
Theoretical Computer Science 79 (1991) 275_294
North-Holland

Determinism ~
(event structure isomorphism
step sequence equivalence)

Frits W. Vaandrager*

275

Centre for Mathematics and Computer Science, PO. Box 4079, /009 AB Amsterdam, Netherland.\

Communicated by M. Nivat

Received May 1989

Abstract

Yaandrager, F. W., Determinism-> (event structure isomorphism~ step sequence eq1makn.:e 1,

Theoretical Computer Science 79 (1991) 275-294.

A concurrent system S is called deterministic if for all states s of S we ha\e that whene;er S c.m

evolve from state s into states s' and s" by doing an action a, it must be the case that .,· e'-J11.il'

s". It is well known that for deterministic concurrent systems, most of the interJea,ed e'-Jui,alen<·e,

(bisimulation-, failure-, trace-equivalence) coincide. In this paper we prove in the setting ,,f e\e!lt

structures that also most of the non-interleaved equivalences coincide \with ea~h oth<~r I on thi>

domain. In the last section of the paper we show that, as a consequence of our result. the caus«i

structure of a deterministic concurrent system can be unravelled by obsef\ers who are cap&hle

of observing the beginning and termination of events.

1. Introduction

A (discrete) concurrent system generates events as it evolves in time. At an)

moment a set of events will have occurred and these will be ordered "in time" or

by "causal precedence". This order may be partial. When modelling concurrent

systems and reasoning about their behaviour, it is often useful to consider different

events as occurrences of the same action. This may indicate that certain events are

produced by the same physical resource or that they cannot be distinguished by an

observer. The relation between events and actions can be expressed by a labelling

* Partial support received from the European Communities under ESPRIT project no. 4.1~, An

Integrated Formal Approach to Industrial Software Development I METEOR l.

0304-3975/91/$03.50 © !991-Elsevier Science Publishers B.V. 1. North-Hc)llandl

276 F W. Vaandrager

function I: E """A that relates an action to each event. Different approaches to the
modelling of concurrent systems can be classified by looking at the types of labelling
functions they allow for. For instance, if one models a concurrent system with an
elementary net system [24], then it can never be the case that in some behaviour
two events with the same label are concurrent (i.e. not related by the ordering). If
we consider the usual semantics for process algebra languages like CCS [17], TCSP
[14], ACP [4] and MEIJE [3], then it turns out that these languages are very liberal
with respect to labellings of events: there is (almost) no restriction at all. There
exists a very rich theory of "comparative concurrency semantics" relating the
interleaved semantics for CCS-like languages, i.e. those semantics which do not
treat concurrency as a primitive notion. Now a well-known result says that almost
all these equivalences (bisimulation equivalence, trace equivalence and everything
in between) coincide for deterministic systems (see for instance [9]). A concurrent
system Sis called deterministic if for all states s of S we have that whenever S can
evolve from state s into states s' and s" by doing an action a, it must be the case
that s' equals s".

Recently, many equivalences have been proposed that do consider concurrency
as a primitive notion. Besides the event structure equivalence and the step sequence
equivalence that will be discussed in this paper, we have for instance occurrence
net equivalence [18], NMS equivalence [8], BS bisimulation [27], step failure
semantics [26], step bisimulation semantics [19], po ms et semantics [22], po ms et
bisimulation semantics [6], generalised pomset bisimulation and ST-bisimulation
[11], split sequence equivalence which we present at the end of this paper, etc.

Now one can ask the obvious question what happens with all these equivalences
if we restrict ourselves to the domain of deterministic systems. The main result of
this paper is that almost all non-interleaved equivalences coincide (with each other)
for deterministic systems. More specifically, we will show that step sequence
equivalence and event structure isomorphism agree on this domain. Of the equivalen­
ces mentioned above only occurrence net equivalence is not situated in between
step sequence equivalence and event structure isomorphism.

1. J. Event structures

A natural domain for modelling concurrency is the class of event structures, which
were introduced in [18]. By now many different types of event structures have been
defined. For an overview we refer to [28]. In our view, an especially important class
of event structures is the class of prime event structures. Prime event structures
contain no junk: every event in the set of events of a prime event structure will
occur in at least one behaviour. The event structures used in this paper are labelled
prime event structures with binary conflict. Below we give a formal definition of
this type of event structure, followed by some explanatory remarks. If one assumes
binary conflict, then one can only express that two events exclude each other. Thus
it is not possible to say that three or more events cannot occur in combination even
though each proper subset can. For this one needs more general types of event

I>e1erminis1n - (euent slrudure isomorphism= slep sequence equivalence)
277

structures. The assumption of binary conflict is not essential in the proof of the

main theorem of this paper. Because most people will be more familiar with event

structures with binary conflicts and because the main use we foresee of our theorem

lies in the field of CCS-like languages (where conflict is always binary), we decided

to present the theorem for the case with binary conflict only, and to leave the

generalisation to the case with arbitrary conflict as a (simple) exercise to the reader.

1.2. Arbitrary interleaving versus True concurrency

In the last section of the paper some consequences will be discussed of our result

for the issue of arbitrary interleaving versus "True" concurrency. We introduce an

operator which splib each event into a beginning and an end and show that the

causal structure of a deterministic concurrent system can be unravelled by observers

who are capable of observing these beginnings and ends.

J.3. Related work

One can view the main theorem of this paper as a retrievability result: given the

step sequences of a deterministic event structure, we can retrieve this event structure

up to isomorphism. Within the theory of concurrency there are quite a number of

other retrievahility results. Best and Devillers [5] prove various retrievability results

for Petri nets. Kiehn [15 I describes how the partial language of a p/t net can be

recovered from the set of its step sequences. Shields [25] considers a subclass of

deterministic systems (behaviour systems with conservative labelling) which makes

it possible to lift concurrency up to a relation on labels, just as in Mazurkiewicz's

trace theory [16]. In hoth cases the partial order structure of a system can be retrieved

from firing sequences (or words) and the concurrency relation. In [27], some

retrievahi 1 it y results are proved for "behaviour structures".

In this paper we investigate the effect of assuming determinism on the lattice of

equivalences in between sequence/trace equivalence and event structure isomorph­

ism. In the course of the discussion we will sketch parts of this lattice: we will define

a number of equivalences and establish their mutual relationships. Hence our paper

can he viewed as a contribution to the research area of comparative concurrency

semantics. Related work on this topic has been reported in [21, 11, 1].

2. Event structures

Definition 2.1. A (lahelled) event structure (over an alphabet A) is a 4-tuple

(E, ,..: , #, /), where

• E is a set of events;
• <::;; E x F is a partial order satisfying the principle of finite causes:

{ e' r EI e' < e} is finite for all e E £;

278 F. W. Vaandrager

• # £:: E x E is an irreflexive, symmetric relation (the conflict relation) satisfying
the principle of conflict heredity:

• l: E, A is a labelling function.

As usual we write e' < e for e' ~ e /\ e' ¥- e, ? for ~ -i, and > for <- 1• We use - to
denote the relation Ex E - (~ u? u #). - is called the concurrency relation. By
definition <, =, >, # and - form a partition of Ex E.

Remark 2.2. The components of an event structure E will be denoted, respectively,
by EE, ~E, #E and !E. The derived relations will be denoted -E, <E, >E, ?E. For
eE EE, prede) denotes the set of events which precede e in the ordering (so
preE(e)={e'EEEle'~Ee}).

In the graphical representation we either depict the events or their labels, depend­
ing on what we want to illustrate. The partial order relation is indicated by arrows.
The conflict relation is denoted by means of dotted lines. If we draw no relation
between events they are concurrent, unless, by means of the transitive and reflexive
closure of the arrows, it can be deduced that they are ordered, or, by means of the
principle of conflict heredity, it can be deduced that they are in conflict.

Example 2.3. Let the event structure E be given by:

~E = {(e1o e2), (e1o e3), (e 2 , e3)} u {(e, e) I e E Ed,

#E = {(x, e4), (e4, x) Ix E {e 1 , e2 , eJ},

lE(e;)=a;.

Graphically we can depict E as shown in Fig. 1.

2.1. Operational meaning of event structures

The events in an event structure can be anything varying from a clock pulse in a
computer, the printing of a file, my act of writing this article, your act of reading
it, the next crash of Wall Street, etc.

Fig. 1.

Dererminism--> (evenr structure isomorphism= step sequence equivalence) 279

The partial order relation expresses that some events are causally related to other
events or that for all observers the occurrence of certain events will be seen to
precede the occurrence of others. For instance, my act of writing this article will
precede your act of reading it. On the other hand, your act of reading this article
will probably not be causally related to the next crash of Wall Street. The question
what, in general, constitutes a causal link, is a metaphysical one and difficult to
answer. However, in a lot of practical situations it is perfectly clear what we mean
with causality and reasoning about the behaviour of concurrent systems in terms
of causality is useful.

The principle of finite causes says that the systems we consider are discrete and
that moreover we do not consider situations like those shown in Figs. 2 and 3. In
Fig. 2 it is not clear that any of the e; can ever happen. In Fig. 2, eoc: can occur if
execution of all events e1 , e2 , ••• finishes after a finite amount of time. Because we
do not make any assumptions about the time it takes to perform an event, it is
possible that e1 takes 1 s, e2 takes 2 s, etc. In that case e00 will never take place.

If two events are in conflict, then at most one of them can occur. As a consequence
of the principle of conflict heredity we have that when an event occurs, all its
"causes" must have occurred before. So if two events e and e' are related in the
ordering, say e < e', then occurrence of e is a prerequisite for the occurrence of e'.
In general it is not the case that after occurrence of e the occurrence of e' is
inevitable. It would be possible to allow event structures where one event has two
causes, which are in conflict. Two interpretations of the event structure shown in
Fig. 4 are possible: either one can say that e3 will never occur because it is impossible
that all its causes occur (in that case one can just as well leave e3 out of the event

Fig. 2.

Fig. 3.

e 1 ············e2

\/
Fig. 4.

280 F. W. Vaandrager

structure and adopt the principle of conflict heredity), or one can say that e3 can

occur if a maximal, conflict-free subset of its causes has occurred, so {e 1} or {e2}.

There are no fundamental reasons to adopt the principles of finite causes and

conflict heredity. We have included them in our definition of event structures because

this makes an elegant formulation of the main result of this paper possible.

The operational intuitions presented in the discussion above, are defined formally

below.

Definition 2.4. Let Ebe an event structure and let X be a subset of EE. We say that

X is left-closed if

e EX/\ e' ~E e=;e' EX.

X is conjlict-free if X does not contain a pair of events which are in conflict, so if

#En(XxX)=0. Eis conjlict-free if #E=0. A configuration of Eis a finite,

left-closed, conflict-free subset of EE. (Note that Winskel [28] does not require that

configurations are finite.) With <e(E) we denote the set of configurations of E.

Example 2.5. Figure S depicts all configurations of the event structure of Example

2.3. An arrow is drawn between two configurations if one can be obtained from the

other by adding a single event.

Fig. 5.

Definition 2.6. For any alphabet l:, we use l:* to denote the set of finite sequences

over alphabet l: and J:+ to denote the set of finite nonempty sequences over this

alphabet. We write '/I. for the empty sequence and a for the sequence consisting of

the single symbol a El:. By a* 0' 1
, sometimes abbreviated o-o-', we denote the

concatenation of sequences O' and a'. On sequences we define a partial ordering ~

(the prefix ordering) by a~ p iff, for some sequence 0' 1, o-0'' = p. If a~ p we say that

O' is a prefix of p.

Determinism--. (eL'ent struct11re isomorphism= step seq11ence equivalence) 281

Definition 2.7. Let Ebe an event structure and let X and Y be configurations of E.

(i) Let a EA. We say that there is an a-transition from X to Y, notation X __,~ Y,

if Y=Xu{e}forsomeevent ef!'.X with lde)=a.

(ii) An action a EA is enabled in X, notation X -->~, if X -->~ X' for some

configuration X'.

(iii) A sequence of actions cr = a 1 * · · · * an E A* is enabled in X, notation X --> ~,

if there exist configurations X 0 , .•. , X 11 such that X = X 0 and for 1 ~ i,,;; n:

X;- 1 --.~' X,. We say that X,, is obtained from X by the occurrence of er, notation

X ~~ Xw We also say that cr is an (action) sequence of X.

(iv) A sequence of events a= e 1 * · · · * e11 EE~ is enabled in X, notation X --.~,
if there exist configurations X 0 , .•• , X 11 such that X = X0 and for 1 ~ i ~ n: e; E XH

and X, = X, 1 u{e,}. We say that a is an (event) sequence of X.

(v) With seq~:(X) we denote the set of action sequences of X, so seqdX) =
{crEA*IX~~}.

Proposition 2.8 (no junk). Let E be an event structure and let e E EE:- Then there

exists a configuration X of E with e E X.

Proof. Take X = pred e). Due to the principle of finite causes X is finite. From the

fact that ~ E is a partial order it follows that X is left-closed. X is conflict-free due

to the principle of conflict heredity. Hence X is a configuration. Clearly e EX. O

3. Three basic equivalences on event structures

We will now define three equivalences on event structures which make increasingly

more identifications.

Definition 3.1. An event structure isomorphism between two even structures E and

Fis a bijective mapping f: EE--+ EF such that:

• f(e) ~Ff(e')~e ~Ee',

• f(e) #Ff(e')~e #Ee', and

• /F(f(e))=/de).

E and Fare isomorphic, notation E 20 F, if there exists an event structure isomorphism

between them.

Definition 3.2. Let E, F be two event structures. A relation R c_::; 'ti?(E) x 'ti?(F) is a

bisimulation between E and F if:

(1) 0 R 0;
(2) If X R Y and X ~~ X' for some a EA, then there exists a Y' E 'ti?(F) such that

Y ~ ~ Y' and X' R Y';

(3) As (2) but with the roles of X and Y reversed.

E and F are bisimilar, notation E -E--7 F, if there exists a bisimulation between them.

282 F. W. Vaandrager

Definition 3.3. Two event structures E and F are sequence equivalent, notation

E =seq F, if:

Remark 3.4. The semantical notion of sequence equivalence, is usually called trace

equivalence in the settings of process algebra and trace theory as in [23]. However,

use of the word trace would be very confusing in a paper on event structures, since

event structures are closely related to a completely different type of traces, namely

those which are studied in trace theory as in [16]. Therefore we have chosen to use

the word "sequence" to denote a finite string of symbols recording the actions in

which a process has engaged up to some moment in time.

Proposition 3.5. =, ~ and = seq are equivalence relations and their relations are

Proof. Standard. D

Example 3.6. The event structures in Fig. 6 show that =, ~ and =seq are really

different equivalences. In the graphical representations we have depicted the labels

of the events and not the events themselves.

a a a a 'P a

/j j
~

j j
=seq I \

b ····· b c b c b c

Fig. 6.

The following definition is central to this paper.

Definition 3.7. Let Ebe an event structure.Eis deterministic if for all configurations

X E <€(E) we have that whenever X -7~ Y and X -7~ Y' for some a EA and

Y, Y' E <€(E), we have that Y = Y'.

So an event structure is deterministic if it does not have a configuration with the

property that two different events are enabled which have the same label.

Definition 3.8. Let E be an event structure. Two events e, e' E EE are in immediate

conflict, notation e # k e', if they are in conflict and furthermore:

Determinism-> (event structure isomorphism= step sequence equivalence) 283

Using the notion of immediate conflict we can give a "less operational" characteriz­
ation of deterministic event structures.

Proposition 3.9. Let E be an event structure. Then E is deterministic if!:

e -Ee' ore #k e'::::;. /E(e) ¥ IE(e').

Proof. Easy. D

It is well known that the linear time-branching time spectrum collapses for

deterministic event structures.

Proposition 3.10. Let E, F be deterministic event structures. Then E - F~E =seq F.

Proof. ::::;. follows from Proposition 3.5. In order to prove ~ define a relation
R c:; '€(E) x Cf6'(F) by

X R Y ~ seqE(X) = seqF(Y).

It is easy to show that R gives a bisimulation between E and F. D

Remark 3.11. In a dictionary [20] we found the following entry for the word

"determinism":

(1) a doctrine that all phenomena are determined by preceding occurrences; esp.

the doctrine that all human acts, choices etc. are causally determined and that free

will is illusory;

(2) a belief in predestination.

One may think that the notion of determinism introduced in Definition 3.7 is in

conflict with the above description. If one for instance considers the deterministic

event structure containing two events labelled a and b which are in conflict, then

one may argue that the choice between a and b is not causally determined, that the

event structure "has a free will" and "may choose" whether to perform a or b.

Therefore one may propose another definition of determinism for event structures

which says that an event structure is deterministic iff it is conflict-free. In fact this

definition occurs in [l].
We however prefer our own definition because we like to view event structures

as "reactive systems". An event structure model of a concurrent system describes

how the system reacts to stimuli received from its environment. In the example of

the event structure with actions a and b, it is completely determined how a system

modelled by this event structure will react to external stimuli: the system has no

choice.

284 F. W. Vaandrager

Now consider the event structure shown in Fig. 7. This event structure is conflict­

free and hence deterministic in the sense of [l]. However, if the environment offers

an a, then there is a choice between the "left" a and the ''right" a. Depending on

how this choice is resolved by the system, it can engage in b or in c afterwards.

Hence one can argue that the event structure exhibits nondeterministic behaviour.

a a

i i
b c

Fig. 7.

4. Noninterleaved equivalences

Many people think that bisimulation equivalence, and consequently also sequence

equivalence, make too many identifications on event structures to be of use in

general. In bisimulation semantics concurrency is not preserved, i.e. for each event

structure we can give a bisimilar event structure with an empty concurrency relation.

We elaborate on this below.

Definition 4.1. The sequentialisation of an event structure E, notation «J'(E), is the

event structure F defined by:

• EF={aE(EE)+l0--~};

• a ~F f3 iff a is a prefix of {3;

• #F=(EFxEF)-(~Fu~F);

• /F(a * e) = IE(e).

Proposition 4.2. Let E be an event structure. Then:

(i) the concurrency relation of 9'(E) is empty,

(ii) E - «J'(E),
(iii) 9'(E) ~ .'f(«J'(E)).

Proof. Easy. D

4.1. Step semantics

Intuitively, one of the reasons why an event structure is in general different from

its sequentialisation is that it sometimes has the possibility of doing a number of

events simultaneously in one "step". The notion of a "step" immediately suggests

refinements of sequence equivalence and bisimulation equivalence which do not

disregard concurrency. These refinements will be called step sequence equivalence

Determinism--> (event structure isomorphism ~step sequence equivalence) 285

and step bisimulation equivalence, respectively. Step sequences have been defined
in [10]. Step bisimulations appear in [19]. In [11] they are called "concurrent
bisimulations". Below we give the formal definition of step sequence equivalence.

Definition 4.3. Let E be an event structure and let X and Y be configurations of E.
(i) Let Ube a finite subset of EE. We say that YU-follows X, notation X[U > Y,

if X 11U=0, the elements of U are pairwise concurrent (so Ve, e' EU: e 7'= e'~
e -E e') and Y =Xu U.

(ii) Let U-:;; EE. We say that U is enabled in X (U is a step from X), notation
X[U >E, if X[U >EX' for some configuration X' of E.

(iii) A sequence a= U 1 *···*Un E (Pow(EE))* is enabled in X, notation
X[a >E, if there exist configurations X 0 , .•• , X,, such that X = X 0 and for
1 ~ i ~ n: xi - I [ui > E xi. We say that x,, is obtained from x by the occurrence of ll',
notation X[a >EX". We also say that a is an (event) step sequence of X.

(iv) Let a= U 1 * · · · * U,, E (Pow(EE))* such that X[a >E Y Let a be the
sequence Id U 1) * · · · * /E(U,,) where /E(Ui) denotes the multiset of labels of events
in Ui. We say that a is enabled in X, notation X[a >E. We also say that u is an
(action) step sequence of X, and that Y is obtained from X by the occurrence of u,

notation X [u > E Y.
(v) With stepdX) we denote the set of action step sequences of X, so stepE(X) =

{uE (Mul(A))*iX[u >d.

Definition 4.4. Two event structures E and F are step sequence equivalent, notation

E =siep F, if:

stepd0) = stepF(0).

Proposition 4.5. =step is an equivalence relation. The following relations hold between

the equivalences presented thus far:

- c ~

n n

-step c - seq

Proof. Easy. D

Examples 4.6. We give some examples which show that the diagram above gives
all relations between the equivalences. Our first example (Fig. 8) shows that step

a b t=step a············· b

l l -E.::::?

-seq b a

Fig. 8.

286 F. W Vaandrager

semantics (at least sometimes) takes concurrency as a primitive notion. The two

leftmost event structures in Fig. 6 are not isomorphic but they are step sequence

equivalent. This follows from the observation that on the domain of event structures

with empty concurrency relation, step sequence equivalence and sequence

equivalence coincide.

The two rightmost event structures in Fig. 6 are not bisimilar, but they are step

sequence equivalent.

4.2. Partial order semantics

An A-labelled partially ordered set is a triple (X, ~. /) with X a set, :o; a partial

order on X, and l: X ~A a labelling function. Two such sets (X0 , :o;ti, 111) and

(X1 , :o; 1 , 11) are isomorphic if there exists a bijective mapping f: X 0 ...,. X 1 such that

f(x) :o;J(y)~x ~oY and 11(/(x)) = l0(x). A partially ordered multiset (pomset) is

an isomorphism class of labelled partially ordered sets. As usual, pomsets can be

made setlike by requiring that the events in the partial orders should be chosen

from a given set. Below we will view equivalence classes of conflict-free event

structures as pomsets.

Definition 4.7. The restriction of an event structure E to a set X c; EE of events is

the event structure EI x = (X, :o;E n (X x X), #En (X x X), /Er X).

Definition 4.8. Let E be an event structure and let X be a configuration of E. The

set of pomsets of X, notation pomdX), is defined by:

pomdX) ={(EI (X' - X))/.c. IX t; X' E ~(E)}.

Definition 4.9. Two event structures E and Fare pomset equivalent, notation E =porn F,

if pomE(0) = pomF(0).

The first systematic study of pomsets is in [12], where they are called partial

words. Pomset semantics is advocated in [22].

Proposition 4.10. =porn is an equivalence relation. It fits in our semantical lattice as

follows:

- c -n n
- porn c - step c - seq

Examples 4.11. The two rightmost event structures in Fig. 6 provide an example of

two event structures which are identified in pomset semantics, but distinguished in

bisimulation semantics. The remaining examples distinguishing pomset equivalence

and the other equivalences are displayed in Fig. 9. The example of Fig. 10 is

interesting because it only contains conflict-free event structures, and also because

it disproves Theorem 3.5 in [1]. Notice that all these examples contain non determinis­

tic event structures.

Determinism~ (event structure isomorphism = step sequence equivalence) 287

a b ~ a b i=pom a b

porn -step

a ~ a

-seq i
b

Fig. 9.

a a tEpom a a

i~i =step i i
a a a a

Fig. 10.

5. Determinism-+ (event structure isomorphism =step sequence equivalence)

Proposition 3.10 stated that bisimulation equivalence and sequence equivalence
coincide on the domain of deterministic event structures. Surprisingly, most of the
noninterleaved semantics which have been proposed in the literature, also coincide
on this domain.

In the introduction of this paper we mentioned a large number of equivalences
which are situated in between event structure isomorphism and step sequence
equivalence. As a consequence of the following result all these equivalences (except
for occurrence net equivalence) coincide with event structure isomorphism on the
domain of deterministic event structures.

Theorem 5.1. Let E, F be deterministic event structures. Then E == F ~ E = srep F.

Lemma 5.2. Let E be a deterministic event structure and let X, Y be configurations of

E such that Et X ==Et Y. Then X = Y.

Proof. Induction on the size of X. If X is the empty set, then Y must be empty
too and we are done. Suppose X is nonempty. Let e be a maximal element of X
and let X' = X -{e}. Now we use that there exists an event structure isomorphism
f between Et X and Et Y: we have Et X'==Et Y' for Y'= Y-{f(e)} and further­
more X' and Y' are configurations. Applying the induction hypothesis gives X' = Y'.
Let a= /E(e) = IE(f(e)). We have that X' ~~ X but also X' ~~ Y. Now use that E

is deterministic to obtain that X = Y. D

288 F. W. Vaandrager

Lemma 5.3. Let E and F be deterministic event structures. Then E =porn F <==> E =F.

Proof. ~ is trivial, so the interesting direction is ~. Define relation - s EE x EF by

We claim that - gives a bijective mapping between EE and EF. Because E =rom F,

it is obvious that dom(-) == EE and range(-) = EF. Suppose that e0 - e, and e0 - e;.
We show that e1 = e'1 • By definition we have EI pred e0) =FI preF(e,) =FI preF(e;).
Application of the previous lemma gives preF(e 1) = preF(e;). Since both sets have a

unique maximal element, these maximal elements must be identical: e1 = e;. In the

same way we can prove that if e0 - e1 and e[1 - e1 , this implies e0 = eb. Hence -

gives a bijection between EE and EF. It is routine to check that this bijection is in

fact an event structure isomorphism. 0

Proof of Theorem 5.1. From the previous results it follows that in order to prove

Theorem 5.1 it is enough to show that for deterministic event structures E, F,

By definition this is equivalent to

We will prove a slightly stronger statement, namely,

V X E 'tii'(E) VY E ~(F): stepE(X) = stepF(Y) ~ pomdX) = pomF(Y).

Let X E 'tii'(E), YE '6'(F) with stepdX) = stepF(Y). Let X' be a configuration of E

with X s X '. Let a 0 = { e1} { e2 } ..• {en} be a sequence of singleton steps such that

X[a0 >EX' and X'-X = {e 1 , .•. , e"}. Let a 1 = {e;}{e~} ... {e~} be a step sequence

such that Y[a 1 >F and /E(e;)=/F(e;) for l~i~n (due to the fact that X and Y

have the same step sequences, such a sequence will always exist). Let Y' = Yu

{ e;, ... , e~}. We claim that the function which maps e; to e; is an event structure

isomorphism between EI (X' - X) and FI (Y' - Y). For reasons of symmetry we

have proved the theorem if we have shown this.
The proof goes by induction to n. The case with n = 0 is trivial. Now suppose

n > 0. Due to the fact that X and Y have the same step sequences and due to the

determinism of E and F, we have

Since

we can now apply the induction hypothesis which gives

E I (X' - (X u { e 1})) =FI (Y' - (Yu { e;})).

Determinism-> (event structure isomorphism = step sequence equivalence) 289

In order to prove the induction step it is enough to show that for 2.;;;; i.;;;; n, e1 <E ej ~

e; < F e;. If n = 1 we are done, so assume n ;;;;.: 2. Let for some i, e; be minimal in
{e2 , ••• , en}· Then e: is minimal in {e;, ... , e~}. We claim that e1 <Ee;~e; <Fe;.
Suppose e1 <E ej but not e; <Fe;. If we show that this leads to a contradiction we
have proved the claim because the remaining case is symmetric. If it is not the case
that e; <Fe; then e; -Fe:. Due to the minimality of e; we have that Y[{e;, e;} >F.
Now we use that X and Y have the same step sequences and the fact that E is
deterministic. There must be some! such that X[{e1 , f} >E and /E(f) = /F(eD = /E(ej).
Because e1 <E ej, f-:f. ej. But now there is a contradiction since we can go from
configuration Xu {e1} with an /E(f)-transition to Xu {e1 ,f} as well as Xu {e1 , e;}.

Now we have proved that for eio which are minimal in {e2 , ••• , en}, e1 <E ei~
e; <Fe;. In order to prove this fact also for ei which are not minimal, we distinguish
between two cases.

(1) For all ei which are minimal in { e2 , ••• , en}, we have that e1 < E ei. This implies
that e1 < E e1 for 2.;;;; /.;;;; n. Further we have that for all e; which are minimal in
{ e~, ... , e~}. e; <Fe;. Consequently e; <Fe; for 2.;;;; I~ n, and we are done.

(2) There is an e; which is minimal in {e2 , ••• , en} such that e 1 -E ei. This means
that e; -Fe;. We now have the following situation:

Xu {eJ[{e1} ••• {ei-l}{e;+ 1} ••• {en} >EX',

Yu {e;}[{e\} ... {e;_ 1}{e;+ 1} ••• {e~} >F Y'.

Of course Xu { e;} and Yu { e;} have the same step sequences. Application of the
induction hypothesis gives

Observe that in the proof of Theorem 5.1 we only use that E and F have the same
sequences of steps containing at most two events.

The diagram below presents the relations between the equivalences presented
thus far when restricted to the domain of deterministic event structures.

- porn =step

n

- seq

The example of Fig. 8 shows that even for deterministic systems there is a difference
between arbitrary interleaving and partial order semantics.

6. Arbitrary interleaving versus True concurrency

One can consider event structures up to step sequence equivalence as an inter­
leaving semantics if one is willing to view a multiset of actions as an action again.

290 F. W. Vaandrager

In the process algebra languages MEUE and ACP this idea can be implemented by

working for instance with an action structure which is the product of a free

commutative monoid and a free commutative group. Under this interpretation one

can say that for deterministic systems there is no difference between arbitrary

interleaving and True concurrency.
Now one can ask the question to what extent a multiset of more than one action

can be considered as something which is observable. In a synchronous system like

a systolic architecture there is certainly no problem. After each clock tick, one can

just stop the system and examine which '"cells" have performed an action. The

multiset (or set if the system is deterministic) of actions performed by the separate

cells gives the step which is performed by the synchronous system. It is much harder

to imagine how a "step" can be observed in an asynchronous system. The only

thing I can come up with is that some observer notices the beginning of one action

before another action has been finished. In such a situation the observer can conclude

that the two actions occur concurrently.

Below, this way of observing concurrent processes is formally implemented by

means of an operator split on event structures that splits any event e into events e ,_

and e-, which are ordered. One may think of e+ as the beginning of e and of e­

as the end of e.

Definition 6.1. Let Ebe an event structure over some alphabet A Let A+ = {a+ I a E A}

and A-= {a-I a E A} be two disjoint copies of A The event structure F = split(E)

over alphabet A+ u A- is given by

EF={e+,e--leEEd,

<F= {(e-',f-") Ix, y E {+,-}and e <Ef} u {(e+, e-) I e E Ed,

#F={(e-',f')lx,yE{+, -} and e #Ef},

/F(e+) = (/E(e))\

lF(e-) =(Ide))-.

split (a c

l a c
b --···-·······d

t + b ·······----·d

i i
b- d-

Fig. 11.

Determinism-.. (event structure isomorphism= s1ep sequence equivalence) 291

Example 6.2. See Fig. 11.

Definition 6.3. Two event structures E and F are split sequence equivalent, notation
E Esplit F, if split(E) =seq split(F).

Split sequence equivalence is closely related to ST-bisimulation semantics as
presented in [11] on the domain of Petri nets, but there are some differences. Besides
the fact that split sequence equivalence does not respect branching time it is also
not real time consistent in the sense of [11]. The idea of splitting actions into a
beginning and an end is, on a different and more restricted domain, also described
in [13]. Our split-operator can be viewed as a special case of action refinement as
described in [7, 2].

Lemma 6.4. Let E and F be two event structures. Then

E =porn F :=:? split(E) =porn split(F).

Proof. The main idea of the proof has already occurred in [7]. Let E and F be event
structures with E =porn F. Choose a configuration X E 'G'(split(E)). We must show
that there exists a configuration YE <g(split(F)) such that

split(E) IX= split(F) I Y

By symmetry it follows that we are ready if we have proved this. Define the sets
x\ x+s; EE by

X±={eEEEie+EX and e-EX},

x+={eE EEie+EX and e-.e:x}.

One can easily check that X± u x+ is a configuration of E. Since E =porn F, there
is a configuration YE ci;;'(F) and a bijection f: X± u x+ ~ Y which gives an event
structure isomorphism between EI (X± u x+) and FI Y. Define ysplit ~ Esplit(F) by

ysplit = {(f(e))+, (f(e))-1 e E Xt}u {(f(e))+I e Ex+}.

It is not hard to see that ysplit is a configuration of split(F). Now define a mapping
Jsplit: X ~ ysplit by

ppiit(e+)=(f(e)t for e+EX,

f5P1i'(e-) = (f(e))- fore-EX.

We claim that ppiit is an event structure isomorphism between split(E) IX and
split(F) I yspli•. A simple argument gives thatf5piit is a bijection. Clearly Ppht preserves
labels. Finally we have that if two events in X are ordered their images under f5pht
are also ordered, and if two events in X are concurrent their images under f'P1i' are

concurrent too. D

292 F. W. Vaandrager

Proposition 6.5. Let E and F be two event structures. Then

E =porn F ~ E =split F.

Proof. E =porn F~split(E) =porn split(F)~split(E) =seq split(F)~E =split F. 0

Proposition 6.6. Let E and F be two event structures. Then

E =split F~E =step F.

Proof. Let E and F be two event structures with E =split F. Let <r = A 1 ••• Am E

(Mul(A))* with A;= {ail, ... , a;n) an action step sequence of E. We must show
that <r is also an action step sequence of F. By symmetry we are ready if we have
proved this. The following sequence p is an action sequence of split(E):

Since E =split F, p is also an action sequence of split(F). Hence split(F) has some
event sequence a with the property that, if we replace the events in a by their
labels, we obtain p. Let this a be

+ + + l-1- l- + + + 1- l-a= e u e 12 ... e 1 n, 11 12 00 • ln 1e21· 00 eml 00 ·emn,. ml"' mn.,•

Note that in general eij may be different from lij. However, we do have that
{en, ... , e;nJ equals {/; 1 , ••• , .hnJ. From the fact that a is an event sequence of
split(F) it follows that F has the event step sequence

Hence <r is an action step sequence of F. 0

As a consequence of Propositions 6.5 and 6.6, split sequence equivalence can be
located in our semantical lattice as follows:

== c -n n
= porn c =split c =step c = seq

Examples 6.7. The examples shown in Figs. 12 and 13 show that all equivalences
in (*) above are different. Due to Theorem 5.1 and the position of =split in the
semantical lattice we have that for deterministic event structures, split bisimulation
equivalence and event structure isomorphism coincide.

a b 'l=pom a

i -split
h b

Fig. 12.

Determinism--> (event structure isomorphism= step sequence equivalence) 293

a c 1=-split b.,.._Q·········C

i -step /! i
b c a--b

Fig. 13.

Proposition 6.8. Let E, F be deterministic event structures. Then E;::; F~E =split F.

Thus the causal structure of a deterministic concurrent system can be unravelled

by observers who are capable of observing the beginning and termination of events.

Acknowledgment

The author would like to thank Rob van Glabbeek for many stimulating dis­

cussions and careful proofreading, Henk Goeman for some useful comments on an

earlier version, and Alex Rabinovich for pointing out that the assumption of binary

conflict is not essential for the results of this paper.

References

[1] L. Aceto, R. De Nicola and A. Fantechi, Testing equivalences for event structures. in: M. Venturini

Zilli, ed., Proc. Advanced School on Mathematical Models for the Semantics of Parallelism, 1986,

Lecture Notes in Computer Science 280 (Springer, Berlin, 1987) 1-20.

[2] L. Aceto and M. Hennessy, Towards action-refinement in process algebras, in: Proc. 4th Ann. Symp.

on Logic in Computer Science (LICS), Asilomar, CA (IEEE Computer Society Press, Washington,

1989) 138-145.

[3] D. Austry and G. Boudol, Algebre de processus et synchronisations, Theoret. Comput. Sci. 30 (1984)

91-131.
[4] J.A. Bergstra and J. W. Kl op, Algebra of communicating processes with abstraction, Theoret. Comput.

Sci. 37 (1985) 77-121.

[5] E. Best and R. Devillers, Sequential and concurrent behavior in Petri net theory, Theoret. Compul.

Sci. 55 (1987) 87- 136.
[6] G. Boudol and I. Castellani, Concurrency and atomicity, Theoret. Comput. Sci. 59 (1988) 25-84.

[7] L. Castellani, G. De Michelis and L. Pomello, Concurrency vs interleaving: an instructive example,

Bull. EATCS 31 (1987) 12-15.
[8] P. Degano, R. De Nicola and U. Montanari, Observational equivalences for concurrency models,

in: M. Wirsing, ed., Formal Description of Programming concepts-Ill, Proc. 3rd IFIP WG 2.2

Working Conf, Ebberup 1986 (North-Holland, Amsterdam, 1987) 105-129.

[9] J. Engelfriet, Determinacy"' (observation equivalence= trace equivalence), Theoret. Comput. Sci.

36 (1985) 21-25.
[10] H.J. Genrich and E. Stankiewicz-Wiechno, A dictionary of some basic notions of Petri nets, in: W.

Brauer, ed., Advanced Course on General Net Theory of Processes and Systems, Hamburg, 1979,

Lecture Notes in Computer Science 84 (Springer, Berlin, 1980).

[11] R.J. van Glabbeek and F.W. Vaandrager, Petri net models for algebraic theories of concurrency,

in: J.W. de Bakker, A.J. Nijman and P.C. Treleaven, eds., Proc. PARLE Conf, Eindhoven, Vol. II

(Parallel Languages) Lecture Notes in Computer Science 259 (Springer, Berlin, 1987) 224-242.

[12] J. Grabowski, On partial languages, Fund. Inform. IV(2) (1981) 427-498.

294 F. W Vaandrager

[13] M. Hennessy Axiomatising finite concurrent processes, SIAM 1. Comput. 17(5) (1988) 997-1017.
[14] C.A.R. Hoare, Communicating Sequential Processes (Prentice Hall, Englewood Cliffs, NJ, 1985).

[15] A. Kiehn, On the interrelation between synchronized and non-synchronized behaviour of Petri nets,

J. Inform. Process. Cybernet. EIK 24(1/2) (1988) 3-18.
[16] A. Mazurkiewicz, Trace theory, in: W. Brauer, W. Reisig and G. Rozenberg, eds., Petri Nets:

Applications and Relationships to Other Models of Concurrency, Advances in Petri Nets 1986, Part

II; Proc. Advanced Course, Bad Honnef, September 1986, Lecture Notes in Computer Science 255
(Springer, Berlin, 1987) 279-324.

[17] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science 92 (Springer,
Berlin, 1980).

[18] M. Nielsen, G.D. Plotkin and G. Winskel, Petri nets, event structures and domains, part I. Theoret.

Comput. Sci. 13 (1981) 85-108.
[19] M. Nielsen and P.S. Thiagarajan, Degrees of non-determinism and concurrency: a Petri net view,

in: M. Joseph and R. Shyamasundar, eds., Proc. 5th Con.f on Found. of So.ftw. Techn. and Theor.

Comp. Sci., Lecture Notes in Computer Science 181 (Springer, Berlin, 1984) 89-118.
[20] Penguin, The New Penguin English Dictionary (Penguin Books, 1986).
[21] L. Pomella, Some equivalence notions for concurrent systems. An overview, in: G. Rozenberg, ed.,

Advances in Petri Nets 1985, Lecture Notes in Computer Science 222 (Springer, Berlin, 1986) 381-400.
[22] V.R. Pratt, Modelling concurrency with partial orders, Internal. J. Parallel Programming 15(1) (1986)

33-71.
[23] M. Rem, Trace theory and systolic computations, in: J.W. de Bakker, A.J. Nijman and P.C. Treleaven,

eds., Proc. PARLE Con.f Eindhoven, Vol. I (Parallel Architectures) Lecture Notes in Computer

Science 258 (Springer, Berlin, 1987) 14-33.
[24] G. Rozenberg and P.S. Thiagarajan, Petri nets: basic notions, structure, behaviour, in: J.W. de

Bakker, W.-P. de Roever and G. Rozenberg, eds., Current Trends in Concurrency, Lecture Notes in

Computer Science 224 (Springer, Berlin, 1986) 585-668.
[25] M.W. Shields, Non sequential behaviour: 1, Internal Report CSR-120-82, Department of Computer

Science, University of Edinburgh, 1982.
[26] D.A. Taubner and W. Vogler, The step failure semantics, in: F.J. Brandenburg, G. Yidal-Naquet

and M. Wirsing, eds., Proc. STACS 87, Lecture Notes in Computer Science 247 (Springer, Berlin,
1987) 348-359.

[27] B.A. Trakhtenbrot, A. Rabinovich and J. Hirshfeld, Discerning causality in the behaviour of
automata, Technical Report 104/88, Tel Aviv University, 1988.

[28] G. Winskel, Event structures, in: W. Brauer, W. Reisig and G. Rozenberg, eds., Petri Nets:
Applications and Relationships to Other Models of Concurrency, Advances in Petri Nets 1986, Part
II; Proc. of an Advanced Course, Bad Honnef, September 1986, Lecture Notes in Computer Science
255 (Springer, Berlin, 1987) 325-392.

