THE B NEWSLETTER

CWI, Amsterdam

Issue 3, January 1985

L

If you want a copy of the Mark 1 B Implementation, there is an
application form on the back two pages. This applies equally to
everyone who has written to us asking for a copy.

IMPORTANT NOTICE P

I

CONTENTS

IBM PC Progress

Notes for Contributors

What is in the name of B?

A File-Maintenance Program in B

A Proposal for Matrix/Vector Functions in B
Speeding Up the B Implementation.

New Publications

IBM PC Progress

Porting the B implementation to the IBM PC is in
progress. The two programs constituting the B sys-
tem, the interpreter and the editor, were running
within two weeks after we acquired the C compiler.
Because of problems with getting these to run in
parallel, however, we were obliged to merge the
two in one program. That proved to be too big, of
course. We have slimmed this integrated B system
down and it now runs small programs. As soon as
the available user space becomes acceptable, this
version will be released. We hope to announce this
in the next newsletter.

Notes for Contributors

The newsletter is intended to provide information
about B and to provide a forum for discussions,
Therefore, you are encouraged to submit any arti-
cles you see fit.

Articles don’t have to contain fully thought-
out ideas, but may be yet undeveloped thoughts
intended to stimulate discussion. The kinds of arti-
cles we have in mind are: interesting programs,
either written or suggestions; unusual applications;
letters, discussions on points of the language, pro-
posed improvements, experience with the language,
and so on.

If you are fortunate enough to be connected
to the Unix network, then you can submit articles
and send mail to mcvax!timo. Otherwise, articles
and mail should be sent to

B Newsletter

Computer Science Department
CWI

POB 4079

1009 AB Amsterdam

The Netherlands

JHLILATSAMAN g HH.L

What is in the name of B?

Lambert Meertens

When we started our project in 1975, we were not
aware, as far as I can remember, of the existence of
a language B. We decided to design our language
by iteration: design a version, try it out, redesign it,
etc., until it is really satisfactory. Since we
expected the first versions to be unsatisfactory, but
we also wanted to publish the designs for public
scrutiny, and even possibly disseminate implemen-
tations, we did not want to fix a name for the
language (for fear that the final product would get
an undeserved bad name through the shortcomings
of its predecessors). From [G&M] I quote:

To facilitate discussion, we have called the

hypothetical language fulfilling these criteria “B”.

The subsequent discussion goes on to talk about
“Bos “By'hds: When we had finished the
design of B, and looked at what we had there, we
were so enthusiastic that we decided to present it,
even though we had one more— albeit minor—
iteration scheduled, as “B”, being lim;_.B;.
(That is why we always use an italic “B”.) We
were still loath to fix a definitive name, and decided
to postpone that till the final revision. Although at
that time we knew that C once had a predecessor
B, we were under the—apparently false—
impression that it was no longer in actual use. (In
response to [G&M] we received some reactions like
“Hey, do you know that B was a predecessor of
C?”, but none of these suggested that B was in
actual use.) Since all our publications since then
used “B” to refer to the language (in particular
[MEE)), it would also be confusing to change the
name while the version remains the same; anyway,
we always point out that this “B” has nothing to do
with the other one.

Now that we are starting the revision process,
it becomes time to decide on a better, definitive,
name. Here is a list of all suggestions that have
been made up till now:

ABC
ASBIC
Bee
Bottom
HowTo

ABC stands for nothing, but suggests something
easy. It has an additional advantage that it is
acceptable in many other languages than English.
ASBIC is an acronym for ASBIC Spelled

Backwards I's CIBSA. Bee is, of course, phoneti-
cally the same as B. Bottom, the weaver, is a char-
acter from A Midsummer-Night’s Dream, with
whom Titania, the Queen of the Fairies, fell in love
at first sight (even though he was looking rather
asinine at the time). HowTo, finally, is derived
from one of the more memorable features of the
language, and has a nice ring.

Let us know which name you prefer, and
which ones you hate or think otherwise deleterious
or unhelpful to the promulgation of the language.
If you think you have a better name, it goes
without saying that it is mandatory that you
respond.

REFERENCES

[G&M] Leo Geurts & Lambert Meertens, Design-
ing a beginners’ programming language,
ini New Directions in Algorithmic
Languages 1975 (S. A. Schuman, ed.), 1-18,
IRIA, Rocquencourt (1976).

[MEE] Lambert Meertens, Draft Proposal for the
B Programming Language, Semi- Formal
Definition, Math. Centre, Amsterdam
(1981).

A File-Maintenance Program in B

Philomena Dunkl
Steven Pemberton

For a while this year Philomena Dunkl, an assistant professor of data-processing at Piedmont Virginia Com-
munity College, Charlottesville, Virginia, USA, visited the CWI, and during her stay took the time to learn B.
Since her background is in commercial computer applications she wrote a ‘file-maintenance’ program, in other
words a program to interactively insert, delete, and change data in a data-base. The version included here has
been prepared for publication by Leo Geurts.

The data-base in the program is of employee records, containing names, addresses, birthdates, ‘jobcodes’
(not further defined), with each record keyed on an identifying code (also not further defined).

