ITHE B NEWSLETTER

- Mathematical Centre, Amsterdam

j/\I /)

li zi ’ Issue 1, August 1983

A 4
s

CONTENTS

About This Issue

Notes for Contributors

Available Publications about B

A Short Introduction to the B Language
A Glimpse at the B Environment
Implementation Plans for B

About This Issue

It is rare to find a programming language
designed principally with ease of programming in
mind, rather than ease for the implementor or
squeezing the last drop of power from a computer.
Yet in the very near future, when people will tend
to have their own rather powerful personal com-
puter, and won’t have to share a computer, there
will be more computing power than people will be
able to use. Consequently there will be a need for
programming languages that save time not for the
computer, but for the programmer.

B is such a language and has been in
development for some time, principally at the
Mathematical Centre, Amsterdam. Now that some
experience has been gained with the use of the
language, and the portable implementation is
approaching completion, is is time for us to report
the state of play, and to try and convey to you our
enthusiasm for the language. LIl Tt

.--'_.\,u,:- b

‘The purpose of this newsletter in general is
to keep interested parties in touch with develop-
ments in the language and its implementation, and
to provide a forum for discussions.

Clearly though, this first issue has an intro-
ductory role to play, and so you will find articles
giving a taste of the language and its environment,
giving details of the implementation, and telling
you how you can find out more.

Future issues will contain more discussion
articles, and you are encouraged to submit articles,
ideas, or interesting B programs for inclusion.

Notes for Contributors

The newsletter is intended to provide infor-
mation about B and to provide a forum for discus-
sions. Therefore, you are encouraged to submit
any articles you see fit.

Articles don’t have to contain fully thought-
out ideas, but may be yet undeveloped thoughts
intended to stimulate discussion. The kinds of
articles we have in mind are: interesting programs,
either written or suggestions; unusual applications;
letters, discussions on points of the language, pro-
posed improvements, experience with the language,
and so on.

If you are fortunate enough to be connected
to the Unix network, then you can submit articles
and send mail to mcvax!leo. Otherwise, articles and
mail should be sent to

B Newsletter
Informatics Department
Mathematical Centre
POB 4079

1009 AB Amsterdam
The Netherlands

JALLATSMAN g HHL

Available Publications about B

A number of publications about B are currently
available:

An Overview of the B Programming Language, or B
without Tears,
Leo Geurts, 11 pages.

This is the first place to go if you want to
know more about B. It was published in
SIGPLAN Notices Volume 17, number 12,
December 1982, or is available from the
Mathematical Centre, report IW 208/82,
price Dfl. 3.30.

Draft Proposal for the B Programming Language,
Lambert Meertens, 88 pages.

This book is a specification of the whole
language, though rather technical for the
casual reader. It also contains some thoughts
on a B system. Published by the Mathemati-
cal Centre, ISBN 90 6196 238 2, price Dfl.
12.10. A part of it, the Quick Reference also
appeared in the Algol Bulletin number 48,
August 1982,

Making B Trees Work for B,
Timo Krijnen and Lambert Meertens, 13 pages.

This describes a method of implementing the
values of B. It is rather technical. Published
by the Mathematical Centre, report IW
219/83, price Dfl, 3.30.

Incremental Polymorphic Type-Checking in B
Lambert Meertens, 11 pages.

B allows you to use variables without having
to declare them, and yet gives you all the
safety that declarations would supply. This
paper describes how this is achieved, but is
very technical. Definitely not for the faint-
hearted. Published in the conference record
of the 10th ACM Principles of Programming
Languages, pages 265-275, 1983, and also by
the Mathematical Centre, report IW 214/82,
price Dfl. 3.30.

On the Implementation of an Editor for the B Pro-
gramming Language,
Frank van Harmelen, 18 pages.

Gives details of a pilot implementation of the
B dedicated editor. Published by the

Mathematical Centre, report IW 220/83,
price Dfl. 3.30.

Further publications are of course in preparation,
and their availability will be announced in later
issues of the newsletter.

Mathematical Centre publications can be ordered
from

Publications Department
Mathematical Centre
POB 4079

1009 AB Amsterdam
The Netherlands

You will be invoiced. The prices quoted exclude
postage and packing, and for foreign orders there
is an additional charge of Dfl. 6 to cover bank
charges.

A Short Introduction to the B Language

Leo Geurts

EXAMPLES

®Prime Numbers. The following program determines the prime numbers up to n by the classical sieve
method, which first discards the multiples of 2 from the set of whole numbers, then the multiples of 3, the
multiples of 5, and so on.

HOW/TO SIEVE‘TO n: \name is SIEVE’/TO
PUT {2..n} IN numbers \set to be sieved
WHILE numbers>{}: \repeat indented part
PUT min numbers IN p \smal lest member of set
REMOVE“MULTIPLES \refinement, see below
WRITE p
REMOVE/MULTIPLES:

PUT p IN multiple
WHILE multiple<=n:
IF multiple in numbers: \present in set?
REMOVE multiple FROM numbers
PUT multiple+p IN multiple

eStrings. Strip leading blanks from a line.

WHILE Line>‘“ AND linel|tl = 7 /: \non-empty, first is blank
PUT line@2 IN line \assign rest

®Polynomials. A polynomial can be represented by a table of its coefficients. For example,
{[nl: 1; [11: -1; [0]): -1}

represents x” — x — 1. The following function evaluates such a polynomial at a given point:

YIELD poly at x: \name is ‘at’
PUT 0 IN s
FOR i IN keys poly: \keys gives list of indexes
PUT s+poly[i]*xx*i IN s \#% gives power
RETURN s

oTables. Here is a piece of program which, given a table capital storing names of capitals under names
of countries, produces an inverse table country, which has capitals as its keys and stores countries. So, if
initially capital[“Nederland’]=’Amsterdam’, then after running the program we will have
country[/Amsterdam’]=‘Nederland’.

PUT {} IN country \empty table (or list)
FOR ¢ IN keys capital: \set of entries of table
PUT ¢ IN country[capital[c]]

eLists. Given a table giving words and the frequency that those words appeared in a text, print the words
in order of increasing frequency. The method works by inserting the frequency and the word, as a pair, into
a list, and printing the list.

PUT {} IN list
FOR word IN keys freq:
INSERT freqlword], word IN list
FOR pair IN list:
WRITE pair /

\lists remain sorted
\/ gives new line

oGarbage Collection. A given table represents a group of people, and who can contact whom within that
group. For instance, if contacts[/Mark’] = {’Kevin’; ‘Bessy’} then Mark can contact Kevin
and Bessy (but not necessarily vice versa). The following function returns the sub-table of all people con-
tactable from a given root person.

\parameters: root and graph
\list of one element

YIELD root reachable graph:
PUT {root} IN accessible
PUT accessible IN still’to‘do
WHILE still’to’do > {}
SELECT/NODE
TREAT“NODE
FOR n IN keys graph:
IF n not”“in accessible:
DELETE graph[n]
RETURN graph

SELECT/NODE:
PUT min still’to’do IN node
REMOVE node FROM still‘to’do

\refinement
\min is smal lest element

CHECK node in keys graph
TREAT “NODE :
FOR n IN graphlnode]:

\just to be sure

IF n not’in accessible:
INSERT n IN accessible
INSERT n IN still’to’do

ePalindromes. Here is a procedure to see if a text is a palindrome, i.e. if it reads the same backwards,
except for non-letters and capitals. It is not the shortest or quickest way, but it is a good demonstration of

the use of refinements.

TEST palindromic sent:
REDUCE
REPORT sent = backwards
REDUCE :
PUT 77 IN s
FOR ¢ IN sent:
PUT s IN sent

PUT s*repr IN s

\to lower case letters

\" joins texts

backwards:
PUT 77 IN b
FOR ¢ IN sent: PUT ¢*b IN b
RETURN b
repr:
SELECT:
lower‘case: RETURN c
upper‘case:

RETURN rank th’of
ELSE: RETURN 7”7
Lower’/case: REPORT ¢ in

upper‘case: REPORT c in
rank: RETURN #{’A’..c}

{’a”’.
{’A”.

{’a’..’z’} \lower case version

'z}

RN,

\# gives number of elements

®Prime Numbers Revisited. The following program shows another way of calculating the prime numbers
between 100 and 200:

FOR n IN {100..200}:
IF NO div IN {2..n-1} HAS n mod div = 0: \mod=remainder of division
WRITE n

OVERVIEW

Most of the features of the language can be seen from the examples given, but here is a quick overview.

Types and Operations

There are 2 basic data types in B :

enumbers, with the usual sort of operations, and which are exact as long as only +, -, % and / are used;
etexts, with operators for concatenation and selection of subtexts: PUT “John” IN name;

and 3 ways of building data structures from smaller ones:

@compounds, which are records without field names, with no special operations (useful for multiple assign-
ment, tables with multiple indexes, etc.): PUT 0, 1 IN z;

olists, which are ordered collections of elements of any one type, with operations to insert and to remove an
element: PUT {1; 1; 2; 3; 5; 8} IN fib;

®tables, which are arrays with keys of any one type and which stores values of any other one type:
PUT {[”John”]: 4141; [“Mary”]: 3896} IN tel.

There are no bounds on the length of any of these types. So, e.g., you will never see an error message
‘number too big’ or ‘a list may only contain 256 items’.

Other Commands

For texts, lists and tables there are operators for scanning them (FOR i IN fib: WRITE i /), for seeing
if a certain element is present (IF 8 in fib: WRITE “yes”), for getting the number of elements
(WRITE #fib), etc. Furthermore, there are some commands that work for any type: PUT .. IN .. for
assignment, WRITE and READ.

Units

There are three kinds of units (procedures) in B : HOW/TO, YIELD (for functions) and TEST (for condi-
tions). Similarly, there are three kinds of refinements, which are like light-weight procedures, to support
stepwise refinement.

Control commands include WHILE, IF (for 1 branch, no ELSE), SELECT (for more branches, including
ELSE) and QUIT (for early termination of a HOW/ TO or a refinement).

There are no declarations in B , but type checking is done to detect inconsistencies. So, if a unit has a line
PUT “yes” IN answer, then an error is signalled if you try to add WRITE answer+1. On the other
hand, if you have

HOW/TO LIST series: \print items on separate lines
FOR el IN series:
WRITE el /

you may use a LIST command for a list of elements of any type, and also for a text or for a table of any
type, since FOR and WRITE work for these too.

A Glimpse at the B Environment

Steven Pemberton

What is this water that the other fish tell me about,
Mummy?
A Zen Story

Introduction

B as a programming language is small and
easy to learn, yet powerful, and offers the facili-
ties required for modern programming methods
to structure both your program and your data.
However, it is not enough to have just a
language: when starting to use a computer sys-
tem, much has to be learned — command
language, editor, compiler or interpreter, details
of the file system, etc — all with their own syn-
tax, error messages and idiosyncrasies, and
apparently to the new user, usually with no unify-
ing design. This is the environment a program-
mer usually works in.

Part of the design of B is a unified environment,
so that the user needs to learn as few new con-
cepts and notations as possible.

The Command Language

The first example of the simplicity of B is
that no special command language is necessary.
A programmer will usually have a set of
workspaces which are collections of B units, each
workspace usually representing the units (or pro-
cedures if you like) for one program. The pro-
grammer may move amongst these workspaces at
will. If the programmer has created a program
that is a unit, called say ADVENTURE, then it
may be started in the same way that you would
call it from another unit, that is just by typing it
as a command. Furthermore, there is no compi-
lation phase: the program may be typed in, or
edited, and run immediately. Similarly, all of the
commands and other features of B are available
to the user at the command level, giving the user
the facilities of a calculator:

WRITE root 2
1.41421356237

Thus the user has no separate concepts of pro-
gram and subroutine, nor of subroutine call, com-
mand, and program, but just of unit, and com-

mand.

Files

Similarly, at this outer level of ‘immediate’
commands as they are called, all variables created
are permanent, in the sense that they remain not
only while the programmer is working at the
computer, but even after switching off, and
returning later. Thus variables may be used
instead of ‘files’ in the traditional sense, and so
the user has no separate concepts of files and
variables. This also means that there is no need
for a separate mechanism for passing arguments
to a program, since you just use the existing
parameter passing mechanism for units. Since B
variables are dynamic, and unrestricted in size,
using them in place of files causes no difficulties.
Quite the reverse in fact, since you now have the
powerful data-types of B at your disposal, allow-
ing random, and indeed associative, access to the
contents. In fact traditional filestores are rather
inconvenient, since they represent a machine
detail, that there is a two-level store involved. To
output to a file, you have to design an output for-
mat, unpack your data-structure into the file, and
when you read the file back you have to parse the
input, and re-create the data-structure. Our kind
of user doesn’t want with such details.

Reading Input

Another nice aspect of the use of variables
for files is that when a program reaches a READ
command -and prompts the user for input, the
system at this point is expecting the user to type
any B expression of suitable type, so that for
numeric input for example, 4 or 3+5 or root
2 are all acceptable, as is using permanent vari-
ables like a or a+b. If you type in a value that
is in any way inappropriate or incorrect, the sys-
tem tells you, and re-prompts.

The Editor

One of the most important parts of the B
environment is the intelligent editor. In fact the
user never leaves the editor: whenever you are
using the B system, you are doing so via the edi-

tor. This means that whenever you are typing,
you have all the facilities of the editor at your
disposal. The editor knows all about B of
course, which helps a lot when composing pro-
grams. For a start, it can save you a lot of typ-
ing: when you are typing in a command, and you
type a “p” as the first letter of the command,
(upper or lower case), it guesses that you want a
PUT command, and so displays on your screen

PUT O IN O

(the underline shows where you currently are). If
you did indeed want a PUT command, then you
need only press the ‘accept’ key, and the cursor
moves to the first of the two ‘holes’, and you can
type in an expression and press accept again to
move to the second hole. Similarly, the editor
supplies matching brackets, so typing

P (

(where = represents pressing the accept key)
gives

PUT (m) IN O

(the filled in hole indicates that you are posi-
tioned at that hole). You get similar treatment
with string quotes.

The editor also knows about your own
units, so that if you didn’t want a PUT com-
mand, but instead wanted to invoke a unit of
your own, called say PRINT, then typing an “r”

L

after typing the ”“p” gives you the following on
the screen:

PRINT O

The hole shows you that it requires one parame-
ter.

If you didn’t want PRINT either, but you
are typing in a new unit that uses another unit
that you haven’t yet written, say called
PROCESS, then typing ”0” after the "pr” will
give you

PRO_

and you can carry on typing the rest of the char-
acters. In fact you can always ignore all this
guessing if you want: if you type all the charac-
ters of each command, without using the ‘accept’
facility, you will still get the right result.

Another feature of the editor’s knowledge
of B is that it knows where there must be inden-
tation, and so supplies it for you: if you type in
the first line of a FOR command, followed by an
accept, it automatically positions the cursor at the
right position, for example,

FOR i IN {1..10}:
|

which could have been typed as

Fer i {1..10=

Another difference from usual editors is
that the cursor, called the focus in the B system,
can focus on large parts of text, such as a whole
command. The focus is displayed by using some
aspect of the terminal such as underlining, reverse
video, or a different colour. As an example, con-
sider the following commands, where the focus is
on the first of them:

PUT max {x; y} IN a
WHILE a>b:

PUT a-b IN a
WRITE a

If now the ‘next’ key is pressed, the focus moves
to the next command:

PUT max {x; y} IN a
WHILE a>b:
PUT a-b IN a
WRITE a
If now the ‘narrow’ key is pressed, the focus
moves to the heading of the while command:

PUT max {x; y} IN a
WHILE a>b:

PUT a-b IN a
WRITE a

Pressing ‘narrow’ focusses on WHILE, and then
‘next’ focusses on a>b. Inserting an open
bracket here, supplies the matching close bracket:

PUT max {x; y} IN a
WHILE (a>b}:

PUT a-b IN a
WRITE a

But perhaps the most important aspect of
the editor’s knowledge is that it tells you about
errors you make as you make them. This includes
not only syntax errors, such as mis-matched
brackets, but also rather more sophisticated
errors, like ‘type’ errors. For instance, if you use
a variable for one type of value, say a text, and
later try to add 1 to it, the editor will complain as
you type it in. Similarly the editor warns you if
you try to use a variable that cannot yet have
been given a value at that point in the program.
Finally, you may also edit the contents of per-
manent variables.

The Screen

The system is organised in documents, such
as a unit, or the output from a program, which
the user may look at through windows. This is a
technique of making many logical screens avail-
able to the user, using only one physical screen.
Each window has a title line that describes its
contents. You can look at a different document
by editing this title line to the name of the docu-
ment you want to see. Many windows may be
visible on the screen at one time, and the user
may delete these or move them at will. You
move around the screen, to fix your attention on
a particular window, by using a pointing device,
such as a ‘mouse’, or a touch screen, a joystick,
or direction keys, which ever is available on the
terminal.

If there are too many documents to fit on
the screen at one time, then some will not be visi-
ble. The user can always get a list of all docu-
ments currently around (though not necessarily
visible). Of course, this list is itself placed in a
window, which is made visible.

When a session is started, one document is
created, the command document, and in this
document a prompt is displayed. The user may
then type commands into this document, which
are then executed. Remember, though, that the
user is typing in commands using the editor, and
so it would be more correct to say that the user
then edits the command document, and these
commands get executed. This means that if a
command gets incorrectly entered, it may be
deleted or changed at will, and re-executed, so
that the final effect is as if the erroneous com-
mand was never entered.

As an example, suppose the user had typed
in the following commands:

PUT 2 IN a

PUT root a IN b
WRITE b
1.41421356237

and then goes back to the first command, and
changes the 2 into a 10, and nothing else, then
the window displays:

PUT 10 IN a

PUT root a IN b
WRITE b
3.16227766017

In fact this ability to edit windows in order
to change the state of the machine is a general
facility. You may look at the contents of a per-
manent target through a window, and edit it to
change the contents of that target (this is espe-
cially necessary when such a target represents a

large file); when you display the list of available
documents, deleting a line from that list deletes
the corresponding document; you may display a
list of units available in the current workspace (in
a window of course), and delete an entry in that
list to delete the corresponding unit; and so on.
This mechanism can be likened to a thermostat,
where you ‘edit’ the temperature reading to get
the required heat. (It has been suggested that
you should be able to edit the output from a pro-
gram, and the system change the program for
you, or possibly supply the corresponding input.
This has not been implemented.)

The kinds of lists available are of
workspaces, processes, units within a workspace,
and permanent targets, as well as things like elec-
tronic mail, and network information, if such
items exist.

Processes

The list of processes needs an explanation.
Whenever the command document is being
edited, and a program that writes output, or
reads input, or both, is started, a document for its
output is created, if necessary, and for its input
similarly, and execution of this program contin-
ues apparently in parelle!l with other programs
running. Thus many programs may be running
simultaneously and you may switch between
documents to supply input, or peruse output, at
will. This explains the list for processes: it allows
you to keep track of what is going on in the
machine, which programs are still running, which
finished, and which are waiting for input. Of
course editing this list allows you to stop and res-
tart processes if you need.

State of Play

Several of the features described here have
already been tried in the pilot implementation
now running at the Mathematical Centre, and a
new implementation is currently in progress. Of
course what has been presented is in some
respects an ideal, and parts of the environment
depend on hardware that may not be available at
every site. In such cases a subset will have to be
made available, but in the same spirit as the full
environment.

Furthermore, this environment is only a
first iteration, and clearly as experience with its
implementation and use accumulates it will be
revised.

Bt e

Implementation Plans for B

Steven Pemberton

Introduction

The programming language B has been
designed specifically for non-professional users,
such as business-people wanting to use a small
computer, hobbyists, and school children and stu-
dents learning computing. Clearly, for the
language to be available for this group of people it
must be implemented on computers within their
grasp. In particular, this means relatively cheap
computers, particularly for individuals, but even
for schools, who typically have limited funds for
such acquisitions. However, it should be pointed
out that B has never been intended for implement-
ing on tiny computers like 8K 8 bit micro-
computers. This would be ‘designing for the past’.

The Current Implementation

There is a pilot implementation of B in
operation at the Mathematical Centre, running on
a VAX computer, and a PDP 11/45. This imple-
mentation was written in an extremely short time
(one person in 6 weeks), and was written as a test
of the language, its implementability and its usabil-
ity.

Naturally enough, this implementation is not
a production quality system — that is what pilot
studies are about — and so it is large, tends to be
slow (though not unusably so), and is not easily
transportable to different computers.

Its slowness is principally due to two causes.
Firstly, it is an interpreter, but an extremely literal
one. Each time a command is executed, its source
line is first re-parsed, character by character.
Secondiy, the values of B, which are for the large
part dynamic, are implemented in a very quick and
easy way, which makes for easy coding, but bulky
and time consuming store usage.

On the other hand, the implementation is for
the whole language. There are some restrictions,
such as a limit on the size of numbers (on the
PDP); the checks that are performed are mostly
done when the program is run, and not before as
they should be; and only a small part of the
environment is implemented. But it is essentially

complete. There is a pilot version of a dedicated
editor, workspaces for different programs, and the
so-called permanent environment, where the global
variables of a program are kept even if you log
out.

The Next Version

A new implementation of B is currently
under construction which is planned to be released
by late 1983.

Principally, the new version will be more
portable. It is coded, like its predecessor, in the
language C, which is available on a large number
of machines, and it is coded to the standard of the
language’s defining document. Therefore any
machine that is large enough, and has a C com-
piler, should be able to run the B system.

Secondly, the new version will be faster: the
source text of programs will be pre-parsed, before
execution, so that execution times will be reduced,
and the data types of B will be implemented in a
more efficient manner.

Thirdly, the new version will be more func-
tional. Many of the checks will be done statically
instead of at run-time (which incidentally should
also give a time advantage), and more of the
environment will be implemented, including a
fuller version of the intelligent editor.

However, it is not clear at this stage how
much smaller the new version will be. It is clear
that there are many places where the pilot
implementation’s use of store can be improved, but
on the other hand, the greater functionality of the
new system will use some of this saving, and it is
not yet clear how much. It seems though, that this
new version will still require a large amount of
store, probably of the order of 100K bytes, which
will rule out many of the current smaller home
computers. However, most of the new generation
of micro-computers come in this size, for example
the IBM micro, which currently costs between
$3000 and $4000, and, as it is a new product, can
be expected to get cheaper.

The Future

The version after the next one will mainly
involve greater functionality. Some of the system
will probably be re-coded in B, which will prob-
ably cause a reduction in size. It might be
worthwhile re-coding the system in Pascal to make
it available on more machines, and possibly take
advantage of the wide-spread P-code systems,
which also may make the system runnable on
smaller machines, although at the expense of
speed, since the P-code system allows procedures
to be swapped in and out of main store in order to
conserve space. However, it is unlikely that this
system will be available before mid to late 1984,
and by this time it may not be worth trying to
squeeze the system onto very small machines since
memory costs will be such a tiny proportion of any
machine, and such small machines may by then be
rapidly dying out.

Finally, there is a separate project starting in
collaboration with Brighton Polytechnic, England
with the aim of producing a B dedicated desk-top
computer, but it is too early yet to make any pred-
ictions about the availability or cost of the final
product.

Availability

The sources of the pilot implementation and
some extra documentation are available on appli-
cation to the Mathematical Centre for the cost of
the media. The medium is magnetic tape at any of
the usual densities. The preferred format is ‘tar’,
but ASCII standard labelled tapes are also possi-
ble. It should be stressed that the pilot implemen-
tation. runs on Unix version 7, and with a little
effort on VAX/VMS with Eunice. Other machines
and operating systems cannot be guaranteed. The
address to write to is

B Group

Mathematical Centre
Computer Science Department
POB 4079

1009 AB Amsterdam

The Netherlands.

If you are interested in being informed when the
portable implementation is available you should
also write to this address.

Conclusion

In summary, there is currently an implemen-
tation of B available for VAX computers and
PDP’s with separate program and data spaces.
The next implementation which will be ready by
late 1983 will be transportable to different
machines, as long as they have a C compiler, and

are sufficiently large. Later versions will be more
functional, but there is little chance of major
reductions of size, such as below 64K bytes.

