THE B NEWSLETTER

ISSN 0169-0191

. CWI, Amsterdam

Issue 5, October 1986

CONTENTS

Some Notes

New Publications

>>> From B to ABC

Letter to the editor

The Cleaning Person Algorithm
Backtracking in B: the Budd Challenge
Primality Testing in B

Order Forms

Some Notes

The newsletter is intended to provide information
about B and to provide a forum for discussions.

Write to us if you want to be added to our
mailing list.

You are encouraged to submit any articles
you see fit. Articles don’t have to contain fully
thought-out ideas, but may be yet undeveloped
thoughts intended to stimulate discussion. The
kinds of articles we have in mind are: interesting
programs, either written or suggestions; unusual
applications; letters, discussions on points of the
language, proposed improvements, experience with
the language, and so on.

If you are fortunate enough to be connected
to a network with a gateway to UUCP net, you can
submit articles and send mail to:

timo@mecvax . UUCP
Otherwise, articles and mail should be sent to

The aBc Newsletter
Informatics - AA
CWI

POB 4079

1009 AB Amsterdam
The Netherlands

New Publications

There is only one new publication since the last B
newsletter. An abstract of it can be found in the
corresponding article in this newsletter.

The Cleaning Person Algorithm,

Tim Budd, 12 pages.
This paper describes an algorithm that per-
mits values to migrate easily between primary
and secondary memory (or disk), permitting
the B system to act as if the amount of
memory was essentially limitless. Published
by CWI as report CS-R8610, price Dfl. 3.90.

CWI publications can be ordered from

Publications Department
CWI

POB 4079

1009 AB Amsterdam
The Netherlands

You will be invoiced. The prices quoted exclude
postage and packing, and for foreign orders there is
an additional charge of Dfl. 7.50 to cover bank
charges.

d41141SMAN 9 4dHI

From B to ABC: the Salient Changes

Lambert Meertens

The past year, we have been working hard on the
revision from B to ABC, making an inventory of
proposed changes (using the experience collected
over several years of use) and debating their pros
and cons. There are two problems in that kind of
undertaking. One is that new proposals may have
unexpected drawbacks, and so you must be careful
in adopting changes, more so than for a first ‘trial’
version of a language. This danger can be minim-
ised by only considering minor changes, and in fact
we felt no urge to do otherwise, since we were
already unreasonably happy with unrevised B and
only wanted to give a final high polish. The second
problem is that two or more nice suggestions, fine
enough by themselves to be voted in by acclama-
tion, may be incompatible if taken together. Here,
it is a good thing to ‘revise by repeated approxima-
tion’: take preliminary decisions on the proposals,
and let the result simmer for some time to see
where conflicts arise, revise the revision again etc.
until stability.

We think we have now reached a point of sta-
bility, more or less. Not fully, since (a) we are still
open to further input, especially if it does not entail
a complete upheaval of everything that B stands
for, and (b) we decided to categorise the changes in
three classes: ‘Hurry’, ‘Nice’, and ‘Wait’. This has
to do with the fact that we want to bring out a next
release of our system, as soon as possible, that
understands (revised) ABC.

Now, some—in fact, not a few—of the pro-
posed changes are so minor that it is hard to
explain the difference with the current situation.
These may have to do with behaviour in marginal
situations for which user-oriented semantic descrip-
tions, like in The B Programmer’s Handbook, are
naturally ambiguously phrased. To give one exam-
ple, in order to allay the reader’s now piqued
curiosity: The Handbook does not specify where
the extra space character should go if a text of even
length is centred in a field of odd length, as in
“at”><7. This is defined in the much more pre-
cise Draft Proposal, the Holy Writ for imple-
menters, and there is now a proposal to make a
change there. We do not feel compelled to imple-
ment such minor changes in the first ABC’d release
of the system. Therefore, this change has status:
‘Wait’—that is, no ‘Hurry’. Some other proposed

CWI

changes are not that minor, but are strictly
‘upwards compatible’: they do not invalidate any
existing B code, but impart a meaning to hitherto
undefined things. This refers both to certain new
syntactic forms, as to semantic extensions of exist-
ing constructs. Here, again, we felt free to confer
the status “Wait’ to the proposals.

Other proposed changes are very visible and
so got the label ‘Hurry’. Here, existing B code is
invalidated, either because the syntax has changed,
or because the syntax is still the same but the
semantics is different. Of course, we have tried to
minimise such changes, especially in the group of
‘same form, different content’. If we adopted one
of those, we felt the merits to be substantial enough
to outweigh the inconvenience to the existing user
community (and don’t forget that we are big-time
users of B ourselves). To minimise the pain, the
next release will in some cases still accept the old
syntax style next to the new one, similar to the
behaviour of the (then only) C compiler when the
syntax of, among others, initialisations was
changed. Possibly, this release will also come with
some ‘off-line’ conversion tool. (The first B imple-
mentation pulled another stunt in this area. It was
finished earlier than the Draft Proposal, and was
updated along with the final polishing of that docu-
ment. If it recognised a piece of syntax that got
changed recently, it not only accepted the obsolete
form, but recast it into current syntax and stored
that back. Very convenient, that; we shall prob-
ably not go as far out of our way this time.)

The proposals that we categorised as ‘Wait’
are generally of minor import to the user, true
trifles. Some changes, however, among those of the
strictly-upwards-compatible kind, are such improve-
ments that we would really like to bring them out
in the very first next release. These constitute the
‘Nice’ category. Whether we succeed in incorporat-
ing all of them, we doubt, but most will be in there.
(There are degrees of ‘niceness’ that will determine
our priorities.)

This long, but perhaps interesting by itself,
digression was needed to explain what I meant with
‘stability’. There is another categorisation: propo-
sals can be in the (currently) ‘Accepted’ or
‘Rejected’ sets, but also in the (as of yet) “‘Unde-
cided’ set, which is where they all were, initially.

The point where we are now, is that all proposals
still in the Undecided category have the label
“Wait’: whatever the final decision, it will not
influence the next release of the system, nor the
wording in user-oriented documentation. In most
of these cases, the proposal is still undecided
because it appears to have possible ramifications
that we could not quite fathom—safer, then, to let
it stay in limbo. If one of these Waiters turns out,
on further examination, to bite a Nice or even Hur-
ried change, it will be summarily rejected.

Some statistics. We started out with a collec-
tion of some 69 proposals. (Sometimes it is a
matter of taste if you count something as one single
proposal or as two closely related proposals.) Of
these, 36 are now Accepted and 15 Rejected, leav-
ing 18 Undecided. Of the thirty-six chosen ones, 22
are Hurried, 7 are Nice, and another 7 lie in Wait.

Below, I only describe the more important changes.
(Some of the Accepted—Hurry ones are too petty
to mention here. A full account is available on
request.)

e The most prominent change, one that will in
fact influence every existing B program, is that
HOW/TO will henceforth be spelled HOW TO.

® Not less dramatic is the following change:
instead of YIELD we have now HOW TO RETURN,
and instead of TEST similarly HOW TO REPORT.
So all units will start with HOW TO. It is no longer
appropriate to call command definitions ‘how-to-
units’ then, and we shall rename them ‘command-
definitions’. Instead of ‘yield-units’ we have then
‘function-definitions’, and ‘test-units’ become
‘predicate-definitions’.

® The signs ““’ and ““’ are allowed in names
(tags) and keywords, and spaces are not. In current
B, the ‘“’-sign provides a way to introduce
pseudo-spaces, as in ‘last’time’seen’. In the
future, a *.’-sign can be used for the same pur-
pose: ‘last.time.seen’. This is an addition:
the use of ‘“’ and ‘%’ stays allowed since it is
handy for such locutions as “x”’. For a long time,
we hesitated between the signs *.°, ‘_” and ‘~’.
The decisive advantage of the ‘.’ is that it is a
lower-case character on all keyboards (except the
Struldbrugg-YUC models).

® Moreover, the name of a user-defined command
will no longer consist of its first keyword, but of all
keywords together preceding the first parameter, if
any (and otherwise simply all keywords). So then
users can define and wuse commands like
PUT OFF task. The predefined command
SET/RANDOM is also changed into SET RANDOM.
A further proposal is to consider the whole

‘keyword skeleton’ as determining the command

name, allowing PUT a OVER b next to
PUT a IN b. This last business is Undecided: we
fear adverse effects on the friendliness of the editor.
® Comparison between exact and approximate
numbers will be changed in accordance with the
proposal in issue 4 of The B Newsletter. Hen-
ceforth, root 4 = 2 shall succeed.

® The parameter mechanism for user-defined
commands, currently call-by-name as in ALGOL 60,
will be replaced by copy-restore. Side effects of
evaluating or locating a parameter (which, because
of the scratchpad-copy semantics of expressions,
are already restricted to run-time errors, 170, or
changing the state of the pseudo-random-number
generator) are thus incurred only once. The main
change, therefore, is in the reduction of aliasing.
Moreover, putting different values in actually ident-
ical output parameters will be a (dynamically) sig-
nalled error, exactly as happens already in

PUT 1, 2 IN i, i.

It will remain an error to put a value in a formal
parameter that does not correspond to an actual
target parameter.

® Also, multiple (collateral) names will be allowed
as formal parameters in a command definition, e.g.
HOW TO SWAP a, b, so that the parameter
mechanisms of commands and of functions and
predicates are almost completely unified—
differences are that the parameters of functions and
predicates are a/ways copied in, and that there is no
‘restore’ (which would be invisible anyway because
of the scratchpad copying), so that the formal
parameter can be used as a local target, even if the
actual parameter is a formula. If one of the fields
of a multiple formal parameter is assigned to, but
not all fields, then either the actual must be multi-
ple as well, or it may be single but must then be
already initialised at the time of the call. This
prevents the creation of compound locations not all
of whose fields have a value.

® A new command PASS will serve to specify the
dummy (null) action. Empty command-suites will
no longer do: each command-suite must contain at
least one command. Next to improving clarity, this
also does away with the problem that an indenta-
tion error, as in

IF* % & "
PUT x-1 IN x

gets uncaught; this will cause a syntax error in the
future. (In fact, the editor will leave a hole for the
missing command-suite.)

@ The PARSING construct will be replaced by a

GH CLiIRUM

somewhat less general, but in other respects more
powerful and in any case more user-friendly con-
struct, although probably not in the next release.
Even then, PARSING will be gone (at least from
the documentation; it may temporarily remain in
the system to alleviate switch-over problems). The
big problem with PARSING was that it was so
excruciatingly slow that no-one in their right minds
used it in the first place. This was not a matter of
a more efficient implementation; its inefficiency is
inherent to its semantics. The new form, then, will
be a FITS test of the form

tex FITS inf

in which tex is a textual-expression and inf is a new
animal, dubbed an ‘input-format’. May some
examples suffice instead of a formal definition:

“$ 123.45”7 FITS “$*x EG 0

will succeed and put the value (number) 123.45
in x. This x is a bound tag, of course: its scope is
the part that is reachable only by dint of the suc-
cess of the test.

#f 123.457 FITS ““cur RAW‘‘x EG 0~

succeeds as well, and also puts the text “f # in
cur.

line FITS ““*k RAW: “i RAW'”

has the same meaning as the test in current B:
SOME k, c, i PARSING lLine HAS c

. M

except, of course, that the dummy target c has
gone. Thus, the first occurrence of ”: ” is used to
split the text contained in Line. The FITS con-
struct fails if no parsing will make the expression
‘fit" the input-format; moreover, the parsing stra-
tegy is ‘greedy’, just as with the present PARSING
construct.

If the body of the input-format consists of a
single ‘input-conversion’, the enclosing quotes may
be dropped. So, to convert a text to a pair of
numbers, the following test suffices:

t FITS x, y EG 0, 0

There are some murky matters not yet completely
cleared up (like whether

#123217 FITS “*x EG 02y EG 0”7

is in error or puts 1, 321 in x, y, or perhaps
123, 1), which is one of the reasons why this
might not yet show up in the next release.

® Input-formats are also allowed following READ.
In fact, the existing forms READ x EG y and
READ x RAW become then special cases of this.

The execution of a command like

READ “Article: “a RAW™ (Code:

will prompt the user with

Article: ? (Code: 7?)

Again, this is not expected for the next release.

® The command CHOOSE will be replaced by a
monadic function choice, making it possible to
do something like

TAKE choice exits

in a single command. Similarly, DRAW is replaced
by a zeroadic function random, allowing the use
of expressions like

(Log(1-random))*sin(2xpixrandom)

(which has a normal Gaussian distribution).
® The following kind of iteration may be added:

FOR [k]: i IN table:

to allow an easy way to traverse the keys and asso-
ciated items of a table together. Although rather
nice, this change is still on the waiting list of unde-
cided proposals.

e The E in the floating-point number format is
going to be replaced by a lower-case e. The pri-
mary reason for this change is the improved legibil-
ity; a secondary reason is the disappearance of an
anomaly in the editor to cope with the case of com-
mands with a keyword E. Furthermore, on input,
numbers in this format will be handled as exact
numbers; thus, 1e9 evaluates to the same number
as 1#10#x9. If an approximate number is
intended, the user has to indicate this explicitly, as
in ~1e9.

e We have noticed that errors of the form
exemplified by

SELECT:
line|8 = “CONTINUE”: GO ON
line|3 = #“BYE”: QUIT

ELSE: UNKNOWN COMMAND

are rather more common than we had anticipated.
The problem is that if line contains the text
#BYE”, then the evaluation of line|8 causes a
run-time error. In ABC, t|n will be equivalent to
timin{n; #t} in current B, so that the code
fragment above works as expected. Similarly, t@n
will be equivalent to t@max{n; 1}. If n < O,
the evaluation of t|n will still signal an error, and
similarly for n > #t+1 and t@n.

® The evaluation of a list-display like {1..n}
will no longer signal an error in ABCif n < 0; its
value is simply the empty list. So, unlike in current

‘¢ EG 0Y)”

B, the following is a safe way to compute the inter-
section of two non-empty ranges of integers r and
s:

{max{min r; min s}..min{max r; max s}}

This change, as well as the following, is only ‘Nice’.
e The following will all be valid ABC:

{1..i-1; i+1..n}
{-a..a; -b..b}
{1; 2; 4..9; 5; 11}

e The priorities of the operators will be slightly
changed, allowing, among others, the currently not
permitted

2 round x >> 7
but ruling out the currently allowed
t12*"n

(and some ambiguities permitted by the Draft Pro-
posal as well).

e The name of the function atan will be
changed to arctan. Possibly, also arcsin and
arccos will be added. Instead of dyadic
x atan vy, there will be angle(x, y), and then
a Nice addition is its natural companion
radius(x, y), computing the same as
root (xx#2+y*%2), but offering for many appli-
cations a far more convenient diction. In particu-
lar, if coordinates (x, y) are stored as table
items, say, you can use expressions like
angle t[i] without having to unpack the com-
pound first. The value of angle(0, 0), unlike
that of 0 atan 0 in unrevised B, is not
undefined, but zero.

@ Another proposal in the Nice category: to facil-
itate computation with degrees instead of with radi-
ans, dyadic versions of all trigonometric and
cyclometric functions are added in ABC. The first
parameter is the value of a full circular arc
expressed in the units desired. For example, since
a full circle is 360°, use 360 sin 15 to compute
the sine of 15°.

® Some new functions will simplify text handling,
especially, but not only, user-supplied interactive
input text. To convert to lower and upper case, we
have in ABC:

lower “E.E. Cummings”
upper “L19: cvtbl x-12(fp),r0”

returning respectively:

“e.e. cummings”
#1.19: CVTBL %-12(FP),R07

The function stripped will return its argument

with all leading and trailing blanks removed. To
see if the reply to a question is any of “yes”,
#y#, % yepl!” etc., it suffices to test if

(stripped lower reply) |1 = “y”

Nice would be a function words, or split, that
takes a text and splits it (on the blanks) into a
sequence of words.

e The formula n th’of s, with its attendant
abominations like 2 th’of s and the frequent
mistake n’th of s, will be traded in for
s item n. The order of the parameters is more
in line with other selections like s[n] and s@nl1.

We have also designed several extensions to ABC,
for example for matrix/vector functions (see issue 4
of The B Newsletter) and for graphics. These will
not be in the next release. In fact, if they will be
offered in the future, they will be possibly be
separate additions with their own manuals that
people may or may not acquire.

Going beyond this, we are also considering
extensions that are primarily intended for applica-
tions designers. Among these are a facility for
dealing with data entry (a generalisation of the
FITS test), and also a possibility for adding new,
user- (or in fact designer-) defined, types (that are
atomic to the end-user).

There is a designed addition that we have not
yet classified; maybe it should be incorporated in
‘general’ ABC and not be part of an extension. It
is the addition of a new sequence type. Although it
is possible to use tables to model sequences, some
natural operations on sequence are difficult to han-
dle; in particular, joining two sequences and
extracting a (contiguous) subsequence. The pro-
posed addition would introduce sequences as arbi-
trarily long, ordered but not sorted, collections of
items of the same type. A possible syntax for
sequence-displays is that of

{055 155 055 255 0355 155 035 31,
that is, like a list-display except that the semicolons
are doubled. Not an obvious candidate for a
beauty contest, but we haven’t been able to think of
anything nicer that does not conflict with existing
syntax. The notation {}, already doing double
duty for empty lists and tables, would acquire a
third meaning: that of an empty sequence. The
displays {a} and {a..b}, currently only lists,
would also get an extra meaning: they would also
be acceptable sequence-displays. The static type-
finding algorithm is easily amended to cope with
this. The generic operations on texts, lists and
tables (iterating with FOR or with

SOME/EACH/NO, the function item and the
monadic and dyadic versions of #, min and max)
would extend to sequences. Other operations on
sequences would be: the join function *~ and the
repeat function ~*, and the trims @ and | (now
only defined on texts). A new monadic function
items can be used to turn a text, list or table into

a sequence; the effect of FOR i IN tlt: ... is
the same as that of
FOR i IN items tlt: Like keys, this

function takes constant time, independent of the
size of its parameter. (Using items on a sequence
is also permitted; the result is the same as the
parameter supplied.)

Although an obvious possibility to consider, it
will probably not be the case that texts are a spe-
cial case of sequences. There is a difference
between “abc# and {“a“;; “b”;; “c”} since
identifying these would imply that “a“ is the same
as {#a”}, which looks undesirable. But this needs
further study; maybe there is a satisfactory and
consistent solution to this.

Letter to the editor

Dr. Hanno Wupper

Rechenzentrum Ruhr-Universitit Bochum

Dear Colleagues,

Let me quickly give you some remarks about the B
system, which we have been using here now for
some months.

First of all: the language, the editor and the
handbook turned out to be even much better than I
dared to hope in my secret dreams. 1 have used the
system in a course for school teachers (sekundar-
stufe II), who are interested in computer science
but have not had previous knowledge of program-
ming languages. The course has been most
interesting, and now some people have good reason
to think that such an editor, such a well designed
and well described language are the state of the art.
(They will have some bad experiences when they
investigate the machinery they find at their schools
.

Most useful in teaching was the UNDO-key:
whenever someone was lost in a hopeless situation,
I could use it to slowly go back and reconstruct the
mistakes in thinking that eventually lead into that
situation (“Look, when you tried this, you must
have thought that ... but ...). This possibility of
backtracking and reasoning about the decision tree
is much more important than the simple fact that
errors can be undone without too much typing.
Another good thing is that, in contrast to text edi-
tors, program transformations are the more difficult
the greater the change in semantics is, but, of
course, you know that.

Believe me that I am really enthusiastic, and
please do not misinterpret the following criticisms,
which will come in the groups (A) Language, (B)
Name, (C) Editor, (D) Efficiency, and (E) Bugs.

A. Language

Nearly everything seems to be perfect. Perhaps
you should not revise the language too early but
rather collect ideas for some time. At the moment,
I see few reasons to ask for “more, more”.

But: did you ever think about national vari-
ants? If German pupils (and German teachers)
write their first programs, they will not have
enough knowledge and interest in English to be
able to design linguistically beautiful texts. If the
keywords could be in German, they would more
easily get the feeling that the inner beauty of good
programs can be reflected by their representation.

While I thought about this all, an unortho-
gonality occurred to me: nearly all of the keywords
fall into one of two classes: proper commands,
which could easily be redefined, such as CHECK,
PUT, SET’/RANDOM, and particles that structure
the language, such as HOW/TO, QUIT, IF, SOME.
Only two things do not fit into this scheme: READ
is the only thing where the first keyword is not
sufficient to distinguish between two commands,
and WRITE uses an entirely surprising and unique
syntax.

B. Name

The existence of this implementation will propagate
the name B to many people. Will they not be irri-
tated by a change of name?

C. Editor

It is easy to put something into the copy buffer by
mistake which novices will find very difficult to get
out again. If, for example, one wants to move the
(long and complicated) expression from

IF expression :

somewhere, you might by mistake copy the colon
as well and then find that

expression :

will nowhere be accepted. There is no obvious easy
way to, say, clear the whole buffer.

D. Efficiency

Some operations on lists and especially some arith-
metic operations on machines without 8087 copro-
cessor are very slow. The slowness itself is not such
a problem for beginners who do not know imple-
mentations of other languages, but often they find
it difficult to decide whether anything is going on at
all. Perhaps some flashing mark would be helpful,
or “wait wait”?

The storage limitations and inefficiency of the
present implementation would not be a problem, if
units that have been developed and tested could be
compiled. Has anyone ever attempted to write the
machine independent parts of a B compiler? B
would be an obvious language. Is something like
that available?

E. Bugs

1. After bio -i, bio -r is necessary, otherwise
all targets will be forgotten.

2. After you get the message that the actual unit is
too large (and after you pressed LOOK and then
deleted something) everything looks o.k. and you
can beautifully type on. Only, typically, thereafter
your large unit disappears without warning and
without leaving anything behind.

One last question regarding the Handbook:
why did you not attempt to explain as much as
possible of the commands and operations in the
form of a standard prelude?

Yours,
Hanno Wupper

The B Group Replies

The following is the substance of our reply to Dr.
Wupper.

Al. Language revision

The revision of the language is the result of 5 years
experience with the current version of the language,
so we certainly don’t regard it as premature!
Furthermore, it is being done to improve the
language: it is not a case of “more more”, but
rather “better”.

A2. National Variants.

Yes, we have thought of national variants, and
actually already have a French version, which
proved very popular at a recent French educational
software exhibition in Paris. We also plan a Dutch
version, and would be very pleased to co-operate
on the preparation of a German one.

With regards to READ EG and READ RAW,
this problem is solved in the revision. With respect
to WRITE, well, the only addition is the / charac-
ter to specify new lines, which isn’t so problematic;
you may not redefine built-in commands anyway.

B. Name

The name has been a constant problem for us. The
first version of our B was defined in 1975, and we
have been using the name since then, although
always saying that it was only a working title which
would be changed when the language reached its
final form. This was so that earlier versions of the
language wouldn’t taint the final version. Unfor-
tunately, around the same time, another group
designed a language that they called B, and due to
the success of its successor (C) in the ensuing years,
that B has become famous, in name at least. Thus

we are constantly plagued by people telling us that
there is already a language called B, or by people
who ignore our B, thinking it is the older one. So
really the name must be changed, and for us the
name ABC appears to be the best candidate, sug-
gesting as it does the simplicity that we have
strived to achieve, (plus at least containing the old
name, even if it doesn’t start with it).

C. Editor

We are currently busy redesigning the editor.
Probably the following version will be far more
oriented towards the abstract parse-tree rather than
the concrete tree, so that you will be able to focus
on the expression of “IF expression:” far
easier than on the expression plus the colon. Since
the colon is always suggested by the editor, we
expect that this will be more convenient.

It is true that there is no convenient way to
clear the copy buffer, but on the other hand there is
no reason why you should want to (except perhaps
to get rid of the [copy buffer] message from
the screen), since you can just copy something over
the top of it.

D. Efficiency.

Agreed that the current version is very slow. The
next release promises to be faster (it currently runs
about twice as fast). Yes, perhaps it would be an
idea to indicate that something is happening: the
Macintosh watch is something along these lines.

We have lots of ideas about implementing
parts of B in B, however, we have no current plans
to produce a compiler, since many other things,
such as a fuller environment, are higher on our list
of priorities.

E. Bugs.

Thank you for the report about bio -i.
be fixed.

The message you get when store is filling up
is not that the unit is too big, but that store is
nearly used up. You should then exit the editor as
soon as possible. But the documentation and the
error message should make this clearer.

We don’t think that defining as much of B as
possible using a standard prelude would help much.
It is our feeling that a description in words, though
less precise, is easier to understand. Furthermore,
there are very few commands you can really treat
like this; most would still have to be described with
words.

It will

The Cleaning Person Algorithm

Tim Budd

The B language is designed to be used by individu-
als having little or no previous programming
experience, working on a personal computer. A
primary aim of the language is to provide a simple
and easy to understand tool that is nevertheless
powerful enough to facilitate the solution of non-
trivial problems. To this end, many of the details
of the underlying machine that conventionally a
programmer must be concerned with can be
ignored in B. For example, rational numbers are
maintained internally in an unbounded form; thus
the user does not need to be aware of the machine
“word size” or of exceeding the hardware precision
of numerical values. In a similar manner, the user
should not need to be aware of the limitations
imposed by a finite memory on a computer; it
should appear to the user as if the amount of
memory available is essentially limitless.

There are several ways in which an executing
B system can run out of memory. The most obvi-
ous fashion is by creating large objects. Just as
there are no intrinsic limitations on the size of
numbers, there should be no reason why a user
could not create a table containing many thousands
of entries, even if the size of the table exceeded
available memory. However, memory can also be
quickly consumed by a proliferation of small
objects. This will be particularly true in the revised
ABC system, since the values of all identifiers will
be recorded at the end of each command, and these
values remembered for some period of time. Sav-
ing the memory in this manner permits the user to
back up execution or to make changes to previous
commands. These facilities will not be discussed
here; it is only necessary to note that this feature
tends to consume a considerable amount of pri-
mary memory that is only infrequently accessed.

In short, a problem can arise where there are
too many objects and too little memory. The
Cleaning Person algorithm is intended to address
this problem. As the B system is executing, a
second process (the cleaning person), running in
parallel, attempts to move objects from primary
memory to secondary storage (such as a disk).
Some special characteristics of B objects, notably
that once created they are never modified, make
this solution feasible. This paper presents only an
informal overview of the cleaning person algorithm.

CWI

A more detailed description of the algorithm can be
found in [1].

A basic assumption of the cleaning person
algorithm is that all of memory can be viewed as a
(not necessarily binary) tree. In general, the idea is
that the cleaning person attempts to move sections
of this tree to disk. One constraint is that nodes
that have been moved to disk can only point to
other nodes that have also been moved to disk. A
consequence of this is a node can be moved only
after all its children have been moved.

When a node is moved to disk, a special mark
(a single bit in the tag field) is set in the copy of
the node that remains in memory. An entry is
made in an object called the disk mapping table.
This entry contains a pointer to both the location
of the node in memory and its location on the disk.
Basically, the disk mapping table provides the logi-
cal mapping between nodes that are in memory and
those that are on disk.

When a pointer to an object that has been
marked as being moved to disk is found, the
pointer is changed to point instead to the disk map-
ping table. When the reference count on the origi-
nal node goes to zero, all pointers to it have been
found and changed to point to the disk mapping
table, and the memory occupied by the node can be
released. When the reference count on an entry in
the disk mapping table goes to zero, it implies that
all pointers to the associated node have themselves
been moved to disk, and thus the disk mapping
table entry can be removed.

In this manner the disk mapping table
requires entries only for those nodes for which
pointers still exist in memory. It is not necessary to
maintain entries in the disk mapping table for those
nodes for which all pointers have themselves been
moved to disk. A hashing scheme, that can be trig-
gered by either a disk address or a memory
address, is used to reference entries in the disk
mapping table.

The cleaning person is most useful on
archival material, that is, portions of memory that
are likely to be only infrequently used. In general
it will be difficult to determine what nodes in
memory satisfy this criterion. A trick using
“recently used” bits is employed to insure that
nodes that are moved to disk have not been

accessed in the recent past, under the assumption
that they will therefore likely not be accessed in the
near future.

Of course, even the most dusty archival
material is sometimes accessed, and a technique
must be provided for bringing nodes back from
disk into memory. This involves once more setting
up a disk mapping table entry, and copying the
information back into a possible different location
in memory. The address of the information on disk
is retained, so that if again after a while it is found
to be not recently referenced, pointers will slowly
change from the address in memory to the address
on disk.

One notable feature of the cleaning person
algorithm is that it is independent of the rest of the
B system, including the memory manager. Further-
more it can be structured in small discrete steps,
each step leaving memory in a consistent state.
Thus an attractive scheme would schedule the
cleaning person when no other activities are pend-
ing, such as between characters during user input;
or when memory is almost exceeded.

These, and many more, issues are addressed
more fully in the technical report describing the
algorithm:

[1] Tim Budd, “The Cleaning Person Algorithm”,

Report CS-R8610, Centrum voor Wiskunde

en Informatica, February 1986. (12 pages).

-10 -

Backtracking in B: the Budd Challenge

Steven Pemberton

CWI

In his article “(Extremely) Simple Logic Programming in B” in issue 4 of the B Newsletter, Tim Budd
presented a B program for solving the “Farmer, Wolf, Goat and Cabbage in a boat trying to get to the other
side of the river without eating each other” problem. The problem involves the four named trying to cross a
river with a boat that can only take two of them at a time, with the added complication that only the farmer
can row, and that the goat will eat the cabbage, and the wolf will eat the goat, if they are left without the
farmer’s supervision.

Tim’s program uses backtracking, and in the way it is formulated takes advantage of the fact that func-
tions in B have no side-effects, in effect doing the backtracking automatically for you. However, the program
does have the ‘side effect’ of writing the results out as it goes along, rather than returning the result. When
pointing this out, Tim says:

This is a two-edged sword, however, since in some cases one would like to modify the global environ-

ment and that then becomes more difficult.

In other words, if the effect you want to have is more than just writing your answer out, bad luck.

The purpose of this article is to show that it is not at all difficult to write such a program, both using
B’s automatic backtracking and returning a result.

Just for interest’s sake, I shall also modify some other aspects of Tim’s program, to compare how
different approaches to data-structures affect the program, but this in no way affects the main point of the
article, which is to demonstrate returning results in a backtracking program.

First of all, 'm going to alter how the positions of the participants are represented: Tim used a com-
pound like (1, 1, 1, 1) to represent all four participants being on the north bank: each field was the
position of one participant in the order: farmer, wolf, goat, cabbage; a zero represented the south bank.
Rather than represent north and south by 1 and 0, I shall use the texts “N“ and #S” (I would have used
“north” and “south”, but this makes some of the lines below wider than will fit on the page). Tim said
that he chose the integers to make the conversion from one to the other easier. For the text representation,
we have to alter the definition of the function opposite:

YIELD opposite position:
RETURN {[#N”]: ”S”; [7#8%] ”N”}[position]

Just to test it:

>>> WRITE opposite “N#
S
>>> WRITE opposite #S$#
N

(Alternatively, a global target could contain the above table, and be SHARE d wherever needed.)
Now a more explicit data-structure can be used to represent the positions, such as a table:

{ [flcabbagell] . IIN//; [llfarmepff] . f/Nll; {Ifgoat//] : /}'Nf/; [/fwolf//] . llel} .

Next we need an easy method of altering the set of positions when a boat-load goes to the opposite
bank. If we represent a boat-load by a list of who is in the boat, for instance {“farmer”; “goat”} then
we can use the following function to take a position and a list of travellers and return the new position:

YIELD position altered’/for occupants:
FOR occupant IN occupants:
PUT opposite position[occupant] IN position[occupant]
RETURN position

-11-

>>> PUT {} IN start
>>> FOR participant IN {“farmer”; “goat”; “wolf”; “cabbage”}:
PUT “N“ IN start[participant]
>>> WRITE start altered’for {“farmer”; “goat”}
{ [lfcabbage//] : //N/I; [l/farmer.//] . IISII; [f/goat/f] . f/sf/; [f/wolfff] . //N/f}

We also need a way to see if a given position is ‘safe’, that is to say that the goat is not left alone with
the cabbage, and that the wolf is not left alone with the goat:

TEST safe pos:

REPORT farmer/with’goat OR goat’/out/of’/mischief
farmer’/with’goat:

REPORT pos[“farmer”] = pos[”“goat”]
goat/out’/of/mischief:

REPORT pos[“cabbage”] <> pos[”goat”] <> pos[“wolf”]

(Notice the shorthand c<>g<>w instead of c<>g AND g<>w. Another way of writing the same is
g not’in {c; w}.)

Now, the new version of the program to solve the river problem, instead of printing out its results as it
goes along, will return the answer as a value. This result is a sequence of boat-loads necessary to solve the
problem.

Sequences are typically represented in B as tables with the elements of the sequence as associates, and
integers as keys. Elements are then added to the sequence with a command such as

PUT element IN sequencel[#sequence]

so that the first element is stored at key [0], the second at [1], and so on.