The data-structure used is a table, with texts as keys (the identifying codes) and compounds as associ-
ates, consisting of eight fields (all texts) for first name, last name, middle initials, street, zipcode (postcode),
city, birthdate and jobcode. The program then allows you to add, delete, change, or display an entry in the
data-base. It does this by displaying a menu and a prompt:

. ADD NEW RECORD
DELETE RECORD
. CHANGE RECORD
SHOW RECORD
QUIT PROGRAM

O 00w

Enter function letter: ?

Typing one of these letters then selects the function wanted.

It can be seen that the program consists of one large unit with many refinements, and three other very
small units. Of note are the two refinements record’present and affirmative. This latter for exam-
ple allows the following:

WRITE / “Do you wish to change this record? ”
IF affirmative: CHANGE’/RECORD

and it looks like this:

affirmative:
READ response RAW
REPORT response in {”y”; #Y#; “yes”; ”YES”}

Of course, this is only a small demonstration program, and several things would need to be added to
make it a proper application package. For instance, there is no way to get an overview of the contents of the
data-base, such as a list of all identifying codes used. However, the program as it stands would make a good
starting-point for a more complete version.

Steven Pemberton

HOW/TO MENU:
SHARE file
WRITE / #“FILE MAINTENANCE PROGRAM FUNCTIONS” /
PUT #x# IN function
WHILE function <> “q”:
DISPLAY/MENU
SELECT/FUNCTION
DISPLAY/MENU:
WRITE “a. ADD NEW RECORD” /
WRITE “d. DELETE RECORD” /
WRITE “c. CHANGE RECORD” /
WRITE #“s. SHOW RECORD# /
WRITE “q. QUIT PROGRAM” //
SELECT/FUNCTION:
ASK/TEXT #function letter” FOR function
SELECT:
function = “a”:
REQUEST/ ID
ADD’NEW/RECORD
function = #d”:
REQUEST’ID
IF record’/present: DELETE/RECORD
function = “c”:
REQUEST” ID
IF record’present:
SHOW/RECORD
CHANGE /RECORD
function = #g%:
REQUEST/ID
IF record’/present: SHOW/RECORD
function = “q”:
WRITE / “#%» File Maintenance Program is ending #x*” /
WRITE / “#%» Have a nice day! »xx” //
ELSE: WRITE / “Please choose a, d, ¢, s or q.” /
REQUEST“ID: ASK’/TEXT “employee identification” FOR id
ADD“NEW/RECORD:
SELECT:
id in keys file: EXISTING/RECORD
ELSE:
\request record entries
ASK/TEXT “Last Name” FOR last
ASK/TEXT “First Name” FOR first
ASK’/TEXT “Middle Initial” FOR mid
ASK’/TEXT “Street Address” FOR addr
ASK/TEXT “Zipcode” FOR zip
ASK/TEXT “City” FOR city
ASK/TEXT #Birthdate (DDMMYYYY)# FOR birth
ASK/TEXT #Jobcode” FOR job
STORE“RECORD
WRITE / “#%% Record of employee #, id, # has been added #xx” /
EXISTING/RECORD:
WRITE / “A record for employee #, id, ” already exists.” /
SHOW/RECORD
WRITE / “Do you wish to change this record? ”
IF affirmative: CHANGE‘/RECORD

record’/present:
SELECT:
id in keys file: SUCCEED
ELSE:
WRITE / “#%x Record of employee #, id, ” cannot be found x%x” //
FAIL
DELETE/RECORD:
SHOW/RECORD
WRITE “Do you really want this record to be deleted? #
IF affirmative:
DELETE file[id]
WRITE / “#%x% Record of employee #, id, ” has been deleted »xx” /
CHANGE “RECORD :
WRITE “For the following items enter new data, or depress” /
WRITE “the RETURN key if the item is not to be changed.” //
UPDATE/TEXT “Last Name” FOR last
UPDATE/TEXT “First Name” FOR first
UPDATE/TEXT “Middle Initial” FOR mid
UPDATE/TEXT #Street Address” FOR addr
UPDATE/TEXT “Zipcode” FOR zip
UPDATE/TEXT “City” FOR city
UPDATE/TEXT “Birthdate (DDMMYYYY)# FOR birth
UPDATE/TEXT “Jobcode” FOR job
STORE/RECORD
WRITE / “xx%% Record of employee 7, id, ” has been updated x*x” /
SHOW/RECORD :
GET“RECORD
WRITE / “The record for employee #, id, “ contains the following:” //
WRITE “Last Name: #, last /
WRITE “First Name: #, first /
WRITE “Middle Initial: #, mid /
WRITE “Street Address: #, addr /
WRITE “City: 7, city /
WRITE #“Birthdate: #, birth /
WRITE “Jobcode: #, job /
STORE/RECORD:
PUT last, first, mid, addr, zip, city, birth, job IN file[id]
affirmative:
READ response RAW
REPORT response in {“y”; “Y#; “yes”; “YES”}
GET/RECORD:
PUT file[id] IN last, first, mid, addr, zip, city, birth, job

HOW/TO INIT:
SHARE file
PUT {} IN file

HOW/TO ASK/TEXT name FOR item:
WRITE “Enter #, name, “: ”
READ item RAW

HOW/TO UPDATE/TEXT name FOR item:
ASK/TEXT name FOR new’data
IF new’data <> ##: PUT new’data IN item

A Proposal for Matrix/Vector Functions in B

Lambert Meertens

Why matrix/vector functions?

