THE B NEWSLETTER

CWI, Amsterdam

Issue 2, June 1984

—— IMPORTANT NOTICE —

=——= If you want a copy of the Mark 1 B Implementation, there is an V=

———] application form on the back two pages. This applies equally to FV—=

=——= everyone who has written to us asking for a copy. —

e — | —————
CONTENTS

About This Issue

The Mark 1 Implementation
Plans for the Near Future
Notes for Contributors

From MC to CWI

Examples of B

The Highlights of B

A Comparison of Basic and B
A Comparison of Pascal and B
New Publications

Form for Mark 1

About This Issue

Amongst the articles in this issue are com-
parisons of B with Pascal and Basic. While we feel
that it should not really be us who make such com-
parisons, we were specifically asked for these brief
overviews, and we thought it worthwhile to include
them in the newsletter. The same applies to the
brief description of the highlights of B.

The Mark 1 Implementation

There is now an implementation of B avail-
able, for machines with at least 256k bytes of main
store running under Unix. It is a full implementa-
tion of the language, with a small environment that
includes a B dedicated editor front-end to the inter-
preter, variables that survive after logging out, and
independently editable program units (procedures
and functions).

The system is written in C, and while it
currently runs under Unix, operating system depen-
dencies are localised in a pair of files, and so
modifications to allow it to run on a similar operat-
ing system are not difficult to make. Machine
dependencies are localised in one file.

There is a trimmed down version that runs on
larger PDP/11’s (with split I and D spaces) that
also comes with the release.

The editor uses the Termcap data-base to
avoid dependencies on particular terminal types.

JALLATSMIN g HHL

Plans for the Near Future

There will shortly appear a “Rationale for B”
that will describe the reasons behind the features of
B, the alternatives rejected, possible improvements,
and so on. A list of seriously considered changes
will be published in a future B newsletter. This
will initiate the process of putting the final polish
to the B language, and people will then be invited
to submit proposals for changes to the language.

Thanks to the generosity of IBM Netherlands,
we have been lucky enough to receive an IBM PC.
Work is just beginning therefore on transporting
the current implementation to it.

Work will also continue on optimising the
implementation, including speed improvements as
well as code-size reductions.

More function will be added to the imple-
mentation in the form of static checks, and an
improved environment. In this phase the static
type check and the static content check will be
added, though they will only be done within units,
and not between them. The environment will be
extended to take it closer to what was described in
the first newsletter, with a better screen manager,
proper support for workspaces, and an editable
command document. To this end the report by
Jeroen van de Graaf will be followed.

There is a current project teaching B in a
Dutch school to classes of several types, and this
project will continue, and will hopefully broaden.
Part 2 of the beginners’ course will appear, as will a
translation of Part 1 in Dutch.

Notes for Contributors

The newsletter is intended to provide infor-
mation about B and to provide a forum for discus-
sions. Therefore, you are encouraged to submit
any articles you see fit.

Articles don’t have to contain fully thought-
out ideas, but may be yet undeveloped thoughts
intended to stimulate discussion. The kinds of arti-
cles we have in mind are: interesting programs,
either written or suggestions; unusual applications;
letters, discussions on points of the language, pro-
posed improvements, experience with the language,
and so on.

If you are fortunate enough to be connected
to the Unix network, then you can submit articles
and send mail to mcvax/time. Otherwise, articles
and mail should be sent to

B Newsletter

Computer Science Department
CWI

POB 4079

1009 AB Amsterdam

The Netherlands

From MC to CWI1

On September 1, 1983, our institute changed
its name into CWI — Centrum voor Wiskunde en
Informatica, that is, Centre for Mathematics and
Computer Science.

The name of the foundation remains
unchanged: Stichting Mathematisch Centrum.

Examples of B

Steven Pemberton

Our experience with introducing B has shown that people don’t appreciate the simplicity of B simply by
having all its features enumerated, but rather by seeing example programs. Consequently here are a few
interesting programs that demonstrate some of the features of B.

