THE B NEWSLETTER

ISSN 0169-0191 CWI, Amsterdam Issue 4, September 1985
CONTENTS P
YA
. il
Notes for Contributors o
New Publications A

I

\
T

New Unix Release " —
B for the IBM PC
Eh? B be ‘ABC, see?
A Program Example: Polynomials =
(extremely) Simple Logic Programming in B
~1 <> 1, A Nice Distinction?

Order Forms

A prototype of B is now available for the IBM PC and compatibles.
In this newsletter you will find a description of it and an order form.

JALLATSMAN & dH.L

Notes for Contributors

The newsletter is intended to provide information
about B and to provide a forum for discussions.
Therefore, you are encouraged to submit any arti-
cles you see fit.

Articles don’t have to contain fully thought-
out ideas, but may be yet undeveloped thoughts
intended to stimulate discussion. The kinds of arti-
cles we have in mind are: interesting programs,
either written or suggestions; unusual applications;
letters, discussions on points of the language, pro-
posed improvements, experience with the language,
and so on.

If you are fortunate enough to be connected
to a network with a gateway to UUCP net, you can
submit articles and send mail to:

timo@mcvax. UUCP
Otherwise, articles and mail should be sent to

B Newsletter
Informatics / AA
CWI

POB 4079

1009 AB Amsterdam
The Netherlands

New Unix Release

We have released a new version of the Mark 1
implementation of B for Unix systems. This ver-
sion has all improvements mentioned in the article
“Speeding Up the B Implementation” in the last
newsletter. Also, you can easily change the key
bindings of the editor operations; this allows you to
adopt the editor to any terminal type.

If you have an older version of the Mark 1
implementation you can update it by sending us a
600 foot tape. If you don’t know whether you have
an old version, check the file BugReport in the
directory B/doc on the tape you received, which
says whether you have version MarklA, MarklB,
or the new version Mark1C.

New Publications

There are two new publications since the last B
newsletter. The publications mentioned in the pre-
vious newsletters are still available, as are the
newsletters themselves.

Description of B,

Lambert Meertens and Steven Pemberton,
Informal definition of B, which can be used
as a reference book, and as an introduction
for people with ample programming experi-
ence. Published in SIGPLAN, Vol. 20, No. 2,
February 1985, pages 58 - 76. Previously
published by the CWI as note CS-N8405.

The B Programmer’s Handbook

Leo Geurts, Lambert Meertens, and Steven

Pemberton, 80 pages.
A handbook containing a quick look at B, a
guide to using the current implementations of
B, and a description of B. Consists of three
previously published documents, thoroughly
revised and updated: B without Tears, A
User’s Guide to the B System, and Descrip-
tion of B. Published by CWI,
ISBN 90.6196.295.1, price Dfl. 12.50.

CWI publications can be ordered from

Publications Department
CWI

POB 4079

1009 AB Amsterdam
The Netherlands

You will be invoiced. The prices quoted exclude
postage and packing, and for foreign orders there is
an additional charge of Dfl. 7.50 to cover bank
charges.

B for the IBM PC

A prototype version of B is now available for the
IBM PC and compatibles. This version is function-
ally equivalent to the one currently distributed for
UNIX systems. For ordering information, see the
form at the end of this newsletter.

Features of the implementation

e The full B language as described in the Draft
Proposal is implemented.

® The structured editor is used to enter and edit
units, immediate commands, input to READ com-
mands, and permanent targets.

@ The editor suggests possible command continua-
tions and closing brackets. It uses function and
arrow keys to move the focus around, change its
size, etc.. You can undo the last 20 key strokes.
Text can be moved or duplicated within or
between units and immediate commands. A
sequence of keystrokes can be recorded, and
played back later. You can recall the last com-
mand. (A more detailed description of the B edi-
tor can be found in the first newsletter.) By
default all editing operations are bound to single
keys: you can rebind the editing operations to
other than the default keys, to suit your own
taste, or to overcome deficiencies in your particu-
lar keyboard.

® Since different compatibles have different ways of
addressing the screen, and not all screens have
the same size, you can define an environment
variable to reconfigure B for use with the
“ANSI” screen driver, or for different screen
widths and heights. There is a program supplied
to help you decide what sort of screen you have.

® There are utility programs for such things as
workspace recovery, and for listing the units in a
workspace.

Small version

The full implementation needs at least 384 K bytes.
There is a smaller version available, without the
built-in editor, for those with only 256 K bytes. In
this case commands must be typed in in full. To
edit units the EDLIN editor is used.

B R s R e
BIBLIOTHEER s

Documentation

The documentation sent with the package includes
“The B Programmer’s Handbook” and a quick
reference guide. The book describes the B
language proper, the use of the system, the editor
commands, and the use of the other uitilities.
There are some example workspaces on the distri-
bution disk.

Required system configuration

In order to run the B system you must have an

IBM PC or compatible with

® at least 384 K bytes, or 256 K bytes for the small
version (this includes space used for MS-DOS);

@ MS-DOS version 2.x (we've only tested it with
2.0 and 2.11, but it may also run on MS-DOS 3.x
or higher);

@ one double-sided disk drive.

The system is expected to run on most IBM-PC
compatible computers, but we cannot guarantee
this, because we haven’t tried them all. We know,
however, that the system runs at least on the fol-
lowing compatibles: Olivetti M24, Apricot Port-
able, and Apricot F1. (If your copy runs fine on a
machine which is not on the list, please tell us so
we know we can extend the list. If your copy
doesn’t run, also tell us and we’ll try to see what is
the cause.)

Beware

THIS IS NOT YET A PRODUCTION VER-
SION!

The system is sometimes slow, and imposes
severe limits on the maximum sizes of the targets
and units in the work space. We do appreciate
reports of bugs, but we don’t promise we’ll fix
them: we’ll do what we can.

Finally

The disk is not copy protected. You may make
copies, and give them away, as long as you don’t
sell the copies, and as long as these same conditions
are passed on to the people you give copies to.
Fair enough?

Eh? B be ‘ABC’, see?

Lambert Meertens

In the last issue of the Newsletter, the question was
raised which name to give to the definitive version
of the B programming language, after revision.
(See the article ‘What is in the name of B?.) We
received several reactions, some just expressing
(dis)like of one or more of the proposed alterna-
tives, some offering new proposals. Among the new
proposals were ‘Bravo’ (from the way of spelling
the alphabet: ‘Alpha Bravo Charlie ...”), ‘Best’,
‘QUY’ (sounds like ‘CWTI’) and ‘Lingo’ (twice). One
proficient name finder offered us no fewer than
eleven suggestions, and her list suggested to us
some more possibilities, such as ‘Love’. (Why
‘Banana’, though? In honour of Steven
Pemberton’s predilection for this fruit?) Some of
these proposals we discarded forthwith. Although
we wholeheartedly agree with the sentiment
expressed by ‘Bravo’ and ‘Best’, we feared that such
a name might be perceived as a form of boasting
that could have an adverse effect on reaching our
objectives. Better to have a slightly more neutral
name, and let the language speak for itself.

Although ‘QUT’ sounds like ‘CWT" if ‘CWT is
pronounced like ‘QUT’, no-one here pronounces it
that way; we say ‘Say Way Ee’ or “See Double You
Eye’, depending on whom we are addressing. As to
‘Lingo’, I have seen several languages tagged with
that name—although I am not sure any of them are
in active use, it seems better, after our previous
experience, to avoid another potential conflict.

Considering all, and counting noses (including
those of our own), we decided on ‘ABC’. The mer-
its of this name have already been expounded in
the previous article and will not be repeated here.
To avoid confusion, we shall keep referring to the
present, unrevised, language as ‘B’.

Some people expressed the fear that ‘ABC’
might give legal problems, e.g., because of the
broadcasting corporation, or because of a line of
computers with that name. We are not really wor-
ried about that. In the first place, ‘ABC’ is just the
name of a language, which by itself is not a trade-
able commodity, and our understanding is that you
can name such things as you please, just like you
could name your daughter ‘Ada’ as long as you do
not try to sell her. The ‘ABC’ of the broadcasting
company is not a name by which they trade, either.
Also, if you look in the yellow pages of the
Manhattan telephone directory (and presumably of
most other places), you will find that ‘ABC’ is one

of the most common names given to businesses.
Since these are obviously left alone, we don’t see
how we could be bothered, especially since there
are no conflicting interests. There is even a second
television company calling itself ‘ABC’; British
based I think.

As to the line of computers, I have a leafiet
describing a line of computer terminals called
‘ABC’. Maybe the two companies involved (both
European) can fight this out between themselves
before they descend on us. Also, there is a line of
computers called ‘Basic’ (where have we heard that
before?), and a new line of terminals called ‘Elan’,
which, as a language, has been in use at least in the
FRG and the Netherlands for a long time. By the
way, we have a line of products in the Netherlands
for fixing things around the house, called ‘Rambo’.
Not a bad name for B either. (‘Rambo, the pro-
gramming language that shows no mercy.’)

A Program Example: Polynomials

Leo Geurts

A polynomial such as 7x° — 4x* + 3x — 1 may be represented in B as a table with the powers as keys and
the coefficients as associates:

{[01: -1; [1]: 3; [4]): -4; [5]: 7}

This representation is convenient for most operations one wants to perform on polynomials. As B does not
impose limits on the size of tables, nor on the magnitude of the numbers involved, this representation may be
used for all polynomials of one variable with real coefficients. The simple package presented here consists of
a section of functions such as addition, multiplication and evaluation, an input command, and a somewhat
elaborate output section. The package is intended for use with exact coefficients.

The command INPUT facilitates the typing of polynomials one wants to work with. Entering the exam-
ple polynomial above proceeds like this:

>>> INPUT a
coefficient: 7
power: 5
coefficient: -4
power: 4
coefficient: 3
power: 1
coefficient: -1
power: 0
coefficient: 0
22>

The resulting value of a may be shown by simply writing it:

>>> WRITE a
{fo): -1; [1]: 8; [4]: -4; [5]: 7}

or, for a fancier result, by using the special PRINT command:

>>> PRINT a
5 4
7X-4X +3X-1

The functions supplied enable us to have the fourth power of a computed and stored:
>>> PUT a pow 4 IN a4
and have the second derivative printed of a subtracted from a4:

>>> PRINT 2 der (a4 minus a)
18 17 16 15 14 13
912380 X - 1876896 X + 1439424 X - 487424 X + 1049280 X - 1769880 X +

12 11 10 9 8 7 6
+ 1161888 X - 329472 X + 383064 X - 526680 X + 285660 X - 65664 X + 47712 X -

5 4 3 2
- 49896 X + 20520 X - 3580 X + 1212 X - 648 X + 108

Of course, instead of using INPUT, it is perfectly possible to type the table involved, as shown in this com-
mand to print the eleventh line of Pascal’s triangle:
>>> PRINT {[1]: 1; [0]: 1} pow 10

10 9 8 7 6 5 4 3 2
X + 10 X + 45 X + 120 X + 210 X + 252 X + 210 X + 120 X + 45 X + 10 X + 1

The Package
YIELD a plus b: \ sum of two polynomials
FOR q IN keys b:
SELECT:
q in keys a:
PUT alql+blql IN alql
IF alq] = 0:
DELETE alq]
ELSE:
PUT blql IN alql
RETURN a
YIELD a minus b: \ difference of two polynomials
FOR q IN keys b:
SELECT:
q in keys a:
PUT alql-blq] IN alq]
IF alq] = 0:
DELETE a[ql
ELSE:
PUT -blq]l IN alq]
RETURN a
YIELD a times b: \ product of two polynomials

PUT {} IN res
FOR p IN keys a:
FOR q IN keys b:
PUT p+q IN s
SELECT:
s in keys res:
PUT res[s]+alpl#blql IN res[s]
IF res[s] = 0: DELETE res[s]
ELSE:
PUT alpl*blq] IN res[s]
RETURN res

YIELD a pow n: \ n-th power of polynomial a
CHECK n > 0 AND n mod 1 = 0

SELECT:
n=1:
RETURN a
n mod 2 = 0:

PUT a pow (n/2) IN b
RETURN b times b
ELSE:
RETURN (a pow (n-1)) times a

YIELD der a: \ first derivative

PUT {} IN res
FOR p IN keys a:

IF p <> 0: PUT pxalp]l IN res[p-1]
RETURN res

YIELD n der a: \ n-th derivative
CHECK n >= 0 AND nmod 1 = 0
IF n = 0: RETURN a
RETURN (n-1) der der a

YIELD a at x: \ value of a when its variable has value x
PUT 0 IN s
FOR p IN keys a: PUT s+alpl#x#xp IN s
RETURN s

YIELD a zero (u, v): \ a zero of polynomial a, u < zero <= v

SHARE eps \ must already have been given a value
CHECK eps > 0
PUT a at u, a at v IN au, av
CHECK sign au <> sign av
IF au > av: PUT u, v IN v, u
WHILE abs (u-v) > eps:
PUT ~(u+v)/2 IN mid \ no need for exact arithmetic
SELECT:
a at mid < 0: PUT mid IN u
ELSE: PUT mid IN v
RETURN v

HOW/TO INPUT a: \ read polynomial
PUT {} IN a
READ/COEFF
WHILE coeff <> 0: \ coeff 0 indicates end of input
READ/POWER
PUT coeff IN alpl
READ/COEFF
READ/COEFF :
WRITE “coefficient: #
READ coeff EG 0
READ/POWER:
WRITE “power: #
READ p EG 0
WHILE p < 0 OR p mod 1 <> 0:
WRITE “Enter non-negative integer: ”
READ p EG 0

HOW/TO PRINT aa: \ display a polynomial
SHARE lo, hi
PUT 77, ## IN lo, hi
PUT aa IN a \ to prevent re-evaluation of possibly complex parameter aa
SELECT:
a = {}: LO 707
ELSE:
FOR i IN {-#a..-1}: TERM \ handle terms in order of descending powers
OUTPUT
TERM:
PUT (-i) th’of keys a IN p
SIGN
COEFF
XPOWER
SIGN:
SELECT:
alpl < 0: LO 77
alpl > o:
IF p < max keys a: LO 7+
COEFF :
IF abs alp] <> 1 OR p = 0: LO abs alp]
XPOWER :
IF px 0: LO #p¥
IFp>1:HLl p

HOW/TO OUTPUT: \ (show output prepared by PRINT)
SHARE hi, lo
PUT 80 IN width
PUT ##, ## IN hi1, lo1
WHILE #hi > width:
PUT break IN end, begin
PUT hilend, hi@begin IN hit1, hi
PUT lolend, lo@begin IN lo1, lo
WRITE hi1 /
WRITE lo1 //
WRITE hi /
WRITE lo /
break: \ find place for one line to stop and for the next line to start
PUT width IN s
WHILE s > 0 AND s th‘of lo not’/in “+-%:
PUT s-1 IN s
IF s > 0: RETURN s, s
RETURN width, width+1