As B gains use, application packages will become
available. Among these will be packages for
matrix/vector functions. However, there are rea-
sons to include a collection of elementary
matrix/vector functions in the predefined functions
of B. This was already stated in the Draft Propo-
sal.

One reason is that such functions are of a
much more general nature than the capabilities
made available by typical application packages.
(The same applies to functions on complex
numbers. However, it is a simple task to write a
package of elementary complex functions in B.
Matrix functions, on the other hand, are an area
full of pitfalls, and are best left to the specialists.)

It should be stressed that this proposal is con-
cerned only with a small collection of elementary
functions to be made available in standard B.
Numerical analysts will need a much larger collec-
tion of more specialized tools to ply their trade.
Also, this proposal is in no way definitive. All
comments are welcomed.

The representation of matrices in B

There is a more or less natural B data type for
modelling matrices, namely the table whose keys
are compounds with two fields.

Matrix operations may be defined using an
arbitrary algebraic field for the associates. How-
ever, the only type in B that corresponds to an
algebraic field is the type “numeric”. In by far the
most practical applications, matrices and vectors
will deal with real numbers. It seems wise, there-
fore, to restrict the attention to numbers. A second
best are complex numbers. Also, for some func-
tions, such as for taking the transpose MT of a
matrix M (interchanging row and column indices),
the type of the associates is immaterial, so these
functions will accept matrices of any kind.

The indices of matrices and vectors usually
form a set, such as (1,2, ---,n}, or
{0, 1, --- ,n—1}. But if one looks closer at the
definitions of the various operations, it becomes
clear that the indices need not form a set of con-
secutive integers. For example, let X and Y be a
pxq and a g Xr matrix, respectively. The product
Z = XY is then a p xr matrix, and the usual
definition tells us that an arbitrary entry z; of Z is

given by
g
Zip = Z XijY jk -
#=1

This definition assumes that the indices are taken
from a set {1,2, --- }. However, for the product
X-Y to be defined, the only important thing is that
the set of column indices of X is the same as the
set of row indices of Y. If we denote that set by
Q, then we can reformulate the definition of z; as

Zig = zxxj}’jk-

je@

If matrices are represented by tables, the relevant
sets of indices can be determined from the values
by means of the function keys. For example, the
following two tables are matrices:

{[4, 1]: -1; [4, 8): 6; [4, 9]: 4;
[5, 11: 2; [5, 8]: 4; [5, 9]: -1}

and
{[1, “buff#]: 1;
[8, “buff”]: 0; “fawn”]: -1;
[9, “buff#]: 0; “fawn”’]: 1}.
Since their respective sets of column and row

indices are the same, {1; 8; 9}, their product is
well defined:

{[4, “buff¥]: -1; [4, “fawn”]: -3;
[5, “buff#]: 2; [5, “fawn?]: -3}.

(1,
(8,
[9,

“fawn?]: 1;

So there is no reason to give up the generality
of B tables for the indices. An immediate advan-
tage is that we do not have to choose between
{1,2, ---,n} and {0, 1, -+ ,n—1}, either of
which may be the natural choice in a given applica-
tion.

Non-rectangular and sparse matrices

In many important applications, matrices are
known to have many zero entries. An example are
so-called “lower triangular” matrices. (A matrix X
is lower triangular if each entry x; for which
i <j is equal to 0.) An example of a lower tri-

angular matrix is
700
380]
157

Multiplying two lower triangular matrices can be

done much more efficiently than general matrix
multiplication. For large matrices, this can save
about a factor of six. The factor is already about
4.5 for 10x 10 matrices. For the sake of discussion,
let us call such matrices “sparse”. (Usually,
matrices are only called sparse if almost all entries
are 0.)

There is no requirement in B that tables be
“rectangular”. This gives a natural modelling for
sparse matrices: the same type as already chosen
for “normal” matrices. “Missing” entries are
assumed to be 0. For example, the following would
be a 3x3 lower triangular matrix:

{01, 11: 7,
[2, 11: 3; [2, 2]: 8;
[3, 11: 1; [3, 2]: 5; [3, 3]: 7}.

It might appear at first sight that this representa-
tion makes it impossible to determine, e.g., the set
Q introduced above. But if we take for Q the
intersection of the sets of column indices of X and
of row indices of ¥ (remember that missing entries
are taken to be 0), then we can still use the previ-
ous definition of matrix multiplication, If Q is
empty, the corresponding entry will be missing
from the result. The product of, e.g., two lower tri-
angular matrices, will then be lower triangular as
well, which saves space and time.

Having separate functions for sparse and
dense matrices (which have the same type) is
confusing and adds to the complexity. But we can
treat full rectangular matrices as a special, albeit
frequent, case of the general scheme for sparse
matrices. Still, we want the product of two rec-
tangular matrices to be rectangular, and not have
missing entries where a zero value is “accidentally”
produced. So the product matrix should have a
missing entry only if the set Q was empty.

The same ideas apply of course to matrix and
vector addition. For example, the sum of the two
vectors

{[1]: 8; [8]: -1 }
and

{ (81: 1; [9]: 8}
will be

{r11: 8; [8]: 0; [9]1: 3}.

These ideas are not new; they were derived from a
matrix/vector package for ALGOL 68[MEU78].
But it just so happens that B accommodates them
as though it were designed for that purpose.

Which functions should be predefined?

The functions of a usable matrix/vector system
must not only contain “algebraic” functions, but
also “administrative” functions. An example of an
algebraic function is multiplication; an administra-
tive function would be: “extract the j-th column
from a matrix”.

Algebraic functions. Let us first turn our attention
to the algebraic functions. Next to matrices and
vectors, a matrix/vector system must also deal with
scalars. Scalars are the kind of quantities found as
entries in a matrix or vector. So, in our case, they
are simply numbers. If we use the term “algebraic
value” to stand for “matrix, vector or scalar”, then
an algebraic function takes one or two algebraic
values as operands and returns an algebraic value.
Algebraic functions with one operand are taking
the inverse and the determinant (only for matrices)
and taking the opposite. Matrix transposition can
also be considered as an algebraic function, but will
be dealt with under the administrative functions.
Taking the opposite can be handled as multiplica-
tion by —1 and does not need a separate function.
The algebraic functions that take two operands are
addition, subtraction and multiplication. Addition
and subtraction are only meaningful between two
algebraic values of the same kind (and not, e.g.,
between a vector and a matrix), and their meaning
then presents no problems. The operations between
two scalars (simple numbers) already belong to the
predefined functions. For multiplication the issue
is more complicated. Let M and N stand for
matrices, v and w for vectors, and s for a scalar.
Then the products commonly found in mathemati-
cal texts have the forms M-N, M-v, s-M and s-v.
A more or less obvious meaning can be assigned to
v-w, namely that of the inner product of v and w,
which is by far the most common multiplicative
operation between vectors. Sometimes one finds
the notation v™-w for inner product in mathemati-
cal texts, and then also v™-M, suggesting a meaning
for v-M to us.

The meaning of the various ways of combin-
ing two non-scalar operands in a multiplication can
be made more precise by reducing each case to the
well-understood case of matrix multiplication. We
can turn a vector v into a one-column matrix v1 by
taking v1;; = v; (in which the choice of 1 for the
column index is arbitrary). Then the matrix M:v 1
is also a one-column matrix, and there is a unique
vector w such that M-v} = wl. M- is then
defined to be that vector w. If we denote the con-
verse operation of “1” by “|”, then we can write,
more concisely,

My = (Mvy)l.

The inner product of v and w is the single entry in
the 1x1 matrix v{T-w1. If we extend the meaning
of “|” to: turn a one-entry vector into a scalar,
then we can write:

vw = 1wl = 1T w)L
Similarly, we have
vM = w1t M)T|, = My,

A nice property that we have now is
(v-M)w = v(M-w), since both stand for
vTT-M ‘w1, the product of three matrices, and
matrix multiplication is associative (i.e., parentheses
do not matter). Unfortunately, it is not the case
that (v'w)-M = v-(w-M), nor do we have that
(M-wv)w = M-(v'w). The problem lies in the
different nature of scalar multiplication. If a
matrix is multiplied by a scalar, no similar reduc-
tion to matrix multiplication is possible at all
Luckily, the syntax of B requires the use of
parentheses in this case, so the user will be forced
to make the intention explicit anyway.

The inverse of a matrix M is denoted by
M~'. It is characterized by the property that
M~ "M = M-M~! = I, in which I is the “iden-
tity matrix” with entries 1 on the diagonal, and 0
elsewhere. Here we run into a problem: the notion
of “inverse” is ill defined, given our representation
for sparse matrices. A matrix may be “singular”,
meaning it has no inverse. It is in general not easy
to see if a matrix is singular. But a matrix with a
row or column of all zero entries is certainly singu-
lar. How do we know that the matrix does not
have such an invisible row or column? We could
require that there are as many row as column
indices. This is not a very good solution. In par-
ticular, it would be possible then that
M-(M~'v) 5= v. Luckily, it appears that there is a
better way out. I am told by numerical mathemati-
cians that people who compute an inverse matrix
M~ almost always do so only because they want
to solve an equation M'v = w, in which v is the
unknown. The solution is then given by
v = M~ "w. Now, if not only M is given, but
also w, the problem is well defined again. The
indices of w determine which row indices of M
count. This can be seen as follows. If M has some
entry m;;, but w has no index i, then a solution of
M-y = w is only possible if v has no index j, for
otherwise we will find an entry with index / in
M-v. But if we know that v has no entry v;, then
the elements in the j-th column of M are irrelevant
in forming M-v, so we may as well disregard the

j-th column of M. More precisely, let M’ be a
copy of M. If there are row indices in M that are
not indices of w, the columns for which there are
entries in those rows are struck from M’ (and
thereby these rows disappear too). The indices of v
will then be the remaining column indices of M’,
and there must be as many of those as there are
indices of w. If any of the indices of w is now
missing as row index of M’, M’ is deemed to be
singular. Otherwise, we can try to determine
M’~lw (and, in that process, M’ can, of course,
still turn out to be singular). This solution requires
that, instead of “~'”, the operation “~.” be a
primitive function. This function could be made to
work then between two matrices as well. Should a
user really need a matrix inverse, it is now easily
realized by M~"I. The responsibility for con-
structing the proper identity matrix / rests now
with the user.

A similar problem as for the inverse occurs
for the determinant. Any attempt at a reasonable
definition of a function “det” must give for a 1X1-
matrix M of the form {[k, k]l: v} the value of
det (M) as v. However, if M is, say
{[1, 1]: 8} and N is {[2, 2]: 7}, then
M-N equals the empty matrix {}, so there is no
hope that we could retain the algebraic identity
det(M-N) = det(M)-det(N). I do not see a solu-
tion here of a comparable simplicity to the one for
the inverse. Also, I am under the impression that
in actual computations computing the determinant
is relatively rare. The conclusion seems to be that
we should, maybe, simply not include a predefined
function for the determinant.

The various functions have to receive names.
For example, it is not possible to use the sign % for
matrix multiplication, since # is already in use and
overloading functions is not allowed in B (it cannot
be reconciled with the static type-checking system
of B). The following is an attempt to name the
various operations in a systematic way.

v+w v vec’plus’/vec w
M+N m mat‘plus/mat n
vV—Ww v vec’/minus’/vec w
M-—N m mat‘minus’/mat n
sy s sca’times’/vec v
s M s sca’‘times’mat m
vTow v vec’times’/vec w
vIM v vec’times’/mat m
M-y m mat/times’/vec v
M-N m mat‘times/mat n
MLy m mat‘inv/vec v

M™LN m mat/inv’mat n

A remark can be made here: the two functions

vec’/plus’vec and mat’/plus’/mat could be
replaced by a single one:

YIELD t1 tab’plus’tab t2:
PUT %1 IN sum
FOR k IN keys t2:
SELECT:
k in keys sum:
PUT sum[k]+t2[k] IN sum[k]
ELSE:
PUT t2[k] IN sum[k]
RETURN sum

The function thus defined is more general; it can be
used for pointwise addition of two tables whose
keys may be of any type. However, since the keys
of vectors may already have an arbitrary type, the
function defined above is the same as
vec’plus’vec, and mat/plus/mat s
superfluous! A similar situation occurs for
vec’minus’vec and sca’times‘vec. My
feeling is that nothing is gained by removing
mat/plus’mat, mat‘minus/mat and
sca’times’mat from the list. The simplification
by reducing the number of functions is more
apparent than real; it cannot compensate the
increase in complexity caused by the loss of a uni-
form, orthogonal, naming convention.

Administrative functions. In mathematical texts
matrix transposition is usually written as a postfix
operation, as in MT. This is not possible in B, of
course, but we can simply use a monadic function,
as in transpose m.

We need functions for selecting a row or
column in a matrix. An obvious notation is
m row i and m col j. The function row is
characterized by:

k in keys (m row i) if and only if
(i, k) in keys m, and then
(m row i)[k] = m[i, kI,

and m col j is of course the same as
(transpose m) row j. Other useful functions
are those for the selection of the diagonal and co-
diagonals. However, because of the additional
requirements on the two fields selecting matrix
entries for these functions, it is unlikely that the
user would not have the list of relevant keys readily
available, so these functions are easily programmed
by the user.

Given the functions row and col, the same
is true for many other useful operations. For
example, to delete a column of a matrix, the user
can write something like:

FOR i IN keys(m col j):
DELETE m[i, j]

It is also easy to turn a vector into a matrix of one
column. A column of a matrix can then be
changed by deleting the old column and adding a
matricized version of the new column.

Two more functions that could easily be pro-
grammed by the user are probably important
enough to include in the predefined collection.
They are the projections of the (two-field) keys of a
matrix on the first and the second field. The func-
tion row’keys can be defined as follows:

YIELD row’keys m:
PUT {} IN rk
FOR i, j IN keys m:
IF i not’in rk:
INSERT i IN rk
RETURN rk

and col ‘keys is defined similarly. Note that a
much more efficient implementation of the function
row’keys is possible than the one given here: for
a p Xg-matrix, O (p-logpgq), rather than O (pgq).

REFERENCE

[MEU78] S.G. van der Meulen & M. Veldhorst,
TORRIX, A Programming System for
Operations on Vectors and Matrices
over Arbitrary Fields and of Variable
Size, Vol. I, Math. Centre Tract 86,
Math. Centre, Amsterdam, 1978.

Speeding Up the B Implementation

Guide van Rossum

Introduction

About six months ago, Mark 1 of the B implemen-
tation was released to the world. This was a port-
able implementation [M&P], but not very fast
(though already much faster than the first proto-
type implementation). Since then, we have made
improvements to many parts of the system, started
the detailed design and implementation of a more
complete “B programming environment” (see
Newsletter 1), and started the porting effort to the
IBM-PC. While the work on the programming
environment and the port to the IBM-PC are far
from complete, we have managed to produce a ver-
sion of the released system which is about four
times faster. This article describes some of the
“tricks” we used in speeding it up. It is expected
that a version incorporating these changes will be
officially released soon after the appearance of this
Newsletter.

Small Integers

Even though B supports values of other types,
numbers (and especially integers) are heavily used
in most B programs. Moreover, the B interpreter
uses integers a lot for internal purposes.

Number implementation. B calls for two types of
numbers: exact and approximate. Exact numbers
are represented as fractions: a pair of integers,
called numerator and denominator. These integers
themselves can have any size, and are represented
as an array of suitable length of machine integers
(usually 16 or 32 bits). It is not too hard to pro-
gram arithmetic operations for such integers: the
same methods as are taught in elementary school
for addition, multiplication etc., can be used with
the machine integers as “digits” and using the
hardware for single-“digit” additions and multipli-
cations [KNU]. Dynamic storage allocation is used
to minimize storage requirements while allowing
arrays of arbitrary size.

Drawbacks. This representation is very flexible, but
does not allow particularly efficient manipulation of
small integers: every numeric B value is represented
as a pointer to a storage area containing the actual
value. For instance, to get the value of an integer
into a machine register, there is a subroutine which
follows the pointer to the integer, performs some
checks, extracts the value, and returns it. When

lots of integers have to be manipulated (assuming
each one fits in a word), this takes much longer
than would direct handling of machine words.
Also, storage requirements for, say, an array of
(small) integers are much larger than in a tradi-
tional situation where each integer takes only one
word.

Solution. A scheme similar to that used by most
Smalltalk implementations was adopted, see for
instance [KRA]. In the pointer values, we intro-
duce a “tag bit”, which guides the interpretation of
the pointer. If the tag bit is not set, the pointer is
indeed a pointer, directed at the value’s representa-
tion; if it is set, the rest of the pointer’s bit pattern
is interpreted as an integer value. If a pointer has
32 bits (including the tag bit), we can represent
integers up to 31 bits as a pointer with the tag bit
set. For larger integers, the tag bit is not set, and
the pointer points to the normal representation for
arbitrarily-sized integers. (Actually, a limit some-
what smaller than 31 bits has been chosen.)

Of course, the arithmetic routines (and a few
others) must be fixed to cope with the new format.
Accesses of large numbers are slightly slower, but
small integers are manipulated much faster, at the
cost of somewhat larger code. This trick alone has
about doubled the overall speed of the B inter-
preter, especially because integers are used freely in
the representation of B units as parse trees to
encode the built-in commands and operations, and
these of course all fall in the “small” category.

Portability issues. Not all machine architectures
have a spare bit in each pointer. However, on
machines which require (or encourage) alignment
of data on even addresses (or higher powers of
two), the low-order bit of a pointer is always zero,
so it can be used as the tag bit. The integer value
has to be shifted right one position then. Some
machines with word addressing, like the CDC
Cyber, have more bits in a pointer than can be
used for the largest address; here the high-order bit
can be used as the tag bit. If the worst comes to
the worst, one can always arbitrarily align all
values on even addresses, and use the low-order bit
as tag bit. This is possible because pointers always
point to data that has been allocated on the
“heap”, so one can change the allocation routine to
guarantee that it returns an even address. This
causes a word to be left unused sometimes, but the

wasted space will probably be less than ten per
cent, for not-too-big word sizes.

Changing the interpreter’s structure

The B interpreter works as follows: a command or
unit is first transformed into a “parse tree” (more
precisely, an abstract syntax tree), which is then
traversed according to the semantic rules. For
instance, the expression x[2]+3 is transformed to
something like the following tree:

SUM

SELECTION NUMBER

/\ I
3

| I
X 2

A traditional way of “executing” such parse trees,
which was originally followed, is the following:
there exists a routine “evaluate” which, when called
with a parse tree as parameter, will return the value
to which it evaluates. It determines the type of the
root node of the tree (SUM, in the example), and
then calls itself recursively on the respective sub-
trees, applies the operator to these results and
returns the result. For node types like TAG or
NUMBER, which act as terminal nodes, it retrieves
the value directly and returns it (in the case of TAG
nodes, which refer to targets, the memory is
searched for a target of the given name).

Although this mechanism is simple to imple-
ment, it is not particularly efficient. It requires one
procedure call per visited node in the tree, and uses
one “stack frame” per level of recursion, where the
recursion depth is equal to the height of the tree.
A much more efficient scheme would be to have a
linear representation, corresponding to “post-order”
traversal of the tree (related to “reversed polish”
notation). In the above example the nodes would
be visited in the following order: TAG(x),
NUMBER(2), SELECTION, NUMBER(3), SUM.
This would need no recursion, but instead we must
have an explicit stack to hold intermediate values
(as opposed to the implicit stack of call frames used
by recursion). Fortunately, stacks are easily
created and handled.

For example, a binary operation like SUM
pops two elements from the top of the stack, and
pushes its result, their sum, back onto the stack.
After the whole sequence has been executed, the

final result can be found on top of the stack (and it
is the only element left on the stack). Such a stack
takes much less space than the stack used by recur-
sion. Not only does it grow with steps of only the
size of a value pointer, while the recursion stack
would grow with the size of a stack frame (at least
several machine words in size), but also it grows
less high: for an expression like a+b+c+d+e,
parsed as (((a+b)+c)+d)+e, the recursion level
of the old method is equal to the nesting depth of
the tree, while with the new method in this case the
stack never grows higher than two entries. (Of
course there are “worst case” expressions where
both methods have their stacks grow to the same
level, but on the average the new method is much
better.) The number of procedure calls is greatly
reduced, too.

To cut a long story short, the interpreter has
been rewritten to use the new scheme. Rather than
using a separate store for the linear sequence of
operations, we have augmented the parse tree nodes
with an extra pointer to the next parse tree in the
sequence. In this way, we still have the parse tree
available, containing all information about the
external appearance of the unit, which is useful for
printing or editing it. (Currently, the editor uses
yet another representation.) The process that sets
up these pointers still uses recursion, but this is
done only once, so this does not affect the execu-
tion speed. Nodes that show the placement of
parentheses, which must be present to allow proper
printing or editing, are omitted from the execution
sequence, which reduces the number of visited
nodes somewhat.

Nodes indicating conditional execution (IF,
AND etc.) and repetition (FOR, SOME etc.) have
two possible successors and so need some extra
provisions: these have an extra pointer which
points to an alternative next node to continue from
if the test fails (or succeeds, in some cases). A
traditional stack frame technique (implemented
using the same stack as used for intermediate
values) is used for calls of other units, refinements
and formal parameters to HOW’TO-units (imple-
mented with “thunks”). In the “spirit of B”, the
size of the stack is only limited by the total amount
of available memory.

Miscellaneous improvements

Various other changes have been made to improve
the interpreter’s speed. Most of these involve mov-
ing work from the execution phase, where it would
be done each time a particular command is exe-
cuted, to a *“preprocessing” phase, where it need be

done only once, For instance:

Local targets. Originally, local targets were put in
a table, with the target’s name as key. In the new
system, local targets are put in a fixed-length array
(whose size is computed by the preprocessing
phase), where accesses are much faster.

Unit calls. When another unit is called, the unit
name has to be looked up in a table. In the new
system, this is done in the preprocessing phase, and
a pointer to the definition of the called unit is
planted at the call. A similar thing is done for
built-in functions.

Distributed permanent environment. This is not an
execution speed improvement, but makes the start-
up phase of the B system faster: targets in the per-
manent environment are put on separate files,
which are only read in when first needed. The old
system puts all permanent targets together on one
file, which is read in when the system is started,
and written back on exit. This makes the system
appear very slow on start-up when there are large
tables or lists in the environment, because it has to
read all targets, even when you only want to
inspect one of them; also, it wastes time when it
writes back the values of all targets even when only
a few have actually been changed. The new
scheme greatly reduces the start-up time, thus mak-
_ ing it much more pleasant to use. (It is also a step
on the way towards a “virtual memory” system,
where infrequently used targets may be written
back to disk to make room for others, and makes a
more efficient “checkpointing policy” possible,
where all changed targets are written back at regu-
lar times to safeguard agains crashes and other mis-
fortune.)

REFERENCES

[M&P] Lambert Meertens and Steven Pember-

ton, An Implementation of the B Pro-

gramming Language. CWI, note CS-

N8406.

D.E. Knuth, The Art of Computer Pro-

gramming, Vol. 2, Seminumerical Algo-

rithms. Addison-Wesley.

[KRA] Glen Krasner, Smalltalk-80: Bits of His-
tory, Words of Advice. Addison-Wesley.

[KNU]

New Publications

Only two new publications have appeared since the
last B newsletter. The publications mentioned in
the first two newsletters are all still available, as are
the newsletters themselves.

Cursus programmeren voor beginners — Een ken-

nismaking met de programmeertaal B, Deel 1,

Leo Geurts, 85 bladzijden.
This is a translation of Computer Program-
ming for Beginners — Part 1, mentioned in
the previous newsletter. Dit rapport bevat
het eerste deel van een beginnerscursus pro-
grammeren, gebaseerd op de nieuwe pro-
grameertaal B. De meeste elementaire pro-
grammeertechnieken en de meeste eigenschap-
pen van B komen aan bod. De aandacht gaat
vooral uit naar het ontwerpen en schrijven
van programma’s, niet zo zeer naar de prak-
tische omgang met computers. Veel korte
programma’s worden als voorbeeld gegeven,
of als oefening van de lezer gevraagd.
De tekst vereist geen voorkennis, en is zowel
voor cursussen als voor zelfstudie geschikt.
Deel 2 zal dieper ingaan op de taal en op de
kunst van het programmeren. Gepubliceerd
door het CWI, Notitie CS-N8407, fl. 11.90.

An Implementation of the B Programming Language,

Lambert Meertens and Steven Pemberton,

8 pages.
This gives an overview of the implementation
of B and some of the techniques used in it.
It is a version of the article that appeared in
USENIX Washington Conference Proceed-
ings (January 1984), mentioned in the previ-
ous newsletter. Published by CWI, note CS-
N8406, price Dfl. 3.70.

CWI publications can be ordered from

Publications Department
CWI

POB 4079

1009 AB Amsterdam
The Netherlands

You will be invoiced. The prices quoted exclude
postage and packing, and for foreign orders there is
an additional charge of Dfl. 6.50 to cover bank
charges.

Please, fill out both copies below, and sign them.

SOFTWARE AGREEMENT

Effective as of 198.., Stichting Mathematisch Centrum (SMC), having an office at 413 Kruislaan,
1098 SJ Amsterdam, and

(LICENSEE), having an office at

agree as follows:

SMC grants fee-free to LICENSEE a personal, non-transferable and non-exclusive right to use the computer programs and documenta-
tion relating to the Mark 1 implementation of B (LICENSED SOFTWARE),

LICENSEE agrees not to sell, lease or otherwise transfer or dispose of the LICENSED SOFTWARE in whole or in part.

SMC makes no warranties, express or implied. SMC shall not be held to any liability with respect to any claim by LICENSEE or a
third party on account of, or arising from, the use or the inability to use LICENSED SOFTWARE.

Neither this agreement nor any rights hereunder, in whole or in part, shall be assignable or otherwise transferable.

signed by

For LICENSEE For Stichting Mathematisch Centrum
T T VOO .1~ S
TRIE! oot sssessesenn. TitlE? Director of Software Licensing
Signature and Date: Signature and Date:

SOFTWARE AGREEMENT

Effective as of 198.., Stichting Mathematisch Centrum (SMC), having an office at 413 Kruislaan,
1098 SJ Amsterdam, and

(LICENSEE), having an office at

agree as follows:

SMC grants fee-free to LICENSEE a personal, non-transferable and non-exclusive right to use the computer programs and documenta-
tion relating to the Mark 1 implementation of B (LICENSED SOFTWARE).

LICENSEE agrees not to sell, lease or otherwise transfer or dispose of the LICENSED SOFTWARE in whole or in part.

SMC makes no warranties, express or implied. SMC shall not be held to any liability with respect to any claim by LICENSEE or a
third party on account of, or arising from, the use or the inability to use LICENSED SOFTWARE.

Neither this agreement nor any rights hereunder, in whole or in part, shall be assignable or otherwise transferable,

signed by

For LICENSEE For Stichting Mathematisch Centrum
WNAMEL scomvmmmmsmmmsmisnsismssssnimasmsg RIIBS o iisiiiatisimmsresrmssenrsssassetsssmmstesesonen
THHE: occiinciinseinsssnnssnmmssiississsusssisnssssisnssinsssmssmssssssiossesinnss Titlez Director of Software Licensing

Signature and Date: Signature and Date:

HOW/TO ORDER MARK1 :

To order the Mark 1 implementation of B, running on UNIXf systems, you should fill out the order form
below, and two signed copies of the SOFTWARE AGREEMENT on the next page. Send it to:

B Implementation

Computer Science Department
CWI

POB 4079

1009 AB Amsterdam

The Netherlands

You will then receive:
® a tape with the software (including an installation guide)
® the following documentation:
- Description of B
- A Users Guide to the B System
- B Quick Reference Card
- Manual Page
Also, one of the two copies of the SOFTWARE AGREEMENT will be returned to you signed.

+ UNIX is a Trademark of AT&T Bell Laboratories

ORDER FORM

Please send us the Mark 1 implementation of B for UNIX systems for the price of Dfi 100 (US § 35) (to cover
materials, postage and bank charges) for which we will be invoiced.

I I v e T T v S B B S e S S R
DEELET crcasersnrsonnssssnssnasasnssssnansssansmssssms sasangmssssnnsssssssansasssanssmnnssnnsssanyassnnnns snsbbd LbAbss beLEa HRRLS
BRI TISTI IR covismossovuonovosuninnanmssinins ook vosssn s oo 56 5 5400 FE RRF AV OUR SRR AR AN BRI P SRS

A AT OSSR T e o S B SR R

L o7 T O ——

TISENETE ASGHOTK AAUDEEST & orimsmssmss st s i i ies s s s aars s saia suns

Check required tape parameters:

density O 800 bpi O 1600 bpi
blocking factor a1 a 20
format O Ansi labelled O Tar

We include two copies, both signed, of the SOFTWARE AGREEMENT.

Signature and Date:

