elementary restriction R~1,s: Lh,s-> Lu,,, 

(R'Ji,,fh.,)((j-s)H) = fh.,((2)-s)h). (4.8) 
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Using ( 4.2), ( 4.3) and ( 4.8) we find that the Fourier transforms of fh and Ro .f are related by 
,s H,J h,s 

(4.9) 

with weTHCTh. Notice that R~1,s aliases two frequencies {w,w+f }ETh with one frequency wETn. 

The frequencies wETH are called low frequencies in Th and the wETh!TH are high frequencies. Now 

every wETh can be written as a 2-vector (w+ pf), pE{0,1} on TH. Hence for fh_,eL 2(Th) we may 

also use the notation fh,so where fh,s is, a 2-vector with entries jh_,(w+ pf). Consistent with this nota

tion, we write;: the Fourier transform Bh,s(w) of a Toeplitz operator as a 2X2-diagonal matrix Bh,,(w) 

with entries Bh,,(w+ pf). Any restriction operator RH,,, that is defined by an unique stencil, can be 

written as the combination of R~,s and a Toeplitz operator Bh· Hence the Fourier transform of Rn, 
is given by ' 

- '0 ' 
RH,,(w) = Ru,,(w)Bh(w), (4.IO) 

- - 0 
where Ru,,(w) and RJl,s(w) are 1 X2 matrices. 

Analogous to the restriction we may write any prolongation Ph,s as the combination of PK, and a 
Toeplitz operator Bh. The Fourier transforms of fh., and P~.sf ll,s are related by 

O 7r 1 - ish(w- p:!.) ' 
(Ph,sf u,J(w+ P-J;) = 2e h f H,,(w). (4.ll) 

The Fourier transform of Ph,s =BhP~.s is in matrix notation 
- - -o 
Ph,,(w) = Bh(w)Ph,s(w), (4.12) 

where Ph,s and P~.s are 2X I-matrices. Using (4.11) and (4.12) we compute the Fourier transform of 
the canonical prolongation Ph (see section 3) as 

cos2 .§_ 
2 

0 

[";c., .. • I sin2 .§_ 0 
Ph(w) = 2 

(4.13) 0 , 
0 Ph(w) 0 cos2 

0 
0 

sin2 

with B=h w. The Fourier transform RH(w) of the canonical restriction RH is the transposed of h(w). 

The components of the Fourier transform of a grid transfer operator are trigoniometric functions of 
fJ; this allows us to classify them according to their behavior in the case w fixed and h -+Q. Suppose 

that the Fourier transforms of a prolongation and its adjoint restriction are given by Ilh,,(w) and 

frr,,(w), respectively. The low frequency order mL of a grid transfer operator IIh,s is the largest 
number mL;;;..o such that 

ITh,s(w) = l+O(IJ"'), for h~O, wETH. 

The high frequency order mH of ITh,s is the largest number mu ;;;.o for which 

Il(w+ ..!:.) = 0(11""), for h~O, wETH. 
h 

For the canonical grid transfer operators we have: m1=2, m'JI = 2, m'L = 2 and m'k = I. To avoid 
large amplification of high frequencies, the high frequency order mH should be at least equal t~ the 
order of the differential equation (cf. [4,5]). As we are considering a system of first order equauons, 
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we conclude that the canonical grid transfer operators are sufficiently accurate. In fact, the Fourier 
transform of the coarse grid correction operator M<f is given by 

+ sin2 IJ... 2 0 0 0 
2 

-cos 2 

-sin2 IJ... +cos2 IJ... 0 0 
2 2 

" 00 h 0 h 0 sin2 !!_ _ ..!.sin8 (4.14) Mh (w) == -.-.-0 Yi(z) --yH(-) 
2· . 0 2 2 2 

2zsm-z 1sm-z 

h 0 h 0 _ ..!.sin8 cos2 !!_ --yi(-) -.--0 YH(z) 
2· 0 2 2 2 

1 cos2 21 cos2 

with YL(8) == sin28(1-12Kcos28) and YH(O) = cos28(1-12Ksin28). 
So, if it is assumed that inf,,,.r"lwl is bounded away from zero by the boundary conditions, we see 

that all elements of M1{l(w) remain bounded for h-'>0. This implies that errors in (ah,uh) are not 
blown up by the coarse grid correction if h-'>0. 

5. FOURIER ANALYSIS: RELAXATION 

In this section we derive the Fourier representation of the smoothing operators SBGS and SBRB. We 
start by treating the lexicographical ordering of the cells. In a single SBGS-swc;ep the <J~ are updated 
twice; so starting from initial values { oi,u~} SBGS yields new values {a~, u'h }, using intermediate 
values a~. If the cells are visited from left to right, we have in every cell fJ~ 

1 (_; _;--1) _ O h ah-ah - ' 

1Ca~+ 1 +c1-2")a~ +1Ca~- 1 +fcu~+ 1 -il) == o, 

IC;;~ + (1-2K)a~ - l + ICa~ -i + f cil-u;,- 1) == o. 

(5.1) 

I . • 

Starting Wifh a Fourier mode ai=aeijhw and ui=beiU-i:Jhw we see that ah=aeijhw, ah=aeijhw and 

uh= beiU-7.)hw. After elimination of a from (5.1) we obtain a relation between the components before 
and after relaxation, 

[ ~] = s:\w) [~]. (5.2) 

with 

;! ;! l-e;e 
-GS e 2 Ke 2(1-eiO) 
sh (w) == h 

2-2K-(I-21C)e-;o e 
1Ch(K+(I-K)e;8) e -;2 (ld(l-K)e;o) 

(5.3) 

"GS 
The spectral radius p( ·)and the spectral norm 11·11, of Sh (w) are respectively 

p(S:s(w)) = I l-2i1Csin8 · I 
2-2K-(I-2K)e-' 8 

(5.4a) 

and 
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J 

_i_sin2i +I -4K sini +41e2sin2i 2 

A GS h 2 2 2 2 
llSh (w)lls = (1 +1e2h 2)~-----------"-

l2-21e-(1-21e)e-i6)I 

By using (5.4a), the smoothing factor µGs = sup p(Sfs (w)) is readily calculated: 

f<i9i"'" 
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(5.4b) 

(5.5) 

independent of h. 
From (5.4b) we see that 11§;\w)lls becomes unbounded for h-'>0. This is a consequence of the fact 

that, starting from an initial error <1h =O, we find errors in oh of magnitude O(h- 1) for h-;,O (cf. 5.3). 
'GS - - -

From the boundedness of p(Sh (w)) we conclude that only in the first relaxation sweep errors in <1h 

are blown up by SBGS. In order to obtain a measure of what happens in the first sweep, we intrO
duce the scaled norm 11 · llH, which is defined by 

llAh(w)llu = llHhAh(w)lls, (5.6) 

with Hh: IR 2N " 1-;.IR 2N+I a scaling operator, 

Hh [;: l [;;h]. 
With respect to this norm we find for SBGS: 

(4sin2-21J +1-4Ksin-2
8 +4K2 sin2 -21J)f 

A GS 2 2 
llSh (w)llH = (1 +K h ) 8 

J2-2K-(1-21e)e- 1 I 
(5.7) 

which is bounded for h-'>0, indeed. 
Yank.a proposes underrel~ati_oJ1 for~( \cf: [2)) to imprfv:jthe smoothing pro~e~e~ 1of SBGS._}!~s 

can be analyzed by replacmg <1h an uh m (5.1) by -;;;<ah-(1-a)11t) and -;;(Oh -(I-a)11h ), 

respectively, where a denotes the relaxation parameter. For K=O the smoothing factor of this damped 
relaxation is easily derived and it is (independent of h) given by 

µ.Gs(a) = max((+)+,(I-a)2). (5.8) 

Fig. 5.1 shows a graph of µ.GS(a) in the case k=t (no lumping). Numerically we find an optimal 

smoothing rate µGS (a"',)= 0.369 for a"',= 0.4583. 
The Fourier representation of SBR.B relaxation is obtained by a similar method. As usual we write 

sfB as the product of the partial step operators Sf and S~, 

s:S<w> = s:(w)S~(w) 

s 1(8) s 2(0+'lr) s3(8) s 4(8+'lr) 

'R Sz(O) s 1(0+'lr) S4(0) S3(8+7r) 
sh (w) = 

s 5(8) -is5(1J+'lr) S7(8) -is8(8+7r)' 

is 5 (8) S5(8+'lr) is s(O) S7(8+7r) 

[s~(w)L = c-1y+1 [s~(w)L, (5.9) 
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with 
38 ;- 0 

SI (fJ) = K f (fJ)e 2 COS 2" 
;l! 8 

s2(fJ) = -iKf((/)e 2 sin2, 

s 3 (fl) = 2i T sinO cos T, s (11\ = 21.J!!l. sinO sin!.. 4 VJ h 2 > 

i.! 0 . 
s 7(fJ) = e 2 cos2+i(l-1C)f(O)srn8, 

8 

s 8(0) = i/2 sin f + i (1- K)/ (8) sinO, 

h K ;l! 
S5(fJ) = le 2 (l+(J-K)j(O)), 

and 

-1 f (8) = ---:-:-2-2K+ Ke -liO 

ARB 
We see that all elements of Sh (w) remain bounded for h->0 and w f1xR5f· However by doing so, we 
only consider the limit cases 101->0, and 181-;.11'; the spectral norm of Sh f 'U be~mes unbounded for 
h-'>0 and(} fixed. Numerical computation shows that the scaled norm of Sh (w) is bounded: 

sup llSP(w)llH<co, for h-'>0. 
O"'lhwl"'~ 

As SBRB relaxation mixes low and high frequencies the smoothing factor µ.RB is defined by 
A ARB 

µ.RB = sup p(QSh (w)), 

f"'Jh"'1.:;~ 

where Q denotes the operator that annihilates all low frequencies 

0 

Q= 
0 

If underrelaxation of a~ is taken into account, we obtain for K=O 
1 

µ.RB(a) = max(g,(I-a)2), 

(5.10) 

(5.11) 

(5.12) 

independent of h. A plot of µ.RB(a) for"= {- is shown in Fig 5.2. In this case underrelaxation hardly 
improves the smoothing factor; numerically' we find µ.RB(a= 1)=0.127. 

6. FOURIER ANALYSIS: THE TWO-GRID ALGORITHM 
In the previous sections we have shown that appropriate norms of the coarse grid correction operator 
and the relaxation operator remain bounded in the limit case of vanishing meshsize. However, this 
does not imply that the scaled norm of the two-grid error amplification matrix is bounded, and hence 
that the convergence rate of the two-grid algorithm is mesh-independent. If K=O both SBGS and 
SBRB relaxation without damping (a= l) eliminate ah, so we are solving a second order differential 
equation for uh. Therefore we may expect that the canonical grid transfer operators P~ and R'Ji are 
not accurate enough. 

We show that this is the case indeed by studying the two-grid algorithm with SBGS relaxation for 
K=O. If a single SBGS-sweep is used for pre- and post smoothing, the Fourier transform of Mi1 after 
n cycles is given by 

1
0 M""] ... I l e2ifJ n 

(Mh (w))" = [ 4-e -2;0] , 
0 M"" 

(6.1) 
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.6 

.5 

.8 .9 1.1 1.2 1.3 1.4 

Fig. 5.1. Smoothing factor µGS depending on 
the relaxation parameter a 

Fig. 5.2. Smoothing factor µRB depending on 
the relaxation parameter a 

K=O SBGS 
SBRB 

K=l/6 SBGS (a=l) 
SBGS (a=aop,) 
SBRB 

(Ph,Rnl 
00 

0.590 

00 

00 

0.628 

(P!J.,RH) 
0.346 
0.099 

0.531 
0.368 
0.339 

TABLE 6.1. Scaled norm of the two-grid error amplification matrix, sup llM~ 1 (c.i)!ly. 

0<i91<f 

(P ,Ry 
v SBGS SBRB 

1 0.577 0.500 0.343 0.096 
2 0.333 0.325 0,145 0.046 
3 0.192 0.259 0.088 0.031 
4 0.111 0.221 0.058 0.023 

TABLE 6.2. Two-level convergenc:e factor;\,., K=O. 

(P ,R ) 
SBGS SBGS SBRB SBGS SBRB 

v (a= 1) (a=aop1) (a=l) (a=IX'f'1) 

1 0.657 0.477 0.457 0.476 0.391 0.264 
2 0.429 0.211 0.367 0.311 0.277 0.178 
3 0.281 0.147 0.314 0.236 0.212 0.136 
4 0.184 0.093 0.278 0.177 0.166 O.lll 

I 
TABLE 6.3. Two-level convergenc:e factor;\,., K= 6· 
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with 

n even: Mou= 

n odd: M"" = 

[
-1-sin! 0 l ih 2 

2 (J ' 
0 ih COST 

0 

2 . () 
ih sin-z 

2 (J 

ih cos2 

0 

J. Molenaar 

0 l· 
(6.2) 

M'"' = [ 
0 0 cotf]· 

tan 2 0 

The two-grid algorithm exhibits a typical alternating convergence behavior. An initial high frequency 

mode !:!_h of amplitude b, causes a low frequency mode of amplitude b cot f after a single two-grid 

cycle; so if h-*0 initial high frequency error modes in uh are blown up. In the next cycle the large 
low frequency mode uh is nicely removed by the coarse grid correction, although a small high fre
qJ:!1~cy error mode fs introduced. This alternating behavior is reflected by the scaled norm of 
(Mh (w))"; for h-*O we find l 5 + (-3.) , n even, 

• 11 
sup w ll(Mh (w))"lln = 

Oc;lhwl<2 
oo, nodd 

By numerical computation we observe a similar alternating convergence behavior for 1e=f, even 

though the coarse grid operator LH satisfies Galerkin's relation. _ 
The obvious cure is to use mgre accurate grid transfer operators. We introduce P~ the linear inter

polation operator for uh and R~ its adjoint. The Fourier transforms of these more accurate grid 
transfer operators are -

cos2 .! 
2 

0 

[P;(w) ••' l sin2 ! 0 
Ph(w) = 2 

0 Ph(w) 0 cos3 ! 
2 

0 sin3 ! 
2 

and 

[R~<•> o l [" ]' Rn(w) = ~. = Ph("') , 
0 RH(w) 

so we have m'L = 2 and m'k = 3. Although it is not necessary to use PZ for keeping the scaled norm of 
the error amplification matrix bounded, it is introduced to avoid similar proble~ with the 
amplification operator of the residuals. In table 6.1 we show values for sup0c;Jhwlc;f JIM/ (w)lln for 

the different possible two-grid algorithms. If SBRB relaxation is used, the canonical grid transfer 
operators (m~ = 1) are sufficient: the high frequencies are so efficiently smoothed that they don't cause 
any problems. Here we see that the choice of the grid transfer operators is not only determined by 
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the order of the differe11tif¥ equations, but is also influenced by the relaxation scheme. 
The scaled norm of Mh (w) only indicates what happens in a single two-grid cycle; the convergence 

rate after many cycles is estimated by the two-level convergence factor 
.... "1"2 t.., = sup p(Mh ), 

0<j8i<f 

with v = v, +v2. In t~ble 6.2 J"e show t.., for K=O and for different values of v. The combination of 
the transfer operators Ph and Rh, and SBRB relaxation leads to a fast converging algorithm. In table 

6.3 we show t.., for K =i. We see that the introduction of a damping parameter a in SBGS relaxation 

indeed leads to faster convergence, but the best convergen~ factor~ are again obtained by using the 
combination of SBRB relaxation and the transfer operators Ph and Rll· 

7. CONCLUSIONS 
By local mode analysis we have shown that symmetric block Gauss-Seidel relaxation is an efficient 
smoother indeed. Although lumping of the discrete equations spoils the Galerkin property of the 
coarse grid operator it generally leads to faster converging two-grid algorithms. The Fourier transform 
of the two-grid error amplification operator shows that the canonical grid transfer operators are 
insufficiently accurate in the ID case if a lexicographical ordering of the gridpoints is used in the 
relaxation procedure; however they suffice if a red-black ordering is used. 
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