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Abstract 
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Theoretical Computer Science 79 ( 1991) 275-294. 

A concurrent system S is called deterministic if for all states s of S we ha\e that whene;er S c.m 

evolve from state s into states s' and s" by doing an action a, it must be the case that .,· e'-J11.il' 

s". It is well known that for deterministic concurrent systems, most of the interJea,ed e'-Jui,alen<·e, 

(bisimulation-, failure-, trace-equivalence) coincide. In this paper we prove in the setting ,,f e\e!lt 

structures that also most of the non-interleaved equivalences coincide \with ea~h oth<~r I on thi> 

domain. In the last section of the paper we show that, as a consequence of our result. the caus«i 

structure of a deterministic concurrent system can be unravelled by obsef\ers who are cap&hle 

of observing the beginning and termination of events. 

1. Introduction 

A (discrete) concurrent system generates events as it evolves in time. At an) 

moment a set of events will have occurred and these will be ordered "in time" or 

by "causal precedence". This order may be partial. When modelling concurrent 

systems and reasoning about their behaviour, it is often useful to consider different 

events as occurrences of the same action. This may indicate that certain events are 

produced by the same physical resource or that they cannot be distinguished by an 

observer. The relation between events and actions can be expressed by a labelling 
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function I: E """A that relates an action to each event. Different approaches to the 
modelling of concurrent systems can be classified by looking at the types of labelling 
functions they allow for. For instance, if one models a concurrent system with an 
elementary net system [24], then it can never be the case that in some behaviour 
two events with the same label are concurrent (i.e. not related by the ordering). If 
we consider the usual semantics for process algebra languages like CCS [17], TCSP 
[14], ACP [4] and MEIJE [3], then it turns out that these languages are very liberal 
with respect to labellings of events: there is (almost) no restriction at all. There 
exists a very rich theory of "comparative concurrency semantics" relating the 
interleaved semantics for CCS-like languages, i.e. those semantics which do not 
treat concurrency as a primitive notion. Now a well-known result says that almost 
all these equivalences (bisimulation equivalence, trace equivalence and everything 
in between) coincide for deterministic systems (see for instance [9]). A concurrent 
system Sis called deterministic if for all states s of S we have that whenever S can 
evolve from state s into states s' and s" by doing an action a, it must be the case 
that s' equals s". 

Recently, many equivalences have been proposed that do consider concurrency 
as a primitive notion. Besides the event structure equivalence and the step sequence 
equivalence that will be discussed in this paper, we have for instance occurrence 
net equivalence [18], NMS equivalence [8], BS bisimulation [27], step failure 
semantics [26], step bisimulation semantics [ 19], po ms et semantics [22], po ms et 
bisimulation semantics [ 6], generalised pomset bisimulation and ST-bisimulation 
[11], split sequence equivalence which we present at the end of this paper, etc. 

Now one can ask the obvious question what happens with all these equivalences 
if we restrict ourselves to the domain of deterministic systems. The main result of 
this paper is that almost all non-interleaved equivalences coincide (with each other) 
for deterministic systems. More specifically, we will show that step sequence 
equivalence and event structure isomorphism agree on this domain. Of the equivalen­
ces mentioned above only occurrence net equivalence is not situated in between 
step sequence equivalence and event structure isomorphism. 

1. J. Event structures 

A natural domain for modelling concurrency is the class of event structures, which 
were introduced in [18]. By now many different types of event structures have been 
defined. For an overview we refer to [28]. In our view, an especially important class 
of event structures is the class of prime event structures. Prime event structures 
contain no junk: every event in the set of events of a prime event structure will 
occur in at least one behaviour. The event structures used in this paper are labelled 
prime event structures with binary conflict. Below we give a formal definition of 
this type of event structure, followed by some explanatory remarks. If one assumes 
binary conflict, then one can only express that two events exclude each other. Thus 
it is not possible to say that three or more events cannot occur in combination even 
though each proper subset can. For this one needs more general types of event 
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structures. The assumption of binary conflict is not essential in the proof of the 

main theorem of this paper. Because most people will be more familiar with event 

structures with binary conflicts and because the main use we foresee of our theorem 

lies in the field of CCS-like languages (where conflict is always binary), we decided 

to present the theorem for the case with binary conflict only, and to leave the 

generalisation to the case with arbitrary conflict as a (simple) exercise to the reader. 

1.2. Arbitrary interleaving versus True concurrency 

In the last section of the paper some consequences will be discussed of our result 

for the issue of arbitrary interleaving versus "True" concurrency. We introduce an 

operator which splib each event into a beginning and an end and show that the 

causal structure of a deterministic concurrent system can be unravelled by observers 

who are capable of observing these beginnings and ends. 

J.3. Related work 

One can view the main theorem of this paper as a retrievability result: given the 

step sequences of a deterministic event structure, we can retrieve this event structure 

up to isomorphism. Within the theory of concurrency there are quite a number of 

other retrievahility results. Best and Devillers [5] prove various retrievability results 

for Petri nets. Kiehn [ 15 I describes how the partial language of a p/t net can be 

recovered from the set of its step sequences. Shields [25] considers a subclass of 

deterministic systems (behaviour systems with conservative labelling) which makes 

it possible to lift concurrency up to a relation on labels, just as in Mazurkiewicz's 

trace theory [ 16 ]. In hoth cases the partial order structure of a system can be retrieved 

from firing sequences (or words) and the concurrency relation. In [27], some 

retrievahi 1 it y results are proved for "behaviour structures". 

In this paper we investigate the effect of assuming determinism on the lattice of 

equivalences in between sequence/trace equivalence and event structure isomorph­

ism. In the course of the discussion we will sketch parts of this lattice: we will define 

a number of equivalences and establish their mutual relationships. Hence our paper 

can he viewed as a contribution to the research area of comparative concurrency 

semantics. Related work on this topic has been reported in [21, 11, 1]. 

2. Event structures 

Definition 2.1. A ( lahelled) event structure (over an alphabet A) is a 4-tuple 

( E, ,..: , #, /), where 

• E is a set of events; 
• <::;; E x F is a partial order satisfying the principle of finite causes: 

{ e' r EI e' < e} is finite for all e E £; 
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• # £:: E x E is an irreflexive, symmetric relation (the conflict relation) satisfying 
the principle of conflict heredity: 

• l: E ...., A is a labelling function. 

As usual we write e' < e for e' ~ e /\ e' ¥- e, ? for ~ -i, and > for <- 1• We use - to 
denote the relation Ex E - ( ~ u? u # ). - is called the concurrency relation. By 
definition <, =, >, # and - form a partition of Ex E. 

Remark 2.2. The components of an event structure E will be denoted, respectively, 
by EE, ~E, #E and !E. The derived relations will be denoted -E, <E, >E, ?E. For 
eE EE, prede) denotes the set of events which precede e in the ordering (so 
preE(e)={e'EEEle'~Ee}). 

In the graphical representation we either depict the events or their labels, depend­
ing on what we want to illustrate. The partial order relation is indicated by arrows. 
The conflict relation is denoted by means of dotted lines. If we draw no relation 
between events they are concurrent, unless, by means of the transitive and reflexive 
closure of the arrows, it can be deduced that they are ordered, or, by means of the 
principle of conflict heredity, it can be deduced that they are in conflict. 

Example 2.3. Let the event structure E be given by: 

~E = {(e1o e2 ), (e1o e3 ), (e 2 , e3)} u {(e, e) I e E Ed, 

#E = {(x, e4), (e4, x) Ix E {e 1 , e2 , eJ}, 

lE(e;)=a;. 

Graphically we can depict E as shown in Fig. 1. 

2.1. Operational meaning of event structures 

The events in an event structure can be anything varying from a clock pulse in a 
computer, the printing of a file, my act of writing this article, your act of reading 
it, the next crash of Wall Street, etc. 

Fig. 1. 
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The partial order relation expresses that some events are causally related to other 
events or that for all observers the occurrence of certain events will be seen to 
precede the occurrence of others. For instance, my act of writing this article will 
precede your act of reading it. On the other hand, your act of reading this article 
will probably not be causally related to the next crash of Wall Street. The question 
what, in general, constitutes a causal link, is a metaphysical one and difficult to 
answer. However, in a lot of practical situations it is perfectly clear what we mean 
with causality and reasoning about the behaviour of concurrent systems in terms 
of causality is useful. 

The principle of finite causes says that the systems we consider are discrete and 
that moreover we do not consider situations like those shown in Figs. 2 and 3. In 
Fig. 2 it is not clear that any of the e; can ever happen. In Fig. 2, eoc: can occur if 
execution of all events e1 , e2 , ••• finishes after a finite amount of time. Because we 
do not make any assumptions about the time it takes to perform an event, it is 
possible that e1 takes 1 s, e2 takes 2 s, etc. In that case e00 will never take place. 

If two events are in conflict, then at most one of them can occur. As a consequence 
of the principle of conflict heredity we have that when an event occurs, all its 
"causes" must have occurred before. So if two events e and e' are related in the 
ordering, say e < e', then occurrence of e is a prerequisite for the occurrence of e'. 
In general it is not the case that after occurrence of e the occurrence of e' is 
inevitable. It would be possible to allow event structures where one event has two 
causes, which are in conflict. Two interpretations of the event structure shown in 
Fig. 4 are possible: either one can say that e3 will never occur because it is impossible 
that all its causes occur (in that case one can just as well leave e3 out of the event 

Fig. 2. 

Fig. 3. 

e 1 ············e2 

\/ 
Fig. 4. 
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structure and adopt the principle of conflict heredity), or one can say that e3 can 

occur if a maximal, conflict-free subset of its causes has occurred, so {e 1} or {e2}. 

There are no fundamental reasons to adopt the principles of finite causes and 

conflict heredity. We have included them in our definition of event structures because 

this makes an elegant formulation of the main result of this paper possible. 

The operational intuitions presented in the discussion above, are defined formally 

below. 

Definition 2.4. Let Ebe an event structure and let X be a subset of EE. We say that 

X is left-closed if 

e EX/\ e' ~E e=;e' EX. 

X is conjlict-free if X does not contain a pair of events which are in conflict, so if 

#En(XxX)=0. Eis conjlict-free if #E=0. A configuration of Eis a finite, 

left-closed, conflict-free subset of EE. (Note that Winskel [28] does not require that 

configurations are finite.) With <e(E) we denote the set of configurations of E. 

Example 2.5. Figure S depicts all configurations of the event structure of Example 

2.3. An arrow is drawn between two configurations if one can be obtained from the 

other by adding a single event. 

Fig. 5. 

Definition 2.6. For any alphabet l:, we use l:* to denote the set of finite sequences 

over alphabet l: and J:+ to denote the set of finite nonempty sequences over this 

alphabet. We write '/I. for the empty sequence and a for the sequence consisting of 

the single symbol a El:. By a* 0' 1
, sometimes abbreviated o-o-', we denote the 

concatenation of sequences O' and a'. On sequences we define a partial ordering ~ 

(the prefix ordering) by a~ p iff, for some sequence 0' 1, o-0'' = p. If a~ p we say that 

O' is a prefix of p. 
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Definition 2.7. Let Ebe an event structure and let X and Y be configurations of E. 

(i) Let a EA. We say that there is an a-transition from X to Y, notation X __,~ Y, 

if Y=Xu{e}forsomeevent ef!'.X with lde)=a. 

(ii) An action a EA is enabled in X, notation X -->~, if X -->~ X' for some 

configuration X'. 

(iii) A sequence of actions cr = a 1 * · · · * an E A* is enabled in X, notation X --> ~, 

if there exist configurations X 0 , .•. , X 11 such that X = X 0 and for 1 ~ i,,;; n: 

X;- 1 --.~' X,. We say that X,, is obtained from X by the occurrence of er, notation 

X ~~ Xw We also say that cr is an (action) sequence of X. 

(iv) A sequence of events a= e 1 * · · · * e11 EE~ is enabled in X, notation X --.~, 
if there exist configurations X 0 , .•• , X 11 such that X = X0 and for 1 ~ i ~ n: e; E XH 

and X, = X, 1 u{e,}. We say that a is an (event) sequence of X. 

(v) With seq~:(X) we denote the set of action sequences of X, so seqdX) = 
{crEA*IX~~}. 

Proposition 2.8 (no junk). Let E be an event structure and let e E EE:- Then there 

exists a configuration X of E with e E X. 

Proof. Take X = pred e ). Due to the principle of finite causes X is finite. From the 

fact that ~ E is a partial order it follows that X is left-closed. X is conflict-free due 

to the principle of conflict heredity. Hence X is a configuration. Clearly e EX. O 

3. Three basic equivalences on event structures 

We will now define three equivalences on event structures which make increasingly 

more identifications. 

Definition 3.1. An event structure isomorphism between two even structures E and 

Fis a bijective mapping f: EE--+ EF such that: 

• f(e) ~Ff(e')~e ~Ee', 

• f(e) #Ff(e')~e #Ee', and 

• /F(f(e))=/de). 

E and Fare isomorphic, notation E 20 F, if there exists an event structure isomorphism 

between them. 

Definition 3.2. Let E, F be two event structures. A relation R c_::; 'ti?(E) x 'ti?(F) is a 

bisimulation between E and F if: 

(1) 0 R 0; 
(2) If X R Y and X ~~ X' for some a EA, then there exists a Y' E 'ti?(F) such that 

Y ~ ~ Y' and X' R Y'; 

(3) As (2) but with the roles of X and Y reversed. 

E and F are bisimilar, notation E -E--7 F, if there exists a bisimulation between them. 
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Definition 3.3. Two event structures E and F are sequence equivalent, notation 

E =seq F, if: 

Remark 3.4. The semantical notion of sequence equivalence, is usually called trace 

equivalence in the settings of process algebra and trace theory as in [23]. However, 

use of the word trace would be very confusing in a paper on event structures, since 

event structures are closely related to a completely different type of traces, namely 

those which are studied in trace theory as in [ 16]. Therefore we have chosen to use 

the word "sequence" to denote a finite string of symbols recording the actions in 

which a process has engaged up to some moment in time. 

Proposition 3.5. =, ~ and = seq are equivalence relations and their relations are 

Proof. Standard. D 

Example 3.6. The event structures in Fig. 6 show that =, ~ and =seq are really 

different equivalences. In the graphical representations we have depicted the labels 

of the events and not the events themselves. 

a ......... a a ......... a 'P a 

/j j 
~ 

j j 
=seq I \ 

b ····· b c b c b ............. c 

Fig. 6. 

The following definition is central to this paper. 

Definition 3.7. Let Ebe an event structure.Eis deterministic if for all configurations 

X E <€(E) we have that whenever X -7~ Y and X -7~ Y' for some a EA and 

Y, Y' E <€(E), we have that Y = Y'. 

So an event structure is deterministic if it does not have a configuration with the 

property that two different events are enabled which have the same label. 

Definition 3.8. Let E be an event structure. Two events e, e' E EE are in immediate 

conflict, notation e # k e', if they are in conflict and furthermore: 
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Using the notion of immediate conflict we can give a "less operational" characteriz­
ation of deterministic event structures. 

Proposition 3.9. Let E be an event structure. Then E is deterministic if!: 

e -Ee' ore #k e'::::;. /E(e) ¥ IE(e'). 

Proof. Easy. D 

It is well known that the linear time-branching time spectrum collapses for 

deterministic event structures. 

Proposition 3.10. Let E, F be deterministic event structures. Then E - F~E =seq F. 

Proof. ::::;. follows from Proposition 3.5. In order to prove ~ define a relation 
R c:; '€(E) x Cf6'(F) by 

X R Y ~ seqE(X) = seqF( Y). 

It is easy to show that R gives a bisimulation between E and F. D 

Remark 3.11. In a dictionary [20] we found the following entry for the word 

"determinism": 

( 1) a doctrine that all phenomena are determined by preceding occurrences; esp. 

the doctrine that all human acts, choices etc. are causally determined and that free 

will is illusory; 

(2) a belief in predestination. 

One may think that the notion of determinism introduced in Definition 3.7 is in 

conflict with the above description. If one for instance considers the deterministic 

event structure containing two events labelled a and b which are in conflict, then 

one may argue that the choice between a and b is not causally determined, that the 

event structure "has a free will" and "may choose" whether to perform a or b. 

Therefore one may propose another definition of determinism for event structures 

which says that an event structure is deterministic iff it is conflict-free. In fact this 

definition occurs in [l]. 
We however prefer our own definition because we like to view event structures 

as "reactive systems". An event structure model of a concurrent system describes 

how the system reacts to stimuli received from its environment. In the example of 

the event structure with actions a and b, it is completely determined how a system 

modelled by this event structure will react to external stimuli: the system has no 

choice. 



284 F. W. Vaandrager 

Now consider the event structure shown in Fig. 7. This event structure is conflict­

free and hence deterministic in the sense of [ l]. However, if the environment offers 

an a, then there is a choice between the "left" a and the ''right" a. Depending on 

how this choice is resolved by the system, it can engage in b or in c afterwards. 

Hence one can argue that the event structure exhibits nondeterministic behaviour. 

a a 

i i 
b c 

Fig. 7. 

4. Noninterleaved equivalences 

Many people think that bisimulation equivalence, and consequently also sequence 

equivalence, make too many identifications on event structures to be of use in 

general. In bisimulation semantics concurrency is not preserved, i.e. for each event 

structure we can give a bisimilar event structure with an empty concurrency relation. 

We elaborate on this below. 

Definition 4.1. The sequentialisation of an event structure E, notation «J'(E), is the 

event structure F defined by: 

• EF={aE(EE)+l0--~}; 

• a ~F f3 iff a is a prefix of {3; 

• #F=(EFxEF)-(~Fu~F); 

• /F(a * e) = IE(e). 

Proposition 4.2. Let E be an event structure. Then: 

(i) the concurrency relation of 9'(E) is empty, 

(ii) E - «J'(E), 
(iii) 9'(E) ~ .'f(«J'(E)). 

Proof. Easy. D 

4.1. Step semantics 

Intuitively, one of the reasons why an event structure is in general different from 

its sequentialisation is that it sometimes has the possibility of doing a number of 

events simultaneously in one "step". The notion of a "step" immediately suggests 

refinements of sequence equivalence and bisimulation equivalence which do not 

disregard concurrency. These refinements will be called step sequence equivalence 
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and step bisimulation equivalence, respectively. Step sequences have been defined 
in [10]. Step bisimulations appear in [19]. In [11] they are called "concurrent 
bisimulations". Below we give the formal definition of step sequence equivalence. 

Definition 4.3. Let E be an event structure and let X and Y be configurations of E. 
(i) Let Ube a finite subset of EE. We say that YU-follows X, notation X[ U > Y, 

if X 11U=0, the elements of U are pairwise concurrent (so Ve, e' EU: e 7'= e'~ 
e -E e') and Y =Xu U. 

(ii) Let U-:;; EE. We say that U is enabled in X (U is a step from X), notation 
X[ U >E, if X[ U >EX' for some configuration X' of E. 

(iii) A sequence a= U 1 *···*Un E (Pow(EE))* is enabled in X, notation 
X[a >E, if there exist configurations X 0 , .•• , X,, such that X = X 0 and for 
1 ~ i ~ n: xi - I [ ui > E xi. We say that x,, is obtained from x by the occurrence of ll', 
notation X[a >EX". We also say that a is an (event) step sequence of X. 

(iv) Let a= U 1 * · · · * U,, E (Pow(EE))* such that X[a >E Y Let a be the 
sequence Id U 1) * · · · * /E( U,,) where /E( Ui) denotes the multiset of labels of events 
in Ui. We say that a is enabled in X, notation X[a >E. We also say that u is an 
(action) step sequence of X, and that Y is obtained from X by the occurrence of u, 

notation X [ u > E Y. 
(v) With stepdX) we denote the set of action step sequences of X, so stepE(X) = 

{uE (Mul(A))*iX[u >d. 

Definition 4.4. Two event structures E and F are step sequence equivalent, notation 

E =siep F, if: 

stepd0) = stepF(0 ). 

Proposition 4.5. =step is an equivalence relation. The following relations hold between 

the equivalences presented thus far: 

- c ~ 

n n 

-step c - seq 

Proof. Easy. D 

Examples 4.6. We give some examples which show that the diagram above gives 
all relations between the equivalences. Our first example (Fig. 8) shows that step 

a b t=step a············· b 

l l -E.::::? 

-seq b a 

Fig. 8. 
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semantics (at least sometimes) takes concurrency as a primitive notion. The two 

leftmost event structures in Fig. 6 are not isomorphic but they are step sequence 

equivalent. This follows from the observation that on the domain of event structures 

with empty concurrency relation, step sequence equivalence and sequence 

equivalence coincide. 

The two rightmost event structures in Fig. 6 are not bisimilar, but they are step 

sequence equivalent. 

4.2. Partial order semantics 

An A-labelled partially ordered set is a triple (X, ~. /) with X a set, :o; a partial 

order on X, and l: X ~A a labelling function. Two such sets (X0 , :o;ti, 111 ) and 

(X1 , :o; 1 , 11) are isomorphic if there exists a bijective mapping f: X 0 ...,. X 1 such that 

f(x) :o;J(y)~x ~oY and 11(/(x)) = l0(x). A partially ordered multiset (pomset) is 

an isomorphism class of labelled partially ordered sets. As usual, pomsets can be 

made setlike by requiring that the events in the partial orders should be chosen 

from a given set. Below we will view equivalence classes of conflict-free event 

structures as pomsets. 

Definition 4.7. The restriction of an event structure E to a set X c; EE of events is 

the event structure EI x = (X, :o;E n (X x X), #En (X x X), /Er X). 

Definition 4.8. Let E be an event structure and let X be a configuration of E. The 

set of pomsets of X, notation pomdX), is defined by: 

pomdX) ={(EI (X' - X))/.c. IX t; X' E ~(E)}. 

Definition 4.9. Two event structures E and Fare pomset equivalent, notation E =porn F, 

if pomE(0) = pomF(0). 

The first systematic study of pomsets is in [ 12], where they are called partial 

words. Pomset semantics is advocated in [22]. 

Proposition 4.10. =porn is an equivalence relation. It fits in our semantical lattice as 

follows: 

- c -n n 
- porn c - step c - seq 

Examples 4.11. The two rightmost event structures in Fig. 6 provide an example of 

two event structures which are identified in pomset semantics, but distinguished in 

bisimulation semantics. The remaining examples distinguishing pomset equivalence 

and the other equivalences are displayed in Fig. 9. The example of Fig. 10 is 

interesting because it only contains conflict-free event structures, and also because 

it disproves Theorem 3.5 in [ 1]. Notice that all these examples contain non determinis­

tic event structures. 
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a b ~ a b i=pom a b 

porn -step 

a ~ a 

-seq i 
b 

Fig. 9. 

a a tEpom a a 

i~i =step i i 
a a a a 

Fig. 10. 

5. Determinism-+ (event structure isomorphism =step sequence equivalence) 

Proposition 3.10 stated that bisimulation equivalence and sequence equivalence 
coincide on the domain of deterministic event structures. Surprisingly, most of the 
noninterleaved semantics which have been proposed in the literature, also coincide 
on this domain. 

In the introduction of this paper we mentioned a large number of equivalences 
which are situated in between event structure isomorphism and step sequence 
equivalence. As a consequence of the following result all these equivalences (except 
for occurrence net equivalence) coincide with event structure isomorphism on the 
domain of deterministic event structures. 

Theorem 5.1. Let E, F be deterministic event structures. Then E == F ~ E = srep F. 

Lemma 5.2. Let E be a deterministic event structure and let X, Y be configurations of 

E such that Et X ==Et Y. Then X = Y. 

Proof. Induction on the size of X. If X is the empty set, then Y must be empty 
too and we are done. Suppose X is nonempty. Let e be a maximal element of X 
and let X' = X -{e}. Now we use that there exists an event structure isomorphism 
f between Et X and Et Y: we have Et X'==Et Y' for Y'= Y-{f(e)} and further­
more X' and Y' are configurations. Applying the induction hypothesis gives X' = Y'. 
Let a= /E( e) = IE(f( e) ). We have that X' ~~ X but also X' ~~ Y. Now use that E 

is deterministic to obtain that X = Y. D 
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Lemma 5.3. Let E and F be deterministic event structures. Then E =porn F <==> E =F. 

Proof. ~ is trivial, so the interesting direction is ~. Define relation - s EE x EF by 

We claim that - gives a bijective mapping between EE and EF. Because E =rom F, 

it is obvious that dom( - ) == EE and range( - ) = EF. Suppose that e0 - e, and e0 - e;. 
We show that e1 = e'1 • By definition we have EI pred e0 ) =FI preF( e,) =FI preF( e;). 
Application of the previous lemma gives preF(e 1) = preF( e;). Since both sets have a 

unique maximal element, these maximal elements must be identical: e1 = e;. In the 

same way we can prove that if e0 - e1 and e[1 - e1 , this implies e0 = eb. Hence -

gives a bijection between EE and EF. It is routine to check that this bijection is in 

fact an event structure isomorphism. 0 

Proof of Theorem 5.1. From the previous results it follows that in order to prove 

Theorem 5.1 it is enough to show that for deterministic event structures E, F, 

By definition this is equivalent to 

We will prove a slightly stronger statement, namely, 

V X E 'tii'(E) VY E ~(F): stepE(X) = stepF( Y) ~ pomdX) = pomF( Y). 

Let X E 'tii'(E), YE '6'(F) with stepdX) = stepF( Y). Let X' be a configuration of E 

with X s X '. Let a 0 = { e1} { e2 } ..• {en} be a sequence of singleton steps such that 

X[a0 >EX' and X'-X = {e 1 , .•. , e"}. Let a 1 = {e;}{e~} ... {e~} be a step sequence 

such that Y[a 1 >F and /E(e;)=/F(e;) for l~i~n (due to the fact that X and Y 

have the same step sequences, such a sequence will always exist). Let Y' = Yu 

{ e;, ... , e~}. We claim that the function which maps e; to e; is an event structure 

isomorphism between EI (X' - X) and FI ( Y' - Y). For reasons of symmetry we 

have proved the theorem if we have shown this. 
The proof goes by induction to n. The case with n = 0 is trivial. Now suppose 

n > 0. Due to the fact that X and Y have the same step sequences and due to the 

determinism of E and F, we have 

Since 

we can now apply the induction hypothesis which gives 

E I ( X' - ( X u { e 1})) =FI ( Y' - ( Yu { e;})). 
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In order to prove the induction step it is enough to show that for 2.;;;; i.;;;; n, e1 <E ej ~ 

e; < F e;. If n = 1 we are done, so assume n ;;;;.: 2. Let for some i, e; be minimal in 
{e2 , ••• , en}· Then e: is minimal in {e;, ... , e~}. We claim that e1 <Ee;~e; <Fe;. 
Suppose e1 <E ej but not e; <Fe;. If we show that this leads to a contradiction we 
have proved the claim because the remaining case is symmetric. If it is not the case 
that e; <Fe; then e; -Fe:. Due to the minimality of e; we have that Y[{e;, e;} >F. 
Now we use that X and Y have the same step sequences and the fact that E is 
deterministic. There must be some! such that X[ {e1 , f} >E and /E(f) = /F(eD = /E(ej ). 
Because e1 <E ej, f-:f. ej. But now there is a contradiction since we can go from 
configuration Xu {e1} with an /E(f)-transition to Xu {e1 ,f} as well as Xu {e1 , e;}. 

Now we have proved that for eio which are minimal in {e2 , ••• , en}, e1 <E ei~ 
e; <Fe;. In order to prove this fact also for ei which are not minimal, we distinguish 
between two cases. 

( 1) For all ei which are minimal in { e2 , ••• , en}, we have that e1 < E ei. This implies 
that e1 < E e1 for 2.;;;; /.;;;; n. Further we have that for all e; which are minimal in 
{ e~, ... , e~}. e; <Fe;. Consequently e; <Fe; for 2.;;;; I~ n, and we are done. 

(2) There is an e; which is minimal in {e2 , ••• , en} such that e 1 -E ei. This means 
that e; -Fe;. We now have the following situation: 

Xu {eJ[{e1} ••• {ei-l}{e;+ 1} ••• {en} >EX', 

Yu {e;}[{e\} ... {e;_ 1}{e;+ 1} ••• {e~} >F Y'. 

Of course Xu { e;} and Yu { e;} have the same step sequences. Application of the 
induction hypothesis gives 

Observe that in the proof of Theorem 5.1 we only use that E and F have the same 
sequences of steps containing at most two events. 

The diagram below presents the relations between the equivalences presented 
thus far when restricted to the domain of deterministic event structures. 

- porn =step 

n 

- seq 

The example of Fig. 8 shows that even for deterministic systems there is a difference 
between arbitrary interleaving and partial order semantics. 

6. Arbitrary interleaving versus True concurrency 

One can consider event structures up to step sequence equivalence as an inter­
leaving semantics if one is willing to view a multiset of actions as an action again. 
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In the process algebra languages MEUE and ACP this idea can be implemented by 

working for instance with an action structure which is the product of a free 

commutative monoid and a free commutative group. Under this interpretation one 

can say that for deterministic systems there is no difference between arbitrary 

interleaving and True concurrency. 
Now one can ask the question to what extent a multiset of more than one action 

can be considered as something which is observable. In a synchronous system like 

a systolic architecture there is certainly no problem. After each clock tick, one can 

just stop the system and examine which '"cells" have performed an action. The 

multiset (or set if the system is deterministic) of actions performed by the separate 

cells gives the step which is performed by the synchronous system. It is much harder 

to imagine how a "step" can be observed in an asynchronous system. The only 

thing I can come up with is that some observer notices the beginning of one action 

before another action has been finished. In such a situation the observer can conclude 

that the two actions occur concurrently. 

Below, this way of observing concurrent processes is formally implemented by 

means of an operator split on event structures that splits any event e into events e ,_ 

and e-, which are ordered. One may think of e+ as the beginning of e and of e­

as the end of e. 

Definition 6.1. Let Ebe an event structure over some alphabet A Let A+ = {a+ I a E A} 

and A-= {a-I a E A} be two disjoint copies of A The event structure F = split(E) 

over alphabet A+ u A- is given by 

EF={e+,e--leEEd, 

<F= {(e-',f-") Ix, y E {+,-}and e <Ef} u {(e+, e-) I e E Ed, 

#F={(e-',f')lx,yE{+, -} and e #Ef}, 

/F(e+) = (/E(e))\ 

lF(e-) =(Ide))-. 

split ( a c 

l a c 
b --···-·······d 

t + b ·······----·d 

i i 
b- d-

Fig. 11. 
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Example 6.2. See Fig. 11. 

Definition 6.3. Two event structures E and F are split sequence equivalent, notation 
E Esplit F, if split(E) =seq split(F). 

Split sequence equivalence is closely related to ST-bisimulation semantics as 
presented in [ 11] on the domain of Petri nets, but there are some differences. Besides 
the fact that split sequence equivalence does not respect branching time it is also 
not real time consistent in the sense of [ 11]. The idea of splitting actions into a 
beginning and an end is, on a different and more restricted domain, also described 
in [13]. Our split-operator can be viewed as a special case of action refinement as 
described in [7, 2]. 

Lemma 6.4. Let E and F be two event structures. Then 

E =porn F :=:? split(E) =porn split(F). 

Proof. The main idea of the proof has already occurred in [7]. Let E and F be event 
structures with E =porn F. Choose a configuration X E 'G'(split(E)). We must show 
that there exists a configuration YE <g(split(F)) such that 

split(E) IX= split(F) I Y 

By symmetry it follows that we are ready if we have proved this. Define the sets 
x\ x+s; EE by 

X±={eEEEie+EX and e-EX}, 

x+={eE EEie+EX and e-.e:x}. 

One can easily check that X± u x+ is a configuration of E. Since E =porn F, there 
is a configuration YE ci;;'(F) and a bijection f: X± u x+ ~ Y which gives an event 
structure isomorphism between EI (X± u x+) and FI Y. Define ysplit ~ Esplit(F) by 

ysplit = {(f(e))+, (f(e))-1 e E Xt}u {(f(e))+I e Ex+}. 

It is not hard to see that ysplit is a configuration of split(F). Now define a mapping 
Jsplit: X ~ ysplit by 

ppiit(e+)=(f(e)t for e+EX, 

f5P1i'(e-) = (f(e))- fore-EX. 

We claim that ppiit is an event structure isomorphism between split(E) IX and 
split(F) I yspli•. A simple argument gives thatf5piit is a bijection. Clearly Ppht preserves 
labels. Finally we have that if two events in X are ordered their images under f5pht 
are also ordered, and if two events in X are concurrent their images under f'P1i' are 

concurrent too. D 
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Proposition 6.5. Let E and F be two event structures. Then 

E =porn F ~ E =split F. 

Proof. E =porn F~split(E) =porn split(F)~split(E) =seq split(F)~E =split F. 0 

Proposition 6.6. Let E and F be two event structures. Then 

E =split F~E =step F. 

Proof. Let E and F be two event structures with E =split F. Let <r = A 1 ••• Am E 

(Mul(A))* with A;= {ail, ... , a;n) an action step sequence of E. We must show 
that <r is also an action step sequence of F. By symmetry we are ready if we have 
proved this. The following sequence p is an action sequence of split(E): 

Since E =split F, p is also an action sequence of split(F). Hence split(F) has some 
event sequence a with the property that, if we replace the events in a by their 
labels, we obtain p. Let this a be 

+ + + l-1- l- + + + 1- l-a= e u e 12 ... e 1 n, 11 12 00 • ln 1e21· 00 eml 00 ·emn,. ml"' mn.,• 

Note that in general eij may be different from lij. However, we do have that 
{en, ... , e;nJ equals {/; 1 , ••• , .hnJ. From the fact that a is an event sequence of 
split(F) it follows that F has the event step sequence 

Hence <r is an action step sequence of F. 0 

As a consequence of Propositions 6.5 and 6.6, split sequence equivalence can be 
located in our semantical lattice as follows: 

== c -n n 
= porn c =split c =step c = seq 

Examples 6.7. The examples shown in Figs. 12 and 13 show that all equivalences 
in ( *) above are different. Due to Theorem 5.1 and the position of =split in the 
semantical lattice we have that for deterministic event structures, split bisimulation 
equivalence and event structure isomorphism coincide. 

a b 'l=pom a 

i -split 
h ......... b 

Fig. 12. 
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a c 1=-split b.,.._Q·········C 

i -step /! i 
b c a--b 

Fig. 13. 

Proposition 6.8. Let E, F be deterministic event structures. Then E;::; F~E =split F. 

Thus the causal structure of a deterministic concurrent system can be unravelled 

by observers who are capable of observing the beginning and termination of events. 
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