In this program, the result is a sequence of boat-loads and so it will be represented as a table with
integers as indexes, and boat-loads as associates. The only difference is that the boat-loads are produced by
the program in reverse order to how they will be printed out, and so the elements will be added at the head of
the sequence. This can be done with the command PUT element IN path[-#path], which we can
make into a function:

YIELD path with element:
PUT element IN path[-#path]
RETURN path

An example of a sequence of boat-loads is
{[-21: {7farmer”; “goat”}; [-1]1: {“farmer”}; [0]: {“wolf”; “farmer”}}

representing the farmer taking the goat across the river, returning alone, and then taking the wolf.

The program either succeeds, and produces such a path, or the (sub-)problem has no solution, and so it
should fail. To represent these two cases, the program returns a compound, consisting of a text, either
“success” or “failure” indicating whether it has succeeded or not, and then the path, empty for failure,
and the solution for success*. To make life easier, let’s have a command to print out the result (this is just a
simple version, it could be made prettier):

HOW’TO PRINT result’and’path:
PUT result’/and’path IN result, path
SELECT:
result = “failure”:
WRITE “No solution” /
ELSE:
FOR move IN path:
WRITE “Move”, move /

*At first 1 had the program only return a path, and used an ‘impossible’ path, such as {[1]: {}} to represent failure. I
quickly saw this as a typical programmer’s kludge, and replaced it with the cleaner solution here.

12 -

The original program took as parameter the target position of the four, and then searched backwards to see if
there was a way that that position could be reached from the start position (which was ‘hard-wired’ in the
program). It was necessary to search backwards, because, like the new version, it produced its answers back-
wards, and so the two backwardses gave the right result. Another change I have made to the original pro-
gram is to make both the start and the target positions parameters, and to make the program search from the
start position for a path to the target position. As I have already said, it produces its answers backwards, but
stores them in the result backwards, so that they still come out the right way round.

The final change is that now ‘allowable’ boat-loads are not hard-wired in the program, but represented
as a list: a maximum of two can fit in the boat (it’s a very large cabbage), and furthermore only the farmer
can row:

>>> PUT {} IN allowable

>>> INSERT {#farmer”} IN allowable

>>> FOR other IN {“cabbage”; “goat”; “wolf”}:
INSERT {#“farmer”; other} IN allowable

We can now write a function that returns which boat-loads are possible from the current position:

YIELD possible’from position:
SHARE allowable
PUT {} IN result
FOR boat’load IN allowable:
IF EACH occupant IN boat’load HAS on’same’side:
INSERT boat’load IN result
RETURN result
on’same’side:
REPORT position[occupant] = position[min boat’load]

So now, after that introduction to the data-types, we can see the program proper. You’ll notice compar-
ing it with Tim’s original, that the main body is more or less the same, except that results are being returned
rather than tests being reported. The main difference is in the refinement to try the next move. Tim’s pro-
gram tried each of four refinements until one succeeded. The new version tries each of the allowable boat-
loads until one succeeds. If none succeeds, it fails. A marginal issue is how to treat the case where the aim is
reachable, but not safe in itself. Tim’s version accepted it, and printed the result; this version by reversing the
order of the first two IF commands, does not accept it.

YIELD position path’to aim:
SHARE looking
IF position in looking OR NOT safe position: RETURN failure
IF position = aim: RETURN success
INSERT position IN looking
RETURN next’move
next’move:
FOR boat’load IN possible’from position:
PUT new’position path’to aim IN result, path’
IF result <> “failure”: RETURN result, path’ with boat’load
RETURN failure
new’/position: RETURN position altered’for boat’load
success: RETURN “success”, {}
failure: RETURN “failure”, {}

(Remember that Looking is used to prevent the program searching for a solution to a position it is already
trying to solve — otherwise you can get an infinite loop.) Now to try it out:

>>> PUT {}, {} IN start, aim

>>> FOR occupant IN {“farmer”; “goat”; “wolf#; “cabbage”}:
PUT #N#, #5”7 IN start[occupant], aim[occupant]

>>> PRINT start path’to aim

s 15w

Move {”farmer”; “goat”}
Move {“farmer”}

Move {“cabbage”; “farmer”}
Move {“farmer”; “goat”}
Move {”“farmer”; “wolf#}
Move {“farmer”}

Move {“farmer”; “goat”}

Now to try it with a different aim: the farmer has to get the cabbage to the other side (to sell it to the hungry
computer programmer who lives there):

>>> PUT start IN aim

>>> PUT 787 IN aim[”cabbage”]
>>> PRINT start path’to aim
Move {“farmer”; “goat”}

Move {“farmer”}

Move {”cabbage”; “farmer”}
Move {“farmer”; “goat”}

Now, finally, the farmer is fed up with goats, cabbages and wolves, and wants to be alone on the other side:

>>> PUT start IN aim

>>> PUT #8% IN aim[“farmer”]
>>> PRINT start path’to aim
No solution

Alas, poor farmer.

Producing the result forwards

The question arises as to why the program produces the result backwards. The answer for Tim’s version of
the program is that you don’t know until you’ve reached the goal whether the current position is on a success-
ful path, and so you can’t write anything until then. With the new version you do have the option of produc-
ing the results forwards. To do it you have to pass to path’to not only the current position, but how you
got to it (as a path). Just to show you how it would look, here is path’to altered in that way. The func-
tion with would also have to be altered to append elements to the path, rather than prepend them.

YIELD (route, position) path’to aim:
SHARE looking
IF position in looking OR NOT safe position: RETURN failure
IF position = aim: RETURN success
INSERT position IN looking
RETURN next’/move
next/move:
FOR boat’load IN possible’from position:
PUT (new’route, new’/position) path’to aim IN result, path’
IF result <> “failure”: RETURN result, path’
RETURN failure
new’route: RETURN route with boat’load
new’/position: RETURN position altered’for boat’load
success: RETURN “success”, route
failure: RETURN “failure”, {}

You would then have to call it as
PRINT ({}, start) path’to aim

However, you may notice that route here contains more or less the complementary information to what
Looking contains. If you represent a path as the sequence of positions, instead of the sequence of moves,
you can do away with looking altogether, with the choice of SHAREing route or passing it as a

-14 -

parameter:

YIELD (route, position) path’to aim:
IF position in route OR NOT safe position: RETURN failure
PUT route with position IN route
IF position = aim: RETURN success
RETURN next‘/move
next/move:
FOR boat’load IN possible’from position:
PUT (route, new’position) path’to aim IN result, path’
IF result <> “failure”: RETURN result, path’
RETURN failure
new/position: RETURN position altered’for boat’load
success: RETURN “success”, route
failure: RETURN “failure?, {}

This means that you get as output the states rather than the moves you have to make:

>>> PRINT ({}, start) path’to aim

{ [/}Cabbage/f] : //Nl/; [f/farmer.lfl : f/Nf/; [f/goat//] : //N/f; [IIWDL-FKI] : IINII}
{ [flcabbage/f} . IZN//; [//fapmepff] : //S//; [f/goat/f] : /fs/f; [//wolfff] . f/Nl/}
{ [/Icabbage//] . IINJV; [/ffarmepff] . //N!/; [lfgoatf/] . flsf/; [Ifwol'f//] . //N//}
{ [ffcabbage//] . IIS/I; [Iffar‘mer.//] : //Sl/; [//goat//] . IISKI; [Ifwollff/] . //N//}
{ [ffcabbage//] . ffs/f; [llfapmer.{f] : l/Nl/; [llgoat/’/] : IINII; [//wolf//] : I/N/I}
{ [l/cabbagef/] . /fsll; [//farmer//} : //Sl/; [/fgoat/f] . //N/I; [//wolff/] . //S#}
{ [llcabbagefl] . /IS//; [//fapmer.//] . IINII; [//goat/f] . /INI/; [//wol‘f‘l/] : flsff}
{[”C&bbage”] R I/Sl/; [ﬂfarmerﬂ] : lls//; [f/goat//] : //S//; [//wollff/] : //S!f}

However, for the rest of this article I will stick with the reverse method.

Another possible representation

You may remark in path’to that there is no dependency within the unit on exactly how a position is
represented. What would we have to change if we represented it as, for instance, {[“N” 1: {#farmer”;
“goat”}; [#S”]: {”cabbage”; “wolf”}}, a representation that more closely represents the real state
of affairs?

Well, the main change would come in altered’for, which would look like this:

YIELD positions altered’for occupants:
FOR occupant IN occupants:
SELECT:
SOME place IN keys positions HAS occupant in positions[place]:
REMOVE occupant FROM positions[place]
INSERT occupant IN positions[opposite place]
RETURN positions

>>> PUT {[#S#]: {}} IN banks

>>> PUT {“farmer”; “goat”; “cabbage”; “wolf”} IN banks[”N”]
>>> WRITE banks altered’for {“goat”; “cabbage”}

{ [/INI/] : {flfapmerl/; /fwol‘f!/} ; [/IS//] . {ffcabbagefl; f/goat”} }

A corresponding change also has to be made to possible’from.
The only other thing that must be changed is the test safe, but it can be expressed even more simply now,
since we can use a list of illegal positions:

>>> PUT {} IN illegal

>>> INSERT {”goat”; “cabbage”} IN illegal

>>> INSERT {“goat”; “wolf#} IN illegal

>>> INSERT {”goat”; “cabbage”; “wolf”} IN illegal

.15 -

and then use this test:

TEST safe position:
SHARE illegal
REPORT NO place IN position HAS place in illegal

Multiple paths

An interesting change to consider is returning not just one solution, but a/l solutions to the problem. Clearly
then, path’to must return not just one path, but all paths solving the problem, so we’ll call it paths’to.
In this case we don’t need to return the ‘success’ or ‘failure’ indication: if it fails, it just returns the empty list:
no solutions found. If the list is non-empty, then it succeeded. So PRINT will look like this*:

HOW/TO PRINT result:
PUT result IN paths

SELECT:
paths = {}:
WRITE “No solution” /
ELSE:

FOR i IN {1..#paths}:
WRITE “Solution”, i /
FOR move IN i th’of paths:
WRITE “Move”, move /

The main part of paths’to is again hardly different from its predecessor. If the current position is where
we wanted to go, then the result is the single empty path {{}}. If the routine fails, it returns no paths, i.e.
{}. Otherwise, for each possible new position from the current position, it gets all paths from the new posi-
tion to the aim. For each of these paths it adds the boat-load that created the new position to the front of
the path. Obviously, if no paths are possible then it will not add the boat-load to any path.

YIELD position paths‘to aim:
SHARE looking
IF position in looking OR NOT safe position: RETURN failure
IF position = aim: RETURN success
INSERT position IN looking
RETURN all’paths
all’paths:
PUT {} IN results
FOR boat’load IN possible’from position:
PUT new’position paths’to aim IN paths
FOR path IN paths:
INSERT path with boat’load IN results
RETURN results
new’/position: RETURN position altered’for boat’load
success: RETURN {{}}
failure: RETURN {}

And now to show it works:

>>> WRITE start

{[”N”]: {”cabbage”; Ilfarmerlf; ”goat”; ”\\FDL'F”}; [//5/{]: {}}
>>> WRITE aim

{[#Nf/]: {}; [l/sl/]: {f/cabbage”; flfarmer.f/; //goat//; //wolf#}}
>>> PRINT start paths’to aim

*The assignment of result to paths is necessary because of the way parameters get passed to HOW'TOs. Without
this assignment pat hs’to would get called three times. There is a proposal to change this in the revised version of B.

- 16 -

Solution 1

Move {“farmer”; “goat”}
Move {“farmer”}

Move {“cabbage”; “farmer”}
Move {”farmer”; “goat”}
Move {“farmer”; “wolf”}
Move {#farmer”}

Move {“farmer?; “goat”}
Solution 2

Move {“farmer”; “goat”}
Move {“farmer®}

Move {#farmer?; “wolf”}
Move {“farmer”; “goat”}
Move {“cabbage”; “farmer”}
Move {“farmer”}

Move {“farmer”; “goat”}

Solving other problems

Now that the program takes most of its information from data-structures, it’s interesting to try and solve a
different problem with the same program.

Consider this one: you have two jugs of different capacities, say j litres and k litres. You are allowed to
empty either jug, fill either jug, or pour one into the other until the one is empty, or the other is full. The
problem is, what series of actions are necessary to end up with the jugs containing m and #n litres?

Right, let’s call the two jugs A and B, and represent the state of the two jugs as a table of their contents.
For instance, {[“A“]: 8; [#B“]: 5} shows that A contains 8 litres and B 5. We can represent the set of
allowable actions (the target allowable) as a list of actions, where each action is a compound giving the
type of action, and the name of the jug. For instance (“Fill#%, “A”).

>>> PUT {} IN allowable
>>> FOR action IN {”Fill”; “Empty”; “Pour“}:
FOR jug IN “AB“:
INSERT (action, jug) IN allowable

(The action (“Pour”, “A“) means pour A into B.)

Now, although strictly speaking, the actions possible from a given situation depend on whether the jugs
are empty or full, and so on, it actually doesn’t matter, because if you fill an already full jug, or empty an
already empty one, you get the same situation, and the program ensures that situations don’t get repeated, so
we don’t have to worry. Therefore, possible’from is very simple:

YIELD possible’from position:
SHARE allowable
RETURN allowable

There are also no illegal states:
>>> PUT {} IN illegal

Finally, we have to provide an altered’for for the new representations. To be able to carry out the
actions like Fill we have to know the capacities of the jugs:

>>> PUT {} IN full
>>> PUT 8 IN full[#A“]
>>> PUT 5 IN full[#B”]

The only unobvious case is pouring: the amount that you pour is either the contents of the whole jug, or as

17 -

much as will fit, whichever is less:

YIELD amount altered’/for actions:
SHARE full
FOR action, jug IN actions:

SELECT:

action
action

action =

PUT
PUT
PUT

RETURN amount

othe

r:

“Empty”: PUT 0 IN amount[jug]
“Fill”: PUT full[jug]l IN amount[jug]
“Pour?”:

min {amount[jugl; full[other]-amount[other]} IN x
amount [other] + x IN amount[other]
amount[jugl - x IN amount[jug]

RETURN opposite jug

Obviously, opposite “A” gives “B”, and vice-versa. Now to try it (the output format of PRINT has also
been changed):

PUT {}, {} IN start, aim

PUT 0, 0 IN start[”A”], start[“/B¥]
PUT 4, 0 IN aim[“A”], aim[“B]
PRINT start paths’to aim

Solution 1
Fill A, Pour A, Empty B, Pour A, Fill A, Pour A, Empty B, Pour A,
Empty B, Pour A, Fill A, Pour A, Fill A, Empty A, Pour B, Fill B,
Pour B, Empty A, Pour B, Fill B, Pour B, Fill B, Pour B, Empty A,

>>>
22>
>>>
>>>

Pour

B

Solution 26
Fill B, Pour B, Fill B, Pour B, Empty A, Pour B, Fill B, Pour B,
Fill B, Pour B, Empty A, Pour B

Exercise

Finally, as an exercise, consider what needs to be changed in order to solve the Towers of Hanoi problem. If
you just use the restriction that a disk may not be placed on a smaller disk, it gives 12 solutions for moving
Just two disks from one pile to another! Here’s the longest (the first line means “move piece 1 from rod a to

rod ¢”):

Move
Move
Move
Move
Move
Move
Move
Move

(1,
(1,
(2,
(1,
(1,
(2,
(1,
(1,

//a// ,
flcll ,
f/a// y
//b// 4
chll 5
Ilcll 4
/Ia!’l g
/!C/f 5

f/cf/)
flbf/)
IIC//}
flcf/}
/fa//}
llb”)
/I'C//]

” b!f)

If you add the restriction that the same piece should not be moved twice in succession, you get two solutions:

Solution 1

Move
Move
Move
Move
Move
Move

(1,
(2,
1,
(2,
(1,
(1,

F a F
2
o a o
?
o b 7
)
o
o,
” a ”
»
i a v
?

f)b#}
//c//)
llafl)
/}b!’!)
”bfl)
ficfl)

= 8=

Move (2, ”a”, “b”)
Move (1, “c”, “b”)

Conclusion

Experience with other programming languages can mislead one into thinking that because functions in B can
have no side-effects certain practices are impossible. This article has attempted to show that in fact this is not
so, largely because of the ease of returning values of any type in B.

-19 -

Evangelos Kranakis
Steven Pemberton

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Simple B programs for two types of primality tests are presented. The first type consists of deterministic pri-
mality tests and the second of probabilistic primality tests. These programs confirm one of the main strengths
of B, i.e. the ability to write in simple and understandable fashion what would be much longer programs in
many other currently used programming languages.

1. Introduction

Primality testing is the problem of determining if a given integer is prime (i.e. whose only divisors are 1 and
the integer itself) or composite. In many respects this problem is similar to the factoring problem, i.e. given an
integer n to find its nontrivial factors (if any). Since if you know the factorization of n it is easy to test if n
is prime or composite, the former problem seems to be easier than the latter. Nevertheless, to this date no
polynomial time deterministic algorithm is known for testing primality. The problem of primality testing is
not merely of academic nature. Recent developments in public key cryptography indicate several intrinsic
interconnections between the difficulty of decrypting encrypted messages in certain public key cryptosystems
and the factoring problem. The programs given in this and the next sections are the B versions of well-known
algorithms. The clarifications necessary for a theoretical understanding of the primality tests presented can be
found in [3]. The reader can get acquainted with the basic aspects of B in [2].

The first program concerns modular exponentiation and will be very useful in the sequel; given positive
integers x ,n,m it outputs x” mod m. The method used is widely known in the literature as modular
exponentiation by repeated squaring and multiplication.*

YIELD (x, n) powermod m:
PUT 1 IN =z
WHILE n <> 0:
WHILE n mod 2 = 0:
PUT n/2, (x%*x) mod m IN n, x
PUT n-1, (z#x) mod m IN n, =z
RETURN =z

For any integer @ = 2 the next program returns e, _,, where e, _; is defined inductively as follows:
eo = 4and e, 4| = e2—2.

YIELD sq a:
PUT 4 IN e
FOR 1 IN {1..a-2}: PUT exe -2 IN e
RETURN e

On input a the following program outputs a random b in the interval [l,@ —1] such that
ged(a,b) = 1. The expected number of iterations of the WHILE loop is ¢(a), where ¢ is Euler’s totient
function,

YIELD random a:
PUT a IN b
WHILE gecd (b, a) > 1:
CHOOSE b FROM {1..a-1}

* One of the reasons for using it is that in some primality tests the numbers involved are so large that you would simply run
out of computational capacity if you were to use usual exponentiation.
This program was written after a discussion with L. Meertens.

220

RETURN b

The next sequence of programs culminate in a program that computes the Legendre-Jacobi symbol of
two integers. For any given integer a the following program outputs the largest exponent e such that 2°

divides a.
YIELD ex a:
PUT 0 IN e
WHILE (a/(2%%e)) mod 2 = 0:
PUT e+1 IN e
RETURN e

The following program on input a positive integer ¢ returns its parity, i.e. 1 if ¢ is even, and —1 other-
wise.

YIELD parity c:

SELECT:
c mod 2 = 1: RETURN -1
c mod 2 = 0: RETURN 1

On input an odd integer a the following program computes (— 1)(32_1} /8' The tiest-one), o iputiodd
integers a,b computes (— D@- e —1/4

YIELD j1 a:
CHECK a mod 2 = 1
RETURN parity ((axa - 1)/8)

YIELD j2(a, b):
CHECK b mod 2 = 1 AND a mod 2 = 1
RETURN parity ((a-1)*(b-1)/4)

And finally, this last program computes the Legendre-Jacobi symbol of two integers a,b.

YIELD j(a, b):
CHECK gcd (a, b) =1
PUT b/(2#%x(ex b)), 1 IN b, ¢
WHILE a > 1 AND b > 1:
PUT ex a IN e
PUT a/(2xxe) IN a
PUT (j2(a, b))*((j1 b)xxe)xc IN c
PUT b mod a, a/(2#%(ex a)) IN a, b
RETURN ¢

2. Deterministic Tests

A primality test is called deterministic if the answer given by the test on input an arbitrary integer n is
always correct. Although such a test would be very desirable no polynomial time (in the length of n? test is
known. Thus, the fastest such test known today (the Rumeley-Adleman test) runs in time O ((logn Yclogloglogry
The difficulty of the problem is also indicated by the fact that nothing better is known on the set of binary
representations of prime numbers than that it belongs to the class NP N Co —NP.

The oldest test known is the sieve of Eratosthenes. It is inefficient, but it is still the only way to get a
list of all the primes << a given integer.*

YIELD sieve n:
PUT {2..n}, {} IN set, primes
WHILE set > {}:
PUT min set IN p

* A similar B program for the sieve appeared in [1].

-21-

INSERT p IN primes
WHILE SOME s IN set HAS s mod p = 0:
REMOVE s FROM set
RETURN primes

Thus, the B command
WRITE sieve 50
yields the set of primes less than or equal to 50
{2; 3; 5; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47}.

For special types of numbers primality testing can be done efficiently. The first such efficient test to be
considered is known as the Lucas-Lehmer test and is used to test the primality of Mersenne numbers, i.e.
numbers of the form 2¢ —1, for @ > 2.* In fact, 2% — 1 is prime if and only if e, _, = 0 mod (29 —1).

HOW/TO LL a:
CHECK a > 2
SELECT:
(sq a) mod ((2xxa)-1) = 0:
WRITE “2%x*a® - 1 is prime” /
ELSE:
WRITE “2%x*a® - 1 is composite” /

Proth’s test is used to test numbers of the form k2% +1, w!'llere k <2°+1,a > 1, and 3 does not
divide k. It uses the fact that 2% +1 is prime if and only if 3*%7 = —1 mod (k2% +1).

HOW/TO PROTH ka:
PUT ka IN k, a
CHECK k <= 2x%a + 1 AND a > 1 AND k mod 3 <> 0
SELECT:
(3, kx(2xx(a-1))) powermod (kx(2xxa) + 1) = kx(2x%a):
WRITE 7k »(2x%a) + 1 is prime” /
ELSE:
WRITE “*k>x(2xx*a) + 1 is composite” /

Pepin’s test is a special case of Proth’s test and is used to test the primality of Fermat numbers, i.e.
numbers of the form F, = 2% +1. Again, it uses the fact F, is prime if and only if
(Fa=1/2 —
3 = —1 mod F,.
HOW/TO PEPIN a:
SELECT:
(3, 2xx((2%xa)-1)) powermod ((2xx(2%xa))+1) = 2xx(2xxa):
WRITE “2%%(2%xx>a®) + 1 is prime” /
ELSE:
WRITE “2%%(2#%*‘a*) + 1 is composite” /

3. Probabilistic Tests

In contrast to deterministic primality tests, probabilistic primality tests may not always give the right
answer. In fact there is a positive real € << 1, independent of n, such that for all integers n if the answer of
the test is COMPOSITE then n is indeed composite, but if the answer of the test is PRIME then n may not
be prime; however, the probability of error is << €. The basic ingredient of a probabilistic primality test is the
specification of an efficient test 7. In the course of an execution of the algorithm it is required to draw a

* The 29th Mersenne prime is 2132049 _ 1 The 30th is not yet known, although 2216091 1 is the largest known. It consists of
65050 digits and the testing was done on a Cray X-MP computer. The chances are that you will become the worst enemy of
your system administrator if you use the test given here to check the primality of such big Mersenne numbers.

-22.

random integer satisfying certain conditions. Given such a test 7' the primality algorithm A corresponding
to T is defined as follows.

Input: n > 1.

Step 1: Choose random 0 << b << »n such that ged(b,n) = 1.
Step 2: Check if T'(b,n).

Output:

 |PRIME if T(b,n) is true
Ar(n) = 1 COMPOSITE if T(bn) is false.

Naturally, one can significantly reduce the probability of error by making independent random choices of b
in successive runs of the algorithm.

The first test to be described is the so called Rabin’s test. The disjunction immediately following the
SELECT command provides the test T for the algorithm A presented above.

HOW/TO RABIN a:
CHECK a mod 2 = 1
PUT random a IN b
SELECT:
(SOME i IN {1..ex (a-1)} HAS pmi = a-1) OR pmex = 1:
WRITE “*a® is probably prime” /
ELSE:
WRITE “*a‘ is composite” /
pmi:
RETURN (b, (a-1)/(2#xi)) powermod a
pmex :
RETURN (b, (a-1)/(2%x(ex (a-1)))) powermod a

This second version of Rabin’s test is equivalent to the prewous one. However, the main improvement is
that if the conjuction immediately following the SELECT command is true then the program returns the fac-
torization of the integer tested. Thus, with a bit of luck one can factor the tested integer.

HOW/TO RABIN1 a:
CHECK a mod 2 = 1
PUT random a IN b
SELECT:
SOME i IN {0..ex (a-1)} HAS factor > 1:
WRITE ““a‘=*factor‘*x‘a/factor*” /
pm <> 1:
WRITE “*a‘ is composite,” /
WRITE 7 since ‘b‘x**a-1‘ mod ‘a‘ = ‘pm* <> 17 /
ELSE:
WRITE “*a‘ is probably prime” /
factor:
RETURN ged (a, ((b, (a-1)/(2%%i)) powermod a) - 1)
pm:
RETURN (b, a-1) powermod a

Thus, the B command
FOR i IN {1..5}: RABIN1 2%x%(2#x5) + 1

uses Rabin’s test to check five times the primality of the 5th Fermat number*

* The compositeness of the 5th Fermat number was first proved by Euler in 1731, thus disproving Fermat’s ill-fated conjec-
ture (made almost a century earlier) that all the F,’s are prime.

-23.

Fs = 2241 = 4294967297.

There are five lines of B output.

4294967297=641x6700417
4294967297 is composite,

since 4083994560x%4294967296 mod 4294967297
4294967297 is composite,

since 2224497408x#4294967296 mod 4294967297
4294967297 is composite,

since 35176256%%4294967286 mod 4294967297 = 2762233453 <> 1
4294967297 is composite,

since 3441948800%%4294967296 mod 4294967297 = 1324609083 <> 1.*

2308631200 <> 1

626184398 <> 1

The last probabilistic primality test is the so called Solovay-Strassen test.

HOW’/TO SS a:
CHECK a mod 2 = 1
PUT random a IN b
PUT j (b, a), (b, (a-1)/2) powermod a IN jba, baa

SELECT:
jba = 1 AND baa = 1: WRITE ““a‘ is probably prime” /
jba = 1 AND baa <> 1: WRITE “*a‘ is composite” /
jba = -1 AND baa = a-1: WRITE “‘a‘ is probably prime” /
jba = =1 AND baa <> a-1: WRITE “‘a‘ is composite” /
REFERENCES

[1] Geurts, L., A Short Introduction to the B Language, The B Newsletter, Centre for Mathematics and Com-
puter Science, Amsterdam, Issue 1, August 1983.
[2] Geurts, L., Meertens, L. and Pemberton, S., The B Programmer’s Handbook, Centre for Mathematics

and Computer Science, Amsterdam, 1985.
[3]1 Kranakis, E., Primality and Cryptography, Wiley-Teubner, 1986.

* This is a probabilistic primality test, so you should not be surprised if the B output you obtain is not exactly the same as
the one above.

-24 -

HOW/TO ORDER B for UNIX:

To order the Mark 1 implementation of B, running on UNIX{ systems, you should fill out the order form
below, and two signed copies of the SOFTWARE AGREEMENT on the next page. Send it to:

aBc Group, Unix distribution
Informatics - AA

CWI

POB 4079

1009 AB Amsterdam

The Netherlands

You will then receive:
® a tape with the sources (including an installation guide)
® the following documentation:
- Description of B
- A Users Guide to the B System
- B Quick Reference Card
- Manual Pages
Also, one of the two copies of the SOFTWARE AGREEMENT will be returned to you signed.

1 UNIX is a Trademark of AT&T Bell Laboratories

ORDER FORM

Please send us the Mark 1 implementation of B for UNIX systems for the price of Dfl 100 (US $ 35) (to cover
materials, postage and bank charges) for which we will be invoiced.

INAITIE. ettt ee e e b e b e et et sae s e e e sea e e bam s sam s e e seeeeemserenssmesesseseas
FATMU/ INSHLULE: vttt et e e e ee e se e e eeseeeeseese et see e see e e

Address: ...oooveeiieeeieeeen,

OO wonenss R e mrsen
FENEPIOIE s ovssoserssansssiso s T T A S S e

Internet NELWOTK AAATESS? .wuimmimui i s L e S S0
Machine type: O Vax O Sun O PDP O other:

Operating System: [0 42 BSD [Version7 O System V [other:

Check required tape parameters:

density O 800 bpi O 1600 bpi
format [0 Tar, blocksize 1 O Ansi D format
O Tar, blocksize 20 O Ansi F format

(For other media and formats, please inquire.)
We include two copies, both signed, of the SOFTWARE AGREEMENT.

Signature and Date:

Please, fill out both copies below, and sign them.

SOFTWARE AGREEMENT

Effective as ofcccrevrmees 198.., Stichting Mathematisch Centrum (SMC), having an office at 413 Kruislaan,
1098 SJ Amsterdam, and

(LICENSEE), having an office at

agree as follows:

SMC pgrants fee-free to LICENSEE a personal, non-transferable and non-exclusive right to use the computer programs and documenta-
tion relating to the Mark 1 implementation of B (LICENSED SOFTWARE).

LICENSEE agrees not to sell, lease or otherwise transfer or dispose of the LICENSED SOFTWARE in whole or in part.

SMC makes no warranties, express or implied. SMC shall not be held to any liability with respect to any claim by LICENSEE or a
third party on account of, or arising from, the use or the inability to use LICENSED SOFTWARE.

Neither this agreement nor any rights hereunder, in whole or in part, shall be assignable or otherwise transferable.

signed by
For LICENSEE For Stichting Mathematisch Centrum
NAME! conmuamanimmniis i s NAME! e i

Title: nunuinmsnaiianmmnasmmmasn 1itler Director of Software Licensing

Signature and Date: Signature and Date:

SOFTWARE AGREEMENT

Effective as of 198.., Stichting Mathematisch Centrum (SMC), having an office at 413 Kruislaan,
1098 SJ Amsterdam, and

(LICENSEE), having an office at

agree as follows:

SMC grants fee-free to LICENSEE a personal, non-transferable and non-exclusive right to use the computer programs and documenta-
tion relating to the Mark 1 implementation of B (LICENSED SOFTWARE).

LICENSEE agrees not to sell, lease or otherwise transfer or dispose of the LICENSED SOFTWARE in whole or in part.

SMC makes no warranties, express or implied. SMC shall not be held to any liability with respect to any claim by LICENSEE or a
third party on account of, or arising from, the use or the inability to use LICENSED SOFTWARE.

Neither this agreement nor any rights hereunder, in whole or in part, shall be assignable or otherwise transferable.

signed by

For LICENSEE For Stichting Mathematisch Centrum

NAmMe! saserersusmesmumrsssansaissrss DA s isssasinse i o aas e wems s b s
Title: bbb bbb Title: Director of Software Licensing

Signature and Date: Signature and Date:

HOW/TO ORDER B for the IBM PC:

To order the prototype of the implementation of B for the IBM PC or compatibles, running under MS-DOS
versions 2.0 (or higher), you should fill in the order form below, and send it to:

aBc Group, PC distribution
Informatics - AA

CWI

POB 4079

1009 AB Amsterdam

The Netherlands

To cover materials and handling, you should either enclose a cheque or money order, payable to Stichting
Mathematisch Centrum - Amsterdam, or (if you live in The Netherlands) transfer to the postgiro account
below.

You will then receive:

e a floppy with the binary;
® The B Programmer’s Handbook;
® a B Quick Reference Card.

ORDER FORM

Please send me a copy of the prototype B system for the IBM PC, including documentation.

O I enclose a cheque or international money order, payable to Stichting Mathematisch Centrum - Amster-
dam, for Dfl 100 (or US § 35).

O I have transferred Dfl 100 to postgiro account 462890, Stichting Mathematisch Centrum - Amsterdam,
mentioning ”B voor de IBM PC”.

I I IR Y s s s B e e B S e A S R S s b A S e b R R RS s
Firm/Institile: .o anmissimsm i s inaing

AAAIESST eaeeeiiiiiiiiiriiriseetieissssreressssassnssresesssasnnneseassnnsaneeseaansantanassesasbantesaasasnstesasssasrnsennas

o1 5 L T TR e
Telephone::. .o R L s SRR e

INEEWOTK AAAIESS: oot eeee e ceseeeeeiaeeceemteeasesssesenbase e sasseassseasbaseeanass

Machine(s): O IBM PC O IBM XT O Olivetti M24
O Apricot Portable [Apricot F1 O other:

Required media:

O 5%” double sided, double density floppy disk
O 3%” double sided floppy disk

Required version:

O full implementation (at least 384 K bytes)
O small version (only 256 K)

Signature and Date:

