THE ABC NEWSLETTER

ISSN 0169-0191

CWI, Amsterdam

Issue 6, May 1988

CONTENTS

Some Notes

New Publications

Progress towards ABC

A Chess Program in B

Approximate Numbers

Erratum

My Experiences with ABC

An Alternative Simple Language
and Environment for PCs

Publications about B and ABC

Some Notes

The Newsletter is intended to provide information
about ABC and to provide a forum for discussions.

Write to us if you want to be added to our
mailing list.

You are encouraged to submit any articles you
see fit. Articles don’t have to contain fully thought-
out ideas, but may be yet undeveloped thoughts
intended to stimulate discussion. The kinds of arti-
cles we have in mind are: interesting programs,
either written or suggestions; unusual applications;
letters, discussions on points of the language, pro-
posed improvements, experience with the language,
and so on.

If you are fortunate enough to be connected to
a network with a gateway to UUCP net, you can
submit articles and send mail to:

abc@cwi.nl
For older mailers, use:
mcvax!abc.uucp
Otherwise, articles and mail should be sent to

The ABC Newsletter
CWI/AA

POB 4079

1009 AB Amsterdam
The Netherlands

I

[

New Publications

There is only one new publication since the last
newsletter.

An Alternative Simple Language and Environment for

PCs

Steven Pemberton, 9 pages.
This article describes the background to ABC,
gives an overview of the language, and
presents the ABC editor and the programming
environment the language is embedded in.
Published in IEEE Software, Vol 4, No 1,
January 1987, pp. 56-64. A reprint appears in
this newsletter.

d311371SM3IN 29V JH1

Progress towards ABC

Steven Pemberton

Since the last newsletter, the ABC group has been
busy revising ABC, updating the implementations,
making implementations for new machines, and
rewriting and updating the documentation. Here is
an overview of the latest developments.

THE LANGUAGE

As described in the last newsletter by Lambert
Meertens, several parts of the language have been
revised on the basis of our experience with B. Here
is a summary of the changes:

Representations

e Names may now include points, such as
number.of .occurrences.

® The exponent part of a number is now written
with a lower-case e rather than upper-case:
1e-10. Furthermore, numbers with exponent parts
are exact and not approximate numbers.

How-to’s

® The keyword HOW/TO is now two keywords
HOW TO. Furthermore, the keywords YIELD and
TEST have been replaced by HOW TO RETURN
and HOW TO REPORT respectively.

® All keywords up to the first parameter of a com-
mand are now significant, rather than just the first
keyword.

® Parameter passing has changed for command
how-to’s: any value that the parameter has is copied
into the template parameter when the command is
invoked, and if the value has changed at the end, it
is copied back.

® Template parameters to commands may now be
multiple names, such as

HOW TO MOVE x, y TO a, b:

Predefined commands

® The keyword SET/RANDOM has become two key-
words SET RANDOM.

® CHOOSE has been replaced by a function
choice. Similarly, DRAW has been replaced by
random.

® There is a new command PASS that does noth-
ing: it is used as a place holder, for instance in a
SELECT alternative where you want nothing to

CWI

happen:

SELECT:
too.big: SHORTEN
too.small: LENGTHEN
Jjust.right: PASS

A command-suite must now contain at least one
command.

Expressions

® Range displays for lists may now contain more
than one range, such as {7a”..7"z%;
//0/! : ./}'9//}_

e In a range-display, if the lower-bound is greater
than the upper-bound, the range is empty, rather
than giving an error.

® The priorities of some operators have been
changed. In particular, @ and | have been
integrated into the priorities of operators.

® The expressions “word”|8 and “word”@-8
both return “word” now, rather than failing.

Predefined functions

® There are four new functions on texts: lower
which converts all upper-case letters in a text to
lower-case, upper which does the complement
conversion, stripped which strips leading and
trailing spaces from a text, and split which splits
a text into its space-separated parts. For instance:

Lower “aBc? = “abc¥
upper “aBc” = “ABC”
stripped ¥ aBc “ = “aBc”

s

split # The new ABC
{[1]1:7”The”;[2]:”new”;[3]:7ABC”}

@ There are three new functions on numbers:
exactly x which returns the number x as an
exact number, angle (x, y) which returns the
angle between the x axis and a line joining the ori-
gin and the point (x, y) and radius (x, y)
which returns the length of the same line.

e The numeric function atan has been renamed
arctan. Dyadic versions of sin, cos, tan,
and arctan have been added. For instance
360 sin x returns the sine of x in degrees.

@ The function n th’of t has been renamed and
changed to t+ item n.

Tests

® The test 1 = ~1 now succeeds. A new
predefined predicate exact has been introduced to
test if a number is exact or approximate.

® The predicate not”’in is now spelt not.in.

® PARSING has been completely removed.

Terminology

Several terms have been renamed. A unit is now
called a how-to, a target is now called an address.
Formal parameters are now called template parame-
ters. Texts, lists and tables are collectively called
trains. A tag is now a name. An identifier is now a
naming.

THE IMPLEMENTATIONS

Apart from the implementations for Unix and the
IBM PC (and compatibles), there are now also
implementations for the Apple Macintosh, and the
Atari ST.

Good news is that the system is much faster in
many places. For instance, exact arithmetic is much
faster than in B, and the editor responds much fas-
ter.

Also good news is that workspaces are now properly
supported: you can create new workspaces, change
to another workspace, and copy data and how-to’s
between workspaces, within ABC.

On all machines, insofar as it is possible, the sys-
tems have the same user-interface, so there are no
differences between different machines. However,
there is one additional facility on the Macintosh,
namely that you can use the mouse when editing
(this 1s not yet supported on the Atari ST, though it
is planned).

The ABC system is written in C. This means that
the speed of ABC depends on how good the C com-
piler is. To give you an idea of the to-be-expected
relative speeds of ABC, here is a list of the dhrystone
speeds of the different compilers we use. Dhrystone
is a benchmark program that measures the pure
speed of a given processor-compiler combination. It
uses no floating point, and does no input or output.
For the IBM PC, the Macintosh and the Atari ST
with the compilers that we used, we have the follow-
ing figures:

IBM PC, 4MHz 400 dhrystones
IBM PC/AT, 8MHz 1500 dhrystones
Macintosh Plus 600 dhrystones

Atari ST 1000 dhrystones

The last two figures especially show the role that the
compiler plays: the Macintosh and the Atari ST use
the same processor, but the compiler on the ST

produces code that is more than 60% faster.

THE ABC PROGRAMMER’S HANDBOOK

The Programmer’s Handbook has been completely
overhauled. Every chapter has been rewritten, and
re-organised to make it more accessible and in par-
ticular an extra chapter of examples has been added,
showing how you define common data-types like
stacks and queues in ABC, and giving lots of exam-
ple programs, both serious, and less serious.

WHEN

We are currently putting the last polish to the sys-
tem, and discussing with publishers about publishing
the book. We hope to have the system available in
the Summer, but it really depends on the publishers.
Anyway, when it is ready, it will be announced to
all subscribers to the newsletter.

A Chess Program in B

R.J. van der Moolen

Vrije Universiteit, Amsterdam

1. Introduction

In order to finish my study of computer science at the university I had to make a comparison of some
higher languages. The languages involved were SETL, Prolog, Smalltalk, B and Icon. This comparison was done
by writing a chess problem solver in each of the languages. In this paper I will describe my experiences with B.

2. The Chess Program

The program is a chess problem solver which gets as input a chess problem of the form “mate in N
moves” and gives the first move as output. The program consists of several modules. The unit which controls
the work is the dyadic function “evaluate”. This work consists of four steps:

1. find all the possible moves

2. choose one move from them and perform that move

3. check legality of new board-position; if not legal, try next move (go to 2)

4. evaluate (recursively) all the moves that may follow (go to 1); if the move appears not to be the right one,

try next (go to 2).

What does a move look like? Every move is a compound consisting of source, target and extra. Source
and target are just fields on the board, represented by a compound: (column, row). Extra contains extra infor-
mation for special kinds of move, e.g. castling, en passant, and promotion. For a normal move, extra just con-
tains the empty string.

Now what the program does is just try every move it can find, one by one, until it has found one that
leads to mate within the specified number of plies, or there are no moves left to try. In the first case the move is
printed, in the latter there is no solution. Every time the program tries a move the situation on the board
changes. This is indicated by the state the program keeps track of. A state is a compound, which consists of a
board, the player who is to move, the rook-fields which may no longer be involved in castling because the
corresponding took is moved (subset of {al; hl; a8; h8}), the king-fields not usable for castling (subset of {el,
e8)), and the field from which a pawn may be captured en passant (if present; if not, it is just (0, 0)). The board
is a table with the fields as (compound) keys and compounds (piece, color) as associates. Only occupied fields
are present in the table.

The YIELD-unit “evaluate” looks like this:

(1) YIELD state evaluate level:

(2) PUT to’move state IN tm

(3) IF Level = 0 AND tm= “white”:

(4) RETURN no’move

(5) FOR move IN all’moves state:

(6) PUT state do’move move IN new/state

(7) IF legal new’state:

(8) IF new’state evaluate dim = no’move:
(9) RETURN move

(10) SELECT:

(11) tm = “black” AND lLevel = 1 AND ok state:
(12) RETURN ((0, 0), (0, 0), “stale-mate”)
(13) ELSE: RETURN no‘move

(14) no‘move:

(15) RETURN ((0, 0), (0, 0), “no move”)

(16) dim:

(17) RETURN {[“white”]: level; [“black”]: lLevel - 1}[tm]

Step 1 (see above) is done in line (5), step 2 in line (6) , step 3 in line (7) and step 4 in line (8). In this way

eventually the right move is found (if possible of course).

What often comes up in programming is that a lot of extra program text is required for exceptions. A
chess-game contains many exceptions (see above), so one can imagine that they caused my program to grow
fast. These extra things were necessary in finding all the possible moves, and in performing those moves (steps
(1) and (2)). To avoid making this article too long I will only show the part that performs the moves.

YIELD state do‘move move:
\ Perform the move and return the new state.
PUT move IN source, target, extra
PUT target IN column, row
PUT state IN board, to’move, rooks’moved, kings’moved, en’passant
PUT board[source] IN piece, color
PUT board moved (source, target) IN new’board
PUT rooks’moved, kings’moved IN new’rmoved, new’kmoved
PUT (0, 0) IN new’ep
\
\ up to here everything was normal
\ the rest handles special moves
%
\ to prevent using the rook in castling:
IF piece = “rook” AND source in corner:
INSERT source IN new’rmoved
IF piece = “king” AND source = start’field to’move:
\ to prevent any castling moves in the rest of the game
INSERT source IN new’kmoved
\ for castling rook has to be moved too.
IF column = 3 OR column = 7:
PUT (new’board, to‘move) do’rook column IN new’board
IF piece = “pawn”:
IF row = endrow: \ promotion
PUT (extra, to’move) IN new’board[target]
IF extra = “double”: PUT target IN new’ep
IF extra = “ep”: \ for en-passant the other pawn has to be taken
DELETE new’board[target plus (0, -direction to‘move)]
\ return the new state
RETURN new’board, reverse to’move, new’rmoved, new’kmoved, new’ep
endrow:
RETURN {[“white”]: 8; [“black”]: 1}[to’move]
corner:
RETURN {(1, 1); (8, 1); (1, 8); (8, 8)}

YIELD (board, to’move) do’rook column:
\ perform rook-move for castling
PUT first‘row IN first
SELECT:
column = 3: RETURN board moved ((1, first), (4, first))
ELSE: RETURN board moved ((8, first), (6, first))
first/row:
RETURN {[“white”]: 1; [“black”]: 8} [to’move]

YIELD board moved (from, to):
\ move a piece
PUT board[from] IN board[to]
DELETE board[from]
RETURN board

YIELD start’field color:
\ Returns the startfield of the king.
RETURN {[“white”]l: (5, 1); [“black?]: (5, 8)}[color]

YIELD direction color:
\ returns the direction in which the pawn may move
RETURN {[”white”1: 1; [“black”]: -1}[color]

3. Results of the testing

The designers of B always have said that B is easy to learn and easy to use. Of course everyone is proud
of what he creates, so I did not accept this without seeing it for myself. Well, it appeared to be right this time.
B really is easy to learn and easy to use. The time needed to learn B is negligible. It is easy to express thoughts
in B, in a very natural way. My program was ready in less than a week. The other languages needed much more
time, varying from 2.5 weeks to a month.

Alas, this time is not the only time of importance. While I was waiting for the program to finish execu-
tion, I had the opportunity to do a lot of other things, including going home and returning the next day. What
I want to say is, that the execution-time of a large program in B is much too long. This is the weakest point of
B. In fact, when this is improved someday, B will be a really nice language to work with.

Because of my slow program in B, I don’t recommend using B for very large programs. That does not
mean, however, that B is useless in my opinion. B is perfectly suitable for prototyping purposes. In addition, if
someone is able to make B faster, this could speed up the programs in such a way that they become useful for
nmm&mﬁﬂpmmwmgldm%hwwﬁmqamﬂmﬂ@mMmﬂm%Iwmdm%@mﬂﬁﬁwm@ﬂun
all, but it is worth thinking about.

Another B-feature is the environment. This environment is something one has to get used to. This causes
no serious problems, but experienced programmers in other languages need to get familiar with the way sugges-
tions are made by B. I guess beginners don’t have this trouble, because they are not used to other languages
without syntax-directed editors. However, learning goes fast enough when using the editor.

In the overall-judgment I gave in my report about the mentioned five languages B appeared to be the
best. That was not due to its speed; that was as bad as the speed of all the other languages. B wins with its ease
of learning and ease of programming. It is possible to express thoughts in a very natural way in B. This is not
just helpful to beginners, it is also very pleasant for experienced programmers. Because of this pleasant use it’s a
pity the programs are that slow.

Approximate Numbers

Steven Pemberton
CWI

There are two kinds of numbers in ABC: exact and approximate. Exact numbers are the result of computa-
tions where the result can be computed exactly: addition, subtraction, multiplication, division, and some
exponentiations.

However, some operations, such as taking the square root, can’t deliver an exact result in general, and deliver
an approximate number instead.

Of course, some exact numbers (like 4), have exact square roots, but if you want exact results in these cases you
have to write your own function to calculate them, something like:

HOW TO RETURN xroot x:
IF exact x:
PUT root #/x, root /*x IN a, b
PUT (round a)/(round b) IN r
IF rxr = x: RETURN r
RETURN root x

For approximate numbers, the ABC implementations use the hardware representation of floating-point, and this
is the only place where ABC programs can deliver different results on different machines (apart from the work-
ings of the random generator): some machines have greater floating-point accuracy than others.

Machines hold floating-point numbers as an encoding of a pair of numbers (f, e), where £, the fraction, has a
fixed number of digits to some base b. Such a pair then represents the number fX b°.

To find out how much accuracy your machine has, you can use the following command (adapted from a routine
by Malcolm (reference 1)) to find the base and number of significant digits used on your machine:

HOW TO PRINT ACCURACY:
PRINT BASE
PRINT FRACTION
PRINT BASE:
PUT ~2, ~2, ~0 IN a, b, base
WHILE a+1-a-1 = ~0: PUT a+a IN a
WHILE base = ~0: PUT a+b-a, b+b IN base, b
WRITE “Base =%, base /
PRINT FRACTION:
PUT 1, base IN sig, b
WHILE b+1-b-1 = ~0: PUT sig+1, bxbase IN sig, b
WRITE “Significant digits =7, sig /
WRITE “This is about ‘decimal‘ decimal digits” /
decimal :
RETURN 1 round (sig/(base log 10))

It works by first looking for a whole number that doesn’t produce a different number when you add 1 to it.
For instance, suppose the representation we are examining has 4 digits to base 10. Then you can add 1 to all 4
digit numbers, but not to 5 digit numbers, so it will try in turn 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048,
4096, and 8192. Finally it will try 16384, which is only representable as 1638 X 10!, which is 16380.

The routine then searches for a number that can be added to it which does produce a different number.
Exactly which number it finds depends on whether the machine rounds the last digit of a calculation, or just
chops excess digits off. So it tries to add 2, 4, and 8. If the machine rounds then 16380 + 8 = 16388, which
rounded to 4 places is 16390. However, if the machine chops, then 16388 chopped is 16380, so then it tries to
add 16, which gives 16396, and chopped this gives 16390, so in either case we get the same result from the two
types of machine.

Now subtracting these two values, 16390 — 16380, gives the base used, in this case 10.

Having found the base, the routine then goes on to find the number of significant digits by repeatedly multiply-
ing by the base until again 1 cannot be added. In our case, it will try 1, 10, 100, 1000, and finally 10000 to
which 1 cannot be added. From the number of times that the multiplication is done, the number of significant
digits can be deduced.

Here is an example of its output, for a VAX:

>>> PRINT ACCURACY

Base = 2

Significant digits = 56

This is about 16.9 decimal digits

The Consequences of Approximate Numbers

The advantage of using approximate numbers in ABC is that for large numbers they are generally faster to cal-
culate than the equivalent exact numbers. The big disadvantage is of course that your results are only approxi-
mately correct.

To take an example, consider the value ﬁ This is the same as Vx + Vx —1 (you just multiply
XN

all through by —g—;i—\/— “x_:).
X X —

However, if you calculate these using approximate numbers, you will get different numbers out. For instance:

HOW TO COMPARE VALUES FOR x:
PUT root x, root (x-1) IN r, ri1
PUT 1/(r-r1), r+r1 IN u, v
WRITE “1/((root x)-(root (x-1)))=%,
WRITE “(root x)+(root (x-1))= #.
WRITE #“Difference =%, u-v /

/
/

< C

>>> COMPARE VALUES FOR 10%%12

1/((root x)-(root (x-1)))= 2000042.97959778
(root x)+(root (x-1))= 1999999, 9999995
Difference = 42.9795982764044

>>> COMPARE VALUES FOR 10%#15

1/((root x)-(root (x-1)))= 63161283. 7647059
(root x)+(root (x-1))= 63245553, 2033676
Difference = -84269. 4386616889

The explanation for this is that if you subtract two very close numbers, you lose a lot of accuracy. Try doing it
for x=256 with 4 digits of accuracy: root 256 = 16.00, and root 255 = 15.97. Subtracting these two gives
0.03, leaving only one digit of accuracy where before you had four. The inverse of this is 33.33, while the sum
of the two is 31.97, a very different value (and as close as you can get to the real value with 4 digits).

So the question arises, in a given program, how can you tell how close a result is to the rea/ answer. The rest
of this article presents a package to help answer this question.

Range Arithmetic
This package simulates approximate arithmetic, and keeps for each arithmetic value an upper and lower bound

on its real value. For instance, using 4 digits, pi lies between 3.141 and 3.142.

Then for each operation, it calculates the upper and lower bounds of the result. For instance, when adding two
values (/,u) and (/’,u’), the result is (rounded.down(l+1’), rounded.up(u+u')). For pi + pi, this would give
(6.282, 6.284). In ABC:

HOW TO RETURN a plus b:
PUT a, b IN (la, ua), (lb, ub)
RETURN down (la + lb), up (ua + ub)

or shorter yet:

HOW TO RETURN (la, ua) plus (lb, ub)
RETURN down (la + Lb), up (ua + ub)

Since we want to simulate approximate arithmetic using a fixed number of digits of accuracy, the functions up
and down take a number and remove excess digits, rounding either up or down. The contents of the shared
location accuracy specify how many digits of accuracy we are interested in:

HOW TO RETURN up x:
SHARE accuracy
IF x=0: RETURN 0
PUT 0, 10%xaccuracy IN shift, limit
WHILE abs x < limit: PUT x%10, shift - 1 IN x, shift
WHILE abs x > limit: PUT x/10, shift + 1 IN x, shift
RETURN (ceiling x) % 10xxshift

This takes a number like 3.14159265, and multiplies or divides it so that its integral part has accuracy digits,
also calculating the number of digits it has been shifted. So for accuracy = 4, x ends up as
3141.59265, with shift = -3. It then applies ceil ing, which gives 3142, and multiplies this by 1073
to shift it back to give 3.142.

The function to round down is the same, except it uses floor instead of ceiling.

>>> PUT 4 IN accuracy

>>> WRITE down pi, up pi

32.1471 3.142

>>> WRITE down 123, up 123

123 123

>>> WRITE down 12345, up 12345
12340 12350

Because exact arithmetic is being used, any value for accuracy can be used. Calculating to 100 places will
only take more time.
Subtraction is similar to addition:

HOW TO RETURN (la, ua) minus (lb, ub):
RETURN down (la-ub), up (ua-lb)

Multiplication is slightly harder, mainly because of problems caused when multiplying values whose upper and
lower bounds have different signs. Here we take the easy way out, and calculate all possible values and identify
the maximum and minimum:

HOW TO RETURN (la, ua) times (lb, ub):
RETURN minmax {laxlb; lLaxub; uaxlb; uaxub}

where minmax returns the minimum and maximum values from a list:
HOW TO RETURN minmax list: RETURN down min list, up max list
We can do the same for division, but additionally we have to check for division by zero:

HOW TO RETURN (lLa, ua) over (lb, ub):
CHECK NOT (Lb <= 0 <= ub) \Division by zero
RETURN minmax {la/lb; la/ub; ua/lb; ua/ub}

To use the package, a method is needed for converting an ABC number like pi into a range:
HOW TO RETURN range v: RETURN down v, up v
Just to show it works:

>>> WRITE range pi
3.141 3.142

>>> WRITE range 123
123 123

>>> WRITE range 12345
12340 12350

Also useful is a way of printing ranges more visibly as ranges:
HOW TO RETURN bounds (l, u): RETURN #[*L>: uM] 7

>>> WRITE bounds range pi
[3.141:3.142]

>>> WRITE bounds range 123
[123:123]

Now finally to define a function for square root. This uses the Newton-Raphson method, which repeatedly cal-

culates for argument a, rzl/a(-%-kr), until two consecutive r’s are sufficiently close:

HOW TO RETURN sq.root (L, u):
RETURN down sq.root’ L, up sq.root’ u

HOW TO RETURN sq.root’ f:
IF f=0: RETURN 0
PUT f, (f+1)/2 IN r, r”
WHILE converging: PUT r7, (f/r’ + r‘’y / 2INr, r’
RETURN r
converging:
REPORT down r <> down r”
The definition of closeness is whether the two approximations differ only in digits outside the accuracy we are
interested in.

>>> WRITE bounds sq.root range 256
[16:16.01]

>>> WRITE bounds sq.root range 2
[1.414:1.415]

(Actually sq.root” can be speeded up by adding at the beginning

SHARE accuracy
PUT accuracy+1 IN accuracy

and replacing (f/r’ + r’) / 2by up((f/r” + r’) / 2). In that way, intermediate calculations
don’t get calculated with too great an accuracy.)

Now, finally back to our original problem:

>>> PUT range 1 IN one

>>> PUT sq.root range 256 IN r256

>>> PUT sq.root range 255 IN r255

>>> WRITE bounds (r256 plus r255)
[31.96:31.98]

>>> WRITE bounds (one over (r256 minus r255))
[20:33.34]

This makes it quite clear which of the two results is more accurate.

This last result is both shocking and sobering. But if you work it out, root 256 is [16:16.01] and root 255 is
[15.96:15.97]. The difference of these two is [0.03:0.05], so obviously the inverse is [20:33.34].

Even if we use range 16 instead of r256, we still get a wide range:

>>> WRITE bounds (one over((range 16) minus r255))
[25:533.34]

For more information about range arithmetic, see reference 2.

ol

References

1. M. A. Malcolm, Algorithms to reveal properties of floating-point arithmetic, Communications of the ACM,
Volume 15, Number 11, November 1972.

2. D. E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical Algorithms, Addison-Wesley,
Reading, Mass., 1973.

Erratum

The article “Backtracking in B: the Budd Challenge” in issue 5 of the aBc Newsletter suffered from two mis-
prints.

On page 18 there should have been ellipsis between Solution 1 and Solution 26 to indicate that
the rest of the output was not printed.

Just above the bottom of page 18 one line disappeared. This line indicated the start of the second solu-
tion. Together with the announcing paragraph, the output should have been:

If you add the restriction that the same piece should not be moved twice in succession, you get two solutions:

Solution 1

Move (1, “a”, “b”)
Move (2’ //af/’ /}clf}
Move (1 , np# , ")
Move (2, wet , “h)
Move (1’ #a”, 2h)
Solution 2

Move (1 i //a// i //C”}
Move (2 5 /Iafl i /Ib/})
Move (1 3 f/c// ; //bl/)

-11 -

My Experiences with ABC

Jurjen Bos

In about 1978, I heard from a friend of mine, who
worked at the CWI, that they were making a new
programming language called B. He told me some
incredible things, like an editor that suggests com-
mands, and checks the syntax while you type.
There was no implementation yet, he told me, but
they were working on it. It sounded all too beauti-
ful to be true. For years, this was all I knew about
the B language.

At the end of last year, I got a job at the
CWI, and then I saw implementations of B for the
first time. I requested a copy for my Mac at home.
They sent me to Timo Krijnen, who told me that I
could have a copy of the prerelease Mac implemen-
tation for the revised language ABC if I wanted, on
the condition I would report all bugs I encountered.
Of course, I said yes, and I got my copy of ABC for
the Macintosh.

When 1 first used the language, I thought that
it would be handy for beginners only; but as an
experienced programmer, I find it easier and faster
to use than any other language. The first program I
wrote in ABC was written about twice as fast as its
equivalent in Turbo Pascal (This language is widely
known to have a very user-friendly implementation).
Since then, I do all my programming in ABC.

The version I got was, as mentioned above, a
prerelease version, still having some bugs. However,
those bugs couldn’t spoil the fun of using ABC.
Actually the time spent in working around them was
less then the time saved by using ABC.

I have written several programs in ABC
already. Two small examples are appended to this
article. I also have written a very sophisticated pro-
gram that factors numbers using some of the best
known algorithms.

My favorite features of the language are: the
very fast programming, the easy debugging and edit-
ing of existing programs, and the clear error mes-
sages. To tell an honest story, I must tell too that I
find it sometimes very slow.

To conclude, I am happy that there finally
exists a programming language that is made for peo-
ple to use, and not for computers to run.

CWI

- 12 -

One of my first programs was a small how-to to
compute the natural number e:

HOW TO COMPUTE E:
WRITE “e=2.7
PUT 20/3, 6, 5/3, 4 INr, f, d, n
WHILE 1=1:
WHILE f = floor (r+d):
WRITE f<<1
PUT 10%(r-f), 10xd IN r, d
PUT floor r IN f
PUT d/n IN d
PUT r+d IN r
PUT floor r IN f
PUT n+1 IN n

Finally, on the next page is the listing (or output) of
a self-reproducing program:

HOW TO
PUT
PUT
PUT
PUT
PUT
PUT
PUT
PUT
PUT
PUT
PUT
PUT
PUT

IN dna

dna~”HOW TO SELFREPRODUCE:\n1PUT \q\q IN dna\d\n1PUT dna IN p\n1”
dna~”PUT {[\q0\ql: 0; [\q1\ql:3; [\q2\ql: 6; [\q3\ql: 9; [\q4\ql”
dna””: 12; [\g5\ql: 15} IN indent\n1WHILE p<>\q\q:\n2SELECT:\n3p”
dna~”[1<>\q\\\q:\n4WRITE p|1\n4PUT p@2 IN p\n3p|2=\g\\n\q:\n4WRI#
dna”~”TE /\q \gq*"indent[p@3|1]1\n4PUT p@4 IN p\n3pl|2=\g\\q\q:\n4WR”
dna””ITE \q\q\q\q\n4PUT p@3 IN p\n3p|2=\q\\d\q:\n4PUT dna IN p2\”
dna”“n4WHILE p2<>\q\q:\nSWRITE /\q PUT dna“\q\q\bp2|59\b\q\q I”
dna®”N dna\n5PUT p2@min{60; #p2+1} IN p2\n4PUT p@3 IN p\n3p|2=\q”
dna”~”\\\\\q: \n4WRITE \q\\\q\n4PUT p@3 IN p\n3p|2=\q\\b\q: \n4WRIT”
dna”“”E \gq\b\b\q\n4PUT p@3 IN p” IN dna

dna IN p

{[7077: 05 [#17]1: 8; [727]: 6; [787%): 8; [#47]1: 12;: [%#57): 15} IN

WHILE p<3*¥:

SELECT:

P|1<>#\ﬁ:
WRITE pl1
PUT pe2 IN p
P |2=#\n*:
WRITE /# #~~indent([p@3]1]
PUT p@4 IN p
P I 2=/f\qfl:
wRITE L
PUT p@3 IN p
p I 2=f/\df/:
PUT dna IN p2
WHILE p2<>7#:
WRITE /# PUT dna”~“#‘p2|59*## IN dna”
PUT p2@min{60; #p2+1} IN p2
PUT p@3 IN p
P l 2=/f\\ff 4
WRITE -#*
PUT p@3 IN p
P I 2=/f\bff:
wRITE NN
PUT p@3 IN p

-13 -

IN
IN
IN
IN
IN
IN
IN
IN
IN

dna
dna
dna
dna
dna
dna
dna
dna
dna

indent

56

KEVIN REAGAN

0740-7459/87/0100/0056/301.00 ©1987 IEEE
14

An Alternative
Simple Language
and Environment

for PCs

ABC is a simple lan-
guage for personal
computing. Intended
as an alternative to
Basic, it has grown to
be a powerful tool for
expert users, t0o0.

Steven Pemberton, CWI Amsterdam

BC is a programming language

being designed and implemented

at CWI, the Centre for Mathe-
matics and Computer Science, in Amster-
dam. It began as an attempt to design a
suitable alternative to Basic for beginner
programmers — a language that was still
easy to learn, still interactive, but was eas-
ier to use and offered program structure. It
has developed into an interesting and pleas-
urable tool for beginners and experts alike.
The box at right describes why a language
like ABC is needed.

ABC is being designed and implemented
with an integrated programming environ-
ment. Although the project’s emphasis has
shifted from beginners to personal com-
puting since its beginnings in 1975, the
main design objectives have remained the
same:

e simplicity,

e suitability for interactive use, and

e availability of tools for structured

programming.

IEEE SOFTWARE

The language has been designed itera-
tively. The version described here is the
fourth iteration. The first two versions were
the work of Lambert Meertens and Leo
Geurts of the Centre for Mathematics and
Computer Science (then called the Mathe-
matical Centre) in 1975-76 and 1977-79.
They were definitionally simple — easy to
learn and easy to implement.

In the third iteration,? designed in
1979-81 with the help of Robert Dewar of
New York University, it became conceptu-
ally simple. It is still easy to learn, by hav-
ing few constructs — but it is also also easy
to use because it has powerful constructs
without the restrictions professional
programmers are trained to put up with but
a newcomer finds irritating, unreasonable,
or silly.

Furthermore, this third version (which
had a working title of B) was designed
deliberately with the new generation of
computers in mind by relegating machine
efficiency to a lower priority than program-
mer efficiency.

[t is surprising to realize how quickly
recent developments in computer technol-
ogy have caught up with us. Only a short
time ago, we were telling people that we
weren’t considering implementing ABC on
machines with less than 128K bytes of main
storage, and getting surprised reactions
that we were considering such huge
machines. Today, many PCs start at 128K
bytes, and 512K bytes is quite normal.

One reason that ABC needs a lot of stor-
age is that it is not just a language but a
complete programming environment. Tra-
ditional computer use for programming
involves not only learning the program-
ming language but also a whole host of
subsystems and their commands, such as
the operating system’s command language,
editor, and compilers, which are often
completely separate and noncooperating.

ABC, on the other hand, shows a unified
face to the user, so it is not necessary to
learn anything outside the ABC system.
This means that ABC must be able to per-
form many tasks normally delegated to the

January 1987

New computers, old languages:
ABC’s background

Itis acommon observation that the latest personal computers are very power-
ful, certainly more powerful and more capacious than many of the previous gen-
eration of large computers.

Thus, it is likely that many PCs will spend most of their time idle — not from
lack of use, but from underused capacity. And this is not because of delusions
of grandeur on the purchaser's part: The central processor, the part that is respon-
sible for much of the measure of speed in a computer, is but a tiny part of the cost
of amodern computer. There is no economic (or other) advantage in using a slower
processor.

Itis therefore surprising that most programming on PCs is done with program-
ming languages that are usually 15 to 20 years old and designed for computers
of an earlier generation. Whatever PC you buy, you can be sure that the one lan-
guage available is Basic, a language designed in the mid-1860s, which has been
described as “an adaptation to early and very marginal computer technology” by
Seymour A. Papert (in Computers and Learning in the Computer Age, M.L. Der-
touzos, ed., MIT Press, Cambridge, Mass., 1979).

Thus you have the strange situation of people programming the computers of
the eighties with a language of the 1960s, a language unable to take advantage
of the increased capabilities of the newer machines.

Basic's two main advantages are that itis interactive and that it is simple. Inter-
activeness is the ability to type in and run a program immediately without going
through any intermediate stages like translating the program into machine code.
It is also the ability to correct a program and rerun it immediately.

Strictly speaking, this is a property of a language implementation and not of
the language itself, because in principle it is possible to make an interactive imple-
mentation of any language or a noninteractive version of Basic. But that notwith-
standing, a language usually has features that orient it more or less towards
interactive implementation, and Basic is usually implemented interactively, unlike
other languages.

Simplicity is a property often claimed for a programming language or system,
although there are two senses to the word that in some ways conflict. You can have
definitional simplicity, where there are only a few concepts, and you can have what
might be called conceptual simplicity, where the concepts are closest to your
needs.

For instance, consider the difference in simplicity of use between automatic
and manual gears in cars and the extra complexity in the construction of auto-
matic gears. As another example, all operations in Boolean algebra can be
expressed using a single operator nand representing “not and.” However, no one
would consider the expression

{drowning nand (drowning nand drowning)) nand {{waving nand waving) nand (drowning
nand drowning))

as simpler than the equivalent
not (waving or drowning)

despite the larger number of concepts in the second.

The simplicity of Basic is definitional: It is easy to implement and has few con-
cepts to be learned, but once learned it remains easy to use only for very small
programs. Beyond that, it is like cutting your lawn with a pair of scissors.

Basic is also widely taught in preuniversity education. Apart from the perceived
simplicity of the language, machines large enough to run anything other than
Basic were usually too expensive. This is changing quickly with the coming gen-
eration of cheap large computers, but the risk is that Basic will continue to be used
from sheer momentum and perceived investment in the language (a common bar-
rier to change outside education, too).

What risk? Basic has little to recommend it for educational use. Just as with
one-finger typing, where learning to type properly means first getting rid of your
old habits, Basic’s paucity of structuring facilities means that much time has to
be dedicated to learning ways of getting around its expressive poverty — and the
student ends up learning bad habits that must only be unlearned to progress to
other languages.

57

ABCs of ABC

To produce a simple but powerful language, we provided few but powerful con-
structs.

Data types. There are five, all without size limits:
* numbers
* text strings
¢ compound values
® |ists
e tables

No declarations. Types are derived and checked from context.

Commands. There are four assignment and data-structure update commands:
* Put
* [nsert
* Remove
* Delete
There are two input/output commands:
* Read
* Write
There is a randomizing command:
« Set Random
There are five flow-control commands:
e |f
* While
e For
* Select
¢ Check

Definitions. To define your own commands and functions, with their associated
exit commands:

* How To (command) with Quit

* How To Return (function) with Return

* How To Report (test) with Report, Succeed, and Fail

» Share (for importing global variables)
Refinements support stepwise programming.

Operators. Numeric operators include:
* 4+ (addition)
e — (subtraction)
* » (multiplication)
e /(division)
* «x (@xponentiation)
¢ random (random number)
* root x and n root x (nth root of x)

Text operators include:
s~ {(concatenation)
s ~~ (duplication)
e t | n (first n characters of 1)
s { @ n (substring starting at position n)
s e < <11 (pad expression e to the left within n spaces)
* ¢ > < n(center e within n spaces)
e ¢> >n (pad e to right within n spaces)

General operators include:
e = {equality)
* < > (inequality)
* > (greater than)
¢ < (less than)
* in (membership test)
* # (value size)
¢ min (minimum value)
* max (maximum value)
* choice (random value from a text, list, or table)

58

16

operating system or other subsystems, such
as editors.

We have now finished a final polishing
of the language, based on five years’ expe-
rience of using and teaching B, resulting in
ABC.

Language overview

Asan example of ABC’s simplicity and
power, consider the task of creating and
maintaining a database of telephone num-
bers. (See the box at left for brief defini-
tions of commands and operators.) You
first create an empty telephone list:

PUT {} IN tel
and then add a few numbers:

PUT 4133 IN tel["Leo"]
PUT 4141 IN tel["Doug"]
PUT 4166 IN tel["Paul"]

Now individual numbers can be looked
up (italics are used throughout for output
produced by ABC):

WRITE tel["Leo"]
4133

or the whoie list can be written out:

WRITE tel
{["Doug"]: 4141; ["Leo"}: 4133; ["Paul"}:
4166}

The names are kept sorted.

Of course, if the list becomes large, this
sort of output becomes hard to read, so the
list can be written more tidily with the fol-
lowing. (A /ina Write command causes a
new line to be written).

FOR name [N keys tel:
WRITE name, ":", tel[name] /
Doug: 4141
Leo: 4133
Paul: 4166

1t is easy to find out which name belongs
to a given number:

IF SOME name IN keys tel HAS tel[name]
= 4133
WRITE name
Leo

But if this is done often, it is easier to pro-
duce the inverse table:

PUT {} IN subscriber

FOR name IN keys tel:
PUT name IN subscriber[tel[name]]

IEEE SOFTWARE

WRITE subscriber[4133]

Leo

WRITE subscriber

{[4133]: "Leo"; [4141]: "Doug"; [4166]:
"Paul"}

If you need to compute the inverse of a
table often, it is easy to make a function
to do it for you. Functions may return
values of any type.

The telephone list is saved automatically,
without any further action on your part. If
you log out and come back later, it will still
be there.

Types and values. ABC has just two
basic data types: numbers and text. It has
just three ways to combine values: com-
pounds, lists, and tables.

Numbers. The seasoned computer user
will be surprised by ABC’s handling of
numbers. First, following the maxim of no
restrictions, numbers may be as large as
you want (within the physical limits of the
computer’s memory). You may calculate
10°® as easily as 10%. A Dutch newspaper
recently dedicated a whole page to print-
ing the value 2329 —| (the largest prime
then known), which had been calculated
with the ABC program WRITE 2132049
—1that — although it took a while to run
— produced the final answer of more than
39,000 digits.

Second, when possible, numbers are
always kept exact — even fractional num-
bers. Thus, as long as you use exactness-
preserving operations like addition, sub-
traction, multiplication, and even division,
anumber is calculated exactly. Operations
like taking the square root cannot produce
an exact result in general and so produce an
approximate number, rounded to some
length.

Along with the usual arithmetic opera-
tors, there is a set of mathematical func-
tions. A nice feature is that several take two
forms. For instance, root x returns the
square root of x, while n root x returns its
nth root; log x returns the natural loga-
rithm, while & log x returns the logarithm
to the base b.

Text. Text is handled as strings of print-
able characters. Unlike many other lan-

January 1987

guages, ABC has a full range of operations
on text strings such as joining them
together, replicating them, and taking sub-
strings. Just as with all types in ABC, there
is no maximum size imposed on a text
string, nor is the size declared in advance.

For example, consider the definition of
a function to capitalize a word. It uses two
predefined functions, Upper and Lower,

Numbers can be as large
as you want: 10° is
calculated as easily as
102. Plus numbers are
kept exact whenever
possible.

that convert all letters in a text string into
uppercase and lowercase, respectively. The
operator | returns a substring of the given
length, the operator @ gives the substring
starting at the given position, and the oper-
ator ~ joins two text strings. Comments
are preceded with \.

HOW TO RETURN capitalized word
\ *“‘word”’ is the parameter
RETURN (upper word|1)~(lower
word@2)

WRITE capitalized "amsterdam”
Amsterdam

WRITE capitalized "LONDON"
London

Compound values. Compounds are
tuples (or records, as they are called in
some languages), although they are hardly
noticeable in ABC. For instance in

WRITEa, b
WRITE x[a, b]

both occurrences of @, b are an expression
of type compound. An example of where
they are noticeable is in

PUT "Winston Smith", 45 IN person
which packs the two values in the one loca-

tion. The only other action you can do on
a compound is unpack it:

PUT person IN name, age
WRITE name

Winston Smith

WRITE age

45

Compounds can be used to swap the values
of locations:

PUTa,bINb,a

List values. Lists are sorted collections
of elements, again unrestricted in size. The
elements of a list must all be the same type,
but they may otherwise be any type. Thus,
you may have lists of text strings, numbers,
compounds, lists of other lists, and so on.

Elements may be duplicated. Among
other things, you can insert elements,
delete elements, find out if an element is
present, and find the size of a list. As with
other types, the Put command assigns a
whole list to a location. Insert adds an extra
element to an existing list:

PUT {1..10} IN |
WRITE |

{1;2;3;4; 5,6, 7:8:9; 10}

REMOVE 5 from |

INSERT pi IN |

WRITE |

{1;2;3; 3.141592653589793; 4; 6: 7: &;
9; 10}

The following defines a command that
uses a list of numbers and the sieve method
to calculate primes:

HOW TO SIEVE TO n:
\ name is SIEVE TO
PUT {2..n} IN set
\, set to be sieved
WHILE set > {}:
\ repeat indented part
PUT min set IN p
\ smallest member
WRITE p
FOR m IN {1..floor (n/p)}:
\ remove multiples of prime
[F m+p in set:
REMOVE msp FROM set

SIEVE TO 50

23571113171923293137414347

Table values. A table (which was the
data type used in the telephone list exam-
ple at the beginning of this section) is a
generalization of an array. It is a mapping
from values of any one type onto values of
any one other type.

Standard programming languages let
you map only contiguous integers (and

59

sometimes a few other similar types) onto
other types. But ABC lets you use any type
for the array indexes — whether you want
mappings from text to lists, from tables to
numbers, or from tables to other tables.

For example, consider a program that is
repeatedly required to calculate a result for
the same input values. One way to speed
this up is to use a memo function that
remembers past values and doesn’t recal-
culate them when asked for them again.

This example uses a table to store pairs
of points already calculated and the dis-
tances between them. The operator Keys
returns as a list the set of indexes used so
far in the table. In this example, this set
contains all pairs of points stored in the
table. The Share command causes a global
variable to be used instead of a variable
local to the command.

HOW TO DISTANCEaTO b INT:
SHARE memo
IF {a; b} not.in keys memo:
PUT a, b IN (x, y), (X%, ¥")
PUT root((x—x")**2 + (y—y')+*2)
IN memo[{a; b}]
PUT memo[{a; b}] INT

PUT {} IN memo

DISTANCE (0, 0) TO (3, 4) IN distl
DISTANCE (5, 2) TO (20, 10) IN dist2
DISTANCE (3, 4) TO (0, 0) IN dist3
WRITE distl, dist2, dist3

5175

WRITE memo

{1’{}(0, 0); 3. 43} 5: (63, 2); (20, 10)}):
17

The two points are stored in the table as
a list {a, b} instead of as a compound (a,
b). This means they will be sorted, so the
order used in the parameters won’t matter
(as the first and third calls of Distance
show).

The equivalents of multidimensional
tables can be achieved using compounds as
keys:

PUT {} IN event

PUT "Xmas" IN event["Dec", 25]

PUT "New Year" IN event["Jan", 1]

WRITE event

{{"Dec", 25}: "Xmas"; ["Jan", Ij: "New

Year"}

Items in a table can be deleted with the
Delete command.

60

Apart from the operations that work
only on text, lists, and tables, there are
several generic operators that work on all
three. They include Max, which will return
the largest element of a text, list, or table,
and the operator #, which returns the num-
ber of elements in a text, list, or table. Simi-
larly, a For command will step through the
elements of any of the three data types.

ABC supplies high-level
tools that you can use
for low-level operations,
rather than the usual set
of low-level tools you
must construct high-level
functions with.

Any command or function that you define
yourself with only generic operators and
commands can also be used generically.

High-level data types

As you can see, ABC has a small set of
rather powerful data types. Most other lan-
guages supply you with low-level tools that
you must then use to build your own high-
level tools. ABC does it just the other way
around: You get high-level tools that you
can also use for low-level purposes. For
instance:

¢ [n other languages, if your numbers go
higher than a certain limit, you must write
your own numerical package. In ABC
there is no maximum limit, so small and
large numbers can be handled with the
same ease.

e [n traditional languages, if you want
to use sparse arrays, you must write a pack-
age to implement them using other data
types. In ABC, sparse arrays (tables) are
the default, but you can use them non-
sparsely without extra effort.

¢ Traditional languages sometimes sup-
ply a pointer type that you can use to cre-
ate data space dynamically. In ABC, data
space is automatically dynamic. Further-
more, pointers are frequently used in other
languages for sorting and searching. ABC
supplies these sorting and searching facil-

18

ities as primitives. If you still need to use
pointers, you can represent them with
tables, but with additional advantages like
being able to print them out.?

Structured programming

tools

The example ABC programs show that
the data types are somewhat unusual but
that the commands, or statements, are
rather familiar, There are the usual input
and output commands, the assignment
command, the If, While, and For com-
mands, and so on.

Commands like If and While are well-
known tools for structured programming.
An unusual feature of ABC is program
refinement. Refinements explicitly support
the idea of stepwise refinement, a tech-
nique where you specify your program in
a short, high-level form that gives a good
overview of what the program does — in
effect reducing it to several simpler, related
programs.

This high-level form is then refined by
writing these lower level programs in the
same manner until the lowest level is
reached that can be expressed. For
instance, the top level of a game-playing
program might look like this:

INITIALIZE

PLAYONE.GAME

WHILE morewanted:
PLAY.ONE.GAME

Then PLAYONE.GAME might look like this:

WHILE not.over:
DISPLAY.BOARD
GET.MOVE
IF not.over:

MAKE.MOVE

Further steps refine not.over, DIS-
PLAY.BOARD, and so on.

Stepwise refinement is intended to make
the process of writing a large program eas-
ier by splitting the task into several smaller,
and therefore more manageable, subtasks.
Surprisingly, although the technique has
been around for more than a decade, very
few programming languages explicitly sup-
port it.

Although subroutines can be used for
stepwise refinement in other languages,
they rarely are used because of the execu-
tion overheads associated with calling a

IEEE SOFTWARE

subroutine. By supplying a facility without
these overheads, ABC encourages the use
of stepwise refinement.

Benefits and trade-offs

A good example of ABC’s ease of use is
that global variables are permanent in the
sense that they remain not only while you
work at the computer but even after switch-
ing it off and returning later. Thus, varia-
bles may be used instead of files in the
traditional sense, so there is nc need for
extra file-handling facilities in the
language.

Because variables are dynamic, and
unrestricted in size, using them instead of
files causes no difficulties. Quite the reverse
in fact, because you now can use the power-
ful data types, which give you random and
even associative access to the contents,
along with all their predefined operators.

Program length. As an example of these
benefits, compare the following programs
in ABC and Pascal to find the length of the
longest line in a text file. In ABC:

PUT 0 IN longest
FOR line IN document:

PUT max{longest; #line} IN longest
WRITE longest

In Pascal:

program count(document, output);
var document: text;
¢: char;
length, longest: integer;
begin
reset(document);
longest := 0;
while not eof(document)
do begin
length := 0;
while not eoln(document)
do begin
read(document, ¢);
length := length + 1
end;
readIn(document);
if length > longest
then longest := length
end;
write(longest)
end.

These programs illustrate clearly how
compact and readable ABC programs are.
Often ABC programs are a quarter or a
fifth of the length of their equivalent Pas-

January 1987

cal and C programs. Examples include a
1000-line C program that resulted in a
200-line ABC program, a 110-line Pascal
cross-reference program that became a
24-line ABC program, and a 284-line Pas-
cal program published in the November
1984 Byte that has an equivalent ABC pro-
gram of only 24 lines.

The program-size ratio compared to
Basic would be even greater in ABC’s
favor. This clearly has consequences for
programmer efficiency, especially because
programmer effort is proportional not to

A program you might
expect to take a week of
programming in a tradi-

tional language takes

about an afternoon in
ABC.

program length but to a power of program
length. Brooks® reports that this power is
around 1.5, implying that ABC is some-
thing like an order of magnitude easier to
use than traditional languages.

This seems to be borne out in practice:
A program that you might expect to take
a week of programming in a traditional
language takes about an afternoon in
ABC.

Execution speed. The other side of this
coin is that, because of its higher level,
ABC is no longer so straightforward to
implement. And because it is interpreted,
programs will not run as fast as equivalent
programs in compiled languages.

However, the new generation of personal
computers are so powerful that they spend
a large proportion of their time idle. This
trade-off of computer time against pro-
grammer time is more than reasonable in
view of this excess computational capacity:
Most people would far rather spend less
time programming in exchange for a slower
program.

Of course, the end user of a program
cares about how fast a program runs — but
not to the exclusion of all other factors, like
the cost and the reliability of a program.

19

Many people use programs written in
higher level languages that run slower than
if they had been written in assembler. This
is one reason high-level languages have
been more successful than assembly
language.

Furthermore, there are other trade-offs
involved when comparing noninteractive
languages with interactive ones, such as the
absence of a translation phase in an inter-
active language. For example, in an inter-
active language, a change in a single line
can be tried immediately without having to
wait for the whole program to be
recompiled.

Comparing ABC with Basic on this
score is another matter. Basic implemen-
tations tend to be slow anyway, yet many
people are willing to accept this slowness
in return for interactive access. For
instance, Bentley® reports that Basic on an
(apparently large) personal computer he
used ran at 100 instructions per second —
even slower than the first commercially
produced computers of the 1950s, which
ran at 700 instructions per second!

Higher level commands like ABC’s take
more time individually, but fewer need to
be executed to do the same job, and more
work is done at the faster system level than
is done with a lower level language. The
combined effect depends on the applica-
tion and on the mix of operations in a
program.

Simple programs, which take little time
anyway, and programs that contain only
simple numeric operations will generally
run slower. A program to sum a thousand
logarithms took one second in compiled
Pascal, two seconds in interpreted Pascal,
and nine seconds in ABC.

But more complicated tasks may well
run faster in ABC than if they were coded
in a lower level language. For instance, the
above program to find the longest line in
a 1000-line file took 31 seconds in inter-
preted Pascal, 13 seconds in compiled Pas-
cal, and five seconds in ABC.

However, even if a program in ABC runs
slower than acceptable (for instance a com-
mercial application that must run as fast as
possible on a slow microcomputer), the
programmer efficiency of ABC still makes
it a good choice for the prototyping phase
of a project.

61

Teaching

While ABC was not specifically
designed for educational use, it turns out
to be well-suited for teaching. The availa-
bility of program-structuring and data-
structuring facilities, including support for
stepwise refinement, means that students
are less likely to adopt bad habits.

More important, because of ABC’s high
level, a student can quickly become com-
petent enough to produce useful programs
rather than just trivial exercises.

ABC is being used in several European
educational institutes of different levels
and types, with enthusiastic responses.
Teachers especially find the interactive ele-
ments of ABC useful because many
elementary syntax errors cannot be made
in ABC and because students are
encouraged to try features for themselves
rather than asking what to do. The teacher
thus has more time to answer the less trivial
questions.

Interaction

Just as with Basic, any ABC command
typed at the terminal is executed immedi-
ately. Thus, you may use all the features of
ABC as a sort of high-grade calculator;

WRITE root 2
1.41421356237

Furthermore, since user-written pro-
grams are called in exactly the same way as
built-in ABC commands, much of the need
for a separate command language often
found on computers disappears. Variables
serve as files, and since programs are just
the equivalent of subroutines in other lan-
guages, parameters can be passed to pro-
grams using the same parameter-passing
mechanism. Systems that allow parameter
passing usually do so with a completely
different mechanism.

ABC'’s interactiveness also means that
declarations are not used. Basic users
usually perceive this as an advantage
because it means less typing, while users of
other languages (such as Pascal) accept
declarations on the grounds that they let
type inconsistencies and other similar
errors be detected before the program is
run, reducing the time taken to get a pro-
gram correct.

62

ABC supplies the advantages of both by
inferring the types of variables from how
they are used (for instance, if you write a*2,
a must be a number) and by checking that
all such uses are consistent. Furthermore,
inconsistencies are checked by the editor,
increasing the interactive feel of the
language.®

One demand on an interactive language
is that typing be minimized, since so much
time is spent at the keyboard. One solution
to this (used by many interactive systems)
is to use abbreviated commands, but this

The editor knows about
things like matching
brackets and supplies
them for you, so certain
typing errors are not
possible.

generally results in very cryptic-looking
commands. °

ABC solves this by having a dedicated
editor that knows much about the syntax
and semantics of ABC. As an example,
consider the Write command. This is the
second-most-used command in ABC (the
first is Put), so when you type a *“W"’ as
first letter of a command, it is more than
likely that you want a Write command.
Thus, the moment you type a “‘W,"’ the
system immediately suggests the rest of the
command to you and shows that it has one
parameter:

W?RITE ?

If you want a Write, you press the tab key
and the system positions the cursor so you
can type in the expression you want to
write:

WRITE ?
If you don't want a Write, but a While, you
ignore the suggestion and type the next

character, an ‘““H.”” The system then
changes the suggestion to match:

WH?ILE 2:

Suggestions also work for the commands
you define yourself (such as the Sieve To
defined earlier).

20

The editor also knows about things like
matching brackets and supplies them for
you, so certain typical sorts of typing errors
are not possible. These suggestions are just
suggestions — you can still type letter for
letter, ignoring the suggestions, and get the
same result.

ABC uses indentation to indicate com-
mand nesting, so there is no need to bracket
commands with Begin and End or similar
command pairs. The editor knows about
indentation and supplies it automatically.
For instance after typing the first line of a
For command, you get

FORIIN {1..10}:
?
To leave one level of indentation, you just
type an extra return.
{(With the suggestion mechanism, you
could have typed the above For command
as

ftabitab {1..}

followed by a return.)

Instead of a single-character cursor that
most text editors have, the ABC system has
a multicharacter focus, in the style of more
modern text editors. However, the ABC
focus is based on the syntax of ABC, and
there are editor commands to move it
according to the program structure. For
instance if you are focused on the follow-
ing command:

PUTa-blINa

pressing the First key focuses on the first
(variable) part of the command:

PUTa-bINa

Typing an open parenthesis here encloses
the focus in parentheses (because of the
suggestion mechanism):

PUT (a—b)INa

There are Next, Widen, and Last keys to
perform similar focus selection. Thanks to
this focus, the editor doesn’t need lots of
commands to delete characters, words, and
lines and to copy characters, words, and
lines — just a few to move the focus and a
few to specify the action on the focus, such
as copying or deleting it.

IEEE SOFTWARE

Environment

The ABC editor is a central element of
the ABC programming environment.
When in ABC, you are always using the
editor, even when typing data for Read
commands, The ABC system is organized
so the editor is used instead of many func-
tions that would normally be performed by
a separate command language, like delet-
ing, copying, and renaming files and direc-
tories, switching to other directories, and
deleting jobs.

The ABC system consists of work-
spaces, each containing any number of
documents. These documents are of
several different types, such as programs,
global variables, and text documents. It is
possible to edit any document. Index docu-
ments list the program units, variables, and
50 on in a workspace. A global index lists
the workspaces. The indexes are editable,
too: If you delete an entry in the list, the
corresponding object disappears. Simi-
larly, you can use the editor to copy or
rename any entry.

There is also a document for each work-
space, called the session record, where you
can issue commands and run the programs
in the workspace.

A feature of ABC’s what-you-see-is-
what-you-get philosophy is that you may
edit the commands you have entered and
executed in the session record. This causes
the changed commands to be reexecuted as
if you had typed the commands that way
in the first place. For instance, if you had
typed in the following commands

PUT2INa
PUT roota INb
WRITE b
1.41421356237

and then went back to the first command
and changed the *2"" to *‘10,"" the system
would display

PUT 10INa
PUTrootalINb
WRITE b
3.16227766017

This is similar to how spreadsheet pro-
grams update their displays after changes.

The system also has an advanced undo
mechanism. Any operation can be undone,
and by repeatedly pressing the undo key,
more and more can be undone, and redone

January 1987

again if you undo too much. In principle,
you can go back as far as you want, just as
in principle lists can be as long as you want.
In practice, of course, it depends on your
resources. Not only is this exceptionally
useful when you delete the wrong section
of a document but also when you delete the
wrong variable or program.

Furthermore, it can be used in place of
an interrupt when running a program,
since the return that started a command
running can be undone, returning you to
the state before it started running — thus
stopping the command.

But how does ABC compare with other
programming environments? When con-
sidering such a question, you have to take
into account the aims and purposes of the
language and whether it was designed with
its environment. Many classical environ-
ments, such as C’s Unix,” bear the marks
of being designed for interactive use but
lack unity in their components.

The ABC editor is the
central element of the
ABC programming envi-
ronment: You are always
using the editor, even
when typing data.

For instance, with C, the standard edi-
tors know nothing about the language and
don’t interact with the error messages from
the compiler, so they can’t take you auto-
matically to the lines in error. Other envi-
ronments are built around languages not
designed for interactive use, such as Pascal.
While these make the language much nicer
for the programmer to use, they can’t take
advantage of the unity of language and
environment.

Smalltalk is a good example of language
and environment designed together. Unlike
most languages (and like ABC), it exists
only ininteractive implementations. It has
many features desirable in an interactive
system, such as a unified debugger —
although the editor is very simple and
knows nothing of the language, and the
language is harder to learn than ABC.

21

Implementation

Part of our effort is to create ABC
implementations. A pilot implementation
ran from 1981 to 1984, and a new portable
implementation for Unix machines has
been distributed to several dozen sites (with
more sites expected). A first implementa-
tion for the IBM PC and compatibles
under MS-DOS is now available, and plans
for other personal computers, such as the
Macintosh and the Atari ST series, are well
advanced.

The original implementation was writ-
ten in 1981, It was explicitly designed as a
pilot system to explore the language rather
than to produce a production system, s0o
the priority was on implementation speed
rather than on execution speed. As aresult,
it was produced by one person in two
months. It was slower than desirable, but
still usable.

The current versions of the system® are
aimed at wider use, and therefore speed
and portability have become an issue. The
system has also become more functional in
the rewrite. Like the pilot system, they were
written in C. They were produced by first
modularizing the pilot system and then sys-
tematically replacing modules so we had a
running ABC system at all times. They
were produced in a year by a group of four.

Several interesting implementation tech-
niques have been used to speed up typical
ABC programs. As an example, ABC
values are implemented with pointers and
reference counts so the cost of assigning a
value to a variable is independent of the
value’s size: It is as cheap to copy a large list

as it is to copy a number.
This means that there is a value size

above which this method becomes cheaper
than ordinary copying. This critical size is
rather small, and, since ABC values easily
become large, it is advantageous. (The size
depends on the architecture of the machine
itis running on and on the dynamic pattern
of the running program. One report
showed that fora DEC PDP 11, it is around
four words on average.” We have not
experimented with our implementation to
see what it is there.)

Furthermore, Put commands are typi-
cally the most executed command in pro-
grams, and so it makes sense to choose a
method that favors them.

63

¢ have just finished the last

polishing of the language and

have cleaned up a few odd
corners. We are now adapting the imple-
mentation to this revision. When that is
complete, the language will be formally
released with the ABC Programmer’s
Handbook,"" which describes the lan-
guage and its use.

The implementations run on larger
machines running Unix and MS-DOS.
While not all the facilities of the environ-
ment described here are implemented in
these releases (in particular, editing the ses-
sion record), most are implemented and the
rest will be later. The MS-DOS implemen-
tation will be included free with the pro-

implementation is available at cost by writ-
ing to the author. :

After the formal release, we will focus
our work on the environment — for
instance, to do for graphics and data entry
what we have so far done for program-

gramming handbook, while the Unix

ming. [

References

L.

64

Leo Geurts, “‘An Overview of the B Programming Language,” SIG-
Plan Notices, Vol. 17, No. 12, Dec. 1982.

. Lambert Meertens and Steven Pemberton, *‘Description of B,”’ §I/G-

Plan Notices, Vol. 20, No. 2, Feb. 1985,

. Steven Pemberton, ‘‘Examples of B,”" B Newsletter, No. 2, CWI,

Amsterdam, June 1984.

. Fred P. Brooks, The Mythical Man Month, Addison-Wesley, Read-

ing, Mass., 1975.

. Jon Bentley, ‘‘Programming Pearls,”’ Comm. ACM, Vol. 27, No. 3,

Mar. 1984.

. Lambert Meertens, *‘Incremental Polymorphic Type-Checking in B,

Proc. 10th ACM Symp. Princ. Programming Languages, ACM Press,
New York, 1983, pp. 265-275.

. Brian W. Kernighan and Rob Pike, The Unix Programming Environ-

ment, Prentice-Hall, Englewood Cliffs, N.J., 1984.

. Lambert Meertens and Steven Pemberton, ‘‘An Implementation of

the B Programming Language,’’ Tech. Report CS-N8406, CWI,
Amsterdam, 1984.

. Peter G. Hibbard, Paul Kneuven, and Bruce W, Leverett, *‘A Stack-

less Runtime Implementation Scheme,”’ Proc. Fourth Int'l Conf.
Design and Implementation of Algorithmic Languages, Courant
Institute, New York University, New York, 1976.

. Leo Geurts, Lambert Meertens, and Steven Pemberton, The ABC

Programmer’s Handbook, To appear.

Steven Pemberton works on the ABC project at CWI (Centre for
Mathematics and Computer Science) in Amsterdam. His experience
includes work in Pascal and Algol 68. His research interests include pro-
gramming language design and implementation and programming meth-
odology.

Pemberton has been a lecturer at Brighton Polytechnic in England and
a member of the research groups at Manchester University and Sussex Uni-
versity in England.

The author can be reached at Informatics AA, CWI, Postbox 4079, 1009
AB Amsterdam, The Netherlands.

22

IEEE SOFTWARE

Publications about B and ABC

Many people have asked for an overview of the
currently available publications about B and ABC.
They are gathered here under topic. Within each
topic the order is chronological.

Language definition

Designing a Beginners’ Programming Language,

Leo Geurts and Lambert Meertens, 18 pages.
This was the first article on B. It clarifies
some of the design objectives and describes the
result of the first iteration in the defining pro-
cess. Published in New Directions in Algo-
rithmic Languages 1975, ed. S.A. Schuman,
IRIA, Rocquencourt (1976). Available from
CWI as report IW 46, price Dfl. 4.00.

Program Text and Program Structure,

Lambert Meertens, 11 pages.
Proposes the method of stepwise refinement as
a means to make the structure of program
development explicit in the program text.
Published in Constructing Quality Software,
ed. S.A. Schuman, North-Holland Publ. Co.
(1978). Available from CWI as report IW 78,
price Dfl. 4.00.

Keyword Grammars,

Leo Geurts and Lambert Meertens, 12 pages.
This is a rather technical derivation of a sim-
ple condition for the “keyword skeletons” in a
language that guarantees the existence of a
simple no-backup parser. It influenced the
keyword stucture of B. Published in Imple-
mentation and Design of Algorithmic
Languages, eds. J. André and J.-P. Banitre,
IRIA, Rocquencourt (1978). Available from
CWI as report IW 86, price Dfl. 4.00.

Issues in the Design of a Beginners’ Programming

Language,

Lambert Meertens, 18 pages.
This article describes some unexpected solu-
tions that were found for problems in the third
iteration of designing B. It reinterpretes the
original design objectives in the light of some
rejected preconceptions. Published in Algo-
rithmic Languages, ed. J.C. van Vliet, North-
Holland Publ. Co. (1981). Available from
CWI as report IW 161, price Dfl 4.00.

Draft Proposal for the B Programming Language,
Lambert Meertens, 88 pages.
This book is a specification of the whole B
language, as it arose from the third design

23 -

iteration. It is, however, rather technical for
the casual reader. In addition it contains
some thoughts on a B system. Published by
and available from CWI as ISBN 90 6196 238
2, price Dfi. 14.10. A part of it, the Quick
Reference also appeared in the Algol Bulletin
number 48, August 1982,

Taal zonder naam,

Leo Geurts, 2 pagina’s.
Een korte schets van een nederlandstalige ver-
sie van B als aanzet voor een ideale program-
meertaal. Gepubliceerd in de HCC Nieuws-
brief, jaargang 5, nummer 6, blz 20-21, juli
1982.

Language and Environment

Ontwerp van een Programmeeromgeving voor een Per-

sonal Computer,

Leo Geurts, 13 pagina’s.
Dit artikel bespreekt de consequenties van de
doelstellingen die bij het ontwerpen van de
taal B zijn gebruikt bij toepassing op de pro-
grammeeromgeving. Benadrukt wordt het
belang van een geintegreerd systeem dat voor
verschillende funkties dezelfde communica-
tiemethode met de gebruiker hanteert. Gepub-
liccerd in Colloquium Programmeer-
omgevingen, CWI, Syllabus 30, Amsterdam
(1983), prijs DAi. 22.80.

On the Design of an Editor for the B Programming

Language,

Aad Nienhuis, 16 pages.
Gives an overview of the design of the first
approximation of the B dedicated editor. Pub-
lished by CWI, report IW 248/83, price
DAl. 4.00.

The B Programming Language and Environment

Steven Pemberton, 12 pages.
Gives a description of B along with some
background to it, and some justification for its
existence, arguments about simplicity, interac-
tiveness, programmer productivity, and talks
about its suitability for use in schools. Pub-
lished in CWI Newsletter, Vol. 1, No. 3 (June
1984). Available free from CWI.

Towards a Specification of the B Programming
Environment,
Jeroen van de Graaf, 23 pages.
This report contains an informal description
and a tentative specification of the

environment for B. Published by CWI, report
CS-R8408, price DAfl. 4.00.

Taalprimitiva in B voor Grafisch Editen - een Verken-

ning,

M. Andreoli, 26 pagina’s.
In dit rapport worden mogelijkheden onder-
zocht commando’s aan een taal als B toe te
voegen om “grafisch editen” (interactieve
gegevensinvoer via een grafische interface) op
een eenvoudige manier mogelijk te maken.
Gepubliceerd door CWI, rapport CS-N8509,
prijs Dfl. 4.00.

De programmeertaal B,

Leo Geurts, 3 pagina’s.
Korte eenvoudige uitleg van taal en omgeving.
Gepubliceerd in de HCC Nieuwsbrief, jaar-
gang 8, nummer 5, mei 1985.

An Alternative Simple Language and Environment for

PCs

Steven Pemberton, 9 pages.
This article is the first place to go if you want
to know more about ABC. It describes the
background to ABC, gives an overview of the
language, and presents the ABC editor and the
programming environment the language is
embedded in. Published in IEEE Software,
Vol. 4, No. 1, January 1987, pp. 56-64, and
ABC Newsletter 6.

Programmers Handbook

All articles referenced here were eventually gathered
in The B Programmers Handbook mentioned at the
end. A new version of this handbook for ABC
should be available this year.

An Overview of the B Programming Language, or B

without Tears,

Leo Geurts, 11 pages.
In informal introduction to the language suit-
able for people that are already proficient with
some other high-level language like Pascal or
C. It was published in SIGPLAN Notices
Vol. 17, No. 12, December 1982, or is avail-
able from the CWI, report IW 208/82, price
DAl. 4.00.

Description of B,

Lambert Meertens and Steven Pemberton,

38 pages.
Informal definition of B, which can be used as
a reference book, and as an introduction for
people with ample programming experience.
Published in SIGPLAN Notices, Vol. 20, No.
2, February 1985, pages 58 - 76. Available
from CWI, note CS-N8405, price Dfl. 6.40.

A User’s Guide to the B System,

Steven Pemberton, 10 pages.
A brief introduction to using the B implemen-
tation, including the B-dedicated editor. Pub-
lished by CWI, note CS-N8404, price
DAl. 4.00.

B Quick Reference Card,
A single card including all the features of the
language, the editor, and the implementation,
for quick reference when using B. Available
from CWL

The B Programmer’s Handbook,

Leo Geurts, Lambert Meertens, and Steven Pember-

ton, 80 pages.
A handbook containing a quick look at B, a
guide to using the current implementations of
B, and a description of B, thoroughly revised
and updated. Published by CWI,
ISBN 90.6196.295.1, price Dfl. 12.70.

The ABC Programmer’s Handbook,

Leo Geurts, Lambert Meertens, Steven Pemberton,

185 pages.
A rewritten version of The B Programmer’s
Handbook, now with a chapter of example
programs. To appear.

Programmers Tutorial

Part 2 of the publication that comprises this topic
never made it. Together with some additional
material the first part was used in several courses.
Based on that experience it was decided to write a
completely new book, that will soon conquer the
world.

Computer Programming for Beginners — Introducing

the B Language — Part 1,

Leo Geurts, 85 pages.
This is a text-book on programming for people
who know nothing about computers or pro-
gramming. It is self-contained and may be
used in courses or for self-study. The focus is
on designing and writing programs, and not
on entering them in the computer, and so on.
It introduces the language, and how to write
small programs. Published by CWI, note CS-
N8402, price Dfl. 12.70.

Cursus programmeren voor beginners — Een ken-

nismaking met de programmeertaal B, Deel I,

Leo Geurts, 85 bladzijden.
This is a translation of Computer Programming
for Beginners — Part 1. Dit rapport bevat een
beginnerscursus programmeren, gebaseerd op
de nieuwe programeertaal B. De meeste
elementaire programmeertechnicken en de

meeste eigenschappen van B komen aan bod.
De tekst vereist geen voorkennis, en is zowel
voor cursussen als voor zelfstudie geschikt.
Gepubliceerd door het CWI, Notitie CS-
N8407, Dfl. 12.70.

Implementation

Incremental Polymorphic Type-Checking in B

Lambert Meertens, 11 pages.
B allows you to use variables without having
to declare them, and yet gives you all the
safety that declarations would supply. This
paper describes how this is achieved, but is
very technical. Definitely not for the faint-
hearted. Published in the conference record of
the 10th ACM Principles of Programming
Languages, pages 265-275, 1983, and also by
CWI, report IW 214/82, price DAfl. 4.00.

Making B Trees Work for B,

Timo Krijnen and Lambert Meertens, 13 pages.
This describes a method of implementing the
values of B. It is rather technical. Published
by CWI, report IW 219/83, price Dfi. 4.00.

On the Implementation of an Editor for the B Pro-

gramming Language,

Frank van Harmelen, 18 pages.
Gives details of a pilot implementation of the
B dedicated editor. Published by CWI, report
IW 220/83, price Dfl. 4.00.

An Implementation of the B Programming Language,

Lambert Meertens and Steven Pemberton,

8 pages.
This gives an overview of the implementation
and some of the techniques used in it.
Published in USENIX Washington Conference
Proceedings (January 1984). Available from
CWI, note CS-N8406, price Dfl. 4.00.

The Cleaning Person Algorithm,

Tim Budd, 12 pages.
This paper describes an algorithm that permits
values to migrate easily between primary and
secondary memory (or disk), permitting the B
system to act as if the amount of memory was
essentially limitless. Published by CWI as
report CS-R8610, price Dfl. 4.00.

Newsletter
All issues of the newsletter are still available free
from CWI. Here you find the contents of all issues,
including this one.
Issue 1, August 1983.

Available Publications about B

A Short Introduction to the B Language

P50

A Glimpse at the B Environment
Implementation Plans for B

Issue 2, June 1984.
The Mark 1 Implementation
Plans for the Near Future
Examples of B
The Highlights of B
A Comparison of Basic and B
A Comparison of Pascal and B

3, January 1985

IBM PC Progress

What is in the name of B?

A File-Maintenance Program in B

A Proposal for Matrix/Vector Functions in B
Speeding up the B Implementation

4, September 1985

New Unix Release

B for the IBM PC

Eh? B be ‘ABC, see?

A Program Example: Polynomials
(Extremely) Simple Logic Programming in B
~1 <> 1, A Nice Distinction?

5, October 1986

>>> From B to ABC

Letter to the Editor

The Cleaning Person Algorithm

Backtracking in B: the Budd Challenge

Primality Testing in B

Issue 6, May 1988

Progress towards ABC

A Chess Program in B

Approximate Numbers

My Experiences with ABC

An Alternative Simple Language
and Environment for PCs

Publications about B and ABC

Issue

Issue

Issue

Ordering
CWI publications can be ordered from

Publications Department
CWI

POB 4079

1009 AB Amsterdam
The Netherlands

You will be invoiced. The prices quoted exclude
postage and packing, and for foreign orders there is
an additional charge of Dfl. 8.50 to cover bank
charges.