Numbers

Here is a simple guessing game.

HOW/TO GUESS:
CHOOSE number FROM {0..99}
WRITE ‘Guess my number from 0 to 99: /
READ guess EG 0
WHILE guess <> number:
SELECT:
guess < number: WRITE “Too low, try again:
guess > number: WRITE ‘Too high, try again: ’
READ guess EG 0
WRITE ‘Correct”’

GUESS

Guess my number from 0 to 89: 50
Too high, try again: 25

Too high, try again: 15

Too low, try again: 20

Too high, try again: 17

Too lLow, try again: 19

Correct

® This next program, due to Lambert Meertens, prints the value of pi to a large number of places. It works
by evaluating the continued fraction

4
1
4
9
2
L K

Qk+1)+ - -
It depends on the unbounded exact arithmetic of B, since the targets a, b, c, and d get very large indeed
(for instance, after printing 80 digits of pi, all four values are larger than 10™.)

HOW/TO PI:
WRITE ’3.7
PUT 3, 0, 40, 4, 24, 0, 1 INk, a, b, ¢, d, e, f
WHILE 1=1:
PUT kx%x2, 2xk+1, k+1 IN p, q, k
PUT b, pxa+qxb, d, pxc+qxd IN a, b, ¢, d
PUT f, floor(b/d) IN e, f
WHILE e=f:
WRITE e<<1
PUT 10%(a-exc), 10%(b-fxd) IN a, b
PUT floor(a/c), floor(b/d) IN e, f

Rather than let the program run to completion, we shall only print a little of its output here:
' 3.14159265358979323846264338327950288419716939937510582097494459230781640628620899¢

1+
3+

tna

-~ Biblothesk
mmwiskungeenwmm

.........

~ Texts

A rather frivolous example of using texts (more serious ones follow) is this one that appears to answer ques-
tions with ‘yes’ or ‘no’ with some consistency. In fact all it does is output ‘yes’ if the number of n’s in the
question is even, and ‘no’ otherwise.

HOW/TO ORACLE:

INPUT
WHILE Lline <> 77/:
SELECT:
(‘n’#line) mod 2 = 0: WRITE ‘Yes’ /
ELSE: WRITE “No’ /
INPUT
INPUT:
READ line RAW
ORACLE
Are you unhappy?
No
So you are happy.
Yes
Do you know what time it is?
No
So you’re stupid then?
No
But this program is.
Yes

Lists

Here is the complement of the guessing game program given above: the computer guesses the number. It
works by keeping the list of numbers that the answer must lie in (initially {0..99}). Then as each guess is
high or low, the range is restricted accordingly (for instance, if 50 is too low, the list becomes {51..99}). If
the list ever becomes empty, then the player must have given the wrong answer at some stage.

HOW/TO PLAY:
WRITE ‘Think of a number from 0 to 99, and press [return]: ’
READ return RAW '
PUT {0..99} IN possible
TRY
WHILE reply <> “y’ AND possible <> {}: TRY
IF possible = {}: WRITE ‘Cheat!’
TRY:
CHOOSE guess FROM possible
WRITE ‘Is it ‘guess*? “
READ reply RAW
PUT replyl1 IN reply
SELECT:
reply = “y’: WRITE ‘Good’ /
reply = “h’: PUT {min possible..guess-1} IN possible
reply /L’: PUT {guess+1..max possible} IN possible
ELSE: WRITE ‘Possible answers are y(es), h(igh), lL(ow)’ /

PLAY

Think of a number from 0 to 99, and press [return]:
Is it 17?7 no

Possible answers are y(es), h(igh), L (ow)

Is it 337 L

Is it 387 L
Is it 53?7 h
Is it 457 |
Is it 507 y
Good

PLAY

Think of a number from 0 to 99, and press [return]:
Is it 937 L

Is it 967 h

Is it 947 h

Cheat!

