

166

2014

The Programming Language as Human Interface
 Steven Pemberton

CWI
Science Park 123, NL-1098 XG Amsterdam

steven.pemberton@cwi.nl
http://www.cwi.nl/~steven

ABSTRACT
Programming languages are mostly not designed for
humans, but for computers. As a result, programming time
is increased by the necessity for programmers to translate
problem description into a step-wise method of solving the
problem. This demonstration shows a step towards
producing more human-oriented programming languages,
by developing an interactive map application in a language
that allows specification of what needs to be solved rather
than how to solve it.

Author Keywords
Programming languages; HCI.

ACM Classification Keywords
F.3.m Studies of Program Constructs; Miscellaneous; H.5.m.
Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Despite all appearances to the contrary (active at night,
little-to-no sleep, diet consisting solely of pizza, sugar and
caffeine) programmers are humans too. This might lead you
to concluse that programming languages must be a human-
computer interface, and that therefore they would be
designed as a human interface, with requirements analysis,
iterative design and user testing. But with notable
exceptions, e.g. [1], most programming languages are not
designed like this.

HISTORY
In the 1950's, when computing seriously started, computers
were expensive, so expensive in fact (in the millions) that
you seldom bought a computer but leased one instead. Often
you would get a few programmers for free as a sweetener
for the deal; in other words, compared to the price of the
computer, programmers were essentially free. Partly for that
reason, it was essential that programmers made their
programs as efficient as possible: within bounds it didn't

matter how much time you spent on programming, as long
as you reduced the load on the computer. The first
programming languages were designed around this time,
and consequently they all had the basic premise that you
had to tell the computer what to do: the programmer had to
turn the problem specification into a step-by-step solution
for that problem, with the aim of reducing the time the
computer had to spend on it, and not reducing the time the
programmer had to spend on it.

Now, 60 years later and the tables are turned: computers are
more or less free compared with the cost of the programmer.
But whereas computers are now millions of times faster
than the computers of the 50's, programmers are still
programming with languages that are visible descendants of
the original programming languages. Programmers are still
telling computers what to do, and as a result are barely more
productive than 60 years ago.

HCI AND PROGRAMMING
ISO 9241 [2] defines usability as the effectiveness,
efficiency and satisfaction with which users achieve their
goals in a particular environment.

In a major study of the costs of programming that
eventually led to the design of the Ada programming
language, the United States Department of Defense
discovered that 90% of the cost of producing software was
in debugging. In another piece of research by IBM [3], over
a large range of software, both in terms of size, and in terms
of programming languages used, it was discovered that the
number of bugs in a program did not grow linearly with the
length of the program, but as a power function

1.5

In other words, a program 10 times longer has around 30
times more bugs, or alternatively, a program of one-tenth
the size costs 3% of the larger program.

What this suggests for language design is that the efficiency
part of the HCI equation would best be met by
programming languages that are designed to be as compact
as possible.

ABC
In earlier work, the author was involved with the design of a
programming language for beginners [1]. Although this
work was done before the term HCI was in common use, it
was designed with what would now be recognised as
classical HCI techniques: requirements analysis, iterative
design, and user testing. The resulting language ABC turned
out to be more powerful than was originally foreseen, being

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Copyright is held by the author(s).

Published in: van Leeuwen, JP, Stappers, PJ, Lamers, MH, Thissen, MJMR
(Eds.) Creating the Difference: Proceedings of the Chi Sparks 2014
Conference, April 3, 2014, The Hague, The Netherlands.

167

useful for 'real' programming as well, and not just for
beginners (and in fact went on to become the basis for the
programming language Python [4]).

Although the language used mostly classical programming
and control structures, such as assignment, procedure and
function calls, if and while statements and so on, experience
showed that programmers were around an order of
magnitude faster at programming than with the classical
programming languages it was compared with, such as
Pascal, Basic, or C [5]. The main reason behind this was the
use in ABC of a small number of high-level data structures.
Most programming languages provide a set of low-level
data structures, which may then be used to design and build
higher-level structures. A key realisation with the third
iteration of ABC was that it was the high-level data
structures that the programmers needed, and they hardly
ever used the low-level structures except to build the
higher-level ones. An analysis of programming structures in
programming led to a set of 5 data types in ABC that
provided as a primitive the essential data structuring that
programmers really needed.

XFORMS
XForms [6] is a programming language that investigates
another aspect of programming: the control structures.
XForms was originally designed (as the name suggests) for
Forms applications, but in its second iteration became
generalised so that more general applications could be
written with it as well.

XForms is unusual in that many of the administrative tasks
normally associated with programming are left to the
computer to solve. The program is stated far more in terms
of what needs to be solved than how to solve it. As a result,
program size, and therefore programming time, is sharply
reduced. Experience with several projects shows an order of
magnitude reduction in project times.

This demonstration develops an interactive map application
in XForms [7], ending up with a functional, working
application in around 150 lines of code, an application that
would normally require tens of thousands of lines in a
traditional language such as Javascript. An interesting
property of the resultant program is that it doesn't contain a
single while loop (in fact it couldn't, because such a thing
doesn't exist in XForms).

A NOTE ON NOTATION
XForms is expressed in XML. This is principally to allow it
to be integrated with diverse other XML languages such as
XHTML and SVG. However, this is purely a notational
issue. Whether you write

integer i;
or

i: integer;
or

<bind ref=”i” type=”integer”/>

makes no difference to the concepts being described.

A TASTE OF THE PROGRAM
XForms does not normally work in a “first do this, then do
that” style of programming that most languages use, but
specifies relationships between data that the system
autonomously keeps up to date.

For instance, if you have several pieces of data

site: http://tiles.osm.org/
zoom: 10
x: 526
y: 336

and specify a relationship:

url= site+zoom+”/”+x+“/”+y+”.png”

then the URL will always be kept up to date if the
underlying data changes. (Note that this is not an
assignment in traditional programming terms, but a
unidirectional invariant relation).

Furthermore, if you choose to output the image connected to
the URL:

output(url, “image/*”)

then the image on the screen will change as the data does.

If you then take a position on the world's surface in the
coordinate system used by the map server:

posx: 34477602
posy: 22058667

you can then specify the relationship between this position
and the map tile that that location is on:

x=floor(posx ÷ scale)
y=floor(posy ÷ scale)
scale=2^(26-zoom)

(since these are invariants, the ordering doesn't matter; 26 in
this case is a function of the tile size and the maximum
value of zoom, so that scale represents the number of
locations on a tile at any particular level of zoom).

Hence, any time the position gets updated, so does the URL,
and so does the display of the corresponding map tile.

Similarly, if the value of site gets changed to another tile
server (for instance to a server that serves maps in a
different style) as long as the server uses the same
coordinate system then it is a trivial issue to display a map
in that different style.

CONCLUSION
XForms programming requires a different style of
programming than with traditional languages, which can be
sensibly compared with how spreadsheets work.

168

Experience has shown that such a style of programming
greatly reduces programming time. One very-large-scale
project that tested XForms in a process that a company had
done many times before reduced the time and staffing from
five years with a team of thirty to one year with a team of
ten, in other words from 150 person years to 30; another
company that translated a large collection of Javascript
programs to XForms reported that the resultant XForm
programs were around a quarter of the length of the
corresponding Javascript (which plugging into the equation
quoted above would lead you to expect a saving of
programming time of around a factor of 8).

The program presented here is itself a mere 150 or so lines
of code, which is an order or two magnitude less than the
equivalent code that would be needed in a traditional
language like Javascript.

REFERENCES
1. Geurts, Meertens, Pemberton, The ABC Programmer's

Handbook, Prentice-Hall, 1985.

2. ISO 9241-11:1998 Ergonomic requirements for office
work with visual display terminals (VDTs) -- Part 11:
Guidance on usability.
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catal
ogue_detail.htm?csnumber=16883

3. Brooks, FP, The Mythical Man-Month. Addison-
Wesley. ISBN 0-201-00650-2, 1975.

4. Bruce Stewart, An Interview with Guido van Rossum,
ONLamp.com, http://www.onlamp.com/lpt/a/2431,
2002.

5. Steven Pemberton, An Alternative Simple Language
and Environment for PCs, IEEE Software, Vol 4, No.
1, pp 14-22, Jan 1987.

6. John M. Boyer (ed.), XForms 1.1, W3C 2009,
http://www.w3.org/TR/xforms/

7. Steven Pemberton, A Map Application with XForms,
http://www.youtube.com/watch?v=2yYY7GJAbOo,
2014.

