
Can High Throughput Atone for High Latency
in Compiler-Generated Protocol Code?

(Technical Report)

Sung-Shik T.Q. Jongmans and Farhad Arbab

Centrum Wiskunde & Informatica, Amsterdam, Netherlands

Abstract. High-level concurrency constructs and abstractions have sev-
eral well-known software engineering advantages when it comes to pro-
gramming concurrency protocols among threads in multicore applica-
tions. To also explore their complementary performance advantages, in
ongoing work, we are developing compilation technology for a high-level
coordination language, Reo, based on this language’s formal automaton
semantics. By now, as shown in our previous work, our tools are capable
of generating code that can compete with carefully hand-crafted code, at
least for some protocols. An important prerequisite to further advance
this promising technology, now, is to gain a better understanding of how
the significantly different compilation approaches that we developed so
far, which vary in the amount of parallelism in their generated code,
compare against each other. For instance, to better and more reliably
tune our compilers, we must learn under which circumstances parallel
protocol code, with high throughput but also high latency, outperforms
sequential protocol code, with low latency but also low throughput.
In this paper, we report on an extensive performance comparison be-
tween these approaches for a substantial number of protocols, expressed
in Reo. Because we have always formulated our compilation technology
in terms of a general kind of communicating automaton (i.e., constraint
automata), our findings apply not only to Reo but, in principle, to any
language whose semantics can be defined in terms of such automata.

1 Introduction

Context. A promising application domain for coordination languages is pro-
gramming protocols among threads in multicore applications. One reason for
this is a classical software engineering advantage: coordination languages typ-
ically provide high-level constructs and abstractions that more easily compose
into correct—with respect to programmers’ intentions—protocol specifications
than do conventional lower-level synchronization mechanisms (e.g., locks or sem-
aphores). However, not only do coordination languages simplify programming
protocols, but their high-level constructs and abstractions also leave more room
for compilers to perform optimizations that conventional language compilers
cannot apply. Eventually, sufficiently smart compilers for coordination languages
should be capable of generating code (e.g., in Java or in C) that can compete



In1

In2

Out

�

(a) Alternator2

In1

In2

In3

Out

�
�

(b) Alternator3

Out

In1

In2

�

�

�

�

�

�

(c) EarlyAsyncBarrierMerger2

Out

In1

In2

�

�

(d) EarlyAsyncMerger2

In

Out1

Out2

�

� �

(e) EarlyAsyncOutSequencer2

In

Out1

Out2

�

(f) EarlyAsyncReplicator2

Out

In1

In2

�

(g) LateAsyncMerger2

In

Out1

Out2

�

�

(h) LateAsyncReplicator2

In

Out1

Out2

�

�

(i) LateAsyncRouter2

Acq1 Acq2

Rel1 Rel2

� �

�
(j) Lock2

Fig. 1: Example connectors (ordered alphabetically)

with carefully hand-crafted code. Preliminary evidence for feasibility of this goal
appears elsewhere [13]. A crucial step toward adoption of coordination languages
for multicore programming, then, is the development of such compilers.

To study the performance advantages of using coordination languages for
multicore programming, in ongoing work, we are developing compilation tech-
nology for the coordination language Reo [1,2]. Reo facilitates compositional
construction of protocol specifications manifested as connectors: channel-based
mediums through which threads can communicate with each other. Figure 1
shows a number of example connectors in their usual graphical syntax. Briefly, a
connector consists of one or more channels, through which data items flow, and
a number of nodes, on which channel ends coincide. Reo features an open-ended
set of channels, which means that programmers can define their own channels
with custom semantics. Figure 1, for instance, includes standard synchronous
channels (normal arrows) and asynchronous channels with a 1-capacity buffer
(rectangle-decorated arrows), among others. Nodes, in contrast, have fixed se-
mantics. Threads can perform blocking i/o operations—put and get—on the
named public nodes of a connector, while a connector uses its anonymous private
nodes only for internal routing. Section 2 provides a more detailed overview of

2



Reo; Section 4 explains the behavior of the connectors in Figure 1.

0 200 400 600

0

10

20

30

40

50

number of producers

th
o

us
a

nd
s 

of
 c

lo
ck

 c
yc

le
s

Fig. 2: Earlier results [13]

Figure 2 shows one of our most promising
achievements in developing compilation technology
so far [13]. It shows the performance of three k-produ-
cer-single-consumer protocol implementations in C,
for k ∈ {2i | 2 ≤ i ≤ 9}: one naive hand-written im-
plementation (continuous line), one optimized hand-
written implementation (dashed line), and one im-
plementation compiled from a Reo connector (dotted
line). In every round of this protocol, every producer
sends one data item to the consumer. Once the con-
sumer has received a data item from every producer,
in any order, it sends an acknowledgement to the pro-
ducers, thereby signaling that the consumer is ready
for the next round. (The Reo connector for this pro-
tocol, for k = 2, resembles EarlyAsyncBarrierMerger2
in Figure 1c.) This example shows that already our
current compilation technology is capable of generating code that can compete
with—and in this case even outperform—carefully hand-crafted code. Surely, our
technology is not yet mature enough to achieve similarly positive results in every
multicore application, for every connector. Nevertheless, this example offers pre-
liminary evidence that programming protocols among threads using high-level
constructs and abstractions can result in equally good—or better—performance
as compared to conventional low-level, manual techniques.

Problem. Despite our encouraging first results, a long road still lies ahead of us
before we reach the point at which our tools can compile every connector into
high-performance code, the following step of which we try to take in this paper.

In the Reo literature, three different approaches for compiling Reo connectors
exist [11]. In the distributed approach, a compiler implements the behavior of each
of the k constituents of a connector (i.e., its nodes and its channels) and runs
these k implementations in parallel as a distributed system; in the centralized ap-
proach, a compiler computes the behavior of a connector as a whole, implements
this behavior, and runs this implementation sequentially as a centralized system.
The distributed approach has maximal parallelism, and it has the advantage of
fast compilation at build-time and high throughput at run-time. However, this
comes at the cost of higher latency at run-time (because of a necessary dis-
tributed consensus algorithm). In contrast, the centralized approach has maxi-
mal sequentiality, and it has the advantage of low latency at run-time. However,
this comes at the cost of slower compilation and lower throughput. Moreover,
centralized-approach compilers may generate an amount of code exponential in
k, which may make their output prohibitively large and the time to produce it
prohibitively long. Proença et al. observe that a partially-distributed, partially-
centralized hybrid approach, where a compiler splits a connector into parts, im-
plements those parts according to the centralized approach, and runs those im-
plementations according to the distributed approach, is generally ideal [16,17]:

3



a hybrid approach strikes a middle ground between latency and throughput at
run-time while achieving reasonably fast compilation at build-time.

We started developing a centralized-approach compiler and gradually moved
to a hybrid-approach version, mainly motivated by the latter’s advantages at
build-time. Before this paper, however, we had only little understanding of the
implications with respect to run-time performance. Moreover, in recent work [11],
we found a case where hybrid-approach compilation actually took much longer
than centralized-approach compilation. This made us realize that we must im-
prove our understanding of the differences between the centralized approach and
the hybrid approach to advance our compilation technology.

Contribution & Organization. In this paper, we compare centralized-approach
compilation and execution with hybrid-approach compilation and execution. For
this, we use nine different connector “families” (i.e., connectors parametric in
the number of the coordinated threads), “members” of which Figure 1 shows.
Our comparison reveals previously unknown strengths and weaknesses of the
approaches under investigation. These new insights are imperative for the future
development of our compilation technology and, consequently, for evidencing
the performance merits of high-level constructs and abstractions for multicore
programming, complementary to their classical software engineering advantages.

Although framed in the context of Reo, our technology works at the level
of Reo’s formal automaton semantics. This means that we have formulated and
implemented our compilers in terms of a general kind of communicating au-
tomaton. Therefore, our findings apply to compilation technology not only for
Reo but for any high-level model or language whose semantics one can define in
terms of such automata (e.g., some process calculi). We expect this generality
to make our work interesting to a larger audience, beyond the Reo community.

In Section 2, we discuss preliminaries on Reo and its automaton semantics. In
Section 3, we present a centralized-approach and a hybrid-approach compiler for
Reo, which we implemented from scratch (though conceptually based on earlier
implementations). In Section 4, we explain our experimental setup. In Sections 5
and 6, we discuss our experimental results: in Section 5, we discuss results related
to the compilation of our experimental connectors, while in Section 6, we discuss
results related to their execution. Section 7 concludes this paper.

2 Preliminaries

Reo is a language for compositional construction of concurrency protocols, man-
ifested as connectors [1,2]. Connectors consist of channels and nodes, organized
in a graph-like structure. Every channel consists of two ends and a constraint
that relates the timing and the content of the data-flows at those ends. A channel
end has one of two types: source ends accept data (i.e., a source end of a channel
connects to that channel’s data source/producer), while sink ends dispense data
(i.e., a sink end of a channel connects to that channel’s data sink/consumer). Reo
makes no other assumptions about channels and allows, for instance, channels

4



Syntax Semantics

e1 e2
Synchronously takes a data item d from its source end e1 and writes d
to its sink end e2.

e1 e2
Synchronously takes a data item d from its source end e1 and nondeter-
ministically either writes d to its sink end e2 or loses d.

e1 e2
Synchronously takes data items from both its source ends and loses them.

�
x

e1 e2
Asynchronously

[
takes a data item d from its source end e1 and stores d

in a buffer x
]
, then

[
writes d to its sink end e2 and clears x

]
.

Table 1: Graphical syntax and informal semantics of common channels

with two source ends. Table 1 shows four common channels.
Channel ends coincide on nodes. Contrasting channels, every node behaves in

the same way: repeatedly, it nondeterministically selects an available data item
out of one of its coincident sink ends and replicates this data item into each of its
coincident source ends. A node’s nondeterministic selection and its subsequent
replication constitute one atomic execution step; nodes cannot temporarily store,
generate, or lose data items. Threads can perform blocking i/o operations on the
public nodes of a connector: put operations enable threads to send data, while
get operations enable threads to receive data. In Figure 1, we distinguish the
white, named public nodes of a connector from its shaded, anonymous private
nodes. Before a connector makes a global execution step, usually instigated by
pending i/o operations, its channels and its nodes must have reached consensus
about their behavior to guarantee mutual consistency of their local execution
steps (e.g., a node should not replicate a data item into a channel with an
already full buffer). Afterward, connector-wide data-flow emerges.

Through composition, programmers can construct arbitrarily complex con-
nectors out of simpler ones. As Reo supports both synchronous and asynchronous
channels, connector composition enables mixing synchronous and asynchronous
communication within the same protocol.

Our compilers generate code for Reo connectors based on their constraint
automaton (ca) semantics [4]. Constraint automata are a general formalism for
modeling concurrent systems, better suited for modeling Reo connectors—and
their composition in particular—than classical automata or traditional process
calculi. For Reo, a ca specifies when during execution of a connector which
data items flow where (i.e., through which channel ends). Structurally, every ca
consists of finite sets of states and transitions, which model a connector’s internal
configurations and atomic execution steps. Every transition has a label that
consists of two elements: (i) a set with the names of those channel ends that have
synchronous data-flow (ii) and a logical formula that specifies which particular
data items may flow through which of those ends. In such formulas, d(e1) = d(e2)
means that the same data item flows through e1 and e2. In practice, we associate

5



e1 e2 e1 e2
�
x

e1 e2

e1

e2
e3

N

N

e

e

{e1 , e2} ,
d(e1) = d(e2)

{e1 , e2} ,
d(e1) = d(e2)

{e1} , >

{e1} ,
d(e1) = x′

{e2} ,
x = d(e2)

{e1 , e3} ,
d(e1) = d(e3)

{e2 , e3} ,
d(e2) = d(e3)

{e , N} ,
d(e) = d(N)

Fig. 3: Constraint automata for the channels in Table 1 (first three from the left),
for a private node with two incoming and one outgoing channel (fourth from the
left), and for two public nodes, each with either one incoming or one outgoing
channel (fifth from the left). The latter ca is defined not only over the names
of its coincident channel ends but also over its own name. (Threads use node
names—not channel end names—to perform i/o operations on, and therefore,
public node names must explicitly occur in their ca semantics.)

Out

In1

In2

e
1 e

2

e3
e4

�
x

e5 e6

(a) LateAsyncMerger2

`1

`2

{e6 , Out} ,
x = d(e6) ∧ d(e6) = d(Out)

(b) Composition

`′1

`′2

{Out} ,
x = d(Out)

(c) Comp. and abstr.

`1 : {In1 , e1 , e2 , e5} , d(e1) = d(e2) ∧ d(e2) = d(e5) ∧ d(e5) = x′

`2 : {In2 , e3 , e4 , e5} , d(e3) = d(e4) ∧ d(e4) = d(e5) ∧ d(e5) = x′
`′1 : {In1} , d(In1) = x′

`′2 : {In2} , d(In2) = x′

(d) Transition labels

Fig. 4: Composition and abstraction of LateAsyncMerger2 in Figure 1g

every node and every channel with an elementary ca for its behavior. Figure 3
shows example cas. A product operator on cas subsequently models connector
composition: to obtain the “big” ca for a whole connector, one can incrementally
form the product of the “small” cas for its constituent nodes and channels.
Afterward, one can abstract away private nodes’ coincident channel ends with
a hide operator on cas [4], which also eliminates internal transitions involving
only such ends. Figure 4 shows the composite ca of LateAsyncMerger2.

3 Compilers

Our compilers operate fully at the level of Reo’s ca semantics. Our focus on
Reo so far in this paper is therefore misleading: we use Reo’s graphical, channel-
based abstractions, just as a—not the—programmer-friendly syntax for expos-
ing ca-based protocol programming. Different syntax alternatives for cas may

6



work equally well or yield perhaps even more user-friendly languages. For in-
stance, we know how to translate Uml sequence/activity diagrams and Bpmn to
cas [3,7,15]. Algebras of Bliudze and Sifakis [6], originally developed for Bip [5],
also have a straightforward interpretation in terms of cas, thereby offering an
interesting alternative possible syntax. Due to their generality, cas can thus
serve as an intermediate format for compiling specifications in many different
languages and models of concurrency, by reusing the core of our compilers. This
makes the development of our compilation technology relevant beyond Reo.

For our performance comparison, based on earlier implementations [10,14],
we developed two Reo/ca-to-Java compilers as mentioned already in Section 1: a
centralized-approach one, henceforth referred to as Compilercentr, and a hybrid-
approach one, henceforth referred to as Compilerhybr. (Both compilers are avail-
able on request.) Both compilers generate shared-memory Java code, geared to-
ward multicore execution. On input of a connector, Compilercentr (i) first finds
a small ca for every channel and every node that this connector consists of, (ii)
then forms the product of all those cas to get a big ca for the whole connector,
abstracting away all internal details in the process, and (iii) finally generates one
piece of sequential code for that big ca. At run-time, this piece of code logically
has its own thread. (Physically, however, we can optimize this “protocol thread”
away by letting “computation threads” perform its work.) Essentially, the con-
struction of a big ca in this way corresponds to parallel expansion in process
algebra [8]. Compilerhybr also first finds a set of small cas, but in contrast to
Compilercentr, it does not form their product to get a big ca. Instead, it com-
putes an m-size partition of this set. By doing so, Compilerhybr effectively splits
a connector into a number of “regions” (i.e., connected subconnectors), each of
which has a corresponding subset in the partition. After computing a partition,
Compilerhybr forms products on a per-region basis, which results in m “medium”
cas, and generates a piece of sequential code for each of them. At run-time, every
such piece of code has its own thread. These threads use shared-memory (plus
concurrency protection) to synchronize their actions whenever necessary.

Compilerhybr’s partitioning algorithm iterates over the set of small cas and
incrementally extends its computed partition (starting from an empty one) [9,14].
For every small ca α, the algorithm decides either to add {α} to the partition
(as a new singleton subset) or to add α to one or more existing parts. (In the
latter case, the algorithm subsequently merges all extended subsets into one new
subset.) Jongmans et al. formulated the condition based on which the algorithm
makes this decision generally, in terms of cas and their transitions. In the context
of Reo, however, this partitioning algorithm precisely coincides with the identi-
fication of synchronous/asynchronous regions of a connector [17] (each of which
gets a corresponding subset in the partition). The asynchronous regions of a
connector are its smallest connected subconnectors that have only asynchronous
data-flow (e.g., the fourth channel in Table 1). By removing the asynchronous
regions from a connector, its pairwise disconnected synchronous regions remain:
connected subconnectors with synchronous data-flow. Intuitively, asynchronous
regions decouple synchronous regions. Such decoupling enables synchronous re-

7



{In1 , e5} , d(In1) = d(e5)

{In2 , e5} , d(In2) = d(e5)

{e5} ,
d(e5) = x′

{e6} ,
x = d(e6)

{e6 , Out} ,
d(e6) = d(Out)

Fig. 5: Medium cas that result from applying the partitioning algorithm to
LateAsyncMerger2 (see also Figure 4. The middle ca represents the asynchronous
channel in the middle (i.e., one asynchronous region). The leftmost ca represents
the synchronous region left of the asynchronous channel (i.e., three nodes, two
channels). It repeatedly makes a choice between its two inputs and passes the
data item from that input into the asynchronous channel (i.e., into buffer x). The
rightmost ca represents the synchronous region right of the asynchronous chan-
nel (i.e., only one node). It repeatedly passes a data item from the asynchronous
channel (i.e., from buffer x) to its output.

gions to run independently of each other: communication between synchronous
regions always proceeds in an asynchronous fashion, through a shared asyn-
chronous region. Figure 5 shows the medium cas that result from applying the
previous partitioning algorithm to LateAsyncMerger2, composing cas on a per-
subset basis, and abstracting away private nodes (see also Figure 4). Note that
a connector without asynchronous regions consists of one comprehensive syn-
chronous region. For such connectors, Compilerhybr reduces to Compilercentr.

Notably, a connector represents the logic behind—not the architecture of—
the data-flow in a protocol. For instance, even though Lock2 in Figure 1j, which
represents a classical lock, consists of a mix of synchronous, asynchronous, and
lossy channels, its compiler-generated code uses neither physical hardware chan-
nels nor virtual software channels to realize its desired behavior.

4 Experimental Setup

Practical details. To study under which circumstances code generated by Com-

pilerhybr outperforms code generated by Compilercentr, we performed a number
of experiments. In every experiment, we compared the performance of central-
ized and hybrid implementations of a k-parametric connector family, for k ∈ {2 ,
4 , 6 , 8 , 10 , 12 , 14 , 16 , 32 , 48 , 64}. Figure 1 shows the k = 2 members of the
nine connector families that we investigated. (One can extend these k = 2 mem-
bers to their k > 2 versions in a similar way as how we extended Figure 1a to
Figure 1b.) We selected these families because each of them exhibits different
behavior in terms of (a)synchrony, exclusion, nondeterminism, polarity, sequen-
tiality, and parallelism, thereby aiming for a balanced comparison. In total, thus,
we investigated 99 different connectors and twice as many Java implementations.
We ran every implementation nine times on a machine with 24 cores (two In-
tel E5-2690V3 processors with twelve physical cores statically at 2.6 ghz in two

8



sockets, hyperthreading disabled) and averaged our measurements. In every run,
we warmed up the Jvm for thirty seconds before starting to measure the number
of “rounds” that an implementation could finish in the subsequent four minutes.
What constitutes one round differs per connector; see below.

Primarily, we wanted to study and measure the overhead of the synchro-
nization algorithm between the protocol threads in the hybrid implementations
(which increases their latency) relative to those implementations’ increased par-
allelism (which increases their throughput). To focus our measurements on only
that particular aspect, we needed to eliminate as much as possible all other,
orthogonal sources of computation inside compiler-generated code. One notable
such source is data processing: although both our compilers support compila-
tion of data-sensitive connectors, whose behavior may depend on the particular
data items that pass through them, we nevertheless compiled all connectors in
a data-insensitive fashion. This ensured that no data processing occurred at
run-time during our experiments, which would have constituted a substantial
source of sequential, unoptimized computation, even though we already know of
ways to significantly improve this. If we would have enabled data processing, its
irrelevant—at least to this comparison—overhead would have polluted our mea-
surements. Perhaps even worse, our results would become obsolete the moment
we implement our upcoming data processing optimizations.

For convenience, we divided the connector families under study—except
Lock—over two categories: k-producer-single-consumer and single-producer-k-
consumer. Both of these categories consist of four families. The k-producer-
single-consumer category contains LateAsyncMerger (cf. Figure 1g), EarlyAsync-
Merger (cf. Figure 1d), EarlyAsyncBarrierMerger (cf. Figure 1c), and Alternator (cf.
Figures 1a and 1b); the single-producer-k-consumer category contains LateAsync-
Replicator (cf. Figure 1h), EarlyAsyncReplicator (cf. Figure 1f), LateAsyncRouter
(cf. Figure 1i), and EarlyAsyncOutSequencer (cf., Figure 1e).

Connectors. Next, we explain the behavior of the connectors in Figure 1. We
start with explaining the k-producer-single-consumer connector families. With
LateAsyncMergerk (cf. Figure 1g), whenever producer i puts a data item on its
local node Ini, the connector stores this data item in its only buffer (unless this
buffer is already filled by another producer, in which case the put suspends until
the buffer becomes empty). The relieved producer can immediately continue,
possibly before the consumer has completed a get for its data item (i.e., com-
munication between a producer and the consumer transpires asynchronously).
Whenever the consumer gets a data item from its local node Out, the connector
empties the previously full buffer. The consumer gets data items in the order
in which producers put them (i.e., communication between a producer and the
consumer transpires transactionally, i.e., undisrupted by other producers). Ev-
ery round consists of a put by a producer and a get by the consumer; in every
round, two transitions fire.

With EarlyAsyncMergerk (cf. Figure 1d), whenever a producer i puts a data
item on its local node Ini, the connector stores this data item in its correspond-
ing buffer. The relieved producer can immediately continue, possibly before the

9



consumer has completed a get for its data item (i.e., communication between
a producer and the consumer transpires asynchronously). Whenever the con-
sumer gets a data item from its local node Out, the connector empties one
of the previously full buffers, selected nondeterministically. The consumer does
not necessarily get data items in the order in which producers put them (i.e.,
communication between a producer and the consumer transpires not necessarily
transactionally). Every round consists of a put by a producer and a get by the
consumer; in every round, two transitions fire.

Connectors in the EarlyAsyncBarrierMerger family work in largely the same
way as those in the EarlyAsyncMerger family, except that the former enforce a
barrier on the producers: no producer can put its n-th data item until all other
producers have put their (n−1)-th data items. The consumer may still get data
items in an order different from the order in which the producers put them. Every
round consists of a put by every producer and k gets by the consumer, one for
every producer; in every round, 2k transitions fire.

With Alternatork (cf. Figures 1a and 1b), whenever a producer i attempts
to put a data item on its local node Ini, this operation suspends until both (1)
the consumer attempts to get a data item from its local node Out, and (2)
every other producer j attempts to put a data item on its local node Inj (i.e.,
the producers can put only synchronously). Once each of the producers and
the consumer attempt to put/get, the consumer gets the data item sent by
the top producer (i.e., communication between the top producer and the con-
sumer transpires synchronously), while the connector stores the data items of the
other producers in their corresponding buffers (i.e., communication between the
other producers and the consumer transpires asynchronously). Afterward, the
consumer gets the remaining buffered data items in the spatial top-to-bottom
order of the producers. Every round consists of a put by every producer and k
gets by the consumer, one for every producer; in every round, k transitions fire.

We proceed with explaining the single-producer-k-consumer connector fam-
ilies. With EarlyAsyncReplicatork (cf. Figure 1f), whenever the producer puts a
data item on its local node In, the connector stores this data item in its only
buffer. The relieved producer can immediately continue, possibly before the con-
sumers have completed gets for its data item (i.e., communication between the
producers and a consumer transpires asynchronously). Whenever a consumer i
attempts to get a data item from its local node Outi, this operation suspends
until both (1) the buffer has become full, and (2) every other consumer attempts
to get a data item (i.e., the consumers can get only synchronously). Once the
buffer has become full and each of the consumers attempts to get, every con-
sumer gets the data item in the buffer, while the connector empties that buffer.
Every round consists of a put by the producer and a get by every consumer; in
every round, two transitions fire.

With LateAsyncReplicatork (cf. Figure 1h), whenever the producer puts a
data item on its local node In, the connector stores a copy of this data item
in each of its buffers. The relieved producer can immediately continue, possibly
before the consumers have completed gets for its data item (i.e., communication

10



between the producers and a consumer transpires asynchronously). Whenever a
consumer i gets a data item from its local node Outi, the connector empties its
corresponding full buffer. Every round consists of a put by the producer and a
get by every consumer; in every round, k + 1 transitions fire.

With LateAsyncRouterk (cf. Figure 1i), whenever the producer puts a data
item on its local node In, the connector stores this data item in exactly one of
its buffers (instead of a copy in each of its buffers as LateAsyncReplicatork does),
selected nondeterministically. The relieved producer can immediately continue,
possibly before the consumer of the selected buffer has completed a get for its
data item (i.e., communication between the producer and a consumer transpires
asynchronously). Whenever a consumer i gets a data item from its local node
Outi, the connector empties its corresponding full buffer. The consumers do not
necessarily get data items in the order in which the connector stored those data
items in its buffers. Every round consists of a put by the producer and a get by
a consumer; in every round, two transitions fire.

With EarlyAsyncOutSequencerk (cf. Figure 1e), whenever the producer puts
a data item on its local node In, the connector stores this data item in its
leftmost buffer. The relieved producer can immediately continue, possibly before
a consumer has completed a get for its data item (i.e., communication between a
producer and the consumers transpires asynchronously). The connector ensures
that the consumers can get only in the top-to-bottom sequence. Whenever a
consumer i gets a data item from its local node Outi, the connector empties its
corresponding full buffer. Every round consists of k puts by the producer and a
get by every consumer; in every round, 2k transitions fire.

Finally, Lockk represents a classical lock (cf. Figure 1j). To acquire the lock,
a computation thread i puts an arbitrary data item (i.e., a signal) on its local
node Acqi; to release the lock, this thread puts an arbitrary data item on its
local node Reli. A put on Acqi suspends until every computation thread j that
previously performed a put on Acqj has performed its complementary put on
Relj (i.e., the connector guarantees mutual exclusion). Every round consists of
two puts by one of the k producers; in every round, two transitions fire.

5 Experimental Results: Compilation

Measurements. We used Compilerhybr and Compilercentr to compile the con-
nector families in Figure 1 for the aformentioned values of k with a transition
limit of 8096 and a timeout after five minutes. We imposed a transition limit,
because the Java compiler cannot conveniently handle Java code generated for
cas with so many transitions; we imposed a compilation timeout, because wait-
ing for longer than five minutes to compile a single connector in practice seems
unacceptable to us. Figure 6 shows the measured compilation times; see also
Appendix A.

For most connector families, Compilerhybr required substantially less time
than Compilercentr. In fact, for six of our nine connector families, Compilercentr
failed to run to completion beyond certain (relatively low) values of k, as wit-

11



0 10 20 30 40 50 60 70 80
0.03

0.3

3

30

LateAsyncMerger (2x)
EarlyAsyncMerger

EarlyAsyncMerger
EarlyAsyncBarrierMergerEarlyAsyncBarrierMerger

Alternator

Alternator

number of producers

co
m

pi
la

tio
n

 ti
m

e 
(s

)

(a) k-producer-single-consumer

0 10 20 30 40 50 60 70 80

0.03

0.3

3

30

Lock

Lock

LateAsyncRouter

LateAsyncRouter

LateAsyncReplicator

LateAsyncReplicator

EarlyAsyncReplicator (2x)

EarlyAsyncOutputSequencer

EarlyAsyncOutputSequencer

number of consumers / computation threads

co
m

pi
la

tio
n

 ti
m

e 
(s

)

(b) single-producer-k-consumer and Lockk

Fig. 6: Compilation times (continuous lines for Compilercentr; dotted lines for
Compilerhybr; gray lines for proportional growth x = y, just as a reference)

nessed also by their very steep curves in Figure 6:

– For EarlyAsyncMergerk>7, LateAsyncReplicatork>8 and LateAsyncRouterk>7,
the transition number of their “big” cas exceeded the limit (e.g., EarlyAsync-
Merger8 has 23801 transitions, LateAsyncReplicator9 has 19172 transitions,
and LateAsyncRouter8 has 23801 transitions) or the compiler timed out.

– For EarlyAsyncBarrierMergerk>4, EarlyAsyncOutSequencerk>14, and Lockk>12,
the compiler timed out.

12



In contrast, Compilerhybr had no problems compiling these connector families
for all values of k under investigation. For LateAsyncMergerk and EarlyAsyncRep-
licatork, our two compilers required a comparable amount of time for all values of
k under investigation. Finally, only for Alternatork, Compilerhybr required sub-
stantially more time than Compilercentr does. In this case, Compilerhybr timed
out for k > 12, while Compilercentr had no problems.

Discussion. In Section 1, we stated that hybrid-approach compilers have the ad-
vantage of “reasonably fast compilation at build-time” compared to centralized-
approach compilers. The idea behind this statement is that the formation of a big
ca in the centralized approach requires much computational resource, notably
when state spaces or transition relations of such big cas grow exponentially in
k; hybrid-approach compilers usually avoid this, because hybrid-approach com-
pilers do not compute big cas. Intuitively, the medium cas computed for a con-
nector by hybrid-approach compilers are typically much smaller than its big ca.
After all, each of those medium cas consists of fewer small cas than does this big
ca. (The big ca consists of every small ca that also constitutes a medium ca.)
Thus, in cases of exponential growth, medium cas typically have a much smaller
exponent than their corresponding big ca. A quick look at our measurements
in Figure 6a seems to confirm this intuition: all six connector families for which
Compilercentr eventually failed require exponentially more time as k increases.
Beyond this quick look, however, there are peculiarities that need clarification.

A first, obvious peculiarity are the measurements for Alternator, which Com-

pilerhybr—instead of Compilercentr—eventually fails for. Actually, we already
made a preliminary qualitative analysis of this phenomenon in a recent work-
shop contribution [11]; our current quantitative results fully support the anec-
dotal analysis in that extended abstract. To save space—an in-depth explana-
tion requires significantly more details of the partitioning algorithm used in
hybrid-approach compilation—we only briefly summarize the cause of this phe-
nomenon. Essentially, a hybrid-approach compiler cannot treat every private
node of a connector as truly private: Compilerhybr cannot use the hide operator
to abstract away those private nodes that mark the boundaries between a con-
nector’s regions. After all, protocol threads for neighboring regions synchronize
their transitions through those nodes, which makes explicitly representing them
in compiler-generated code essential. But because those private nodes must re-
main, also many internal transitions remain, potentially to the extent that they
cause the transition relation of “medium” cas formed for certain problematic
regions to explode. This happens with Alternator. Compilercentr, in contrast, can
incrementally hide all private nodes to neutralize this source of explosion.

The second peculiarity concerns centralized-approach compilation. First, by
analyzing the big cas of the k-parametric connector families EarlyAsyncBarri-
erMerger, EarlyAsyncMerger, EarlyAsyncOutSequencer, LateAsyncReplicator, and
LateAsyncRouter, we found that those cas grow exponentially as k increases
(due to the many ways in which their k independent transition can concurrently
fire). This explains why Compilercentr requires exponentially more time as k
increases to compile members of those families, as shown in Figure 6. Now, it

13



seems not unreasonable to assume also the inverse: for k-parametric connector
families whose big cas grow only linearly in k, Compilercentr should scale fine.
Alternator, EarlyAsyncReplicator, and LateAsyncMerger, which satisfy its premise,
seem to validate this assumption. Indeed, Figure 6 shows that Compilercentr has
no problems with compiling members of those families. (The big cas of the Ear-
lyAsyncReplicator family even have a constant number of transitions.) However,
this still leaves us with two families whose compilation behavior we have not
yet accounted for: EarlyAsyncOutSequencer and Lock. Although the big cas of
both these k-parametric families grow only linearly in k, Figure 6 shows that
Compilercentr nevertheless requires exponentially more time as k increases.

It turns out that even if big cas grow only linearly in k, the “intermediate
products” during their formation may “temporarily” grow exponentially. For
instance, if we have three cas α1, α2 and α3, the intermediate product of α1

and α2 may grow exponentially in k, while the full product of α1, α2, and α3

grows only linearly. This is easiest to explain for EarlyAsyncOutSequencerk (cf.
Figure 1e), in terms of its number of states. EarlyAsyncOutSequencerk consists
of a subconnector that, in turn, consists of a cycle of k buffered channels (of
capacity 1). The first buffered channel initially contains a dummy data item
� (i.e., its actual value does not matter); the other buffered channels initially
contain nothing. As in the literature [1,2], we call this subconnector Sequencerk.
Because no new data items can flow into Sequencerk, only � cycles through the
buffers—ad infinitum—such that only one buffer holds a data item at any time.
Consequently, the ca for Sequencerk has only k states, each of which represents
the presence of � in a different one of the k buffers. However, when Compilercentr
compositionally computes this ca out of a number of smaller cas by forming
their product, it closes the cycle only with the very last application of the prod-
uct operator: until that moment, the “cycle” still looks to the compiler as an
open-ended chain of buffered channels. Because new data items can freely flow
into it, such an open-ended chain can have a data item in any buffer at any time.
Consequently, the ca for the largest chain (i.e., the chain of k−1 buffered chan-
nels, just before it becomes closed) has 2k−1 states. Only when Compilercentr
forms the product of

[
the ca of the k-th buffered channel

]
and

[
the previously

formed ca for the chain of k−1 buffered channels
]
, the state space of 2k−1 states

collapses into k states, as the compiler “finds out” that the open-ended chain
is actually an input-closed cycle with exactly one data item. Clearly, because
Sequencerk constitutes EarlyAsyncOutSequencerk, also EarlyAsyncOutSequencerk
itself suffers from this problem. A similar argument applies to Lockk.

Thus, even for k-parametric connector families whose big cas grow only
linearly in k, Compilercentr can have scalability issues because of exponential
growth in intermediate products. Compilerhybr has no problems with the kind
of cycle-based exponential growth discussed above because of how it deals with
such cycles in its partitioning algorithm. Generally, however, we can imagine
also Compilerhybr to have this problem for other sources of exponential growth.

Conclusion. For the four k-parametric connector families whose big cas grow
exponentially in k (i.e., EarlyAsyncBarrierMerger, EarlyAsyncMerger, LateAsync-

14



Replicator, and LateAsyncRouter), hybrid compilation has clear advantages over
centralized compilation, as we already expected. For the two k-parametric con-
nector families whose big cas and intermediate products grow only linearly in
k (i.e., LateAsyncMerger and EarlyAsyncReplicator), centralized-approach compi-
lation and hybrid-approach compilation do not make much of a difference; here,
run-time performance—investigated in the next section—becomes the key fac-
tor in deciding which approach to apply. For Alternator, centralized compilation
has clear advantages over hybrid compilation. Finally, for the two k-parametric
connector families whose intermediate products grow exponentially in k (i.e.,
EarlyAsyncOutSequencer and Lock), hybrid compilation seems to have clear ad-
vantages over centralized compilation as suggested by Figure 6b.

We find the latter conclusion slightly rash, though. After all, our previous
analysis showed that the big cas—the only cas that we actually care about—for
both EarlyAsyncOutSequencer and Lock grow only linearly in k. If we can develop
technology that enables Compilercentr to avoid temporary exponential growth of
intermediate products, Compilercentr should perform similar to Compilerhybr.

One option is to equip Compilercentr with a novel static analysis technique
to infer, before forming the full product, which states will have become unreach-
able after forming the full product. For instance, in the case of EarlyAsyncOutSe-
quencerk (or its subconnector Sequencerk), every state where two or more buffers
contain a data item will have become unreachable in the full product but not so
yet in the intermediate products. If Compilercentr can determine such “eventu-
ally unreachable states” from the start, it can already remove those states while
forming the full product to keep the intermediate products as small as possi-
ble. This optimization requires significant theoretical work: not only must we
formulate the analysis technique itself, but we must also prove that it preserves
certain behavioral properties. It seems an interesting form of on-the-fly state
space reduction, though, which may have applications also in model checking.

Another option is not really a solution to our problem but a way to avoid
it. We observed that the Sequencerk subconnector of EarlyAsyncOutSequencerk
causes its intermediate products to grow exponentially in k. For simplicity, let
us therefore focus on this problematic Sequencerk. The obvious way to construct
a connector with the behavior of Sequencerk is by putting k buffered channels
in a cycle, as we did before. An alternative way to construct such a connector,
however, is by connecting a Sequencer0.5k to another Sequencer0.5k with a “glue
subconnector”. The details of this glue subconnector do not matter here: what
matters is that in this alternative construction, Compilercentr can first form the
products of the Sequencer0.5k subconnectors to get two cas with 0.5k states, and
then form the products of those cas and the two-state ca of the glue subconnec-
tor. The largest intermediate ca encountered by the compiler during this process
has at most max(20.5k , 0.5k ·0.5k ·2) states. In contrast, the largest intermediate
ca for the obviously constructed Sequencerk—the one with the cycle—has 2k−1

states. This analysis shows that hierarchically constructing Sequencerk out of
Sequencerl<k subconnectors reduces its centralized-approach compilation com-
plexity compared to its flat design. Generally, we should therefore encourage

15



programmers to design connectors as hierarchically as possible.

6 Experimental Results: Execution

Measurements. We ran every successfully compiled connector with “empty” com-
putation threads: in every iteration of their infinite loop, a producer/consumer
had no work and immediately performed a put/get on its own public node. As
a result, we measured the performance of only the compiler-generated code. Fig-
ure 7 shows our measurements, in completed protocol rounds per four minutes.
By dividing this number of rounds by 240, one gets the round-throughput, in
rounds per second. By further dividing this number by the number of transitions
per round, one gets the (transition-)throughput.

Figures 7a, 7b, 7c, and 7f show the performances in the k-producers-single-
consumer category. For LateAsyncMerger, EarlyAsyncMerger, and EarlyAsyncBar-
rierMerger, their centralized implementations outperform their hybrid implemen-
tations in cases involving only few producers (up to/including four in the case of
LateAsyncMerger and EarlyAsyncBarrierMerger; up to/including six in the case of
EarlyAsyncMerger). In cases involving more producers, either the hybrid imple-
mentations outperform the centralized implementations, or Compilercentr failed
to compile such that we cannot make a direct comparison. In those latter cases,
however, it seems reasonable to assert, by extrapolation, that if compilation had
succeeded, these generated centralized implementations would have performed
worse than their corresponding hybrid counterparts. For Alternator, in contrast,
its centralized implementations always outperform its hybrid implementations.

Figures 7d, 7e, 7g, and 7h show the performances in the single-producer-k-
consumers category. The figures for LateAsyncReplicator and LateAsyncRouter are
similar to those of LateAsyncMerger, EarlyAsyncMerger, and EarlyAsyncBarrier-
Merger that we saw before: with only few consumers, their centralized implemen-
tations outperform their hybrid implementations, while with more consumers,
their hybrid implementations outperform their centralized implementations. For
EarlyAsyncReplicator, the performance of its centralized and hybrid implemen-
tations is nearly the same. For EarlyAsyncOutSequencer, because Compilercentr
failed to generate code for k > 14, the comparison remains inconclusive.

Discussion. For six of the nine connector families, the obtained results look as
expected. For those families, we observe that with low values of k (i.e., little
parallelism), their centralized implementations outperform their hybrid imple-
mentations. In those cases, the increased throughput of hybrid implementations
as compared to their centralized counterparts cannot yet compensate for their
increased latency. As k increases and more parallelism becomes available, how-
ever, hybrid implementations start to outperform centralized implementations.
In those cases, increased throughput does seem to compensate for increased
latency. This, however, is not the only reason why hybrid implementations out-
perform centralized implementations for larger values of k. More importantly, we
found that the latency of not only hybrid implementations but also centralized

16



0

5

10

15

20

25

number of producers

m
ill

io
ns

 o
f r

ou
nd

s

(a) Alternator

0

2

4

6

8

10

12

14

16

number of producers
m

ill
io

ns
 o

f r
ou

nd
s

(b) EarlyAsyncBarrierMerger

0

5

10

15

20

25

30

number of producers

m
ill

io
ns

 o
f r

ou
nd

s

(c) EarlyAsyncMerger

0

1

2

3

4

5

6

7

8

9

number of consumers

m
ill

io
ns

 o
f r

ou
nd

s

(d) EarlyAsyncOutSequencer

0

2

4

6

8

10

12

14

16

18

number of consumers

m
ill

io
ns

 o
f r

ou
nd

s

(e) EarlyAsyncReplicator

0

2

4

6

8

10

12

14

16

18

number of producers

m
ill

io
ns

 o
f r

ou
nd

s

(f) LateAsyncMerger

0

2

4

6

8

10

12

14

16

number of consumers

m
ill

io
ns

 o
f r

ou
nd

s

(g) LateAsyncReplicator

0

5

10

15

20

25

30

number of consumers

m
ill

io
ns

 o
f r

ou
nd

s

(h) LateAsyncRouter

0

2

4

6

8

10

12

14

16

18

number of consumers

m
ill

io
ns

 o
f r

ou
nd

s

(i) Lock

Fig. 7: Performance, in rounds per four minutes (blue continuous/dotted lines for
centralized/hybrid implementations; gray lines for inverse-proportional growth)

17



implementations increases with k. In fact, the latency of centralized implemen-
tations increases much more dramatically. By analyzing the “big” cas formed
by Compilercentr for the families currently under discussion, we found that their
exponential growth (cf. Section 5) causes this steep increase in latency: the more
transitions a ca has per state, the more time it takes for a thread to select and
check any one of them at run-time. (EarlyAsyncReplicator constitutes a special
case, where increased throughput and increased latency roughly balance out.)

Contrasting the families discussed in the previous paragraph, the results ob-
tained for Alternator, EarlyAsyncOutSequencer, and Lock are more peculiar. In
Section 5, we already briefly explained why Compilercentr succeeded in gener-
ating code for Alternatork>12, while Compilerhybr failed. This, however, does
not yet explain why centralized implementations of Alternator connectors out-
perform their hybrid implementations also at run-time. The reason becomes
clear when we realize that Alternatork essentially behaves sequentially: in ev-
ery round, the producers start by synchronously putting their data items (and
the consumer synchronously gets the first data item), after which the consumer
asynchronously gets the remaining k−1 data items in sequence. The centralized
implementation of Alternatork at run-time sequentially simulates one ca, which
consists of k transitions between k states, that represents exactly this sequen-
tiality. Its hybrid implementation, in contrast, at run-time has k parallel proto-
col threads and, as such, suffers from overparallelization: it uses parallelism—
and incurs the overhead that parallelism involves—to implement intrinsically
sequential behavior. Because also EarlyAsyncOutSequencer and Lock essentially
behave sequentially, they suffer from the same problem. For these two families,
however, this observation is even more imporant than for Alternator. After all,
hybrid-approach compilation fails for Alternatork>12, so for larger k, we must
use centralized-approach compilation anyway. For EarlyAsyncOutSequencerk>14

and Lockk>12, in contrast, centralized-approach compilation fails, even though
centralized implementations of those connectors are, by extrapolation, likely to
perform better than their hybrid counterparts.

Centralized implementations consist of only one protocol thread, which can
do only one thing at a time. If many computation threads each perform an i/o
operation roughly simultaneously, depending on the connector, this may result
in contention (i.e., every computation thread must wait until the protocol thread
has time to process its i/o operation). To further study the effect of contention,
we repeated our experiments with z-parametric producers/consumers that wait a
random amount of time between 0 and

[
z times the previously measured round-

latency
]

before they perform their put/get, for z ∈ {1 , 10 , 100}. Appendix B
contains our measurements. The short conclusion is that as z increases, the per-
formance of centralized implementations and hybrid implementations becomes
more similar. We doubt whether this can be ascribed to less contention, though.
Instead, we consider it more likely that the producers’/consumers’ waiting times
now dominate our measurements. Although perhaps not too surprising, we nev-
ertheless consider this something that one should be aware of: the more work
threads perform, the less important the choice between centralized/hybrid im-

18



plementation becomes (with respect to run-time performance).

Conclusion. For six of the nine connector families, the obtained results are as we
expected: their centralized implementations outperform their hybrid implemen-
tations for smaller values of k, while their hybrid implementations outperform
their centralized implementations for larger values of k. As k increases and more
parallelism becomes available, the higher throughput of hybrid implementations
as compared to their centralized counterparts compensates for their higher la-
tency, while the latency of centralized implementations dramatically increases.

Because Alternator, EarlyAsyncOutSequencer, and Lock essentially behave se-
quentially, their centralized implementations in fact outperform their hybrid
implementations for all k. This is a strong incentive to improve our centralized-
approach compilation technology (e.g., the optimization at the end of Section 5).

7 Conclusion

Better understanding the differences between centralized-approach compilation
and hybrid-approach compilation is crucial to further advance our compilation
technology, one of whose promising applications is programming protocols among
threads in multicore applications. Initially, we wanted to investigate under which
circumstances parallel protocol code generated by a hybrid-approach compiler,
with high throughput but also high latency, outperforms sequential protocol
code generated by a centralized-approach compiler, with low latency but also
low throughput. Based on our comparison, the answer to this question is this:

– Except for cases with overparallelization, hybrid implementations of connec-
tors with more than a few (e.g., at least ten to twelve) parallel computation
threads perform at least as good as their centralized counterparts.

Our comparison taught us much more about centralized/hybrid-approach com-
pilation, though. To summarize our other findings:

– Hybrid-approach compilation may suffer from exponentially sized cas in
cases where centralized-approach compilation works fine.

– Centralized-approach compilation may suffer from exponentially sized inter-
mediate products in cases where hybrid-approach compilation works fine.

– Programmers should prefer hierarchically constructed connectors over flat
constructed connectors to reduce compilation complexity.

– Hybrid implementations may overparallelize inherently sequential connec-
tors, which leads to poor run-time performance.

– Centralized implementations may in fact have even higher latency than hy-
brid implementations.

– The more work threads perform, the less important the choice between cen-
tralized/hybrid approach becomes (with respect to run-time performance).

In future work, we want to follow up on these findings by developing new op-
timization techniques (such as the one sketched in Section 5). In particular, we

19



should identify when hybrid-approach compilation should reduce to centralized-
approach compilation and improve our partitioning algorithm accordingly.

Although we heavily used Reo/connector terminology in this paper as a nar-
rative mechanism, we really have been talking about and investigating different
kinds of implementations of a general kind of communicating automaton (i.e.,
cas). Because also other languages can have semantics in terms of such automata
(e.g., Rebeca [18] and Bip [5]), our findings have applications beyond Reo.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
MSCS 14(3), 329–366 (2004)

2. Arbab, F.: Puff, The Magic Protocol. In: Talcott Festschrift, LNCS, vol. 7000, pp.
169–206. Springer (2011)

3. Arbab, F., Kokash, N., Meng, S.: Towards Using Reo for Compliance-Aware Busi-
ness Process Modeling. In: ISoLA 2008, CCIS, vol. 17, pp. 108–123. Springer (2008)

4. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. SCP 61(2), 75–113 (2006)

5. Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Components
in BIP. In: SEFM 2006. pp. 3–12. IEEE (2006)

6. Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal
Methods in System Design 36(2), 167–194 (2010)

7. Changizi, B., Kokash, N., Arbab, F.: A Unified Toolset for Business Process Model
Formalization. In: Preproceedings of FESCA 2010. pp. 147–156 (2010)

8. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press (2014)

9. Jongmans, S.S., Arbab, F.: Global Consensus through Local Synchronization. In:
FOCLASA 2013, pp. 174–188. No. 393 in CCIS, Springer (2013)

10. Jongmans, S.S., Arbab, F.: Modularizing and Specifying Protocols among Threads.
In: PLACES 2012, EPTCS, vol. 109, pp. 34–45. CoRR (2013)

11. Jongmans, S.S., Arbab, F.: Toward Sequentializing Overparallelized Protocol Code.
In: ICE 2014, EPTCS, vol. 166, pp. 38–44. CoRR (2014)

12. Jongmans, S.S., Arbab, F.: Can High Throughput Atone for High Latency in
Compiler-Generated Protocol Code? (Technical Report). Tech. rep., CWI (2015)

13. Jongmans, S.S., Halle, S., Arbab, F.: Automata-based Optimization of Interaction
Protocols for Scalable Multicore Platforms. In: COORDINATION 2014, LNCS,
vol. 8459, pp. 65–82. Springer (2014)

14. Jongmans, S.S., Santini, F., Arbab, F.: Partially-Distributed Coordination with
Reo. In: PDP 2014. pp. 697–706. IEEE (2014)

15. Meng, S., Arbab, F., Baier, C.: Synthesis of Reo circuits from scenario-based in-
teraction specifications. SCP 76(8), 651–680 (2011)

16. Proença, J., Clarke, D., de Vink, E., Arbab, F.: Dreams: a framework for dis-
tributed synchronous coordination. In: SAC 2012. pp. 1510–1515. ACM (2012)

17. Proença, J.: Synchronous Coordination of Distributed Components. Ph.D. thesis,
Leiden University (2011)

18. Sirjani, M., Jaghoori, M.M., Baier, C., Arbab, F.: Compositional Semantics of an
Actor-Based Language Using Constraint Automata. In: COORDINATION 2006,
LNCS, vol. 4038, pp. 281–297. Springer (2006)

20



0 10 20 30 40 50 60 70 80
0.03

0.3

3

30

number of producers

co
m

pi
la

tio
n

 ti
m

e 
(s

)

Fig. 8: Alternatork compilation times (continuous lines for Compilercentr; dot-
ted lines for Compilerhybr; gray lines for proportional growth x = y, just as a
reference)

A Experimental Results: Compilation Time Figures

Figures 8–16 show the measured compilation times of compiling the connector
families in Figure 1 for various values of k with Compilercentr and Compil-

erhybr. The information in these figures is exactly the same as the information
in Figure 6. The difference is that here every connector family has its own figure
(instead of superimposing plots as in Figure 6).

B Experimental Results: Execution with Less Contention

Figures 17–25 show the measurements, averaged over nine runs, obtained by
repeating the experiments in Section 6 on a machine with sixteen cores (two Intel
E5-26520V2 processors with eight physical cores dynamically at 2.6–3.4 ghz in
two sockets, hyperthreading disabled) with z-parametric producers/consumers
that wait a random amount of time between 0 and

[
z times a previously measured

round-latency
]

before they perform their put/get, for z ∈ {1 , 10 , 100}.

21



0 10 20 30 40 50 60 70 80
0.03

0.3

3

30

number of producers

co
m

pi
la

tio
n

 ti
m

e 
(s

)

Fig. 9: EarlyAsyncBarrierMergerk compilation times (continuous lines for Compil-
ercentr; dotted lines for Compilerhybr; gray lines for proportional growth x = y,
just as a reference)

0 10 20 30 40 50 60 70 80
0.03

0.3

3

30

number of producers

co
m

pi
la

tio
n

 ti
m

e 
(s

)

Fig. 10: EarlyAsyncMergerk compilation times (continuous lines for Compilercentr;
dotted lines for Compilerhybr; gray lines for proportional growth x = y, just as
a reference)

22



0 10 20 30 40 50 60 70 80

0.03

0.3

3

30

number of consumers

co
m

pi
la

tio
n

 ti
m

e 
(s

)

Fig. 11: EarlyAsyncOutSequencerk compilation times (continuous lines for Com-

pilercentr; dotted lines for Compilerhybr; gray lines for proportional growth
x = y, just as a reference)

0 10 20 30 40 50 60 70 80

0.03

0.3

3

30

number of consumers

co
m

pi
la

tio
n

 ti
m

e 
(s

)

Fig. 12: EarlyAsyncReplicatork compilation times (continuous lines for Compil-

ercentr; dotted lines for Compilerhybr; gray lines for proportional growth x = y,
just as a reference)

23



0 10 20 30 40 50 60 70 80
0.03

0.3

3

30

number of producers

co
m

pi
la

tio
n

 ti
m

e 
(s

)

Fig. 13: LateAsyncMergerk compilation times (continuous lines for Compilercentr;
dotted lines for Compilerhybr; gray lines for proportional growth x = y, just as
a reference)

0 10 20 30 40 50 60 70 80

0.03

0.3

3

30

number of consumers

co
m

pi
la

tio
n

 ti
m

e 
(s

)

Fig. 14: LateAsyncReplicatork compilation times (continuous lines for Compil-

ercentr; dotted lines for Compilerhybr; gray lines for proportional growth x = y,
just as a reference)

24



0 10 20 30 40 50 60 70 80

0.03

0.3

3

30

number of consumers

co
m

pi
la

tio
n

 ti
m

e 
(s

)

Fig. 15: LateAsyncRouterk compilation times (continuous lines for Compilercentr;
dotted lines for Compilerhybr; gray lines for proportional growth x = y, just as
a reference)

0 10 20 30 40 50 60 70 80

0.03

0.3

3

30

number of computation threads

co
m

pi
la

tio
n

 ti
m

e 
(s

)

Fig. 16: Lockk compilation times (continuous lines for Compilercentr; dotted lines
for Compilerhybr; gray lines for proportional growth x = y, just as a reference)

25



0

5

10

15

20

25

30

35

number of producers

m
ill

io
ns

 o
f g

et
s 

b
y 

th
e 

co
ns

u
m

e
r

(a) z = 1

0

5

10

15

20

25

number of producers

m
ill

io
ns

 o
f g

et
s 

b
y 

th
e 

co
ns

u
m

e
r

(b) z = 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

number of producers

m
ill

io
ns

 o
f g

et
s 

b
y 

th
e 

co
ns

u
m

e
r

(c) z = 100

Fig. 17: Performance of Alternatork amid k z-parametric waiting producers and
a nonwaiting consumer, in completed protocol rounds per four minutes of exe-
cution time (continuous/dotted lines for centralized/hybrid implementations)

1.5 2 2.5 3 3.5 4 4.5

0

5

10

15

20

25

30

35

40

number of producers

m
ill

io
ns

 o
f g

et
s 

b
y 

th
e 

co
ns

u
m

e
r

(a) z = 1

1.5 2 2.5 3 3.5 4 4.5

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

8.0

8.2

number of producers

m
ill

io
ns

 o
f g

et
s 

b
y 

th
e 

co
ns

u
m

e
r

(b) z = 10

1.5 2 2.5 3 3.5 4 4.5

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

number of producers

m
ill

io
ns

 o
f g

et
s 

b
y 

th
e 

co
ns

u
m

e
r

(c) z = 100

Fig. 18: Performance of EarlyAsyncBarrierMergerk amid k z-parametric waiting
producers and a nonwaiting consumer, in completed protocol rounds per four
minutes of execution time (continuous/dotted lines for centralized/hybrid im-
plementations)

26



1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

number of producers

m
ill

io
ns

 o
f g

et
s 

b
y 

th
e 

co
ns

u
m

e
r

(a) z = 1

1 2 3 4 5 6 7 8
0

5

10

15

20

25

number of producers

m
ill

io
ns

 o
f g

et
s 

b
y 

th
e 

co
ns

u
m

e
r

(b) z = 10

1 2 3 4 5 6 7 8

0.0

0.5

1.0

1.5

2.0

2.5

number of producers

m
ill

io
ns

 o
f g

et
s 

b
y 

th
e 

co
ns

u
m

e
r

(c) z = 100

Fig. 19: Performance of EarlyAsyncMergerk amid k z-parametric waiting produc-
ers and a nonwaiting consumer, in completed protocol rounds per four minutes of
execution time (continuous/dotted lines for centralized/hybrid implementations)

0

2

4

6

8

10

12

14

number of consumers

m
ill

io
ns

 o
f p

ut
s 

b
y 

th
e 

p
ro

du
ce

r

(a) z = 1

0

2

4

6

8

10

12

14

number of consumers

m
ill

io
ns

 o
f p

ut
s 

b
y 

th
e 

p
ro

du
ce

r

(b) z = 10

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

number of consumers

m
ill

io
ns

 o
f p

ut
s 

b
y 

th
e 

p
ro

du
ce

r

(c) z = 100

Fig. 20: Performance of EarlyAsyncOutSequencerk amid a nonwaiting producer
and k z-parametric waiting consumers, in completed protocol rounds per four
minutes of execution time (continuous/dotted lines for centralized/hybrid im-
plementations)

27



0

2

4

6

8

10

12

number of consumers

m
ill

io
ns

 o
f p

ut
s 

b
y 

th
e 

p
ro

du
ce

r

(a) z = 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
1.8

number of consumers

m
ill

io
ns

 o
f p

ut
s 

b
y 

th
e 

p
ro

du
ce

r

(b) z = 10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
0.18

number of consumers

m
ill

io
ns

 o
f p

ut
s 

b
y 

th
e 

p
ro

du
ce

r

(c) z = 100

Fig. 21: Performance of EarlyAsyncReplicatork amid a nonwaiting producer and k
z-parametric waiting consumers, in completed protocol rounds per four minutes
of execution time (continuous/dotted lines for centralized/hybrid implementa-
tions)

0

5

10

15

20

25

30

number of producers

m
ill

io
ns

 o
f g

et
s 

b
y 

th
e 

co
ns

u
m

e
r

(a) z = 1

0

2

4

6

8

10

12

14

number of producers

m
ill

io
ns

 o
f g

et
s 

b
y 

th
e 

co
ns

u
m

e
r

(b) z = 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

number of producers

m
ill

io
ns

 o
f g

et
s 

b
y 

th
e 

co
ns

u
m

e
r

(c) z = 100

Fig. 22: Performance of LateAsyncMergerk amid k z-parametric waiting produc-
ers and a nonwaiting consumer, in completed protocol rounds per four minutes of
execution time (continuous/dotted lines for centralized/hybrid implementations)

28



1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

12

14

16

number of consumers

m
ill

io
ns

 o
f p

ut
s 

b
y 

th
e 

p
ro

du
ce

r

(a) z = 1

1 2 3 4 5 6 7 8 9

0.0

0.5

1.0

1.5

2.0

2.5

number of consumers

m
ill

io
ns

 o
f p

ut
s 

b
y 

th
e 

p
ro

du
ce

r

(b) z = 10

1 2 3 4 5 6 7 8 9

0.00

0.05

0.10

0.15

0.20

0.25

number of consumers

m
ill

io
ns

 o
f p

ut
s 

b
y 

th
e 

p
ro

du
ce

r

(c) z = 100

Fig. 23: Performance of LateAsyncReplicatork amid a nonwaiting producer and k
z-parametric waiting consumers, in completed protocol rounds per four minutes
of execution time (continuous/dotted lines for centralized/hybrid implementa-
tions)

1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

number of consumers

m
ill

io
ns

 o
f p

ut
s 

b
y 

th
e 

p
ro

du
ce

r

(a) z = 1

1 2 3 4 5 6 7 8

0

5

10

15

20

25

number of consumers

m
ill

io
ns

 o
f p

ut
s 

b
y 

th
e 

p
ro

du
ce

r

(b) z = 10

1 2 3 4 5 6 7 8

0.0

0.5

1.0

1.5

2.0

2.5

number of consumers

m
ill

io
ns

 o
f p

ut
s 

b
y 

th
e 

p
ro

du
ce

r

(c) z = 100

Fig. 24: Performance of LateAsyncRouterk amid a nonwaiting producer and k z-
parametric waiting consumers, in completed protocol rounds per four minutes of
execution time (continuous/dotted lines for centralized/hybrid implementations)

29



0

5

10

15

20

25

30

35

number of comput. threads

m
ill

io
ns

 o
f p

ut
s

(a) z = 1

0
1
2
3
4
5
6
7
8
9

10

number of comput. threads

m
ill

io
ns

 o
f p

ut
s

(b) z = 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

number of comput. threads

m
ill

io
ns

 o
f p

ut
s

(c) z = 100

Fig. 25: Performance of Lockk amid k z-parametric computation threads, in com-
pleted protocol rounds per four minutes of execution time (continuous/dotted
lines for centralized/hybrid implementations)

30


	Can High Throughput Atone for High Latency in Compiler-Generated Protocol Code? (Technical Report)