@ This next program solves the Towers of Hanoi problem by simulating parallel processes. Each disc is a
separate process that repeatedly moves after a fixed interval. Each disc is put on a list of scheduled processes,
with the time it is due to move at, its piece number (the smallest is numbered 1, the next largest 2, and so on),
which tower it will next move to, the direction it is moving in (+1 or —1), and the time between its moves.
Then the earliest process is removed from the list, the information printed and the process rescheduled.

HOW/TO HANOI n:
INITIALISE
FOR i IN {1..(2%%n)-1}:
SELECT“PROCESS
WRITE ‘Move piece’, piece, / from’, from, / to’, to /
RE “SCHEDULE
INITIALISE:
PUT {} IN process
FOR i IN {1..n}:
INSERT 2x##(i-1), i, 1, (-1)#x(i+n), 2x%i IN process
SELECT/PROCESS:
PUT min process IN time, piece, from, direction, wait
REMOVE min process FROM process
RE“SCHEDULE :
INSERT time+wait, piece, to, direction, wait IN process

to:
RETURN ((from+direction-1) mod 3) + 1

HANOI 3

Move piece 1 from 1 to 2

Move piece 2 from 1 to 3

Move piece 1 from 2 to 3

Move piece 3 from 1 to 2

Move piece 1 from 3 to 1

Move piece 2 from 3 to 2

Move piece 1 from 1 to 2

~ Tables

At first sight to the experienced programmer, the absence of a pointer type in B suggests that certain types of
program cannot be written. In fact, thanks to tables, they can, and with certain advantages not least of which
is the ease of printing a table.

To show the use of tables in this way, we will produce a small program to convert simple arithmetic expres-
sions into trees, a traditionally typical example for pointers.

A tree can be represented in B as a table of nodes. It is relatively unimportant what the keys of such a table
are, and in this example we will use numbers. Each node then consists of an indication of what kind of node
it is (here we will use texts), and a table of numbers. These numbers point to the sub-trees of this node. For
example, the tree for ax2+b*2 can be represented as the table

{ [0]: (“a’, {});
[l 422, LR
[2]: (7%, {[1]: 0; [2]: 1});
[38]: (‘b’, {});
[41: (“27, {});
[51: (/%/, {[1]1: 3; [2]: 4});
[61: (/+7, {[1]: 2; [2]: 5})
}

In this case, instead of tables of sub-nodes, lists could be used since the associates are in increasing order any-
way. However, if the nodes were identified by texts, say, then tables would have to be used.

The text of the expression to be compiled is passed over as parameter:

HOW/TO COMPILE expression:
SHARE Lline, tree
PUT {}, expression IN tree, line
EXPRESSION x
DISPLAY tree

HOW/TO DISPLAY tree:
FOR i IN keys tree:
WRITE i, 7: “
PUT tree[i] IN type, sub’nodes
WRITE type
FOR n IN sub’nocdes:
WRITE n

WRITE /

The expression is parsed using recursive-descent: EXPRESSION calls TERM to parse a sub-expression;
next’char returns the first character of the expression and SKIP/CHAR trims off the first character from
the expression. GENERATE adds a node to the tree.

HOW/TO EXPRESSION x:
TERM x
WHILE next/char in {/+/; /-'}:
PUT next’char IN op
SKIP/CHAR
TERM y
GENERATE (op, {[1]: x; [2]: y}) GIVING x

HOW/TO GENERATE c GIVING p:
SHARE tree
PUT #tree, c IN p, treel[#treel

YIELD next’char:
SHARE Lline
IF line = 77:
RETURN line|1

RETURN #

HOW/TO SKIP/CHAR:
SHARE Lline
PUT Line@2 IN line

TERM is very similar to EXPRESSION. OPERAND recognises a singie letter or digit as operand to a sub-
expression.

HOW/TO TERM x:
OPERAND x
WHILE next’char in {/%/; “//}:
PUT next’char IN op
SKIP/CHAR
OPERAND y
GENERATE (op, {[1]: x; [2]: y}) GIVING x

HOW/TO OPERAND x:
SELECT:
next/char in {‘a‘..’z’} OR next’char in {/0/..7/97}:
GENERATE (next’char, {}) GIVING x

ELSE:
WRITE ‘Error at:’/, next’char /
PUT -1 IN x
SKIP/CHAR

COMPILE “ax2+bx2”

+ ¥ NDT % oW
N W o

OO0 s WN =O
g

Tables and lists

An amusing program is this one from Leo Geurts for processing sentences in a natural language. It takes a
number of sentences in some language, supplied by the user, and analyses them by saving all triples of charac-
ters that occur in the sentences. Thus the sentence ” The cat is fat.” contains the triples ” The”, ” he
”,"”e c”,” ca”, "cat”, "at ”,”t i”, and so on, up to ”fat” and ”at.” These are saved in a table
called fol lowers that maps pairs of characters that occur onto the list of characters that may follow that
pair. Thus in the above example, the table will contain, amongst others,

followers[/a’, “t/] = {/.7; 7 7}

because of the two triples “at ” and ”at.”. The program then starts generating new sentences at random
based only on these triples. What is surprising is that it often generates real words that were not in the input.

ANALYSE saves each triple in a given line.

HOW/TO ANALYSE Lline:
SHARE starters, followers, enders
CHECK #line > 2
PUT 1 th’of line, 2 th’of line IN c1, c2
INSERT c1, c2 IN starters
INSERT line@#line IN enders
FOR ¢3 IN line@3:
IF (ct, ¢2) not’in keys followers:
PUT {} IN followers[c1, c2]
INSERT c3 IN followers[ct, c2]
PUT c2, c3 IN c1, c2

- GENERATE generates a new sentence. It chooses the next character to output at random from the list of fol-
lowers.

HOW/TO GENERATE:

SHARE starters, followers, enders

CHOOSE c1, c2 FROM starters

WRITE c1, c2

WHILE c2 not’in enders:
CHOOSE c3 FROM followers[c1, c2]
WRITE c3
PUT ¢2, ¢8 IN ct1, c2

WRITE /

HOW/TO START:

SHARE starters, followers, enders
PUT {}, {}, {} IN followers, starters, enders
READ line RAW
WHILE line <> “/:

ANALYSE line

READ line RAW
FOR i IN {1..3}:

FOR j IN {1..4}:

GENERATE
WRITE /

START

Mary had a lLittle lamb,

Its fleece was white as snow,
And everywhere that Mary went,
That Lamb was sure to go.

That lamb,

And as snow,

And as fleece as was wherywhite thad everywhite that lamb,
Its snow,

Mary hat Mary hat lLite was fleece as snow,
Its fle where to go.

And every was sure to go.

Marywhittle whittleece lamb,

Mary had everywhery hat lamb,

Its sure as sure thad evere a Little lamb,
Thad every went,

Mary hat lLamb was snow,

~ Tables and texts

Here is a cross-reference generator. It takes a table of texts (the standard way in B of representing a tradi-
tional text-file) and produces from it a new table, mapping the words that occurred in the texts to their ‘line
numbers’.

The major routine is the one that saves a word in the cross-reference table.

HOW/TO SAVE word AT line:
SHARE xtab
IF word not/in keys xtab:
PUT {} IN xtab[word]
INSERT lLine IN xtab[word]

The cross-reference is made by taking each line in turn, and saving each word in that line in the table xtab

HOW/TO XREF text:
SHARE xtab
PUT {} IN xtab
FOR line IN keys text:
TREAT/LINE
OUTPUT xtab
TREAT/LINE:
FOR word IN words text[line]:
SAVE word AT line

HOW/TO OQUTPUT xtab:
FOR word IN keys xtab:
WRITE word<<10
FOR Line IN xtab[word]:
WRITE line>>4, 7 /
WRITE /

The words in a line are generated as a list. A word has been isolated if its first character is alphabetic and
nothing follows it or the first character following is not alphabetic.

YIELD words line:
PUT {} IN list
WHILE SOME head, word, tail PARSING line HAS word’/isolated:
INSERT word IN list
PUT tail IN line
RETURN list
word/isolated:
REPORT word > /7 AND alphabetic word|1 AND tail’not‘alphabetic
tail/not/alphabetic:
REPORT tail = 7/ OR NOT alphabetic tail |1

TEST alphabetic char:
REPORT char in {’a’..’z’} OR char in {’A’../Z’}

FOR n in keys text: WRITE n, text[n] /
1 Now is the time

2 for all good men

3 to come to the aid

4 of the party

XREF text
Now
aid
all
come
for
good
is
men
of
party
the
time
to

3 4

W= = b BN-="MNNWONW-—=

3

@ Sometimes it is very useful to be able to invert a table. Consider a telephone directory mapping names to
telephone numbers:

WRITE directory
{[/Ed’]1: 4130; [“Han’]: 4145; [“Jan’]: 4130; [“Jo’]: 4145; [‘Leo’]: 4141}

Clearly, some numbers have more than one subscriber, so the inverse mapping will have to be from numbers
to lists of names:

YIELD inverse t:
PUT {} IN t“
FOR k IN keys t:
IF t[k] not’in keys t7: PUT {} IN t/[t[k]]
INSERT k IN t/[t[k]]
RETURN t~

WRITE inverse directory
{[4130]: {’Ed’; ‘Jan’}; [4141]1: {’Leo’}; [4145]: {’/Han’; “Jo’}}

The Highlights of B

Leo Geurts
Steven Pemberton

B is a system fully concentrating on ease for
non-experienced users. In designing it we have
looked for attractive features in existing systems,
and combined some of those with our own ideas.
Although it is difficult to show how easy it is to use
B by just giving its individual features, here is a list
of the good points of B.

The language proper

Types. B offers all the advantages of strong typing
found in languages such as Pascal. Two nice data
types of B are the /ist (a bag or collection of items
of one type) and the table (an array with indexes of
any one type and stored values of any one type).
Both these types are nicely related via the function
keys, which delivers the list of indexes of a table.
Unlike the types of Pascal, B’s lists and tables are
fully dynamic. The number of types in B is small:
5, and they have been chosen in such a way that
they may easily be combined to simulate any other

type.

No declarations. Unlike most typed languages, B
has no declarations, the types being inferred from
context.

No limits. Apart from sheer exhaustion of
memory, B does not allow limits to be imposed by
the implementation. So identifiers may have any
length, numbers may have any magnitude, a list
may contain any number of items, and so on.

Refinements. To support top-down programming B
has refinements, which behave like parameterless
light-weight procedures.

Nesting by indentation. Indentation is used to indi-
cate nesting. This obviates constructs like begin ...
end and do ... od, and allows a better view of pro-
gram texts. It also prevents confusion due to con-
tradiction between indentation and keywords.

The environment

No files. Because global variables are permanent in
B and since values such as tables may be extended
at will, there is no need for an extra file concept
and the bother of special file handling commands.

One face. The design of the environment is based
on the philosophy that one consistent face is shown
to the user at all times. This means that all parts

of the environment should know about the
language and about each other. The user is always
speaking to the syntax-directed editor, also when
entering input to a program. All the time the edi-
tor guards against syntactic errors, and signals
many kinds of semantic errors as soon as they are
typed in, rather than saving up these reactions until
after some final analysis. The kind of feel that the
environment gives the user is that of a conversa-
tion, not that of a bureaucracy.

You get what you expect. The orientation towards
non-expert users may be seen from the fact that
many details are organized in a way that may be
unusual to the experienced programmer, but which
reflects the expectations of a newcomer. The pre-
cise arithmetic and nesting governed by indentation
were already mentioned. Other examples from the
language proper are notations such as

3 root 2 (rather than: 2%x(1/3)),

sin pi (rather than: sin (pi)),

0 <p<1 (mot: 0 <p AND p < 1),

IF nrs > {} AND max nrs > 5:..
(rather than:
IF nrs > {}:

IF max nrs > 5:..).

One way this approach is reflected in the design of
the environment is the fact that any document the
user changes with the editor and sees changed on
the screen is really changed itself, rather than a
working copy of it. One step further, when the
user edits the document which lists the units (pro-
cedures) available and deletes one of them, then
that unit itself will also be discarded.

Generalized undo-mechanism. By editing the docu-
ment which lists the commands executed so far, the
user may undo any undesired effect of erroneous
commands.

A Comparison of Basic and B

Leo Geurts

Steven Pemberton

1. Good points of Basic
Good properties of most versions of Basic are:

1. Basic may be used in an interactive way:
after being corrected, a program may be re-
executed immediately, and input may be sup-
plied at the moment the program asks for it.

2. Basic is simple, in the sense that one only
needs to learn a little to know the whole
language.

3. Variables need not be declared.

It is easy to write a Basic program for a small
problem. Such a program may then quickly
be executed, and, if necessary, be changed
and re-executed.

5. In most cases Basic is embedded in a stan-
dard miniature operating system, suitable for
file manipulation, editing and program execu-
tion.

2. Shortcomings of Basic

During its existence, some shortcomings of Basic
have become apparent:

1. The Basic editor is based on typewriter-
terminals and, consequently, does not exploit
the extra possibilities of a visual display
screen.

2. Numbers and strings are the only types in
Basic and there is no way to build structured
types using numbers and strings, except for a
restricted form of array.

3. The most important control command is
GOTO, plus a FOR construct.

4. In conclusion, although Basic was designed as
a language that was easy to learn, program-
ming in it turns out to be more difficult than
in more modern languages, because Basic
programs for all but the smallest problems
are too complex for a reasonable overview.

3. B

B combines the advantages of Basic with improved
aspects of modern programming language design:

1. B has a number of data structures which can
easily be learnt, and which enable the user to
manipulate large groups of data as a whole.

Z B has a variety of control structures, includ-
ing procedures and refinements (i.e. parame-
terless local procedures, very suitable for step-
wise refinement).

3. B has full type checking, warning against
many errors while the program is being typed
in. Even so, variables need not be declared in
B.

4. For B, a powerful programming environment
is in preparation, which will enable program-
mers to have an overview of the programs
and data they are working with, and to mani-
pulate them as if they were objects lying on a
desk.

5. An important part of the programming
environment of B will be the editor, which
not only detects errors, but also formats the
program for the user. It will make full use of
the facilities of visual displays.

6. In conclusion, B is reasonably quick to learn,
and is very easy to use, both for small pro-
grams and for rather large ones, especially
because the user may write a program using
the same kind of terms and concepts as used
while thinking about the program.

A Comparison of Pascal and B

Steven Pemberton

Pascal was principally designed as a teaching
language. B is principally a language for non-
professional users. This means that the two
languages have a similar, if not identical, audience.

1. Good points of Pascal

1. Pascal supports modern programming prac-
tices by allowing you to create your program
and data in a structured way.

2. Pascal is a relatively simple language, with a
relatively small set of program structures to
learn.

3. Many of the errors a programmer makes are
caught before the program runs by using
declarations and so-called strong typing to
check for inconsistencies in the program.

4. Many aspects of a program may be expressed
in a problem-oriented way rather than a
machine-oriented way.

5. Pascal was designed so that many of its types
can be combined to build new types.

2. Shortcomings of Pascal
However, Pascal still has some shortcomings:

1. Despite its simplicity, Pascal has many data-
types (between 11 and 13, depending on your
point of view). This means there is much to
learn, and it can be confusing for a beginning
programmer.

2. Most of Pascal’s data-types are fixed-size,
which is often inconvenient when writing a
program, and there are only very limited
facilities for string handling.

3. Pascal’s dynamic data type (pointer) is very
low level, and consequently hard to use and
error-prone.

4. Pascal is consistent in many of its rules. How-
ever there are many irritating little incon-
sistencies, and a few larger ones, justified not
from a programming point of view, but from
an implementation view.

5. The syntax of Pascal is very fussy, and much
trouble can be caused by mis-placed charac-
ters.

6. It has only very limited input and output
facilities.

7. Pascal was not designed for interactive use,
and consequently is hard to use in such a
way.

8. Because of the one-pass nature of Pascal
compilers, you are forced to write your pro-
grams in the reverse order to how you com-
pose them.

3. B

B combines the advantages of Pascal with the fol-
lowing improvements:

1. As well as allowing program- and data-
structuring, B has refinements which support
the practice of stepwise refinement.

2. All data-types in B are dynamic, in the sense
that their size is neither predetermined nor
fixed. The programmer does not have to take
care of allocating space for dynamic values.

3. B has only a small number of types (five)
which may be combined in any way to pro-
duce new data-types. There are full string-
handling facilities.

4. B was designed with interactive implementa-
tions in mind, and includes an effective pro-
gramming environment.

5. B has all the advantages of strong typing, for
discovering errors in advance, but without the
disadvantages of declarations.

6. In conclusion, B is small, powerful, and rea-
sonably quick to learn. Furthermore the pro-
grammer is not troubled by restrictions due to
limitations imposed for non-algorithmic rea-
sons.

New Publications about B

Since the appearance of the first B newsletter
a number of new publications about B have
appeared or are about to appear. The publications
mentioned in the first newsletter are all still avail-
able, as is the newsletter itself.

Computer Programming for Beginners — Introducing
the B Language — Part 1,
Leo Geurts, 85 pages.

This is a text-book on programming for peo-
ple who know nothing about computers or
programming. It is self-contained and may
be used in courses or for self-study. The
focus is on designing and writing programs,
and not on entering them in the computer,
and so on. It introduces the language, and
how to write small programs. Part 2, which
will appear later this year, will treat the
language, and programming, in greater depth.
Published by CWI, note CS-N8402, price
DAfl. 11.90.

Description of B,

Lambert Meertens and Steven Pemberton,

38 pages.
This is the informal definition of B promised
in the Draft Proposal. The aim is to provide
a reference book for the users of B that is
more accessible than the somewhat formal
Draft Proposal. While it is not a text book, it
should also be useful to people who already
have ample programming experience and
want to learn B. Published by CWI, note
CS-N8405, price DAfl. 6.00.

An Implementation of the B Programming Language,

Lambert Meertens and Steven Pemberton,

8 pages.
This gives an overview of the implementation
and some of the techniques used in it.
Published in USENIX Washington Confer-
ence Proceedings (January 1984), to appear.

A User’s Guide to the B System,
Steven Pemberton, 10 pages.

A brief introduction to using the current B
implementation. Published by CWI, note
CS-N8404, price Dfl. 3.70.

B Quick Reference Card.

A single card including all the features of the
language, the editor, and the implementation,
for quick reference when using B. Available
from CWIL

The B Programming Language and Environment
Steven Pemberton, 12 pages.

Gives a description of B along with some
background to it, and some justification for
its existence, arguments about simplicity,
interactiveness, programmer productivity, and
talks about its suitability for use in schools.
Published in CWI Newsletter, Vol 1, No 3.
Available free from CWI.

On the Design of an Editor for the B Programming

Language,

Aad Nienhuis, 16 pages.
Gives an overview of the design of the first
approximation of the B dedicated editor.
Published by CWI, report IW 248/83, price
Dil. 3.70.

Towards a Specification of the B Programming
Environment,
Jeroen van de Graaf, 23 pages.

This report contains an informal description
and a tentative specification of the environ-
ment. Published by CWI, report CS-R8408,
price Dfl. 3.70.

CWI publications can be ordered from

Publications Department
CWI

POB 4079

1009 AB Amsterdam
The Netherlands

You will be invoiced. The prices quoted exclude
postage and packing, and for foreign orders there is
an additional charge of Dfl. 6.50 to cover bank
charges.

HOW/TO ORDER MARKH{ :

To order the Mark 1 implementation of B, running on UNIX{ systems, you should fill out the order form
below, and two signed copies of the SOFTWARE AGREEMENT on the next page. Send it to:

B Implementation

Computer Science Department
CWI

POB 4079

1009 AB Amsterdam

The Netherlands

You will then receive:
® atape with the software (including an installation guide)
e the following documentation:
- Description of B
- A Users Guide to the B System
- B Quick Reference Card
- Manual Page
Also, one of the two copies of the SOFTWARE AGREEMENT will be returned to you signed.

+ UNIX is a Trademark of AT&T Bell Laboratories

ORDER FORM

Please send us the Mark 1 implementation of B for UNIX systems for the price of Dfl 100 (US §$ 35) (to cover
materials, postage and bank charges) for which we will be invoiced.

NAMEE winniisssiainii s s e na s
e o T R
FATI/ INSEIIULE. oo eeeesree e eessnre s nessseens s esnsesseessnsesrnesnensnesarnesssssstssnasessss
AAATEEET cucnmvvnrovesemvinsvminsos vmes oo s s s ST R e v A S S
Telephone: ...

USENET NetWOork address:ocoocoveeeiisiereieiississesssmsseisesssssssssssesmssssesssessssssssssssenens

Check required tape parameters:

density O 800 bpi O 1600 bpi
blocking factor | 0O 20
format O Ansi labelled O Tar

We include two copies, both signed, of the SOFTWARE AGREEMENT.

Signature and Date:

Please, fill out both copies below, and sign them.

SOFTWARE AGREEMENT

Effective as of 198.., Stichting Mathematisch Centrum (SMC), having an office at 413 Kruislaan,
1098 SJ Amsterdam, and

(LICENSEE), having an office at

agree as follows:

SMC grants fee-free to LICENSEE a personal, non-transferable and non-exclusive right to use the computer programs and documenta-
tion relating to the Mark 1 implementation of B (LICENSED SOFTWARE).

LICENSEE agrees not to sell, lease or otherwise transfer or dispose of the LICENSED SOFTWARE in whole or in part.

SMC makes no warranties, express or implied. SMC shall not be held to any liability with respect to any claim by LICENSEE or a
third party on account of, or arising from, the use or the inability to use LICENSED SOFTWARE.

Neither this agreement nor any rights hereunder, in whole or in part, shall be assignable or otherwise transferable.

signed by

For LICENSEE For Stichting Mathematisch Centrum
INAME: cuccvivsremsssesemssussassmnsssssstosssissasnmsanssessiassasassasasaasasnssssnss INAIIEL eovnssramsserssarnssssssssssssstusnssaensseroreasanssisssatas
THEY i immmsansmsamassasssve TGS Direstor of Saftware Licensing
Signature and Date: Signature and Date:

SOFTWARE AGREEMENT

Effective as Of 198.., Stichting Mathematisch Centrum (SMC), having an office at 413 Kruislaan,
1098 SJ Amsterdam, and

(LICENSEE), having an office at

agree as follows:

SMC grants fee-free to LICENSEE a persenal, non-transferable and non-exclusive right to use the computer programs and documenta-
tion relating to the Mark 1 implementation of B (LICENSED SOFTWARE).

LICENSEE agrees not to sell, lease or otherwise transfer or dispose of the LICENSED SOFTWARE in whole or in part.

SMC makes no warranties, express or implied. SMC shall not be held to any liability with respect to any claim by LICENSEE or a
third party on account of, or arising from, the use or the inability to use LICENSED SOFTWARE.

Neither this agreement nor any rights hereunder, in whole or in part, shall be assignable or otherwise transferable.

signed by

For LICENSEE For Stichting Mathematisch Centrum
Name: ... eeerrerasuemeseseensuessmsesnseesrossenstes IVAITIE] tiurmsinssstasstensests s e
{1511 (- .. Title: Director of Software Licensing

Signature and Date: Signature and Date:

