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NONLINEAR MULTIGRID APPLIED TO A ONE-DIMENSIONAL 
STATIONARY SEMICONDUCTOR MODEL* 

P. M. DE ZEEUWt 

Abstract. The nonlinear multigrid method is applied to a transistor problem in one dimension. A weak 
spot in the linearization of the well-known Scharfetter-Gummel discretization scheme is reported. Further, 
it is shown that both the residual transfer and the solution transfer from a fine to a coarse grid need special 
requirements due to the rapidly varying problem coefficients. Some modifications are proposed which make 
the multigrid algorithm perform well for the hard example problem. 
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1. Introduction. There is a great demand for a proper numerical simulation of 
semiconductors in order to reduce the costs of constructing expensive prototypes. The 
search for a fast and robust algorithm has proven to be a challenge. So far only a few 
papers have considered the multigrid solution of the discrete semiconductor equations 
(e.g., see [1], [2], [6], [9], (13]) and therefore extensive further research is required. 

In this paper we restrict ourselves on purpose to one space dimension as a 
preparatory study for the case of more space dimensions. We study a particular example 
problem which has been put forward by Schilders (Philips, the Netherlands). This 
problem models a transistor and turns out to be much harder to solve than the forward 
or reversed biased diode problem. We apply the nonlinear multigrid method and 
encounter a serious difficulty due to the nonlinearity of the problem. Some modifications 
are proposed which significantly increase the robustness of the nonlinear multigrid 
method and which look promising also for the higher-dimensional case. 

2. The problem. The behavior of a steady semiconductor device can be described 
by the following set of equations (cf. (10]): 

(2.la) V(-eV!ft) = q(p- n + D), 

(2.lb) VJn=+qR, 

(2.lc) VJP =-qR, 

where J" and JP are defined by 

(2.2a) Jn= qµn (± Vn -nVtf!), 

(2.2b) Jp = -qµp(±vp+ pVlft). 

Substitution of (2.2) into (2.1) results in a system of three nonlinear partial differential 
equations for 1/1, n, and p. In (2.1) I/I represents the electrostatic potential, p and n 
describe the concentration of holes and electrons, respectively. Equations (2.lb) and 
(2.lc) are called the continuity equations, In is the electron current density, lp is the 
hole current density, and R is the recombination-generation rate, a function of n and 
p. The doping profile D is a function of the space variable x. The quantities e, q, a, 
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/l-n• µ,P represent the permittivity, the elementary charge, the inverse of the thermal 
voltage, and the electron and hole mobility, respectively. 

In this paper we consider the case of only one space dimension and assume e, a, 
/l-n and /J-p to be constant. It is common practice to replace the variables n and p by 
the hole and electron quasi-Fermi potentials <f>n and </>p defined by the relations 

{2.3a) n = n; e°'<ofl-<1>.>, 

{2.3b) p = n; e°'<<1>p-ofll. 

On the one hand, by this change of variables, the ncmlinearity of the problem is strongly 
increased, on the other hand the values assumed by (I/I, <f>n, <f>p) are in a much more 
moderate range. For extensive diseussions on the choice of variables see [9], [10]. 
Using (2.3) the equations (2.1) are transformed into 

(2.4a) -VJ.,, = n;q( e°'<<l>p-f/Jl - e°'<ofl-<1>.>) + qD, 

(2.4b) -VJ" =+qR, 

{2.4c) -VJp=-qR, 

where J.,, is defined by 

(2.5a) J"' = e VI/!, 
and ln, JP are now defined by 

(2.5b) 

{2.5c) 

with 

{2.5d) 

Jn= fin e"'<11i-<1>.>v(a<f>n), 

JP = {ip e"'<<1>p-11i>v(a<f>p), 

In this paper we adhere to the formulation (2.4)-(2.5). 

2.1. A particular one-dimensional model problem. We will focus our attention to 
a particular (hard) one-dimensional model problem which has been supplied by 
Schilders [14]. Here the problem constants are 

E = 1.035918!d2 As v-t cm-1, 

(2.6) Soov-1 -I 2 
P.n = /J-p = s cm , 

q = 1.6021 i"d9 As, 

n; = 1.221010 cm-3, 

k = 1.38054li3 V As K- 1, 

The function R is given by 

T=300 K., a= q/kT. 

Pn-n~ R I -r= 10-6 s. = -r(p+n+2n;)' 

The doping function D (in cm-3) is given by 

D(x) = 61015 +61019 exp (-(x/7.l lt)2)-2.151018 exp (-(x/1.15lo4) 2) 

+ 1.110 t9 exp (-((x -8104)/1.31~)2). 

The equations (2.4) are defined on the domain n = [O, 81~](cm). We have three contacts 
to our semiconductor device (the one-dimensional model of a transistor): the emitter 
(E), the basis (B) and the collector ( C) (see Fig. 1). 

0 

E B c 

F10. 1. The contacts in the one-dimensional transistor problem. 
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In Fig. 2 the doping function D(x) is shown after the transformation D ~ 
sign(D) 10 log (1 + JDJ). Boundary conditions at the emitter E are: 

(2.7a) 

(2.7b) 

(2.7c) 

p- n + D = 0 (i.e., vanishing space charge), 

!f>n =VE, 

Boundary conditions at the basis B: 

(2.8) i/>p =VB =0. 

Boundary conditions at the collector C: 

(2.9a) 

(2.9b) 

(2.9c) 

p-n+D=O, 

For fifteen different cases, each characterized by a pair of voltages (VE, Ve), the 
solution is required (see Table 4.1). Figure 8 shows the solution-component If/ for the 
subsequent cases. 

3. Discretization. At the outset of this section we give a short preview of its 
contents. 

In order to abide by the law of conservation we use a finite volume technique 
based on the piecewise constant approximation of J"', ln, and JP. As a consequence 
we arrive at a cell-centered version of the well-known Scharfetter-Gummel scheme 
[ 4], [9], [11). We examine how the nonlinear discrete operator depends on the discrete 
solution. 

3.1. Box integration. The interval fi = (x0, xN) is split up into disjoint boxes 
B1 = (xJ_1 , xJ), j = 1 (l)N. A point xj is called a wall, a point Xj-l/2 = (xJ-l + x1 )/2 is 
called a center. The basis B is at the partition-wall between two boxes. Another set of 
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FIG. 2. The doping pro.file. 
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subintervals {Di} is defined by 

Do== (xo, X1;2), 

D1:::: (X1-112. X1+1d, j:::: 1 (l)N -1, 

DN = (xN-112. xN ). 

This set is called the set of dual boxes. 

515 

Now, by applying the Gauss divergence theorem in one dimension to (2.4) on the 
domains· B1 we find 

-Jt/11~_1 -n;q f (e"'<<t>P-.P>_e"'(t/1-4>.>) dO.=q f DdO., 
B1 B; 

(3.1) -J.lx1 -qf Rd0.=0 n Xj-1 ' 
B1 

-JPl~_ 1 +qf RdO.=O, j=l(l)N. 
B1 

We can write (3.1) in symbolic form as 

(3.2) .;{.{,(q) = f 
where q denotes the vector ( c/J, <f>n, </>p) r, .;{.{, the nonlinear operator in the left-hand side 
of (3.1) and f the right-hand side of (3.1). 

3.2. Box discretization. We introduce the variables (c/11, <f>n,J> <f>P) r, j = 1 (l)N, 
which are associated with the centers x1_112 of the boxes B1• Let""' denote approximation 
by midpoint quadrature. We then define 

81 = n;q L. (exp (a(</>p -c/1))-exp (a(ifl-</>n))) dO., 
J 

Fj=q f DdO., 
81 

R1 =q f RdO., 
81 

(3.3) 

j= 1 (l)N. 

We make the assumption that '"'' ln and JP are piecewise constant on the dual set 
{D1} (see [ 4], [9], [11]) and correspondingly we use the notation l.p,1, ln,1, lp,l· By this 
assumption and applying (3.3) we arrive at the following discrete equations: 

(3.4a) -Jt/1,1 + Jt/1,1-1 - S1 = Fj, 

(3.4b) -Jn,1+fn,1-1-R1 =0, 

(3.4c) -Jp,1+1p,J-i + R1 =O, 

with 

(3.5a) 

(3.5b) 

(3.5c) 

1 - 1/11+1-l/lj 
t/1,1-e , 

X1+1/2 - Xj-1/2 

1 _ _ exp (-a<Pn,1+1)- exp (-a<f>n.1). at/11+1 - aifl1 

n.J - /J,n exp (-at/11+1)-exp (-ai/11) X1+112-X1-112' 

1 __ exp(a</>p,J+1)-exp(acfie). af/11+1-af/11 

p,J-µ,P exp(at/11+1)-exp(a1f1J) x1+1;2-X1-112 



516 P. M. DE ZEEUW 

At the emitter E, basis B, and collector C similar equations are obtained; for full 
details see [16]. Thus we have obtained the cell-centered version of the well-known 
Scharfetter-Gummel scheme (see [ 4], [9], [ll]). Summarizing, we have discretized 
(2.4), together with the boundary conditions (2.7)-(2.9), into a set of 3N nonlinear 
equations (3.4) with the 3N variables 1/11, <f>n.J• </Jp,J; j= 1 (l)N. We can write (3.4) in 
symbolic form as 

(3.6) 

where .J,1,h denotes the nonlinear difference operator and f,. the right-hand side. 

3.3. Properties of the discretized operator. In this subsection we study how the 
Jacobian of the nonlinear discrete operator .Mh depends on the discrete solution. We 
assume the recombination term to be zero and confine ourselves to the dependency 
on </>p· Results for <f>n can be derived analogously. We freeze the solution components 
ijJ and <f>n and consider the </>p·Stencil, at box B1, defined by the triplet 

(3.7a) [stp(j, -1), stp(j, O), stp(j, +1)] 

with 

(3.7b) ( . k) a(-Jp 1 +1pj-I) stp J, = ' · , 
a<Pe.J+k 

k=-l,0, 1. 

We introduce the notation 

and the function s(z): IR' IR by 

(3.8) 
z 

s(z)=--. 
ez -1 

By straightforward computation it can be verified that the following equalities hold: 

(3.9a) 

(3.9b) 

(3.9c) 

and 

{3.9d) stp(j, 0) = -(stp(j, -1) + stp(j, +1)) + a(-lp,J + le.J- 1). 

Because s(z) > 0 for all z, it follows that 

(3.10) stp(j, -1) < 0, stp(j, O) > 0, stp(j, + 1) < 0, 

so the <f>e·stencils correspond with an 2-matrix. Further, at the exact discrete solution, 
i.e., when -le,J + lp,J-i = 0 is satisfied, it follows from (3.9d) that 

stp(j, O) = -(stp(j, -1) + stp(j, +1) ), 
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so then the .P-matrix also possesses weak diagonal dominance (provided there is at 
least one stencil corresponding with a Dirichlet boundary condition, see [15]). However, 
in the middle of some iterative process to determine the solution, we may well have 
negative residuals so that (3.9d) implies the loss of diagonal dominance. Therefore 
ill-conditioning and numerical difficulties can be expected. 

4. The Newton method and expedients. An obvious way of solving the set of 
nonlinear equations (3.6) is application of the Newton method. Because the Newton 
method is not globally convergent and the operator h,h is strongly nonlinear in the 
variables ( t/l, cf>n, </>p) we use two additional tools which are considered subsequently 
in this section: 

(1) Correction transformation. 
(2) Smoothing of the Newton-iterates. 

It turns out that these expedients make the Newton method well applicable. Other 
modifications of the Newton method including inexact line searches and related 
techniques have been found to be reliable elsewhere (see [ 4]). 

In two or more space dimensions direct application of the Newton method to 
(3.6) would involve large storage requirements and the solution of large linear systems. 
If well designed, a nonlinear multigrid algorithm holds out a prospect of both a 
computational complexity which is linear in the number of gridpoints and low storage 
requirements even for the case of two or more space dimensions. Therefore we want 
to apply the Newton method only for very coarse grids and we restrict the use of the 
Newton method as a coarsest grid solver for multigrid methods (§ 5). 

4.1. Correction transformation. The correction transformation introduced by 
Schilders [10] is a device to transform the Newton-correction (di/I, dcf>n, d<f>p), computed 
by linearisation with respect to (t/I, cf>n, </>p), into the correction for these very variables 
that would be obtained if linearisation were applied with respect to ( t/l, n, p ). Because 
the system in terms of ( 1/1, n, p) is much less nonlinear, a much better convergence 
behavior of the Newton method can be expected. By performing the calculations in 
terms of (I/I, <f>n, </>p) and applying a transformation afterwards, we avoid complications 
due to the extremely wide range of values of n and p. In this way we take advantage 
of the benefits of both variable sets [9], [10], [14]. 

4.2. Smoothing. In§ 4.1 we pointed out a technique to improve the global conver­
gence behavior of the Newton method. Even yet difficulties are encountered when we 
apply the improved Newton method. As an example consider Fig. 3 which shows 
subsequent Newton iterates for case 12 starting from the solution for case 11. 

The dips in the iterates are attended with very small pivot numbers while solving 
the linear systems. Section 3.3 explains the ill-conditioning whenever there is a large 
residual somewhere. Artificially increasing the main diagonal of the Jacobian turned 
out to be not efficient. Simply cutting ofi the correction at certain points is hardly 
justifiable because of lack of a more or Jess general criterion to do so. A more appropriate 
way of handling the phenomenon sketched above is to apply relaxation or smoothing 
sweeps at the beginning of the Newton process [9]. As a smoother the collective 
symmetric Gauss-Seidel relaxation (CSGS) can be used. It is called collective because 
at each box we solve collectively the three nonlinear equations which arise (employing 
Newton's method). 

We will present here some numerical results to show the effect of smoothing. The 
grid is more or less uniform and satisfies xN;4 =B. The set of voltages {(VE, Ve)} for 
which a solution is required is defined in Table 4.1. For each case> 0 the solution of 
the previous case serves as a starting solution; in case 0 we start with <f>n,j = </>p.J = 0, 
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FIG. 3. Subsequent Newton iterates of cPp· 

TABLE 4.1 
Subsequent voltages at the emitter and 

collector for which a solution is required. 

Case VE Ve 

0 0 0.0 
I 0 0.2 
2 0 0.4 
3 0 0.6 
4 0 0.8 
5 0 
6 -0.2 
7 -0.4 
8 -0.6 
9 -0.7 

10 -0.8 
11 -0.85 
12 -0.9 
13 -0.95 
14 -I 

7 .0 

for allj, and tjJ is determined by assuming space charge neutrality. We use the correction 
transformation. For the solution of the linear systems we apply rowscaling followed 
by rowpivotting. Table 4.2 shows the number of Newton sweeps required to reach a 
correction with absnorm < 10-12, and the smallest pivot number encountered during 
the solution process. Table 4.2 also contains the results for the case when in addition 
a CSGS sweep is applied each time after a Newton-correction for which the infinity 
norm of the correction was larger than 0.1. This method will henceforth be referred 
to as Newton-CSGS. We observe that in the difficult cases 11-14 the application of 
smoothing sweeps has a positive effect on the efficiency and robustness of the Newton 
method. When smoothing is applied the smallest pivot numbers encountered keep a 
substantial distance from zero which shows that then the Jacobians generated within 
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TABLE 4.2 
Number of Newton and CSGS sweeps used, and smallest pivot numbers; N = 32. 

No smoothing applied Smoothing applied 

Smallest Smallest 
Newton pivot Newton CSGS pivot 

Case sweeps number sweeps sweeps number 

0 6 310-3 4 510-l 
1 5 210-4 5 2 510- l 
2 6 110-9 5 2 510-l 
3 5 210-7 5 2 510-l 
4 5 110-7 5 2 310-l 
5 5 410-5 5 2 310- l 
6 5 310-3 5 2 210- l 
7 5 310-3 5 2 210- l 
8 5 210-4 5 2 210-l 
9 5 410 -7 5 2 310- l 

10 6 110-7 6 3 310- l 
11 9 410-9 7 3 210-l 
12 15 510-13 8 4 410-2 
13 13 210 -11 7 3 110- l 
14 10 510-10 7 3 110- l 

the Newton method are far from being singular (e.g., compare to case 12 in Table 4.2) 
and therefore no large dips in the Newton-corrections do occur. Experiments for 
N = 16, 64, 128 show results similar to Table 4.2. 

5. The multigrid method. More advanced ways of solving a set of nonlinear 
equations are the full approximation scheme (FAS) [5], and the nonlinear multigrid 
method (NMGM) [7]. Both multigrid methods are very similar although the NMGM 
is more general. The multigrid method has already found many specific applications 
in the fields of elliptic, parabolic, and hyperbolic equations and integral equations as 
well. Recently, also in the field of semiconductor equations research on multigrid 
methods has been initiated ([1], [2], [6], [9], [13]). If well applied, a multigrid method 
can be optimal in the sense that the rate of convergence is independent of the meshsize. 
An important advantage of the FAS/NMGM method is that no large linear systems 
need to be stored and solved. The subsequent stages of a usual FAS method, applied 
to (3.6), are 

(1) Apply p nonlinear relaxation sweeps; thus we get an approximation qh of the 
solution which has a smooth residual dh = fh - .Jtih ( qh ). 

(2) Transfer qh and dh from nh to a coarser grid nH by means of the respective 
restriction operators RH and RH· 

(3) Solve (approximately) on nH the equation .JtiH(qH) = .JtiH(RHqh) + RHdh. 
(4) Interpolate the correction, computed on nH, onto nh and add the correction 

to qh. 
(5) Apply q nonlinear relaxation sweeps. 

The combination of stages 2, 3, and 4 is called the coarse grid correction (CGC). Stage 
3 may be obtained by applying a number of u FAS cycles on the coarser grid. In this 
way a recursive procedure is obtained in which a sequence of increasingly coarser 
grids is used. In this paper we use p = q = O' = 1 throughout. In the subsections to come 
we will define precisely the coarse grid correction and the grid transfer operators 
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involved. In § 6 a significant improvement of the CGC will be introduced. It consists 
of a solution-dependent adjustment of the restriction of the residual dh. 

5.1. Nested boxes. Let a coarse grid nH, a discretization of n, be given by the set 
of boxes {BH,j}j=l(l)N· From nH we construct the next finer grid nh = {Bh,j}j=l(1)2N by 
division of each BH,j into two disjoint boxes Bh,2j-I and Bh,2i. By repetition we obtain 
thus a sequence of increasingly finer grids. By definition all boxes are nested. Of course, 
the corresponding dual boxes are not nested. For all our numerical experiments in 
this paper we assume in addition that Bh,2j-l and Bh,2i have equal size. 

5.2. Restriction operators. For the problem (3.2) on !l, let S denote the domain 
and V the range of nonlinear operator .drt. For each discretization on Oh, we have the 
spaces Sh and Vh, the discrete analogues of S and V. 

Let the restriction operator for right-hand side functions 

(5.la) 

be defined by 

(5.lb) 

(5. lc) 

RJ=Ji., 

fh,j= I fdO, 
Bh,j 

It follows for the next coarser grid that 

(5.2) 

By this equality, RH can be defined also on Vh: 

(5.3a) 

(5.3b) 

RH: vh~ vH, 
(RHfh)i = Jh,2j-1 + fh,2j, 

The restriction operator for solutions 

(5.4) 

may be defined by the well-known full weighting operator [5]. 

5.3. Prolongation/interpolation. A prolongation transfers a solution from a coarse 
grid to a finer one: 

(5.5) 

A common and simple choice for the prolongation should be linear interpolation. 
However, two objections against this choice do arise. Firstly, by the use of linear 
interpolation it is implicitly assumed that the solution behaves like a smooth function 
on !lH. Because of the exponential behavior of the solution in some areas, this is only 
true on an unfeasibly fine grid. Secondly, linear interpolation does not satisfy here the 
so-called Galerkin condition 

(5.6) 

which is a condition that ascertains the reduction of low frequency components in the 
residual after a CGC. Hemker [9] has introduced a prolongation which is based on 
the assumption of smoothness of fluxes, and which satisfies (5.6) for the simplified 
case that all Si and ~ are zero, see (3.4). Here, we use the same assumption but we 
choose a short and convenient formulation in order to handle also the situation near 
the inner boundary point B. Figure 4 depicts how the dual box [L, R] is divided into 
the boxes [L, M] and [M, R]. 
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.O.H (coarse) 
L M R 

i----i;:oi----+-----<Os----+----4"10---+----eO-~I .O.h (fine) 
L' R' 

FIG. 4. Staggering of a coarse and fine grid. 

The assumption reads that!"', ln, JP are constant on [L, R]. Given the values of 
the variables (I/I, </>n, c/>p) at Land R we wish to compute the values at L' and R'. From 
(3.5a) it follows that ifllv and ifl\R' can be computed by linear interpolation. For c/>p we 
first determine the value at the wall M. If we write 

(5.7) 

then we derive that 

(5.8) 

</>plM= 
if Ai/1<0 

. Al/I 
then if 2-A</>p <0 

then c/>plR + z ( A21/1, ~I/I -Ac/>p) 

Ai/I (Ai/I Al/I ) else </>pk +1+z 2• -2+Ac/>p 

end if 

. Al/I 
else 1f 2-A</>p < 0 

end if 

Ai/I ( Al/I Ai/I ) then</> I --+z -- --A<f> pR 2 2'2 P 

else </>plL + z ( - A21/1, - A21/1 + Ac/>p) 

end if 

where the function z : IR 2 -+ IR is defined by 

( ) 1 1 (exp(av)+l) 
(5.9) z u, v =-; og exp (au)+l . 

Note that in (5.8) the function z is used with only nonpositive arguments and 

I I< log (2) < < 
(5.10) z(u,v) =-- foru=O,v=O. 

a 

By repeating the interpolation procedure, we can compute 4>plv from </>plL and </>plM. 
and ct>PIR· from </>plM and </>plR· In the particular case that the wall M is the basis B, 
we do not first determine <f>plM by interpolation, but simply state that 

(5.11) <f>plM = </>pls = Vs. 
Analogously, we can derive a formula for </>.,IM· 
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5.4. Coarse grid correction. Let q'/.1a and q<f/ be given approximations to the 
solution on !h and nH, respectively. The CGC is defined by 

(5.12a) 

(5.12b) 

(5.12c) 

- old compute dH = RH(fh -Alh(qh )), 

solve AlH(qJ'!w) = AlH(q';!/) + dH, 

compute q?,ew = q'/.1d + (PhqHw - Phq';!/), 

where RH and Ph are the grid transfer operators defined in the previous subsections. 
Note that q'Hw in (5.12b) may be approximated by applying a number of O' FAS cycles 
on the grid nH with q~d as an initial approximation. The approximation q~d may be 
given by means of full weighting: 

(5.13a) 

(5.13b) 

q~d = RHqhld' 
old I old + I old qH,j=lqh,2j-I 2qh,2j> 

Another possibility is to take q<f/ equal to q'Hw obtained from the last of previous 
CGCs. The solution efficiency of many nonlinear problems is not influenced by either 
choice of q~a. In our case however it is (see § 7). 

5.5. Full multigrid. The full multigrid (FMG) algorithm provides the efficient 
construction of an initial approximation to the solution on a fine grid, once a solution 
on a coarse grid has been computed [5], [7]. Let Dcoarse be the coarsest grid and nfine 
be the finest one. Intermediate grids are denoted by l EN. Operators and grid functions 
now have l as a subscript instead of h or H. Here we introduce an improvement of 
the usual FMG in a quasi-Algol description. 

(5.14) 

procedure BOX-FMG (' Alfine(fJJ;ne) = /J;n.', input :!J;ne, output: C/finJ 
begin 
(1) for l from fine - 1 by -1 to coarse 
(2) do fr= R1fr+1 
(3) end do 
( 4) SOLVE (' Alcoarse(qcoarse) =!coarse', input :!coarse, output: qcoarse) 
(5) for l from coarse+ 1 to fine 
(6) do q1 = P1q-1 
(7) toy 
(8) do FAS ('Al1(q1) =Ji', input :fr, in/ output: q1) 
(9) end do 

(10) end do 
end procedure 

where R1 is defined by (5.3). The improvement is in the lines (1)-(3) of the procedure. 
The grid function fr is independent of q1 ; the components represent 

(5.15) ft.j=f Dd!l, 
BJ 

i.e., the dope function integrated over box Bj. By means of (1)-(3) we compute the 
integral as a Riemann sum over a larger number of subintervals. This is more accurate 
because D is a rapidly varying function. In the numerical experiments to come we use 
'Y = 1 throughout. For SOLVE ( ) we use the techniques of§ 4. 

6. Adaptation of the coarse grid correction. Hemker [9] successfully applied box 
centered multigrid FAS iteration to the forward and the reverse biased diode problem. 
A key feature in his application is the prolongation based on locally constant fluxes. 
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This prolongation has been reformulated and made suitable for the transistor problem 
in § 5. Application of the same MG algorithm to the transistor problem gives rise to 
a complication in the CGC due to drastically varying problem coefficients. This 
complication and possible remedies are the topics of this section. 

6.1. Improper solution transfer. The first attempt of applying multigrid to our 
specific problem was done by employing BOX-FMG with only two grids. The coarse 
grid problem (5.12b), within the CGC of FAS, was to be solved up to machine accuracy 
by means of Newton-CSGS. For several cases of our test problem it turned out that 
the two-grid algorithm gets stuck precisely at stage (5.12b) of the CGC. This is 
remarkable because Newton-CSGS was shown in§ 4.2 to be successful for .;UH ( qH) = f H 

even for rather coarse grids. Apparently f H is within an appropriate range of .;UH while 
the right-hand side of (5.12b) may be outside such a proper range of .;UH· The 
computational difficulty occurs in CSGS on the coarse grid exactly where one or more 
of the three solution components depicts a steep gradient. Consider two adjacent boxes 
B1 and B~ on the fine grid which together constitute a box BH on the coarse grid. 
Because of the steep gradient it may well occur that the problem coefficients, i.e., the 
entries of the Jacobian of .Jdh, show a quite different order of magnitude on B~ and 
B~, respectively. Grid function dH, the restriction of the residual, is dominated by the 
fine grid box with the large coefficients. On the other hand, the operator .;UH is generated 
by the particular choice of qf/. This particular choice may be full weighting applied 
to q/.1d, or the last qH available, etc. Because of the steep gradient in q/,1d there is a 
large range of possible values for q°// at BH. Depending on the choice of q°// the 
operator .JA,H may have either large or small coefficients at box BH due to the exponential 
behavior of the entries in the Jacobian as a function of the solution. In the case of 
small coefficients, the right-hand side of (5.12b) may become out of the appropriate 
range for .JdH (dH does not depend on the particular choice of q~d) and the two-grid 
algorithm gets stuck. 

We will now confirm the foregoing by considering our discretized problem in 
more detail. Consider the center of the 4>P-stencil given by (3.9b) and let us suppose 
that I/! is monotonous on [xi_312 ,xi_1n]; then either s(-at..i-11/!)?;;l or s(at..il/!)?;;l. 
If both lt..i_ 1 l/!I and IAil/!I are sufficiently small then stp(j, O) is approximated by 

stp(j, O) = aji,P exp (a(4>p,i-l/!i)) · (~+~). 
l.lj-1X 1.1jX 

If both lai_1 l/!I and IAil/!I are sufficiently large then stp(j, O) is approximated by 

{ 

Aj-11/1 . O a-- 1f Ai- 11/!?;; , 
. - )) Aj-1X 

stp(J, O) = aµ,P exp (a(4>p,i-l/Ji · A·r/I 
-a-1- if t..irfJ;;iiO. 

t..ix 

These approximations show that indeed the 4>P-stencil is extremely sensitive to the 
difference ( 4>p,J - r/Ji). Hence the q,P-stencil on the coarse grid is sensitive to how 4>p,J 
and r/Ji on the coarse grid are determined from their counterparts on the fine grid. If 
q~d is determined by applying full weighting (linear interpolation) to q'/,1d then 

stp(j /2, O) =exp ( - ~ lt..1( q,P - rjl )1) · max {stp(j-1, 0), stp(j, O)} 

where stp(j-1, O), stp(j, O) (j even) are defined at the fine grid nh and stp(j/2) at 
the coarse grid OH. If ( q,P - I/!) shows a steep gradient then indeed 

stp(j/2) « max {stp(j-1, O), stp(j, O)}. 
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Note. The possible occurrence of the above sketched phenomenon has already been 
noted (for general nonlinear problems) by Brandt [5, p. 279], where he discusses how 
the transferred solution (i.e., q';!/) implicitly determines the problem coefficients on 
the coarse grid. 

6.2. Possible remedies. Let Land R be the centers of the two adjacent boxes B2 
and B~ on the fine grid nh which together constitute a coarse grid box BZ with center 
M on the coarse grid nH (see Fig. 5). 

L R 

M 

FIG. 5. Nested boxes. 

Let us assume that aif! / ax = c is constant on Bt U B~. The centers of the <PP-stencils 
at L, R are then determined by the coefficients at= exp (a (<PP -1/1) I L) c, a~= 
exp(a(</Jp-1/!)IR)c, respectively, and the center of the <PP-stencil at M by aZ= 
exp (a( </Jp - if! )IM )c with c = a 2 ,Up lei (see § 6.1). Let 6.M( </>p -1/1) denote the variation 
6.M ( </>p - if!)= (<PP - if! )IR - ( </>p - if! )IL· The solution at M on the coarse grid somehow 
relates to the solution at L and R on the fine grid (for instance by means of the full 
weighting restriction). If AM(<Pp-1/!) is small (a smooth solution) then obviously aZt 
does not differ much from either at or a~. If 6.M(</>p-1/!) is large (a steep gradient in 
the solution) then a Z may differ orders of magnitude from both a 1 and a~ , and 
therefore the MG algorithm may get stuck as was pointed out in the previous subsection. 
A radical remedy to meet this situation is to prevent AM ( </>P - if!) from getting large, 
i.e., to introduce local refinement of the mesh just where the solution has a large 
variation AM( </>p - if!), e.g., by means of equidistributing the variation. However, we 
want to be able to find solutions without much refinement, in order to apply coarse 
grids in our MG algorithm. Besides, a solution without much resolution can serve as 
a guide for where a local mesh refinement should take place. For these reasons we 
resort to another remedy. Let us consider the CGC (5.12). Let dh(L), dh(R) be the 
residuals at L, R (e.g., for the third equation (3.4c) only). At M the difference between 
q'J:W and q~d may have the order of magnitude dH(M)/ a1:.t with dH (M) = 
dh(L)+dh(R). Because of (5.12c) at either L, R, or both Land Ra correction with 
order of magnitude dH(M)/aZ is added to the solution q~1d. Assume that (because 
of a steep gradient in the solution) the inequality 

aZ« max{al, a~} 
holds. Therefore 

dH(M)/ aZr » (dh(L)+dh(R))/max {al, a~}, 
which implies that the correction that will be transferred to the fine grid becomes far 
too large and the solution q~1d gets spoiled. A way to prevent this situation is to multiply 
the restricted residual dH with 

H_ aZ 
(6.1) OM= { h h}' O<OZ~l, 

max aL, aR 

at each center M. For a smooth part of the solution this fraction will be near one, for 
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a rapidly varying part of the solution it will be near zero, so that the solution q~1d will 

be preserved. The foregoing is the motivation for the following modification of the 

FAS algorithm (MFAS) using the notation of§ 5.5: 

(6.2) 

Procedure MF AS ( 'At1 ( qz) = J;', input : fz, in/ output : q1) 
begin 

(1) If l = coarse 

(2) then SOLVE (' Atcaarse( qcoarse) =!coarse', input : !coarse, in/ output: qcoarse) 

(3) else RELAX (' At1(q1) = f;', input :Ji, in/ output: q1) 

(4) d1-1 := R1-1(fz-At1(qz)) 
(5) qz-1 := R1- 1q1 (optional !) 

(6) d1-1 := ®1-1(At1-1, At1)d1-1 
(7) d1-1 := d1-1 + At1-1 (q1-1) 
(8) S1-1 := ql-1 
(9) to CJ' 

(10) do MFAS ('At1-1(q1-1) = d1_ 1', input: d1_1> in/ output: q1_ 1) 

(11) end do 

(12) q1 := q1 + P1q1-1 - P1s1-1 
(13) RELAX ('At1(q1)=fz', input:fz, in/output:q1) 
(14) end if 
end procedure 

The modification is in line (6). Here @1_ 1 represents a diagonal matrix IR 3 N(n,_,)~ 

1R3 NC01-1l (N(01_ 1) denotes the number of boxes at 0 1_ 1). It is defined by 

®1-1d1-1 = (61-1,1d1-1,1,'' ', 61-1,jdl-l,jo"' ', 61-1,N(01_,)dl-1.N(!l 1_ 1 ))T 

with d1- 1,i E IR 3, 01_1.i: IR 3 ~ IR 3 and 

(

81-1,j,l 0 0 ) 
61-1,j = 0 81-1,j,2 0 

0 0 01-1,j,3 

( 01-1,j,k E IR, k = 1, 2, 3 ). 

For our particular semiconductor problem the 01_ 1.i,k are defined by: 

(6.3al) 81-1,j,1=1, 

( 6.3a2) 01_1.i,2 = min {2Y11-1,j, l}, 

(6.3a3) 01_ 1.i,3 = min {2g1-1,j, 1}, 

where 

T/1-1,j E IR, 

g1-1,j E IR, 

(6.3b) 

T/i-i,j =exp (a( t/JJ-1 - </.>~~/)) /r!!o~'!1 exp (a( t/l~i+i - <P~.2j+;)), 

gi- 1,j =exp (a ( <P~-:/- t/IJ- 1 )) /r!!o~'!1 exp (a ( <P~.2j+i - t/l~i+;)). 
The superscripts / -1, l refer to 0 1_ 1 , 0 1, respectively. 

The first component of the restricted residual does not need to be adjusted. The 

definition originates from the evaluation of expression (6.1). By means of (6.3a2)­

(6.3a3) the numbers 01_1.i,2 and 01_1,i.3 are rounded off upwards to 1 when T/1-1,j, g1-1.1 

are~!. Summarizing, we observe the following from (6.2)-(6.3): 

(i) Where q1 is smooth, d1_ 1 will not be suppressed. 

(ii) Where q1 depicts a steep gradient, d1_ 1 may be strongly suppressed. 

(iii) Let 0 0 be some fixed grid, then, for I~ oo, the matrix ®1-1 becomes asymptoti­

cally the identity matrix. 
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(iv) By a proper local mesh refinement the suppression of d1-i will decrease. The 
performance of the modified FAS algorithm will be shown and discussed in § 7. 

In the nonlinear multigrid algorithm as proposed by Hackbusch [7, p. 187], the 
restricted residual d1_ 1 is divided by a global parameters ii;; 1 and the resulting coarse 
grid correction is multiplied by s. The division by an appropiate s ensures that the 
right-hand side of the coarse grid equation is within an appropriate range of the coarse 
grid operator JJ.,1_ 1 • There are two main differences with our approach. First, the same 
number s is used at each different box. Second, within our class of problems we have 
to omit the multiplication of the correction by s. Such a multiplication would result 
in a far too large correction and thereby a dip or peak in the fine grid solution. In 
recent work of Hackbusch and Reusken [8] a global parameter I/! is proposed by which 
the coarse grid correction should be damped. For a limited class of problems an 
appropriate I/! can be computed. Important differences with our approach are the 
following: 

(i) I/! is a damping parameter for the correction, instead of the residual. 
(ii) I/! is a global parameter, i.e., the same I/! is used at each different box. 
(iii) After sufficient FAS sweeps the damping parameter I/! converges to 1, the 

parameters 91-t.j,2 , 91-t,j,J do not and should not converge to 1. 
(iv) The I/! parameter is meant to enlarge the domain of guaranteed convergence 

on the analogy of the damping parameter in the Newton method; the 0 1_ 1 operator 
is meant to deal with discrepancies between the operators Ji.,1_ 1 and JJ.,1 due to rapidly 
varying problem coefficients. 

7. Numerical results. In this section we investigate the performance of our non­
linear multigrid algorithm. We focus our attention on the effects of local suppressing 
of the restricted residual and the choice of the coarse grid solution. The residual norm 
( 11-11 , •• ) that we use is the maximum norm of the scaled residual. At level l the said 
scaling is done by multiplying the residual at each box with the inverse of the 3 x 3-matrix 

( aJJ.,1 lxj-l/2 ) 

8(1/!J,</>~,j,</>~_j)T • 
The performance of the MFAS algorithm is shown in Table 7 .1. In the heading of the 
table we use the following abbreviations: 

case: see Table 4.1. 
q';!/: defined by ... : see § 5.4. 
without 0: No local suppression of the restricted residual is applied. 
with 0: Local suppression of the restricted residual is applied on all 

coarser grids. 
#MFAS, 10-1 red: The average number of MFAS sweeps necessary to obtain 

an additional reduction factor 10- 1 of the residual norm 
after the application of BOX-FMG. 

after FMG: The last column shows the scaled norm of the residual, after 
application of BOX-FMG (see (5.14), 'Y = 1). In each case> O 
we obtain a starting approximation of the solution on the 
coarsest grid by means of continuation and application of 
Newton-CSGS (see§ 4.2). 

For Table 7.1 the multigrid procedures are applied with 3 grids, with N = 16, 32, 64, 
respectively. In the event of no convergence the symbol * is written. 

We observe that the use of the 0 operator, combined with a proper choice of the 
coarse grid solution, gives convergence for all cases. In the cases 3-6 the use of the 0 
operator is essential for convergence. The use of the 0 operator does not slow down 
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TABLE 7.1 
Performance of MFAS; use of 3 grids; N = 16, 32, 64, respectively. 

q';id: Defined by full weighting q';id: Defined by qf';w 

Without With Without With With 
e e El e El 

#MFAS, #MFAS, #MFAS, #MFAS, After 
Case 10-1 red. lo-• red. lo-• red. 10-1 red. FMG 

0 0.80 0.80 0.66 0.66 4.110-4 
1.07 1.07 0.88 0.73 8.810-4 

2 * 1.15 * 0.85 1.210 - 3 
3 * * * 1.03 1.210 - 3 
4 * * * 1.06 7.110-4 
5 * * * 0.89 5.7 10 -4 
6 * * * 0.89 5.7 10 -4 
7 * 1.38 * 0.89 5.7 10 -4 

8 1.40 1.37 0.89 0.89 5.610-4 
9 1.54 1.37 0.87 0.90 5.710-4 

10 2.59 2.52 0.88 0.82 l.110-3 
11 1.22 1.22 1.25 1.25 l.310-3 
12 1.75 1.74 2.01 2.01 9.110-4 
13 4.66 4.66 2.19 2.19 l.910 - 3 
14 2.44 2.43 1.76 1.77 2.510 -3 

convergence in the cases where it is not needed (cases 0-2 and 7-14). We observe 
further that apparently the full weighting approximation of the fine grid solution on 
the coarse grid may be a poor one. Experiments for more and finer grids showed 
almost identical results for Table 7.1. Further we observe that mere application of 
BOX-FMG, without further MFAS sweeps, already gives fairly accurate results which 
may be good enough for practical purposes. 

For two typical cases, case 4 and case 12, we investigate the grid-dependence of 
the multigrid convergence. In Fig. 6 we show the 10-logarithm of the scaled residual 
norms after subsequent FAS sweeps, starting from the result obtained by BOX-FMG. 
The coarsest grid contains 16 boxes; for the finest grid we take 32, 64, 128, and 256 
boxes, respectively; 0 is applied (without application of 0 case 4 persistently depicts 
divergence). We observe that the multigrid convergence becomes grid-independent 
when the meshsize of the finest grid decreases. This indicates that the semiconductor 
problem has been treated correctly at each multigrid stage. Hereby it is shown that 
even forthe strongly nonlinear (and particularly hard) problem it is possible to compose 
a multigrid method with optimal multigrid efficiency. Of course, considered in one 
space dimension only, competitive methods are available. However, the multigrid 
method as developed in this paper offers several clues for the foundation of an MG 
algorithm which solves the semiconductor problem also in more space dimensions 
with a computational complexity that is linear in the number of gridpoints. 

In order to give some insight into the behavior of the 0 operator, we show in 
Fig. 7 the solution components rjJ and <f>n for case 4 on a 64-grid and a graph of 82,j,2 

(see (6.3a2)). 
We observe the typical behavior that 82 .j.2 equals 1 almost everywhere, except for 

some isolated points. 
Fig. 8 shows the electrostatic potential rjJ as computed on a grid of 128 boxes. 
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8. Conclusions. We find, by deriving explicit expressions for the entries of the 
Jacobian, that the linearization of the Scharfetter-Gummel discretization scheme 
contains a weak spot. When applying full multigrid followed by FAS/ NM GM-iterations 
to our one-dimensional transistor problem, we find a serious lack of robustness which 
is explained by the strong nonlinearity of the discretized problem. This difficulty is 
met by adaptation of the coarse grid correction, which looks to be equally applicable 
for the higher-dimensional case. A proper choice of the coarse grid solutions is of 
importance too, e.g., the full weighting approximation is not satisfactory. Furnished 
with the improvements as proposed, we obtain a robust multigrid algorithm with a 
convergence which is independent of the meshsize. 
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