HOW/TO HI tt: \ (for the upper line of a display)
SHARE lo, hi
PUT #Mt*” IN t
PUT Lo™~(# #~~#t), hi~t IN lo, hi

HOW/TO LO tt: \ (for the lower line of a display)
SHARE lo, hi
PUT 7 gt IN t
IF Lo > ## AND lo@#lo <> 7 7:
PUT 7 7~t IN t
PUT Llo~t, hi~(” #~~#t) IN lo, hi

(extremely) Simple Logic Programming in B

Tim Budd

A style of programming has recently become popular in which a desired objective is expressed in terms of
“Horn clauses”, which are a form of simple logical predicates. The task of the computer is then to determine
if it is possible to satisfy the clauses. Such a style of expression is often called logic programming, although
the name is somewhat misleading and “predicate checking” might be a more appropriate term.

In this note we will show, by means of a simple example, how problems formulated in this manner can
sometimes be converted in a straightforward fashion into B programs.

For example, a traditional logic problem concerns a farmer, a wolf, a goat and some cabbage. It hap-
pens that all four are sitting on one bank of the Thames, and want to get to the other bank. Unfortunately,
the small boat the farmer has can only carry himself and at most one of the other three passengers. Worse
yet, if the farmer leaves the wolf alone with the goat then the wolf will eat the goat, and similarly the goat
and the cabbage. (Apparently, the wolf has no taste for cabbage and is smart enough to avoid eating the
farmer). Can the farmer safely carry his three passengers to the other bank? And if so what are the valid
sequence of moves?

The formulation we will use is adapted from Kowalski!. Let us use the names south and north to
represent the two sides of the Thames, and use a four position compound to represent the locations of the
farmer, wolf, goat and cabbage, respectively. Let us assume that initially all four are all on the south side of
the Thames. (For simplicities sake we will use numbers, such as 0 and 1, in the variables south and north,
thus making the conversion from one to the other easier). We first define a predicate which is true if and only
if the four protagonists are in a safe position; that is, one in which no damage can be done to any of them.
From the specifications, we have that

(either the farmer is with the goat, OR the goat is not with the wolf) AND
(either the farmer is with the goat, OR the goat is not with the cabbage)

This can be simplified to

either the farmer is with the goat, OR
neither the wolf nor the cabbage is with the goat

Which can be translated directly into B as follows:

TEST safe (farmer, wolf, goat, cabbage):
REPORT farmer = goat OR cabbage <> goat <> wolf

The harder part of the problem is then to determine whether the four passengers can be moved from
one bank to the other. Again, we can formulate this in terms of a predicate. Let reachable(farmer, wolf,
goat, cabbage) represent the set of states reachable from the initial positions, that is states for which there
exists a sequence of moves starting from the initial position and such that every move results in a safe state.
We can formulate information about reachable as follows:

reachable(south , south , south , south) is true
This is our initial condition with all passengers on one side of the Thames.

reachable(farmer, wolf, goat, cabbage) is true if
safe(opposite farmer, wolf, goat, cabbage) is true and
reachable(opposite farmer, wolf, goat, cabbage) is true.

This relation corresponds to the farmer moving by himself from one bank to the other. The original
state was reachable if it could be reached by the farmer moving himself, and the state he moved from was
both safe and reachable. Here opposite is a unit which converts a value from one to zero or vice versa. It
can be given as follows:

1. “Logic as a Computer Language”, Robert Kowalski, in Logic Programming, edited by K. L. Clark and S. -A.
Tarnlund, Academic Press 1982. While discussing the programming language Prolog, Kowalski merely provides
the formulation, and does not give a solution in that language. In fact the naive Prolog solution fails for exactly
the same reason as the naive B solution discussed in the text.

YIELD opposite position: RETURN 1-position
Three other predicates express the farmer moving one of the other passengers.

reachable(farmer, wolf, goat, cabbage) is true if
safe(opposite farmer, opposite wolf, goat, cabbage) is true and
reachable(opposite farmer, opposite wolf, goat, cabbage) is true.

reachable(farmer, wolf, goat, cabbage) is true if
safe(opposite farmer, wolf, opposite goat, cabbage) is true and
reachable(opposite farmer, wolf, opposite goat, cabbage) is true.

reachable(farmer, wolf, goat, cabbage) is true if
safe(opposite farmer, wolf, goat, opposite cabbage) is true and
reachable(opposite farmer, wolf, goat, opposite cabbage) is true.

The objective can then be expressed as “is reachable(north,north,north,north) true?” This can be deter-
mined by directly coding the information about reachable into a B TEST unit. The unit attempts to deter-
mine if a given position is reachable by checking (recursively) the legal moves from the initial position to the
current position. Of course, if the current position is not safe we can say immediately that it is not reachable.

TEST reachable locations:

SHARE south

REPORT safe locations AND (initial‘location OR next’move’reachable)
initial‘location:

REPORT locations = (south,south,south,south)
next‘move’/reachable:

PUT locations IN (farmer, wolf, goat, cabbage)

REPORT farmer’/move OR wolf/move OR goat’move OR cabbage’move
farmer/move:

REPORT reachable(opposite farmer, wolf, goat, cabbage)
wolf/move:

REPORT reachable(opposite farmer, opposite wolf, goat, cabbage)

oat/move:

REPORT reachable(opposite farmer, wolf, opposite goat, cabbage)
cabbage’move:

REPORT reachable(opposite farmer, wolf, goat, opposite cabbage)

If one now types in this program and executes it, one would notice that it seems to take a very long
time to execute. Inserting a WRITE statement in to print out the values being tested it becomes clear what is
happening. The poor farmer is ferrying his goat back and forth from one bank to the other, and will do that
indefinitely if we permit him. The problem is an inherent difficulty in this style of programming, and illus-
trates one of the pitfalls of the technique. We thus show how in many cases this difficulty can be overcome.

We can express our objective as a goal we desire to fulfill, in this case the goal is to show that
reachable(north,north,north,north) can be satisfied. What the program is then doing is to repeatedly refine this
into a series of sub-goals. For example our initial goal is refined into a sub-goal:

reachable(n, n, n, n)? ——= reachable(s, n, n, n)?

The safe condition here fails, and so the second alternative (moving the wolf along with the farmer) is tried
and also fails. The third alternative, moving the goat, finally passes the safe test. Thus the goal
reachable(south,north,south,north) is examined, and various subgoals are examined in an attempt to show it is

satisfiable.

reachable(n, n, n, n)? —= reachable(s, n, s, n)? —= reachable(n, n, s, n)?

Because it is the series of goals that drive the program, this technique is sometimes referred to as goal-
directed programming. The problem arises if along the way some goal appears twice in this chain:

Here clearly we are going to get into a loop, since if attempting to satisfy A we must show that we can
satisfy A, then to satisfy A we will eventually be required to show we can satisfy A, and so on. In this partic-
ular problem the appropriate solution is to FAIL on repeated goals, since if a solution exists a solution
without loop must exist. (Unfortunately, this cannot be stated as a general principle, and each problem must
be examined individually to determine the correct actions).

To implement this, we keep a list of the goals currently being attempted in a global list named

looking. Initially the list is empty. As each new goal is attempted we first see if it is in the list and fail if
so, otherwise we insert it into the list. Thus the refined solution is as follows (we have also added statements
to write out the final solution).

TEST reachable locations:
SHARE south, looking
IF initial’location: SUCCEED
IF locations in looking OR NOT safe locations: FAIL
INSERT locations IN looking
REPORT next‘move’reachable
initial‘location:
REPORT locations = (south,south,south,south)
next‘move’reachable:
PUT locations IN farmer, wolf, goat, cabbage
REPORT farmer/move OR wolf’move OR goat’move OR cabbage’move
farmer/move:
IF reachable(opposite farmer, wolf, goat, cabbage):
WRITE ‘move farmer to other bank’ /
SUCCEED
FAIL
wol f“move:
IF reachable(opposite farmer, opposite wolf, goat, cabbage):
WRITE ‘move farmer and wolf to other bank’ /
SUCCEED
FAIL
goat’/move:
IF reachable(opposite farmer, wolf, opposite goat, cabbage):
WRITE ‘move farmer and goat to other bank’ /
SUCCEED
FAIL
cabbage’move:
IF reachable(opposite farmer, wolf, goat, opposite cabbage):
WRITE ‘move farmer and cabbage to other bank’ /
SUCCEED
FAIL

An important fact to note is that it is not necessary to remove locations from looking. Upon return
from an invocation from the unit reachable, the global environment (including looking) is reset com-
pletely to the state it possessed prior to the unit being invoked. This is a two-edged sword, however, since in
some cases one would like to modify the global environment and that then becomes more difficult.

Having defined the units, we can execute the program and produce the result.

>>> PUT 0,1 IN south,north
>>> PUT {} IN looking

>>> CHECK reachable(north, north, north, north)

move
move
move
move
move
move
move

farmer
farmer
farmer
farmer
farmer
farmer
farmer

and goat to the other bank

to the other bank

and cabbage to the other bank
and goat to the other bank
and wolf to the other bank
to the other bank

and goat to the other bank

~1 <> 1, A Nice Distinction?

Lambert Meertens

Numbers in B come in two kinds, ‘exact’ (rational)
and ‘approximate’ (floating point). The distinction
is made at run time. In most versions of BASIC all
numbers are handled as approximate. We felt that
this was undesirable, and that the user must be
allowed control over ‘exact’ quantities, not subject
to rounding errors. Most programming languages
allowing this have a finite range of integers for the
exact domain. For B we chose rational numbers,
rather than only integers. This, and the absence of
limitations on the size, are an additional service to
the user. Not all computations can be performed
exactly (think of sin etc.). We therefore also need
approximate numbers.

On the other hand, we did not want to have
two different (static) fypes of numbers in the type
system. The user should have no need to worry
about the distinction exact/approximate when it is
not important. In particular, ‘mixed arithmetic’,
adding exact and approximate numbers, must be
allowed. It is only reasonable then to allow ‘mixed
numbers’ to be put in the same target too, and it
would be unreasonable to give a different semantic
meaning to PUT 0 IN x dependent on whether
all other assignments to x are exact, or some are
approximate.

Because exact computations can be much
more expensive than approximate ones, we decided
that approximateness should propagate upwards in
evaluating arithmetic expressions. This gives the
user a simple way to specify approximateness
throughout a complicated computation, as in

PUT ~1 IN s
FOR i IN {1..1000}:
PUT s+1/i IN s.

This takes much longer if ~1 is replaced by 1.

The approach taken has one fundamental
problem. If x is approximate, x-x is not identical
to 0. For approximateness propagates, and the
approximate result of the subtraction is therefore
not an exact number.

For that reason, the test x—x = 0 will fail if
x has an approximate number as value. At least,
that is the way things are defined in the Draft Pro-
posal (‘DP’). The relevant wording there is
(1.2.1.b):

The numbers are ordered according to their
arithmetic magnitude, with some tie breaking rule
(not further specified, but consistent) for exact and
approximate numbers with the same magnitude.

The fact that the test x-x = 0 can fail
means that sometimes the user does have to worry.
We chose this solution because we felt that the user
should be careful anyway when comparing approxi-
mate numbers and has no business to expect exact
dAnsSwers.

Mark 0, the first implementation of B, did not
stick to DP in this respect: the test 0 = ~0 did
succeed. In a mixed comparison x = Yy (one exact
and one approximate operand) the exact operand
was converted to floating point (possibly entailing
loss of precision) before performing the com-
parison. In other words, numbers could be equal
but not identical. Comparison proceeded there as
suggested by the following B code:

TEST x less’than y: \Mark 0
SELECT:
exact x AND exact y:
REPORT x < vy
ELSE:
REPORT ~x < ~y.

This means that if x = y succeeds, x+z = y+z
can still fail. For example, although in Mark 0 we
had ~1 = 1, it was the case that ~1+10%%-99 <
1+10%#%-99. (In particular, ~1+10%%-99 =
~1 = 1 < 1+10%%-99.) If we could guarantee
equality in this and all similar cases, the distinction
between exact and approximate would vanish! The
approach of Mark 0 has one nasty consequence. It
is possible that the test x = y = z succeeds,
whereas x = z fails. It is not hard to imagine the
paradoxical effects you can get if such values x, y
and z are used as keys of a table—although, in
actual programming, I don’t remember having run
across problems of this sort.

The Mark 1 version of the B system (the
current version) does adhere to DP: 1 and ~1 are
guaranteed to be different. In comparing the two,
we find ~1 > 1. Comparison in Mark 1 proceeds
as suggested by the following B code:

TEST x less’than y: \Mark 1
SELECT:
exact x AND exact y:
REPORT x < y
~x < ~y: SUCCEED
~x > ~y: FAIL
X = Ay

REPORT exact x AND NOT exact vy

Since Mark 1 became available, I have several
times run into the obvious mistake of comparing
x = y where I should have written ~x = ~y or
something like that. The approach of DP is bug
prone. It is very surprising that the two tests
x > 0 and -x > 0 can succeed simultaneously
(since —~0 = ~0). This easily gives rise to infinite
loops or other logic errors. For that reason, we are
reviewing this decision, to see if we can do better in
ABC.

Here are some pleasant properties that we
would like to have:

(i) If x = y, then x-y = 0;
(ii) If x = y, then x+z = y+z;
(i) If x = y = z, then x = z.

It is impossible to have (i) and (ii) together without
dropping the distinction between exact and approx-
imate, As we saw, Mark 0 had (i), but not (ii) and
(iii), whereas DP and Mark 1 have (ii) and (iii), but
not (i). However, it is also possible to have (i) and
not lose (iii). So the question is which of the two,
(1) and (ii), is the more important to keep.

Property (ii) is a special case of the ‘axiom of
referential transparency’. This ‘axiom’ is:

For all x and y, and any function f,
if x = y, then f x = f y.

What this really amounts to is the statement that
‘equal’ (tested by =) is the same as ‘identical’ (in so
far as properties can be observed by functions).
This is a desirable property indeed, no denying it.
All T can say that from the years I have used the
Mark 0 system, I cannot remember a single logic
error in my programming caused by mistaken reli-
ance on this property. Maybe there were a few, but
there cannot have been too many. But since using
Mark 1, errors because of falsely assuming property
(i) to hold, have abounded.

For instance, take these commands that cal-
culate the number of years necessary to pay off a
mortgage of 28,000 at an interest of 8%, paying
2,300 per year:

PUT 1985, 28E3 IN y, m
WHILE m > 0:
PUT 1.08 * m IN m
PUT min {m; 2.3E3} IN dm
PUTy + 1, m —=dm IN y, m
WRITE y /

This reaches an infinite loop, with m = ~0. (As an
exercise, try to find out where problems arise in
Leo Geurts’ polynomials program in this
newsletter.)

Moreover, although property (ii) holds in
Mark 1, the full axiom of referential transparency
does not. Numbers may be equal, and yet not
identical. This is the result of an undocumented
feature:

>>> PUT 1, 1.00 IN x, vy
>>> IF x = y: WRITE x, y /
11.00

>>> WRITE #/ x/,
1 4

>>>

#l\y\l /

So the ‘function’ convert-to-text yields different
results for otherwise equal values. This was put in
on purpose, and we have no intention of taking it
out.

So what is the new proposal? The idea is to
do a conversion on one of the two operands in a
mixed comparison x = Yy, but not from exact to
approximate, as in the first implementation, but the
other way around. For in all implementations of
approximateness, the approximate numbers are,
mathematically, a subset of the rational numbers,
usually of the form p/q with g a power of 2.

So assume that we have a function exactly
that returns an exact number, equal in arithmetic
magnitude to the value of its operand. For two
numbers, the order-test x < y is, under the new
approach, equivalent to exactly x <
exactly y. A definition that works in Mark I
is:

YIELD exactly x:
IF x <> ~x: \exact x
RETURN x
PUT round x IN r
SELECT:
x = ~r: RETURN r
ELSE:
RETURN r+0.5xexactly(2%(x-r))

TEST x less’than y: \New Proposal
REPORT exactly x < exactly y.

Other order-signs work similarly. For compounds

with two fields, we have (as is the case already),
that the order-test (x1, x2) < (y1, y2) is
equivalent to x1 < y! OR (x1 = y1 AND
x2 < y2). Itis obvious how to generalize this to
arbitrary compounds, and also to the comparison
of lists and tables. In particular, we have, for
example,

4#{~4} = 1;
{[1]: 2}[~1] = 2.

Sometimes it is important to be able to test
for the exactness or approximateness of a number.
Currently, a comparison like x <> ~x can be
used to that purpose, but no longer so under the
new proposal. Therefore, we would need a new
proposition exact to test for exactness.

Both under the current and the proposed
semantics, we have {1; ~1} = {~1; 1}. Since
the entries in lists are ordered, the question is
which of the two comes internally first. Under the
current semantics, 1 < ~1, so the exact 1 comes
before the approximate 1 in the list (even though,
written, we see {1; 1} appear). Under the pro-
posal, the two possible lists with different internal
orderings would be equal but not identical. There
are two possible approaches here:

(i) Who cares about that ordering; after all the
two possibilities are equal;

(ii) Define some (arbitrary) ordering for equal but
not identical values, like we have now for the
equality test, but only to be used for sorting list
and table entries.

Personally, my preference is option (i). This
is in fact the way in which {1; 1.00} is handled
now in Mark 1.

It is probably the case that mixed comparis-
ons will be slower under the proposed semantics.
But mixed comparisons are relatively rare, and
most cases will involve a comparison against the
exact number 0, and then 1, which can easily be
recognized as special cases that can be handled
much faster. Also, I do not like the current imple-
mentation of mixed comparisons in Mark 1; even if
it is decided to stick to ~1 <> 1, then I still feel
that the tie-breaking should apply only if the
numbers involved have the same arithmetic magni-
tude, in other words, if exactly x =
exactly y, and not as soon as ~x = ~y (see
the wording in DP). In that case, any advantage in
terms of speed will be lost anyway.

To be honest, I should mention one more
drawback of the proposal. The property that
x-y = 0 implies x = y is lost too: take
x =~1 and y = 1+10%%-99. In the subtrac-
tion, y 1is converted first to an approximate

number, yielding ~1.

Let me finish with a surprising fact that I
discovered during this investigation. One more
nice property is ‘monotonicity’: if x < y, then
x+z <= y+z. This property does not hold under
the proposal, and I thought initially that this was
another drawback. However, it does not hold
under any of the alternatives considered either.

HOW/TO ORDER B for the IBM PC:

To order the prototype of the implementation of B for the IBM PC or compatibles, running under MS-DOS
versions 2.0 (or higher), you should fill in the order form below, and send it together with a cheque or money
order for Dfl. 100 or US § 35 to:

B Group, PC distribution
Informatics / AA

CWI

POB 4079

1009 AB Amsterdam
The Netherlands

You will then receive:

® a floppy with the binary;

® The B Programmer’s Handbook;
® a B Quick Reference Card.

ORDER FORM

Please send me a copy of the prototype B system for the IBM PC, including documentation.
I enclose a cheque or international money order for Dfl 100 (or US $ 35) to cover materials and handling.

INAINE? coivnvissismers s o S o S S b T SRS R R SO RS R G s
FIEm/ INSHEUTEY ... oo scss s s b b o o o b o e s b s i

AAATESS: wooeieiieesreesireesssessssessnessseessaesseesseesmsesbasesssasbaessbaessssansnsanssansssamteessesass srms e baaarnns

COUDIEY S i e i S s NS s s
TELEPROME: ...ttt bbb s e

INEEWOTK AAAIESES. 1uneereeeee e ceeeeiceestiisseesssessassssasssnsssrassrasesrasassasesmsassasstssssesansssnnassnass

Machine(s): O IBM PC O IBM XT O Olivetti M24
O Apricot Portable O Apricot F1 O other:

Required media:

O 5%” double sided, double density floppy disk
O 3%” double sided floppy disk

Signature and Date:

HOW/TO ORDER B for UNIX:

To order the Mark 1 implementation of B, running on UNIXT systems, you should fill out the order form
below, and two signed copies of the SOFTWARE AGREEMENT on the next page. Send it to:

B Group, Unix distribution
Informatics / AA

CWI

POB 4079

1009 AB Amsterdam

The Netherlands

You will then receive:
® a tape with the sources (including an installation guide)
e the following documentation:
- Description of B
- A Users Guide to the B System
- B Quick Reference Card
- Manual Pages
Also, one of the two copies of the SOFTWARE AGREEMENT will be returned to you signed.

T UNIX is a Trademark of AT&T Bell Laboratories

ORDER FORM

Please send us the Mark 1 implementation of B for UNIX systems for the price of Dfi 100 (US § 35) (to cover
materials, postage and bank charges) for which we will be invoiced.

Firm/Institute cnmnannssssraanminiuiaasnssmaam
a8 T T eur
CCOMTITN s cmonaasiusnonsnets s s i o s donimainsssindshion i o3 ido R s s i s
FEIEPHOTRL coornesrrommmeosnemmmrerssenmomssssnssssrssmpensysneommarsseasosss s i s ion e SRR LRSS RN

Internet nEtwork address:ccoecveiceenicie et e s s s nas
Machine type: 0O Vax O Sun O PDP O other:
Operating System: 0O 42BSD 0O Version7 0O System V O other:

Check required tape parameters:

density O 800 bpi 0O 1600 bpi
format O Tar, blocksize 1 (0 Ansi D format
O Tar, blocksize 20 0 Ansi F format

(For other media and formats, please inquire.)
We include two copies, both signed, of the SOFTWARE AGREEMENT.

Signature and Date:

Please, fill out both copies below, and sign them.

SOFTWARE AGREEMENT

Effective as ofcccoeueeee. 198.., Stichting Mathematisch Centrum (SMC), having an office at 413 Kruislaan,
1098 SJ Amsterdam, and

(LICENSEE), having an office at

agree as follows:

SMC grants fee-free to LICENSEE a personal, non-transferable and non-exclusive right to use the computer programs and documenta-
tion relating to the Mark 1 implementation of B (LICENSED SOFTWARE).
LICENSEE agrees not to sell, lease or otherwise transfer or dispose of the LICENSED SOFTWARE in whole or in part.

SMC makes no warranties, express or implied. SMC shall not be held to any liability with respect to any claim by LICENSEE or a
third party on account of, or arising from, the use or the inability to use LICENSED SOFTWARE.

Neither this agreement nor any rights hereunder, in whole or in part, shall be assignable or otherwise transferable.

signed by
For LICENSEE For Stichting Mathematisch Centrum
NAME: oveeerreereeesesssesssessssenssemmsessssessssssensssesaessessssssessrors. INVAITIE] tuiusteuntiensssmesscustssnassreas st ssassastses e sttt s s
7 . ceeveeenssssasssesseesssnsemneenneenneee TitlE2 Director of Software Licensing
Signature and Date: Signature and Date:
SOFTWARE AGREEMENT
Effective as Ofc...... 198.., Stichting Mathematisch Centrum (SMC), having an office at 413 Kruislaan,

1098 SJ Amsterdam, and

(LICENSEE), having an office at

agree as follows:

SMC grants fee-free to LICENSEE a personal, non-transferable and non-exclusive right to use the computer programs and documenta-
tion relating to the Mark 1 implementation of B (LICENSED SOFTWARE).

LICENSEE agrees not to sell, lease or otherwise transfer or dispose of the LICENSED SOFTWARE in whole or in part.

SMC makes no warranties, express or implied. SMC shall not be held to any liability with respect to any claim by LICENSEE or a
third party on account of, or arising from, the use or the inability to use LICENSED SOFTWARE.

Neither this agreement nor any rights hereunder, in whole or in part, shall be assignable or otherwise transferable.

signed by

For LICENSEE For Stichting Mathematisch Centrum

NAME. .ooicvvirerrcsisiesisssmsasrees s esssss s sttt stas e sensenass NAITIE: cooeeeicrerirereeeests e sssss st s e aaness
B T e T ORI O Title: Director of Software Licensing

Signature and Date: Signature and Date:

