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We study semantic issues concerning control flow notions in logic programming 
languages by exploring a two-stage approach. The first considers solely uninter
preted (or schematic) elementary actions, rather than operations such as unifica
tion, substitution generation, or refutation. Accordingly, logic is absent at this first 
stage. We provide a comparative survey of the semantics of a variety of control flow 
notions in (uninterpreted) logic programming languages including notions such as 
don't know versus don't care nondeterminism, the cut operator, and/or parallel 
logic programming, and the commit operator. [n all cases considered, we develop 
operational and denotational models, and prove their equivalence. A central tool 
both in the definitions and in the equivalence proofs is Banach's theorem on (the 
uniqueness of) fixed points of contracting functions on complete metric spaces. The 
second stage of the approach proceeds by interpreting the elementary actions, first 
as arbitrary state transformations, and next by suitably instantiating the sets of 
states and of state transformations (and by articulating the way in which a logic 
program determines a set of recursive procedure declarations). The paper concen
trates on the first stage. For the second stage, only a few hints are included. 
Furthermore, references to papers whic.:h supply details for the languages PRO LOG 
and CONCURRENT PRO LOG are provided. '" 1991 Academic Press, Inc. 

1. INTRODUCTION 

We report on the first stage of an investigation of the semantics of 
imperative concepts in logic programming. Logic programming being logic 
+ control (Kowalski, 1979 ), one may expect to be able to profit from the 
large body of techniques and results in the semantic modelling of control 
flow gathered over the years. We shall, in fact, take a somewhat extreme 
position, and ignore in the analysis below all aspects having to do with 
logic. Rather, we shall provide a systematic treatment of a number of 
fundamental control flow concepts as encountered in logic programming 
on the basis of a model where the atomic steps are uninterpreted elemen
tary actions. This constitutes a major abstraction step at two levels. Syntac
tically, we abstract from all structure in the atoms (using symbols from 
some alphabet rather than terms involving variables, functions or predicate 
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symbols). Semantically, we abstract from any articulation in the basic com
putation steps, thus ignoring concepts such as unification, (SLD-) resolu
tion, or substitution generation. Does there remain anything interesting 
after this abstraction step? If yes, do the remnants shed any light on logic 
programming semantics? These two questions are addressed in our paper, 
and it is our aim to collect sufficient evidence that the answers to them are 
affirmative. More specifically, we want to argue that the semantic analysis 
of the collection of control flow concepts as provided below is justified for 
at least three reasons: 

- It helps in clarifying basic properties of control flow phenomena. 
For example, we shall study versions of the cut operator and notions in 
and/or parallel programming such as don't know nondeterminism versus 
don't care nondeterminism and the commit operator; it may be difficult to 
grasp these concepts in the presence of the full machinery of logic program
ming. 

- We shall systematically provide operational and denotational 
models for the various example languages introduced below, and develop 
a uniform method to establish the equivalence of these semantics in all 
cases. We see as a main achievement the gathering of evidence that for such 
comparative semantics it is sufficient to work at the uninterpreted level. 
For both the operational and the denotational models, an interpretation 
towards the detailed level of logic programming may then be performed 
subsequently, if desired. The demonstration of the power of the uniform 
proof principle which turns out to be applicable in all cases studied, may 
be see as a subsidiary goal of our investigation. 

- Altogether, we shall deal with six example languages, each 
embodying a small (and varying) collection of control flow concepts. 
Seemingly small variations in the language concepts require careful tuning 
of the semantic tools, sometimes involving substantial modification of the 
models employed. Thus, leaving the origin of the concepts aside for a 
moment, one may view our paper as a contribution to comparative control 
flow semantics in general. The confrontation of the (dis )similarities encoun
tered throughout may provide an illuminating perspective on some of its 
fundamental issues. It should be added here that, from the methodological 
point of view, our (exclusive) use of metric methods may be seen as well 
as a distinguishing feature. 

The answer to the second question-what is the relevance of all this for full 
logic programming semantics-awaits further work. Much will depend on 
the feasibility of obtaining this full semantics simply by interpreting the 
elementary actions as computational steps in the sense of the relevant 
version of the logic programming language, leaving the already available 
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(abstract) control flow model intact. A substantial part of the detailed 
work in establishing this still has to be done. On the other hand, there are 
already a few case studies available which may be seen as providing sup
port for our thesis. A promising first step is made in de Vink ( 1989) and 
de Bruin and de Vink (1989 ), where for a simple PRO LOG-like language 
it is first shown how to add interpretations of elementary actions as 
(arbitrary) state transformations to the semantic model(s ). This, in turn, 
allows a smooth transition towards a model incorporating essential 
elements of a declarative semantics for PROLOG: instead of the delivery 
of (sequences of) states, by suitably specializing them the semantic defini
tions are now geared to the delivery of (sequences of) substitutions (in the 
familiar sense of logic programming). A second paper which follows the 
approach indicated above is de Bakker and Kok ( 1988, 1990 ). This paper 
continues earlier work of Kok ( 1988) reporting on a branching time model 
for Concurrent Prolog (abbreviated as CP, and stemming from Shapiro 
( 1983 ), where the use of a branching time model is in particular motivated 
by CP's commit operator. In de Bakker and Kok ( 1988 ), an intermediate 
language is introduced with arbitrary interpretations for its atomic actions, 
and operational and denotational models are developed for it. Next, by 
suitably choosing the sets of both atomic actions and of procedure 
variables, by choosing one particular interpretation function (involving the 
determination of most general unifiers), and by using the information in 
the CP program to infer the declarations for the procedure variables, an 
induced comparative semantics for CP is obtained. (In an appendix to the 
present paper, we present a brief sketch of the interpretation chosen for a 
rudimentary form of (and/or) parallel logic programming--based essen
tially on ideas of Kok from de Bakker and Kok ( 1988, 1990 )-in order to 
illustrate the feasibility of obtaining logic programming with logic by 
suitably interpreting logicless languages.) 

We shall now be somewhat more specific as to which control flow 
concepts will be investigated. In various groupings, we deal with the 

following notions: 

elementary action 

(procedure declarations and) recursion 

failure 

sequential execution 

o backtracking or don't know nondeterminism 

cut (in two versions, to be called ahsolute and relative cut) 

parallel execution 

(don't care) nondeterminism 

commit. 
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These notions are grouped into six languages, L 1 to L6. Each has 
elementary actions, recursion, and failure, and the precise distribution of 
the other concepts over the languages can be inferred from the syntax over
view to be presented at the end of this introduction. Notable imperative 
concepts missing from the above list--taking our decision to start frorn 
uninterpreted elementary actions for granted~are synchronization and 
process creation. We have omitted them for no other reason than our wish 
not to overload the present paper. We plan to include these concepts, 
which are indeed pervasive in many versions of parallel logic programming, 
in a subsequent publication. 

For each of the languages L 1 to L 6 we present both operational and 
denotational semantics. The operational semantics will be based on 
labelled transition systems (Keller. 1976 ), embedded in a syntax directed 
deductive system in the style of Plotkin's Structured Operational Semantics 
(Hennessy and Plotkin, 1979; Plotkin, 1981, 1983 ). The denotational 
models will be built on metric structures (as will be the way in which we 
infer operational meanings through the assembling of information in 
transition sequences). Partly, these structures will be of the linear tinze 
variety; i.e., they will consist of (nonempty closed) sets of finite or infinite 
sequences over some alphabet. Partly, we shall work with hranching time 
domains. More precisely, the meaning of a statement will be a process (in 
the sense of de Bakker and Zucker ( 1982) ), i.e., an element of a mathe
matical domain which is obtained as solution of a domain equation to be 
solved using metric tools. Roughly, such a process is like a tree over the 
relevant alphabet of elementary actions, satisfying various additional 
properties (commutativity, absorption, closedness ). 

For the logic part of the semantics of logic programming we refer to 
Lloyd ( 1984) or to the comprehensive survey of Apt ( 1987 ). A tutorial on 
and comparison of parallel logic programming languages is the paper by 
Ringwood ( 1988 ). Our interest in comparative logic programming seman -
ties, using techniques which fit more in the imperative than in the logic 
tradition, was originally raised by Jones and Mycroft ( 1984 ). Elsewhere, we 
have often used the term "uniform" for uninterpreted or schematic 
languages (in general), e.g. in de Bakker et al. (1986, 1987, 1988), and the 
present investigation may also be seen as a semantic exploration of uniform 
versions of logic programming, with special emphasis on the comparative 
aspects. Other papers which address operational versus denotational 
semantics for PROLOG are Debray and Mishra (1988), Arbab and Berry 
(1987), Nicholson and Foo (1989), de Vink (1989), and de Bruin and 
de Vink (1989). We return to the latter two below. We already mentioned 
de Bakker and Kok (1988, 1990) on semantic equivalence for Concurrent 
Prolog. In Gerth et al. ( 1988 ), both operational and denotational semantics 
are presented for Flat Theoretical Concurrent Prolog (from Shapiro 
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( 1987) ). Whereas in Kok ( 1988) and de Bakker and Kok ( 1990) the 
denotational models are based on processes as in de Bakker and Zucker 
( 1982 ), in Gerth et al. ( 1988) the failure set model of Brookes et al. ( 1984) 
is applied. In addition, Gerth et al. ( 1988) discuss full abstractness issues. 
A detailed analysis of operational semantics for (variations on) CP is 
provided in Saraswat ( 1987). The papers such as Kok ( 1988 ), de Bakker 
and Kok ( 1988, 1990 ), Jones and Mycroft ( 1984 ), and Gerth et al. ( 1988) 
should all be situated primarily in the tradition of imperative concurrency 
semantics, rather than pursuing the line of extending the declarative seman
tics approach of "classical" logic programming in terms of (generalizations 
of) Herbrand universes. It is the latter approach which is followed in Levi 
and Palamidessi (1987), where a detailed comparison is given of syn
chronization phenomena in a variety of parallel logic programming 
languages. The paper Levi and Palamidessi ( 1985) concentrates in par
ticular on the declarative semantics of CP's read-only variables. Related 
references include Falaschi and Levi ( 1988 ), Falaschi et al. ( 1987 ), 
Furukawa et al. ( 1987 ), and Levi ( 1988 ). 

For some time now, we have been utilizing metrically based semantic 
models, e.g. in de Bakker and Zucker ( 1982 ), de Bakker and Meyer ( 1988 ), 
de Bakker et al. (1984, 1986, 1988), and America et al. (1989). An essential 
extension of the metric domain theory was provided in America and 
Rutten ( 1989 ). An important advantage of the metric framework, com
pared with the usual order theoretic one, lies in the fact that many of the 
functions encountered in the semantic models are contracting and, hence, 
have unique fixed points (by Banach's theorem). This property may be 
exploited both in the semantic definitions proper (see America et al. (1989) 
for many examples), and in the derivation of semantic equivalences. It is 
the latter technique, first described in Kok and Rutten ( 1988) which con
stitutes the powerful method already referred to, and which will be applied 
throughout our paper. (For further examples of the method see de Bakker 
and Meyer ( 1988 ). ) Our model of the denotational semantics of back
tracking is a uniform (schematic) version of a definition from de Bruin 
( 1986 ). The operational semantics for the cut operator(s) were supplied by 
de Vink (personal communication). 

We conclude this introduction with an outline of the contents of our 
paper. Section 2 contains some mathematical preliminaries, mainly devoted 
to the underlying metric framework. The overview of the remaining sec
tions is best presented by listing the syntax of the languages studied in 
them. For each L;, we define statements sE L; which are to be executed 
with respect to a set of declarations D. Let A be the (possibly infinite) 
alphabet of elementary actions, with a ranging over A, and let Pvar be the 
alphabet of procedure variables, with x ranging over Pvar. The following 
operators will be encountered: 
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sequential composition si; s2 

don't know nondeterminism si D s2 

absolute cut ! 

relative cut ! ! 

parallel composition si II s2 

don't care nondeterminism s 1 + s2 

commit si: s2. 

The languages, corresponding section headings, and respective syntactic 
definitions are summarized in 

Li: sequential logic programming with backtracking 
s ::=a lxl fail ls1; s2I S1 D s2 

L2 : sequential logic programming with backtracking and absolute 
cut 
s ::=a lxl fail ls1; s2 I Si D s2 I! 

L 3 : sequential logic programming with backtracking and relative cut 
s::=alxl fail ls1;s2ls1Ds2I!! 

L 4 : (and/or) parallel logic programming: the linear time case 
s ::=a lxl fail ls1; s2I s1 II s2 I s1 + s2 

L 5 : (and/or) parallel logic programming with commit: the branching 
time case 
s ::=a lxl fail lsi: s2I s1 II s2 I S1 + s2 

L6 : (and/or) parallel logic programming with commit: increasing the 
grain size 
s ::=a lxl fail lsi; s2 1 s 1 :s2 lsi II s2 1 Si+ s 2 

For each language, a program in that language consists of a pair (DI s). 
s EL;, D = <x.i = g.i) .i• where g1 is a guarded statement from L;-guarded 
here meaning that occurrences of calls (of some x E Pvar) in g1 are 
preceded by some elementary action. Languages L 1 to L 3 are deterministic, 
and the main issue is how to model the backtracking and cut operators. 
Languages L 4 and L 5 are (very much stripped) versions of (and/or) 
parallel logic programming. The difference between these two consists in 
the transition from (normal) sequential composition(;) to commit(:). This 
induces different failure behaviour which in turn leads to the definition of 
a linear time (LT) model for L4 and a branching time (BT) model for L 5 . 

An LT model (over an alphabet A) consists, as we saw earlier, of sets of 
sequences of elementary actions from A, whereas a BT model (also over A ) 
consists of tree-like entities (with the already mentioned extra features). 
Perhaps the technically most interesting issue of our paper is addressed in 



LOGIC PROGRAMMING WITHOUT LOGIC 129 

Section 8, where we combine the composition operations of sequential 
composition (;) and commit (:) into one language. Whereas for L 4 we 
encounter meanings such as, e.g., {ah, ac} and, for L 5 , processes such as 

a 

or A 
b I 1 c 

b c 

in L 6 we shall make use of meanings which have forms such as 

ah 

or A 
bed r 1 be cd e 

Viewing the entities labelling the edges in the trees as the "grains" of our 
model, we see that, in going from L 5 to L6 , we increase the grain size. We 
shall (in the context of L 6 ) interpret sequential composition as an operator 
which leads to larger atoms (or grains), and commit Uust as for L 5 ) as an 
operator which induces branches in the trees. In a final section (Section 9) 
we introduce an alternative transition system for L 6 , and show that this 
leads to the same operational (and denotational) semantics as that defined 
in Section 8. The appendix provides a brief sketch of a possible translation 
from a rudimentary logic programming language towards L 4 . 

2. MATHEMATICAL PRELIMINARIES 

2.1. Notation 

The notation (x E ) X introduces the set X with typical element x ranging 
over X. For X a set, we denote by &'(X) the power set of X, i.e., the collec
tion of all subsets of X. &'"( X) denotes the collection of all subsets of X 
which have property rr. A sequence x 0 , x 1, ••• of elements of X is denoted 
by (x;)r:. 0 or, briefly, by (x;);. The notationf: X--+ Yexpresses that/is a 
function with domain X and range Y. We use the notation f{ y/x }, with 
x e X and ye Y, for a variant off, i.e., for the function which is defined by 

f { .v/x }(x') = y, 

=f(x'), 

if x=x' 

otherwise. 

If f: X---+ X and /(x) = x, we call x a fixed point of/ 
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2.2. Metric Spaces 

Metric spaces are the mathematical structures in which we carry out our 

semantic work. We give only the facts most needed in this paper. For more 

details, the reader is referred to Dugundi ( 1966) and Engelking ( 1977 ). 

DEFINITION 2.1. A metric space is a pair ( M, d ), where M is any set 

and dis a mapping M x M _..... [O, l] having the following properties: 

I. V:r, yEM[d(x, y)=O<o>x=y] 

2. l:/x,yEM[d(x,y)=d(y,x)] 

3. Vx, y, zE M[d(x, y) ~ d(x, z) + d(z, y)]. 

The mapping dis called a metric or distance. In case d satisfies 3', 

3'. l:/x, y, ::EM[d(x, y)~max(d(x, .::), d(::, y))] 

instead of 3, we call d an ultrametric. 

EXAMPLES. l. Let A be an arbitrary set. The discrete metric on A is 
defined as follows: Let x, y E A: 

d(x, y)=O 

=1 

if X= J' 

if x #- .Ji· 

2. Let A be an alphabet, and let A_,_ = A* u A"' denote the set of all 
finite and infinite words over A. Let, for x EA,., x( n) denote the prefix of 
x of length n, in case length(x) ~ n, and x otherwise. We put 

d(x, y) = 2 sup:111x1111~ rl111: 

with the convention that 2 f = 0. Then (A', d) is an ultrametric space. 

DEFINITION 2.2. Let (M, d) be a metric space and Jet (x,), be a 
sequence in M. 

I. We say that (x,), is a Cauchy sequence whenever we have 

1:/1:> 0 jN EN l:/n, m > N[d(x 11 , x,,,) < r.]. 

2. Let x EM. We say that (x,), converges to x, and call x the limit of 
(x,) 1 whenever we have 

l:/e > 0 jNE N l:/n > N[d(x, x,,) < c]. 

We call the sequence (x,), convergent and write x =Jim, x,. 

3. (M, d) is called complete whenever each Cauchy sequence m J\4 
converges to an element of M. 
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DEFINITION 2.3. Let (M 1, di) and (1H 2 , d2 ) be metric spaces. 

I. We say that (M 1,di) and (Af2 ,d2 ) are isometric ifthcre 1s a 
mapping/: M 1 --+ M 2 such that 

(a) f is a bijection 

(b) Vx, y E M 1 [d2(f(x ), f(y)) == di(x, y)]. 

We then write M 1 ;;: M 2 . If we have a function/ satisfying only condition 
(I b ), we call it an isometric embedding. 

2. Letf: M 1 --+ M 2 . We callf continuous whenever for each sequence 
(x,) 1 with limit x in M 1 , we have that limJ(x,) =f(x). 

3. We call a function f: M 1 -> Jf2 contracting if there exists a real 
number c with 0 ~ c < l such that 

4. A function/: M 1 -> A-1 2 is called non-distance-increasing if 

We shall denote the set of all non-distance-increasing functions (ndi) from 
M, to M 1 by M, -> 1 M 2 • 

THEOREM 2.4. I. Let (M" d 1 ) and (M 2 , d1 ) he metric spaces, and let 
f: M 1 -> M 2 he a contracting fimction. Then f is continuous. The same holds 
for non-distance-increasing jimctions. 

2. (Banach). Lei ( M, d) hi! a complete me1ric space. Each contracting 
jimction /: M-> M has a unique ji'xed point irhich equals lim,f1(x0 ) ji1r 
arbitrary x 0 EM. (Here / 1(x0 ) = x 0 andf' + 1 (.\· 0 ) = /(/1(x0 ) ). ) 

It may be instructive to recall the proof of Theorem 2.4 2. Since f is con
tracting, the sequence (flx-0 ) ), is a Cauchy sequence. By the completeness 
of (M,d), the limit x=limJ'(x0 ) exists. By the continuity off(part I), 
f(x)=f(limJ 1(x 0 ))=1imJ;+i(x0 )=x. If, for some yEM,f(y)=y then, 
by the contractivity off d(x, y) = d(f(x), f(y)) ~ c.d(x, y). Hence, since 
c < I, we conclude that d(x, y) = 0, and x = y follows. 

DEFINITION 2.5. Let ( M, d) be a metric space. A subset X of Mis called 
closed whenever each converging sequence with elements in X has its limit 
in X. X is called compact whenever each sequence in X has a convergent 
subsequence. 

DEFINITION 2.6. Let (M,d), (M 1,d1 ), and (M 2 ,d2 ) be (ultra) metric 
spaces. 
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1. We define a metric dF on the set M 1 --> M 2 of all functions from 
M 1 to M 2 as follows: For every f 1,/2 EM 1 --> M 2 we put 

d,..(f1, ./~)=sup d1Cf1(x), .fh:)). 
xeM1 

2. We define a metric dP on the Cartesian product M 1 x M 2 by 

dp((x 1, yi), (x 2 , 12))= max 1 di(x;, yJ 
ie { 1,2, 

3. By M 1 u M 2 we denote the disjoint union of M 1 and M 2 , which 
may be defined as ({l}xMi)u({2}xM2 ). We define a metric du on 
M 1 u M 2 as follows: 

du( (i, x), (j, y)) = di(x, y) if i= j 

otherwise. =1 

In the sequel we shall often write M 1 u M 2 instead of M 1 u M 2 , implicitly 
assuming that M 1 and M 2 are already disjoint. 

4. Let &::tose<l(M)={X[Xs;M, X closed} and ;~ompaci(M)= 
{Xf Xs;M, X compact). We define a metric dH on ·~Josed(M) and on 
~ompac1 (M), called the Hausdorff distance, as 

dH(X, Y) = max{sup d(x, Y), sup d(y, X)} 
.\·eX yeY 

where d(x, Z) = inf=e z d(x, z) (here we use the convention that sup 0 = 0 
and inf 0 = 1 ). 

THEOREM 2.7. Let (M, d), (M 1 , di), (M 2 , d2 ), dF, dr, du, and dH he as 
in Definition 2.6. In case d, d 1 , d2 are ultrametrics, so are dr, ... , dH. Now 
suppose in addition that (M, d), (M 1 , di), and (M2 , d2 ) are complete. We 
have that 

I. (M 1 --> M 2 , dF) (together with (M 1 -> 1 M 2 , dF)) 

2. (M1 xM2,dp) 

3. (M 1 uM2,du) 

4. (~losed(M), dH) 

5. (~ompact(Af), dH) 

are complete metric spaces. (Strictly speaking, for the completeness of 
M 1 --> M 2 , the completeness of M 1 is not required.) 

In the sequel we shall often write M 1 -+ M 2 , M 1 xM2,M 1 u M 2 , ~.( M), 
etc., when we mean the metric spaces with the metrics just defined. 
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The proofs of parts 1, 2, and 3 of Theorem 2.7 are straightforward. 
Part 4 and 5 are more involved. Part 4 can be proved with the help of the 

following characterization of completeness of (~iose<l(M), dH): 

THEOREM 2.8. Let (:~tosed(M), dH) he as in Definition 2.6, with M 
complete. Let (X;); he a Cauchy sequence in ·~tosed(M). We have 

Jim X, = {lim X;[ x 1 E X1, (x1Ji a Cauchy sequence in M}. 
I f 

Theorem 2.8 is due to Hahn ( 1948 ). Proofs of Theorems 2.7 and 2.8 can 
be found, e.g., in Dugundji ( 1966) or Engelking ( 1977 ). The proof of 
Theorem 2.8 is also repeated in de Bakker and Zucker ( 1982 ). 

Part 5 is due to Kuratowski ( 1956 ): 

THEOREM 2.9. I( M is complete then (:~"mpact(M ), dH) is complete. 

We conclude this section with 

THEOREM 2.10 (Metric completion). Let M he an arbitrary metric space. 
Then there exists a metric space M (called the completion of' M) together 
with an isometric embedding i: M-+ M such that 

I. M is complete. 

2. For every complete metric space M' and isometric embedding j: 
M---+ M' there exists a unique isometric embedding j: M-+ M' such that 

J i = j. 

Proof Standard topology. I 

2.3. Metric Domain Equations 

We shall be interested in developing mathematically rigorous founda
tions for branching structures which are, in first approximation, nothing 
but (rooted) labelled trees (with labels from some set A) which satisfy three 
additional properties suggested by 

I. commutativity 

2. absorption 

3. closedness (precise definition omitted). 
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We shall obtain the set of "trees" satisfying these properties as the domain 
p of processes (with respect to A; this notion of process was introduced in 
de Bakker and Zucker ( 1982)) satisfying the domain equation (or 
isometry) 

(2.1) 

(Note that, for reasons of cardinality, (2.1) has no solution when we take 
all subsets rather than all closed subsets of Au (Ax P).) More precisely, 
we want to solve (2.1) by determining Pas a complete metric space (P, d) 
satisfying 

(P, d) ~-~losed(A u (Ax id1,2(P, d))), (2.2) 

where the right-hand side is built up using the composite metrics of Defini
tion 2.6. In addition, we use the mapping id1 •2 where, for any real c > 0, 
ii((lvf, d) = ( M, d, ), with d,(x, y) =c. d{x, y ). (The use of the mapping id11 

is a technical--though essential-trick. Note that it affects only the metrics 
induced. Hence, (2.1) is a correct rendering of (2.2) when attention is 
restricted to the set components.) It has been shown in de Bakker and 
Zucker (1982) how to solve equations such as (2.2): We define a sequence 
of complete metric spaces {(P,,, d,,));;~ 0 , with (P0 , do)= (0, d0 ), d0 

arbitrary, and 

P11 + I= Jl>{A U (AX id112(P 1,, d,,))) 

cfn + I = ( d,,) H . 

Here d11 is the metric determined (according to Definition 2.6) on 
Au (Ax id12(P,,, d,,)), where we assume some given metric dA on A. Next, 
we put {Pw, d,,,) = (U,, P,,, U11 d,,) (with the obvious interpretation of 
U11 d,,; note that P11 s P,, + i), and we define ( P, d) as the completion 
(Theorem 2.10) of (P,", d"'). Then we have. 

THEOREM 2.11. (P, d) is a complete metric space sati.1/)1ing (2.2). If ci,.1 is 
an ultrametric, then so is d. 

Proo( Essentially as in de Bakker and Zucker { 1982 ). I 
Remarks. 1. The above explanation covers only one case out of a whole 

range of possible domain equations. In America and Rutten { 1989 ), a 
category-theoretic treatment of the general case is described. (Standard 
references for domain equations include Plotkin ( 1976) and Gierz et al. 
( 1980). 

2. The reader who wonders about the connection between the 
process domain P and the models obtained through bisimulation from 
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Milner's synchronization trees (or ACP's graph models) is referred to 
Bergstra and Klop (1987, 1989). In a nutshell, in all relevant cases 
(assuming appropriate restrictions on the graph models) the domains 
considered are isomorphic. 

3. SEQUENTIAL LOGIC PROGRAMMING WITH BACKTRACKING 

The first language on our list, L 1, contains a combination of the features 
elementary action, recursion, failure, sequential composition, and back
tracking. It is intended as a uniform (uninterpreted) approximation to 
PROLOG, as yet without a cut operator (which will be added in Sec
tions 4, 5). We shall develop operational (C'n and denotational (£2') seman
tics for L 1• The two semantic models to be presented bring together certain 
previously proposed ideas from the literature in such a way that a smooth 
equivalence proof is made possible. The denotational model is a uniform 
variation of ideas in de Bruin (1986 ), whereas the operational semantics for 
L 1 owes much to de Vink ( 1989 ). In de Vink ( 1989 ), a denotational model 
is developed as well, though of the direct-no continuations-variety. An 
important technical difference between our work and that of de Vink 
( 1989) is that the latter is built on cpo structures (to be contrasted to our 
metric ones), and requires rather more effort to obtain the equivalence 
result. On the other hand, de Vink ( 1989) handles arbitrary interpretations 
(rather than no interpretations), thus preparing the way for a transition 
towards actual PROLOG which consists in the choice of a specific inter
pretation: fixing the sets of elementary actions and procedure variables, 
interpreting the elementary actions (in terms of most general unifiers), 
determining the procedure declarations from the set of clauses in the 
PROLOG program, etc. This transition is described in detail in de Bruin 
and de Vink ( 1989 ), where also a continuation style denotational semantics 
for PRO LOG with cut is developed, together with an equivalence proof in 
the cpo framework. 

The equivalence proof we present below is an instance (many more 
follow in later sections) of a technique based on the idea that both {!,! and 
~ are fixed points of a contracting higher order operator (in a setting with 
an appropriate metric) and therefore coincide. This technique was first 
described in Kok and Rutten (1988) (for the metric case; see Apt and 
Plotkin ( 1986) for an earlier order-theoretic argument). Various further 
examples can be found in de Bakker and Meyer ( 1988 ), all of which deal 
with programs with explicit (simultaneous) procedure declarations-as do 
our languages L 1 to L6-rather than with programs where recursion 
appears through µ-constructs. 

We begin with the definition of the syntax for L 1 • Recall that a ranges 
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over A, the set of elementary actions, and x over Pvar, the set of procedure 
variables. It will be convenient to assume that each program uses exactly 
the procedure variables in the initial segment :f[ = \ x 1, ... , x 11 } of Pvar, for 
some n;?;: 0. 

DEFINITION 3.1 (Syntax). a. (Statements). The class (.1· E )L 1 of 
statements is given by 

with X E :i[' 

b. (Guarded Statements). The class (gE )L·] of guarded statements 
is given by 

g ::=al fail \g; s\ g 1 D g2 

c. (Declarations). The class (DE ).'/,r/1 of declarations consists of 
11-tuples D = x 1 =g 1 , ... , x 11 = g,,. or (x; = g;) ;, for short, with X; E .1' and 
g, EL], i= 1. 2, .. ., ll. 

d. (Programs). The class (aE )2flr«9 1 of programs consists of pairs 
6= (D\s), with DE01<.d1 and sEL 1. 

EXAMPLES. 1. Assume a, h, c, dE A. (x 1 =(a; x 2 ) D (h; x 3 ), x 2 <= 
(c; X1) 0 (d; fail}, X3 =fail\ a; Xi; h ). 

2. This example suggests how to use L 1 in the modelling of a 
PRO LOG like language. Let (x, y, z, u, v E ) A tom be the class of logical 
atoms (atomic formulae such as, e.g., p(f(a, x), g(y, h, x))). Let 

yr- Yi/\ Y2 A Y_i 

::: r-

be a fragment of a PRO LOG program, and let v 1 /\ v 2 be a goal. Let us 
introduce the alphabet A= { atom(x, y ): x, y E Atom}, where the intended 
interpretation of atom(x, y) involves (in a way not elaborated here) the 
unification of x and y. (More about this, including a variable renaming 
scheme, in the Appendix.) The above program fragment and goal would 
induce the following program fragment in L 1 : 

( { u = · · · 0 (atom(u, x); x 1 ; x 2 D (atom(u, y); 

Y 1; Y1; Y J 0 (atom( u, z) 0 .. · ) ) ) .. · }u e Atom I V 1 ; V 2). 

Remarks. 1. All g; occurring in a declaration D = (x; <;=:. g;), are 
required to be guarded; i.e., occurrences of x E :1£ in g; are to be preceded 
by some g (which, by clause h, has to start with an elementary action). This 
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requirement corresponds to the usual Greibach condition in language 
theory. Note that in the context of logic programming, this is no restric
tion: each procedure body starts with the execution of an elementary action 
(to be interpreted as unification, cf. the above example 2 and the introduc
tion to Section 8 ). 

2. We have adopted the simultaneous declaration format for 
recursion rather than the µ-formalism which features (possibly nested) 
constructs such as, for example, µx[(a; x; µy[(b; y) D c]; d) De]. The 
simultaneous format is natural in the context of logic programming. 
Moreover, it allows a simpler derivation of the main semantic equivalence 
results presented below. (Certain additional inductive arguments applied in 
Kok and Rutten ( 1988) to deal with µ-constructs can now be avoided.) 

3. Usually, we do not bother about parentheses around composite 
constructs. If one so wishes, parentheses may be added to avoid 
ambiguities. 

We proceed with the definitions leading up to the operational semantics 
f!J for s EL 1 and CJ E i!Jio91 . We introduce two auxiliary syntactic classes in 

DEFINITION 3.2. a. The class (rE )~con 1 of success continuations is 
defined by 

r ::=El (s; r). 

b. The class (t E ) .. %on 1 of failure continuations is defined by 

t::=Lll(r:t). 

Here E and LI are new symbols, and the parentheses around (s; r) and 
(r: t) will be omitted when no confusion is expected. Note that, apart from 
the end markers E and LI, t is no more than a sequence of r's, and r is no 
more than a sequence of s's. Thus, the syntactic continuations are just 
sequences of statements with some added delimiter structure. 

The semantic universe (both for operational and denotational semantics) 
for L 1 is quite simple. Let b be a new symbol not in A, the intended 
meaning of which is to model failure. We define the semantic domain 
(v, WE )R in 

DEFINITION 3.3. R =A* u A"' u A*. {b }. 

In other words, the elements of R (which will serve as meanings of 
statements or programs) are either finite sequences over A, possibly 
empty (e) and possibly ending with b, or infinite sequences over A. By 
Subsection 2.2, we can introduce a distance d on R which turns it into a 
complete ultrametric space (in the definition of d, b plays the same role as 
the elements of A). 
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We now give the definitions of the operational semantics for L 1 and 
/h,.,11 . They are based on transition systems (as in Hennessy and Plotkin 
( J 979) and Plotkin ( 1981, 1983) ). Here, a transition is a fourtuple in 
.Ja·tt 1 x A x Deel 1 x :-Tum 1, written in the notation 

t ....:!...+ [) t '. (3.1 ) 

We present a ji>rmal transition system T1 which consists of axioms (in the 
form as in ( 3.1 ) ) or rules, in the form 

f1 ~D t' 

f2 ~D t" 

Transitions which are given as axioms hold by definition. Moreover, a 
transition which is the consequence of a rule holds in T 1 whenever it can 
be established that, according to T1' its premise holds (or, in Section 9, 
premises hold). We shall employ below notational abbreviations for the 
rules such as (dropping the a and D in ----"-> [) for convenience) 

and 

l1-+t2lt3 

t'1 -+ t; I 1; 

t I-+ 12 

13-+ t4 

I 5-+ 16 

as shorthand for 

as shorthand for 

Definition 3.4 (Transition system T 1 ). 

(a;r):t....:!...+n(r:t) 

(g; r): t ~D f 
a _, X <= g 

(x;r): t___.n t 

(fail; r): t~n t 

s 1 ;(s 2 ;r):1~Dt 

(s1:s2 );r:t~Dt 

l1-+t2 dt1-+t2 ---an ---. 
l3-+l4 l5-+l6 

in D 

(s 1; r) : ( (s 2 ; r) : t) ~ D t 
((s1Ds 2 );r):t~Dt · 

(Elem) 

(Ree) 

(Fail) 

(Seq Comp) 

(Backtrack) 
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The axiom (Elem) describes an elementary step. (Ree) embodies procedure 
execution by body replacement: for x <= g in D. execution of x amounts 
to execution of g. (Fail) replaces execution of (fail: r): t by that oft, its 
failure continuation. (Seq Comp) should be clear. (Backtrack) executes 
((.1· 1 D s 2); r): l by executing (s 1; r) and adding (s 2 ; r) to the failure con
tinuation t. 

We shall now define how to obtain (1 from T 1 • We need an auxiliary 
definition. 

DEFINITION 3.5. Choose some fixed D. 

a. Let t 1o t 2 E :3£,0;1 1 . The relation t 1 --+-> t 2 is the relation which holds 
between t 1 and t 2 whenever, for some a EA and t E .!/rr,,1, we have that 

" -t1--+Dt 

" -t1 --+o t 

is a rule in T 1 • Also, !+.. denotes the reflexive and transitive closure of -++. 

b. t terminates whenever t !+.. E: t', for some t' 

c. t fails whenever t !+.. A. 

EXAMPLE. Assume that x <= fail; a is in D. We then have that 
( x; E) : LI !+.. L1, since the following are (instances of) rules in T 1 : 

( (fail; a); E) : A ....!!..+ /) t 
(x;E):A....!!..+ 0 ! 

(fail; (a; E) ) : A ....!!..+ /) 7 
((fail; a);£): LI ....!!..+ 0 t 

(fail; (a;£)): LI....!!..+ n 7" 

The following lemma is immediate: 

LEMMA 3.6. For each t, either t terminates, or t fails, or, f(1r some a, r', 
we have t-.-!!..+ D t'. 

Proof Omitted. (A formal proof requires the complexity measure 
introduced in the proof of Lemma 3.12.) 
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DEFINITION 3.7. a. The mapping (!i: &io9 1 -+ R is given by 

Cl[(Dls)] =(Dn[(s; E): LI]. 

b. The mapping Cn: .Y'rN1 1 -+ R is given by 

fD[t] = E, if t terminates 

=b, if t fails 

= a.(l:D[t'], if t~f)t', 

where the transitions are with respect to T1 • 

It may not be obvious that the function (!D is well-defined, since ~'n 
occurs on the right-hand side (of the third clause) of its definition. Tradi
tionally, recursion may be handled by the introduction of a fixed point 
of some (higher-order) operator. Here we introduce the (contracting) 
mapping </J D with crn as its (unique) fixed point. This is expressed in 

LEMMA 3.8. Let the operator </Jn: {.3/:on 1 -+ R)--> ( .:Y-(·,,11 1 --> R) be 
defined as fol!oll's: For any Fr= .3f·N1 1 -+ R, we put 

</J n(F)(t) = E, if t terminates 

=b, if t fails 

=a.F(t'), if t~rJt'. 

Then </J D is a contracting mapping with (!D as its fixed point. 

Prolf Clear from the definitions and Banach's theorem. I 

Remark. In, e.g., de Bakker ( 1989) or de Bakker and Rutten ( 1989 ), we 
present a similar technique in a setting where we deal with interpreted 
elementary actions, leading to a model which involves states and state 
transformations. 

The next step is the development of the denotational model. This model 
uses semantic counterparts for the syntactic continuations :?? cM1 1 and 
3f·N1 1 , in the form of 

( rjJ E ) R --> I R, 

(v, w) E )R, 

( n E ) IR = ( R --> 1 R) --> 1 R --> 1 R, 

the (semantic) success continuations 

the (semantic) failure continuations 

a set which shall remain nameless. 
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Moreover, the usual notion of environment to deal with recursion is 
applied, this time in the form of ( y E ) r 1 defined as 

The denotational semantics function 9 is of type 

fi': Li __. r1 __. i IR; 

i.e., it is well-defined to write frl[s] y<Pv = w. The function :z: will be used in 
the definition of ./It: .OJ~o91 --> R. 

From now on, we shall often suppress parentheses around arguments of 

functions. The denotational semantic definitions are collected in 

DEFINITION 3.9 (Denotational semantics for L 1 , .JJzc,r; 1 ). 

a. .0?[a] }'rPV = a.<Pv 
.0J[x] yrj>v = yx</JV 
.01 [fail] yrj>v = v 
.".ZJ[s1;s2] yrj>v=01h] y(9[s2] 11</J)v 
E0[.1·1 0 s2] yif>v = 9[s 1] ylf>(0:'[s2] yif>v) 

b ... #: ;JJ>Mf1 1 -->R is given by .if[(Dls)] =9[s] fo{J.v.e)(6), with 
y n as in clause c 

c. rD=y{nJx';};, where for D=-(x; = g;);. 

(n 1 , ... , re,,) =fixed point (<Pt> ... ,<!>,,), 

with <I>/ IR"--> IR given by <P;((rc'1, ... , n;1))= Q[g;] 1·{n;/x;};. 

Remarks. 1. In clause a, the first item reads, after adding parentheses, 

as follows: §[a](y)(r/J)(v)=a.rj>(v). Thus, on the left-hand side/'. r/J, i· are 

arguments of the function §[a]; on the right-hand side a is concatenated 

( ·) with the result r/J(v) of applying if> to v. Similar elaborations will be 

omitted in the sequel, since the intended meaning can always be inferred 

from the types of the functions concerned. 

2. Note the symmetry in the definitions of ft[.1· 1; s2] and .0'[.1· 1 0 s2], 

where in the former case the success, in the latter case the failure continua

tion is extended. 

3. In clause b the meaning of s is initialized with the empty success 

continuation A.v. c and the empty failure continuation b. 

4. The (unique) fixed point in clause c exists by the guardedness 

requirement which ensures contractivity of the <P, (Lemmas 4.6 and 4.7 and 

Theorem 4.8 provide details for the more complex setting with L 2 ). 

We continue with the derivation of the equivalence (!'=.If. 
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First, we introduce two auxiliary denotational meaning functions ;J/D and 
YD, working on elements in :J#co;1 1 and .JJw;1 1, respectively. (We find it 
convenient to carry along D as a parameter, rather than as explicit 
argument of the mappings .0£ and .:1'-.) The mappings .'!l0 : .'!lro;1 1 --> R--> 1 R 
and !/0 : .'hM1 1 --> R are defined in 

DEFINITION 3.10. a. ~D[E] =Jcv.e, ~0 [s;r] =.01[s] rD~o[r], with Yo 
as in Definition 3.9. 

b. .:YD[LI] = b, .:10 [r: t] = fif0 [r] .:Y0 [1]. 

The following lemma is now easily established (cf. Definition 3.5 for -->+ ). 

LEMMA 3.11. Choose D fixed. 

a. YD[E: t] = D, :Y0 [L1] = 6 

b. .:1D[(a; r): t] =a .. '1;J[r: t] 

c. If t 1 -->+ 12, then .JJ"0 [t 1] = :YD[t2]. 

Proof We consider only one special case. Let t 1 = ((s 1 D s2 ); r): t, t2 = 
(s 1;r):((s2 ;r):t). We have Y0 [t 1]=3'"0 [((s 1 Ds2 );r):t]=a>0 [(s 1 Ds2);r] 
YtJ[t] = .~[s 1 D s2] ')' D .<Jllo[r] .'10 [1] = .@h] }'D·~D[r](_<?i1[s 2 ] ')' D'afD[r] 
:Y0[t]) = .. · = . .:10 [(s1; r): ((s 2; r): t)]. I 

The key step in the proof that (!) = .11 holds on ;~zo9 1 is the following 
lemma (which constitutes an application to l 1 of the general proof techni
ques of Kok and Rutten ( 1988) and de Bakker and Meyer ( 1988) ): 

LEMMA 3.12. let <PD: (.9f.,,n 1-+R)->(.:lt·oH 1->R) he defined as in 
lemma 3.8. Then <P 0(.:YD) = Yt)· 

Proof We introduce the following complexity measure c, on t E :Yr:o:11 1 : 

c,(L1) = 1, ci(r: t) = l'r{r)+ c,(t); c,(E) = I, ds; r) = c,.(s); c,(a) = 
c,.(fail)= I, c,.(x)=c,.(g)+ 1, where x=g is in D, c,(s 1;s2)=c,(s1)+ 1, 
c,(s 1 D s 2 ) = c,.(si) + c,.(s2 ) + 1. From the definition of T 1 we see that, for 
each t 1 , t 2 such that 

(i) 11 -->+ 12, 

(ii) 11 ¥- t 2 , and 

(iii) 11 of the form (s; r): t', 

we have that c1(t 1 )>c 1(t 2 ). 

We now prove that <P 0 (30 )(1) = §D[t], for each t. If t terminates or t 
fails, the result is clear by definition. Otherwise, t is of the form t = (s; r): t', 
and, for some a, 10 , we have t-~ 0 t0 . We use induction on c,(t). The 
following cases are distinguished: 
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<1> n(ffr>)((a; r): t') = a.Yn[r: t'] 

= .'.1;-J[(a; r): t'] 

( def. <1> n) 

(Lemma 3.11) 

s =fail, 

s=x, 

<1>n(ffr>)((fail; r): t') = <1>n(Y0 )(t') 

= Yn[t'] 

= ,<J~J[(fail; r): t'] 

<PD(·'Tr>)((x; r): t') = <P 0 (.':10 )((g; r)): t') 

= .:f;>((g; r): t') 

= .':10 ((x; r): t') 

(def. <f> D) 

(ind.hyp.) 

(Lemma 3.11 ). 

( def. <1> D) 

(ind. hyp.) 

(Lemma 3.11 ). 

<1> n(.'ln )( ( (s i D s2 ); r) : t') 

= <l>n(Yn)((.1· 1 ; r): ((s 2 ; r): t')) 

= .-'1o((s1; r): ((s 2 ; r): t')) 

= c'lo(((s 1 D s2 ); r): t') 

( def. <P 0 ) 

(ind.hyp.) 

(Lemma 3.11 ). I 
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The main result of the present section is now a direct consequence of this 

lemma: 

THEOREM 3.13. For each CJE:J'i<'9 1 , (![a]= .. t't'[a]. 

Proof By Lemma 3.8 and Lemma 3.12, <!> n is a contracting mapping, 

hence its fixed points l!'D and Yn coincide. Now 

CD [er] = (!J [ (DI s)] = (!;/)[(s; E) : .-1] = .:Tn [(s; E) : LI] 

= !0[s] y n0cv.e)(6) = .4t[ (DI s)] =~#[a]. I 

4. SEQUENTIAL LOGIC PROGRAMMING WITH BACKTRACKING 

AND ABSOLUTE CUT 

We add a preliminary version of the cut operator, written as ''!" and 

inspired by PROLOG's cut, to the language L 1 , obtaining L2 • This version 
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we call "absolute cut." Its operation is rather drastic: when the operator •• !" 
is encountered, all alternatives (kept available for possible subsequent 
backtracking through a fail statement) collected as a result of previous 
executions of s 1 O srstatements since the beginning of the whole program are 
deleted. In the next section we shall deal with a more realistic version of the 
cut operator, denoted by "! !" and called "relative cut." The operator "! !" 
deletes all alternatives (kept available for possible subsequent backtracking 
through a fail statement) collected as a result of previous executions of 
s1 0 s2-statements since the beginning of the execution of the most recent 
procedure call in which this"!!" occurs. We emphasize that the !!-operator 
is the one which interests us. The "!" is studied only to help in under
standing our treatment of "!!" in the next section. In particular, the 
mechanism developed in the present section introducing the so-called dump 
stack is not so much motivated by our wish to model "!" (in fact, all 
applications of transition system T2 leave the dump stack constant), but 
rather designed for modelling"!!" (in T3 the dump stack indeed varies). 

We shall design operational and denotational models for L2 (and for L 3 

in the next section) involving a more subtle use of continuations. The 
operational semantics for L 3 (and its approximation L2 ) are due to de 
Vink, cf. de Vink (1989) and de Bruin and de Vink (1989). Our continua
tion based denotational semantics for L2 will be designed such that the 
equivalence (O = .fi on &io9 2 is a straightforward extension of the results 
in Section 3. 

DEFINITION 4.1 (Syntax). 

a. (Statements). The class (s e )L2 of statements is given by 

s ::=a lxl fail ls 1 ; s2 Is 1 D s2 I !. 

b. (Guarded statements). The class ( g e ) L~ of guarded statements 
is given by 

g ::=a I fail I g; s I g1 D g2. 

Note that ! does not act as a guard. 

c, d. The classes ~ect2 , &io9 2 are derived from L 2 , L~ analogously 
to Definition 3.1, parts c, d. 

We now present the new continuations: 

DEFINITION 4.2. a. The class (u E )Ci// con of statement continuations is 
defined by 

u ::=nil I (s; u ). 
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b. The class (r E )~con 2 of success continuations is defined by 

r : : = EI { u : t); r. 

c. The class (t E )§' c0>t 2 of failure continuations is defined by 

t::=Lfi(r:t). 

As before we define a transition system in terms of fourtuples in 
:!7con 2 x Ax f!2ect2 x :!7con 2 , employing the notation 

DEFINITION 4.3 (Transition system T2l· 

(((a; u): t); r): t' ~D ((u: t); r): t' 

r:t'-!4 0 ( 

( (nil : t ); r) : t' -!4 0 t 

( ( ( g; U) : l ); Y) : t' ....!!...;. D f 
(((x; u): t); r): t' ....!!..+ 0 i' 

(((fail; u): t); r): t' ....!!..+ 0 t 

x<= gin D 

( ( (s 1 ; (s2 ; u)) : t ); r) : t' -!4 0 t 
((((s 1 ; s2 ); u): t); r): t' -!4 0 'i 

(((s 1 ; u): t); r): ((((s2 ; u): t); r): t')-!4 0 i 
((((s 1 D s2 ); u): t); r): t' -1.'..+. 0 i 

( ( U : f ); r) : f ....!!...;. D f 
( ( ( ! ; U) : ( ); I') : (1 -'.'..+. D 'j° 

(Elem) 

(Nil) 

(Ree) 

(Fail) 

(Seq Comp) 

(Back track ) 

(Cut) 

It may be instructive to compare T2 with T 1 • The system is organized by 
the various cases for sin t0 =. (((s; u): t); r): t'. In t0 , t' is the failure con
tinuation, also to be called failure stack, which serves the same purpose as 
in the constructs (s; r): t' encountered in T 1 • On the other hand, tin t0 is 
the "dump stack" (terminology from de Vink, 1989). Its function is as 
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follows: When, as a result of (Backtrack) some t 0 = ((((s 1 D .1· 2 ); u): t); r) : t' 

is transformed (by ->->) into t 1 = (((s 1 ; u): t); r): i (where i = 
(((s 2 ; u): t); r): t'), in t 1 the stack t is preserved. In case we encounter, 
while processing s 1 ; u, an occurrence of "!," we shall transform the then 
current t" = (((!; u'): t); r): l into ((u': t); r): t, thus reinstalling the dump 
stack instead of the currently active failure stack l, effectively throwing 
away the alternatives built up so far in l as a result of the 0-statements 
processed up to now. The other rules in T 2 should be clear: Once the 
formalism involving a second (dump) stack is understood, the axioms 
(Elem) and the rules (Ree), (Fail), (Seq Comp), and (Backtrack) are direct 
extensions of similar rules in T 1 • Rule (Nil) expresses the natural fact that 
execution of ((nil: t); r): t' amounts to execution of r: t'. We already 
announce that in transition system T 3 dealing with relative cut, we shall 
only vary the recursion rule (and replace "!" by "!!" in the (Cut) rule). 

We next define how to obtain <!' from T2 • The notions of terminating or 
failing t are as in Definition 3.5. 

DEFINITION 4.4. a. The mapping (i': :!Jz,-;9 2 -+ R is given by 

0 [ < D I s ) ] = (710 [ ( ( ( s; nil ) : LI ) ; E) : LI]. 

b. The mapping (D0 : :Yl·o:11 2 -+ R is given by 

(".D[t] = e, 

=b, 

=a.<!D[t'], 

if t terminates 

if t fails 

if f _..::..,, D (, 

where the transitions are with respect to T2 • 

Well-definedness of (I for .'!17092 follows as before. 

We continue with the denotational semantics. Following the general 
strategy first adopted in the previous section, we shall structure the denota
tional definitions in direct correspondence with the operational ones in T 2 • 

We first introduce the various domains 

(v, w E )R 

(~E )R-+ 1 R 

(p E ) R-+ I (R-+ I R)--> I R-+ I R 

(rrE)(R-+ 1(R-+ 1 R)-+ 1 R-+ 1 R) 

-+ 1 (R--> 1 (R-+ 1 R)--> 1 R-> 1 R) '/l [R 

(y E )I'2 = .'!'-+ R 
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The mappings 22!: L 2 --> r 2 -> 1 IR and Jl: 21'ir·y 2 -. Rare given in 

DEFINITION 4.5. 

a. 'Z1 [a] y pvifJw =a. pvifJw 
.@[x] ypvifJw = yxpvifJw 
@[fail] ypv<f>w = w 
.@[ s 1; s2] ypvifJw = 9[.1·1] /'(.@ [s2] l'P) vcjJll' 
0l[s1 D s2] ypvifJw = 9[s 1] ypPcjJ(fl[s2] /'pvcjJw) 
.@[!] ypvifJw = pvifJv. 
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b. Yo=y{n;/x;};, where <n 1 , ••. ,n,,) is the (unique) fixed point 

of <P1 , .•• ,!Jf,,), with P;: IR"->IR given by lf';((n:'1 , •. .,n:;,))= 

01[g/] y{ n;/x,},. . 

Remark. The definitions in part a follow the axiom and rules in Tc- The 

following correspondence is maintained: 

u E Jl/ ("()}/ -:=> p E R ...... I ( R ...... I R) ...... I R ...... I R 

r E ;!/lrm1 2 -:=> ifJ ER--> 1 R 

Also, a construct ( ( u : t ); r) : t' corresponds with the semantic entity prefJ1r. 

We now first prove 

LEMMA 4.6. 01 is well-defined. 

Pro<)l By induction on the complexity of s we prove that 

1. Vy:Vp:Vv:VifJ:Vw:9[s]ypvcjJwER 

2. Vy : Vp : Vv: VefJ: .@[s] ypvifJ: R-> 1 R 

3. Vy: Vp: Vv: .<j/l[s] ypv: (R-> 1 R)-> 1 R-> 1 R 

4. Vy: Vp: £.ll[s] yp: R-> 1 (R-> 1 R)-> 1 R-+ 1 R 

5. Vy: @[s]y: (R -+ 1 (R -+ 1 R) -> 1 R -> 1 R) -+ 1 R-> 1 (R-+ 1 R)-> 1 

R-+ 1 R 

6. @[s] : r --+ I R. 

1. a · pvifJw E R. 

2. d(a. pvifJw 1 , a . pvifJw2 ) ~ ~d(pvifJw 1, pv</m 2 ),;:; ~d( w 1 , \\"2 ), since prefJ: 

R-> 1 R. 
3. d(a·pvifJ 1w, a·pvifJ 2 w),;:;1d(pvcjJ 1w, pPifJ2w)~~d(p11</i1, Pl'rf2),;:; 

~d(efl 1 ,cjJ 2 ), since pv: (R-> 1 R)-+ 1 R-> 1 R. 
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4. d(a · pr 1 rjm, a· pv 2rf>tt·) ~ ~d(pvi<fnv, PV2rPH') ~ ~d(pv 1 , pvJ ~ 
:\:d(v 1 , v2 ), since p: R-+ 1 (R-+ 1 R)-+ 1 R-+ 1 R. 

5. d(a·p 1 vr/>w, a·p 2 vr/>w)~:\:d(p 1 V</i\\', P2vrf>w)~~d(p 1 ,p 2 ). 

6. .V'[a] is constant (in y). 

s=x 

1. y(x) pvcpw ER, by definition of y. 

2. y(x) pvrf> ER-+ 1 R, by definition of y. 

3. y(x) pv E (R-+ 1 R)-+ 1 R-+ 1 R, by definition of}" 

4. y(x)pER-+ 1 (R-+ 1 R)-+ 1 R-+ 1 R, by definition of/'· 

5. y(x)E(R-+ 1(R-+ 1 R)-+ 1 R-+ 1R)-+ 1R-+ 1(R-+ 1 R)-+ 1 R-+ 1 R, 
by definition of I'· 

6. d(.9[x]y 1 , £2![x]y 2 )=d(}'1(x), }' 2 (x)~d()'1, Y2l· 

s =fail 

1. .Q[fail] i'PVrf>w = w ER. 

2. '2:t[fail] /'PV</J = idR ER-+ I R. 

3. .9[fail] 1·pv is constant (in <P ). 

4. .01 [fail] /' p is constant (in v ). 

5. .P[fail]y is constant (in p ). 

6. 9 [fail] is constant (in /' ). 

s=:! 

1. !'.i'[!]}'pvrf>w=pv</JvER. 

2. 9[!] i'PVrP is constant (in w). 

3. d(f?[!] /'PV</J 1 w, 9 [!] ypvr/> 2 w)=d(pvrf> 1 t\ rw</J 2 v)-.(.,d(pvrf> 1, pvr/J 2 ) 

-.;;;.,d(rf> 1 ,</J 2 ), since pvE(R-+ 1 R)-+ 1 R-+ 1 R. 

4. d(.9[!]ypv 1 rf>w, 9 [!]ypv 2rf>w) = d(pv 1 </Jv 1, pv 2</Jv 2 ) ~ max { d(pv 1<Pv1, 

pv1rf>v2)*, d(pv1rf>v2, pvz</Jv2 )**}. 

* ~ d( v 1 , v 2 ) since pv 1 <P E R -+ 1 R. 

** ~ d(pv 1, pv 2 ) ~ d(v 1, t> 2 ), since pE R-+ 1(R-+ 1 R)-+ 1 R-+ 1 R. 

5. d(9[!] /'P1 vrf>w, 9[!] /'p 2 vr/>w) = d(p 1 v</Jv, p 2 vr/>v) ~ d(p1, Pz). 

6. f?['] is constant (in;•). 

I. .S?[s 1 ;s2] ypv</Jw=.'2[.1· 1] y(.ct[s2] yp) l'</Jw. 

By induction (s 2 : 4) we have 9[s 2] }'PER-+ 1 (R-+ 1 R)-+ 1 R-+ 1 R, so 
by induction (s 1 : 1) we have Q [s 1] y(9[.s· 2] yp) v</Jw ER. 

2. 9[s 1 ;s2 ] }'pvr/>=9[.1· 1] /'(.ct[s 2 ] yp) vrf>. 
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By induction (s2 :4) we have 9 i'PER-+ 1(R-+ 1 R)-+ 1 R-+ 1 R, so 
by induction (.1· 1 :2) we have '.l'J.1· 1fl ;·(.Q~s 2 ;·p)rq\ER-> 1 R. 

3. 9[.1· 1: s2] /'Pl' = 9[.1·1JI ;•(C/:fs 2 ~ i'fl)t·. 

By induction (.1· 2 :4) we have.'./ i'1u::R-. 1(R-+ 1 R)-. 1 R-. 1 R. so 
by induction (s 1 : 3) we have 9[s 1] /'(.0' i ;·p)r E (R-> 1 R) -+ 1 R-+ 1 R. 

i'P ). 4. 9[.s·1; .1·2] i'P = ::/ [.1· 1] i'(Cl 

By induction (.1· 2 : 4) we have Q 

by induction (.1· 1 :4) we have 
;opER-+ 1 (R-+ 1 R)-+ 1 R-+ 1 R. so 
C![s1~ ;•(<'.! i'P)ER-+ 1 (R-+ 1 R) 

->I R-+ I R. 

By induction (s 1 :5)(.1·2 :5) we have 1";'. .'/ /'E(R-+ 1 (R-+ 1 R) 
-+ l R -> I R ) -+ I R -> I ( R -+ I R ) -> I R -+ I R, so (j i[ .1· I ";' '../ [ ,\' 2 .,. E ( R -+ I 
( R -> I R) -+ I R -+ I R ) -+ I R -+ I ( R -+ I R ) -+ I R -+ I R. 

6. d(0:'[s1:s2] "/1P· '.l[.1·1:.1·:,] '/2P)~d(Yi[.1·1D i'1U.I i'1Pl. '.l[.1·1 
i'2U.![[.1·2~ 'hP)) ~ max{d(Y[l.1·1] i'd "i'1P). 9[.1 11 /'1UI ;· 2 p))*. 
d(C/[.1·1J "/1('7[s2~ 1'2/.J), vr.11~ i'2('/ "i'2P))** ). 

*~d(I'} ;· 1p, .CJ' ;· 2 p) (by induction (.1 1 :5))~d('/ / l ~ 

C![s2 ]i' 2 )~d(y 1 , yJ, by induction (s 2 : 6). 

** ~d(.9[.1· 1 ]1• 1 , Y[si];· 2 )~d(;· 1 , ;· 2 ), by induction (s 2 :6). 

S "= .I' I 0 ,I' 2 

1. :./[s 1 D .1·:-TI ypr</Jw = U[.1· 1] j'pt•q\(C/[s2[i ;·prq\11'). 

By induction (s 2 : 1) we have C/[sJ ;·prq\11· ER. so by induction (.1· 1 : I) we 
have 9[s 1] "/p1•q\(.Cl'[si] ·;pvq\11') ER. 

2. 9[.1· 1 0 s2 ] i'pvq\ = Q[.1 1] "/prq\ · <'.!] 1·p1•</J. 

By induction (.1· 1 : 2)(s 2 : 2) we have .0'[.1· 1 ~ ;•pr</J, (J ;·pr</J ER-+ 1 R so 
.UJ.1·1] /pvefi '.! ;•prep ER-+ 1 R. 

3. d(f!l[s1 D s2] /'prq\ 1 w, 9~s 1 0 s2 ]/'p1•</J 2 w) ~ d(.Q[.1'1J /'PVefi1(Y[s2J 
rpv</J 1 w ), 9[s 1 ]'rpv</J 2(9' [sJ 1·pv</J2 \\')) ~ max(d(9[s1 ;·prq\ 1 ( r:r 1·pv</J1 \\' ), 
ft[si] f'pv</Ji(f.t'[s 2] "/pvq\ 2 w))*, d(C/[.1· 1] i'Pt'</J1U) ''/P1'</J2w), Ci[.1'1] "/Pl'</>2 
(Q[s2] 1·pv</J2 w))** }. 

* ~ d(.Q'[.1· 2 ] ;·pvq\ 11r, .0'[.1- 2[: ;·r.n</> 2 w) (by induction (.1· 1 : 2)) ~ 
d('.t 1·pv</J 1, 9[si] ;pr</J 2 )~d(cp 1 , </> 2 ), by induction (s2 : 3). 

** ~ d(.9[s 1] "/PVr/; 1, 9[s 1] ;·pv</J2) ~ d(</J 1, q\ 2 ), by induction (s 1 : 3 ). 

4. d(.ft[.1· 1 0 s2] /'pv 1 </Jw, Cl'[s 1 Os 2] f'Pl'2efiw)~d(Y~.1·1] /'PV1<ft(Cl~.1·2l1 
/'PL' 1</Jw), .'./'[.1- 1 ~ "/P1' 2 </;(9!Is2] "/Pl' 2q\w)) ~ max{d(.0'[s1] /'PV1efi (C/[.1·2:! 
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ypv 1 (bw), .0'[s 1] 1•pv 14' Ut'[s 2] ypi'2</m))*, d{.01[s1] YPV1 <P(.01[s2 ] / 1pv 2 <Pn1), 

0i[s1] ypv2<P(!Y[s2] /'PV2<Pw))** }. 

*~d(.9[s2]}·pv 1 1H', .9[s 2]ypv 2 <Pw) (by induction (s 1 :2))~ 
d(f![.1· 2] "ypv 1 , .0'[s2] ·;pv 2 )~d(v 1 , v2 ), by induction (s 2 :4). 

**~d(.01[s 1 ] ypv 1, 0'.'[s 1] 1·pv 2 )~d(v1, v2), by induction (s 1 :4). 

5. d(.0'[s 1 0 sJ yp 1 v<Pw, .01[s 1 D s2] YP2 v<Pw) ~ d(9[si] 'YP1 v<P(0![s2] 

yp 1 v<Pw), .01[s 1] yp 2 v<P(.@[sJ yp 2 V<pw)) :( max{d(.9[s1] YP 1 vq)(.01[s2] 

yp 1 vq)w), .0'[s 1] yp 1v<P(fii[s 2] yp 2v<Pw))*, d(9[s1] /'P1Vq)(fti[s2] yp 2 vqnv), 

fii[s1] }'P2V<P(.01[Si] 'YP2V<Pw))** }. 

*~d(.9[s 2]/'p 1 v<Pw, .9[s1]!1p 2 v<Pwl (by induction (s 1 :2))~ 
d(9[s2] yp 1, 0'[s2] l'P 2) ~ d(p 1, p2 ), by induction (s2 : 5 ). 

** ~ d(.'Z'[s 1] }'p 1, .<:0[s 1] }'p 2) :( d(p 1 , p 2 ), by induction (s 1 : 5 ). 

6. d(£2[.1· 1 0 s 2] /' 1 pv<Piv, 9[s 1 0 s2] y2pv<Pw) ~ d(E?[s1] Y1 pv<P(.'Z'[s2] 

y 1pvq)w), C?[.1· 1] }' 2 pv<P(.01[s2] /' 2 pvq)w)) ~ max{d(.Q[s1] }'1 pt!<P(0:1[s2] 

"Y1PV<Pw), f0[s1] Y1PV<P(.@[s2] Y2PV<P11·))*, d(.@[s1] }'1PVl,6(9[.1·2] "hPVcPW), 

E?[s1] Y1PV<P(.9[s2] "Y2PVqJW))** }. 

*:(d(0![s2] 1• 1pv</Jw, .S!J[s 2] }' 2 pv<PH') (by induction (s 1: 2)) ~ 

d(.Q:[s2h 1, 9[si]y 2 )~d(y 1 ,}' 2 ), by induction (s 2 :6). 

**~d(.0:"[s 1 ]y 1 , .01[s 1 ]Ji 2 )~d(y 1 ,y 2 ), by induction (.1· 1 :6). I 

LEMMA 4.7. V g: 9 [g]: j-. l/l [ft 

Proof With induction on the complexity of g we prove that 

1. Vy: .Q'[g]"r (R-.1(R-.1R)-.1R-.1R)->1.:2R-.1(R-.1R)-->1 

R-. 1 R. 

2. fi'[g] : r-. 111 IR. 

The details of the proof are very similar to those of the previous lemma, 

and therefore omitted. I 

THEOREM 4.8. In the definition of the denotational semantics for L 2 we 

have that < 'P 1 , ••• , 'P,,) is a contraction. 

Proof: d(('P 1 , ... , 'P,,)(n 1 , .•• ,n,,), ('P 1 , ••• , 'l',,)(n;,, ... ,n;,))=* 

d( (£Zl[g1]Y, ... , .P[g,,]y), (92J[g1]y', ... , 9[g,,]y')) = max{d(.CZ1[g 1] y, 

.C/i[g 1] "'/'), ... , c/(£21 [g,,] '}', fi'[g,,] y')} :( ~d( }', y') = ~max { d( n 1> n'1 ), ... , d(n,,, n;,)} 
= !d( ( n 1 , .•• , nn), <n'1 , ••• , n;,) ). 

*:with y: :1.-. IR such that y(x 1) = n 1• 

*:with y': .£-. IR such that /(x;) = n;. I 
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Similar to what. w_e did in Section 3, on our way to establish that (' =.II 

we use some (auxiliary) denotational semantic functions '/.'/ ,j) 1- ,·th 

types 

Jlf D: ulf l'Mtt --> R--> 1 ( R--> 1 R)--> 1 R _,. 1 R 

Yln:.JA,·0H2->R-> 1 R 

defined in 

DEFINITION 4.9. 

a. 01/n[nil] = hdq).(p 
J/tn[s; u] = 9[s] /'n111D[u] 

b. -~n[E] = Av.c. 

Yln[(u: t); r] = J//n[u] 3~)[!] .::.?'nM 

c. ·?0)[L'l] = 1) 

-?0)[ r : t] = .0P n [r] Yn [t]. 

The following lemma is now easily established: 

LEMMA 4.10. Choose D jl.xed. 

a. .1n[[E: t] = <:, .1n[L'l] = 6. 

b. lft 1 -+-> t 2 , then ~i[t 1 ]=.1rh 2l 

Proof Clear from the definitions. I 

/) ' .71 /) ' . /) \\ l 

In order to prove (! =oil, we again use an inductive argument involving 

the complexity c 1(t) of the failure continuations t. Due to the more compkx 

structure of these, the argument will turn out to be more involved; it also 

employs the auxiliary notion of derirnble t. We first present the definitions 

of c 1 and of "derivable," and then state various properties of the latter 

notion. 

DEFINITION 4.11. For t E .'Jc,,,, 2 we define c1(t) E N as follows: 

a. c 1(Ll)= 1, Ci(r: t)=c,(r)+c,(t). 

b. c,(E) = 1, c,((nil: t); r) = 1 + cAr), 

c,(((a; u): t); r = c,(((fail; u): t); r) = 1, 

c,(((x; u): t); r) = 1 + c,(((g; u): t); r), x= gin D, 

c,(((!; u): t); r) = 1 + c,((u: t); r) 

cr((((s 1 ; s2 ); u): t); r) = 1 + c,(((s 1 ; u): t); r) 

c,((((.1· 1 D s 2); u): 1); r) = 1 + c,(((.1· 1; u): I); r) + c,(((s2: 11): t); r). 
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DEFINITION 4.12. a. L1 is derivable. 

b. If t is derivable then E : t is derivable. 

c. If 

(i) r: t and r: t' are derivable, 

(ii) :lr 1, ... ,rk:t'=r1:(r2 :-··(rk:t)···)), k?;O (take t'=t if 

k=O), 

then ((u: 1); r): t' is derivable. 

We next state a number of lemmas culminating in Lemma 4.16. This last 

fact gives the desired property of derivable t (and Lemma 4.15 explains the 

terminology of "derivable"). 

LEMMA 4.13. a. If r : t is deriPable then t is derivable. 

b. {fr:tisderivabfeandr=(u 1 :t 1 );((u 2 :t2 );(···((u11 :t11 );r')···)), 

n?; I, then r' : t,, is derivable. 

c. If r : t is derivable and r is as in part b, then :lr 1 , ••• , r k : t = 

r 1 : ( r 2 : ( • · • ( r k : t 11) • • • ) ). 

Proof a. Induction on the complexity (i.e., length) of r. 

b. Induction on n. 

c. Induction on n. I 

LEMMA 4.14. If r: t is derivable and r is as in Lemma 4.13 part b, then 

r' : (r : t) is derivable. 

Proof Induction on the complexity (i.e., length) of r'. I 

LEMMA 4.15. a. ((u: LJ); £):LI is derivable. 

b. If t 1 is derivable and t 1 -H- t 2 then t 1 is derivable. 

c. if t 1 is derivable and t 1 .::_. t 2 then t 1 is derivable. I 

Proof By the various definitions and Lemmas 4.13, 4.14. I 

LEMMA 4.16. If ((u: t); r): t' is derivable then c,(t')?; c,(t). 

Proof By the definition of "derivable." I 

In the formulation and proof of the final theorem we restrict ourselves to 

the class of derivable t, say t E .'Yd ''M1 2. 
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THEOREM 4.17. Let <PD: (.'h/u.n->IR)->(.Yt/,r.11,--+IR) he de(ined as 

follows: Let FE .'TdcM1 2 -i. IR. -

<Pn(F)(t)=c, if' t terminates 

= c5, il t fails 

= a.F(t'), il { ~ t'. 

Then <P DC~~;)= ·'Yr)· 

Proof: First note that, for each derivable 1, we have that if t--->-+ t' then 

et!!)> c,(t'). This follows from the definitions of c, and of derivable. 

and from Lemma 4.16. We now show that, for each derivable t. 

<1> n( ·'Yr>)( t) =Yr;( t ). If t terminates or fails, the result is clear. Otherwise. use 

induction on the complexity c,(t), cf. the proof of Lemma 3.12. I 

COROLLARY 4.18. For each <JE;Yzr,,·12 , ~[a~ =.//[a]. 

Proof: Cf. the proof of Theorem 3.13. I 

5. SEQUENTIAL LOGIC PROGRAMMING WITH BACKTRACKING 

AND RELATIVE CUT 

Thanks to the preparations in Sections 3 and 4, we can now be quite 

brief. In L 3 , we replace "!" by "! !," and assume all induced syntactic defini

tions. We define the transition system T_, in 

DEFINITION 5.1. T 3 coincides with T2 (with !! replacing! in the (Cut) 

rule), but for the rule (Ree) of T 2 which is now replaced by 

(((g; nil): t'); ((u: t); r)): t' --.!!.+D 7 

(((x; u): t); r): t' -.!!.+I> I 
x~gin D. (Ree') 

As a result of (Ree'), if t0 =:(((x;u):t);r):t'-->-+t 1 =(((g;nil):t'); 

( (u : t ); r)) : t', with x ~ g in D, u keeps its dump stack t, but the dump 

stack for g is initialized at the current failure stack t'. As a consequence, 

occurrences of!! in g cause (re) activation oft' as failure stack rather than 

of t. 

From T 3 the operational semantics definitions for L 3 and .JJi(•IJ 3 are 

obtained in the by now usual way. 
We proceed with the denotational definitions. We use the same domains 

as in Section 4. The mappings .'!l!: L 3 --+ r 2 --> 1 R (where T3 = I'2) and 

. .41: f!l'zof/" 3 -> R are given in 

641,:'94/2-3 
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DEFINITION 5.2. a. §J[s] is as in Definition 4.5, for s different from !!. 
Moreover, §![!!] ypv</>w = pv<J>v. 

b. y0 =y{n;/.x-i};, where (n: 1 , ••• ,n: 11 ) is the (unique) fixed point of 
< <P 1 , ••• , <!> 11 ), with <Pi: IR" ~ IR given by 

<!> 0 ( < n:'1 , ••• , n;,)) pv</>w 

= §J[gJ y{ n:; /xi L (),v'. ).</>'. <P') w(pv</>) w. 

c. .lt[ (DI s)] = §J[s] y 0 (),v.A.</>.</>) b(A.v.e) b. 

We have 

LEMMA 5.3. In Definition 5.2, < <P 1, ••• , <!>,,) is a contraction. 

Proof A slight variation on the proof of Theorem 4.8. I 

Finally, we are ready for the proof of 

THEOREM 5.4. For aEf:!JM?3• @[a] =At'[a]. 

Proof Almost exactly as that of Corollary 4.18 (and the lemmas and 
theorem leading up to it). One detail is different: We here have to check 
whether, if (((x; u): t); r): t' is derivable then ((g; nil): t'); ((u: t); r): t' is 
derivable. Now this follows directly from Definition 4.12. I 

6. (AND/OR) PARALLEL LOGIC PROGRAMMING: THE LINEAR TIME CASE 

We next turn our attention to the imperative features underlying the 
general model of logic programming (rather than the PROLOG-like 
variant discussed so far). Accordingly, we now allow parallel execution, 
and, moreover, replace the backtracking choice s 1 D s 2 (don't know) by the 
general nondeterministic choice s 1 + s2 (don't care). We shall find it advan
tageous to also keep sequential composition in our language. Parallel 
execution will be taken here in the interleaving sense: The favorite example 
is a II b, which obtains as meaning the set { ab, ba }. Thus, we have a com
putational model which allows, in general, many outcomes of a computa
tion, and sets rather than single elements are yielded as a result of the 
semantic mappings. 

The simultaneous presence of sequences of elementary actions and of (an 
element modelling) failure in the sets of entities which are the meaning of 
a statement or program leads to the following well-known phenomenon 
(we use v, w ER as before but now also consider subsets X, Y c;; R ): First, 
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if there is a choice between failure or something else (some X s;; R ), we 
want to keep only the something else: 

{6} uX=X, 

Second, we want that, for any v, 

for X#0. 

b.v=b 

(6.1) 

(6.2) 

(no visible result after failure), but we do not want that v. b = b, for all v. 
That is, we do not want that failure collapses all previous results. The last 
property explains that it is not adequate to simply model failure by the 
empty subset of R, since we do have r.0=0, for all rER. Note that this 
argument depends on the interpretation of"." as the usual concatenation 
operator; in a moment, we shall discuss an alternative interpretation for".". 
Third, we have the choice (in our semantic model) as to how to model the 
interplay between failure and sequence formation. In the present section we 
shall take the sequencing operator in the usual sense of concatenation(".") 
of sequences of symbols, and treat bas a special symbol satisfying ( 6.1) and 
(6.2). Accordingly, we then have that 

(6.3) 

with as corollary that v. { b} u v. X = v. X, for X # 0- By the semantic 
definitions to follow, (6.3) is at the bottom of the equivalence 

(6.4) 

In a variety of phrasings stemming from different sources, we say some
thing like 

- sequential composition is left-distributive with respect to non
deterministic choice 

- we have a "linear time" or trace model for the denotational 
semantics 

- the nondeterminacy is local or internal. 

In the next section, we adopt an alternative view, and use a different 
operator for sequence formation, denoted by ":," which does not satisfy 
(v: X 1 ) u (v: X1 ) = ti: (X 1 u X1 ). We then obtain a model in which it is 
not, in general, true that s:(s 1 +s1 ) and (s:.1· 1)+(s:s1 ) have the same 
meaning. This model, to be described in detail in Section 7, is called 
"branching time," and the operator ":" is, in the framework of parallel 
logic programming languages, called (don't care) commit. In Section 8, 
finally, we shall investigate what happens when we combine the two 
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sequential operators ";" and ":" into one language. This will give rise to 
some interesting ensuing problems which can, somewhat metaphorically, 
be described as having to do with the grain size of atoms in computations. 
Most of the material in Sections 6, 7 is essentially known. The semantic 
definitions go back to papers such as de Bakker et al. ( 1986, 1988 ), and the 
equivalence proofs are versions of the results in Kok and Rutten ( 1988) 
(the syntactic format for recursion adopted in Kok and Rutten ( 1988) 
causes some technical complications not encountered below) or de Bakker 
and Meyer ( 1988 ). What may be new is the emphasis on the comparative 
analysis of ";" versus ":" (without different versions of nondeterminacy 
being involved). The idea to investigate properties of the commit operator 
as a semantic operator in a branching time framework is due to Kok 
( 1988 ). Finally, we comment on the absence of synchronization in the 
languages L 4 to L 6 • As already mentioned in Section 1, synchronization, 
suspension, and the like are important notions in concurrent logic 
languages. However, we have demonstrated elsewhere (de Bakker and 
Kok, 1988, 1990) that for a language such as Concurrent Prolog, it is 
possible to follow the two-stage approach as advocated in the present 
paper using an intermediate language without explicit synchronization. The 
idea is, briefly, that synchronization remains implicit in that it is handled 
through (partially filled in substitutions as) shared variables rather than 
through explicit communication actions. 

After these explanations, we can be rather concise in the subsequent 
definitions. 

DEFINITION 6.1 (Syntax for L 4 ). a. (Statements). The class of statements 
(s E ) L 4 is given by 

b. (Guarded Statements). The class of guarded statement ( g E ) L~ is 
given by 

c. (DE )f0u:f 4 and (o-E )8Pio?4 are as usual. 

From now on, we take R=A + uA"'uA*.{6}: We have no more use 
for e ER. 

DEFINITION 6.2. «/ = &;".(R) 1s the set of all nonempty closed subsets 
of R. 

The metric framework employed below relies on 
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LEMMA 6.3. Let a he the Hausdorff' distance on .<!'. Then (Y, tf) is a 

complete ultrametric space. 

Proq/: See, e.g., Nivat (1979). I 

Below, we shall assume as known the operation of prefixing a EA to 

X E Y yielding a.X E /f. 

The transition system T4 is defined in terms of transitions m 

L 4 x Ax 9a/4 x (L4 u {£}),written as 

or 

s ..__::_,. /) s, 

s ..__::_,. /) E. 

DEFINITION 6.4 (Transition system T4 ). Let t range over L 4 u { £}. 

a -'.:.... n E (Elem) 

g~Dl 
u , 

X-->Dl 
x=ginD 

s~D s' I E 

s; .\:~D s'; .i'I.~ 

s 11.1:-'.:.... /) s' 11.1: I§ 

§ 11 s-'.:.... /) .1: 11 s' 1.v 

s~0 t 

s+.\:~D t 

.\: + s ..__::_,. {) l 

(Ree) 

(Seq Comp) 

(Par Comp) 

(Choice) 

Note that there is no transition for fail. 

Preparatory to the definitions of (I and CJ for L 4 , we first introduce the 

operator of reduction, denoted by red, from Y to Y'. Informally speaking, 

for each X E Y', red(X) delivers the result of applying all possible 
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'"simplifications" { h} u Y = Y (for Y # 0) in X. In the formal definition 
of red(X) we use the auxiliary notation (for any a EA, YE .51') 
Y"=der {via.VE Yand v#c}. Note that Ya may be empty. 

DEFINlTION 6.5. 

red( { c'5 } ) = { c'5 }, 

red( X) = {a I a E X} u U {a. red( X,,) I a E A 

and xa # 0}, 

Well-definedness of red follows as usual. 

The operational semantics, collecting successive steps in a way which is 
an adaption of the one used previously, is given in 

DEFINITION 6.6. a. (I: .~1094--->//" is given by t[<Dls)] =CrJs]. 
b. e'n: L 4 ---> .'/' is given by 

'f'[] d(r I " £1 u1 'f'[']I " '1) c1 ) s =re , a s--> n 1 u 1 a. c n s s--> D s r , 

if the argument of red is nonempty 

= ( (j }, otherwise. 

Well-definedness of Cn is established by the usual contractivity argument. 

For the denotational semantics for L 4 , we first have to define the seman
tic operators ' ', '+ ', 'II' (and the auxiliary operator of le.ft merge 'lL' ). 

OEFINlTION 6.7 (The semantic operators +, , II, lL ). Let X, YE Y'. 

a. X + Y = red(X u Y), where "u" is the set-theoretic union of 
elements in Y. 

b. Let the operator <P 0 : (.'f x .51'---> 1 Y') ....... (.Y' x Y' ....... 1 Y) be defined 
as follows: Let ~ E Y x .51'---> 1 .</', and let us write (/)0 for <P 0 ( ~ ). We put 

(/)o({ (j} )( Y) = { (j} 

(/)0(X)( Y) = U {a.~(X,,)( Y) I a EA and Xa # 0} 

+LJ {a.YlaEX} for X # { c'5}. 
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c. Let the operator <P 11 : (.'/' x .<f-+ 1 .'I')-+ (.'Ix.'!-+ 1 :J) be defined 
as follows: Let efJ E.</' x Y-+ 1 Y, and let us write ~ 11 for <P 11 (</J). We put 

J°11(X)( Y) = ~o(X)( Y) + ~0 ( Y)(X). 

d. Let '' =fixed point ( <1> 0 ), II =fixed point ( <P 11 ), iL = <P 0 ( ii ). 

LEMMA 6.8. The above definitions are \\'ell-defined. In particular, <1> 0 : 

( .'/' x .'/' -+ 1 .'/') -+ 112 ( .</' x Y! ~ 1 .'I'), and similarly j(ir <P, 1. A !so, the 
operators +, · , II, lL are ndi. 

Proof Standard. Apart from minor variations, the required calculations 
can be found, e.g., in Appendix B of de Bakker and Zucker ( 1982 ). I 

We proceed with the denotational semantics proper. Let r 4 = f-+ .'I. 
The mappings .rJ': L 4 -+ r 4 -+ Y' and .JI: .1!~1;9 4 -+ .'!'are given in 

OEHNITION 6.9. a .. C/[al/= {a:, 0'[xb=1·x, 9llfail~1·= :():. 

b. 01[s 1 op s2]y = f?[s 1]y op 'J /', where op ranges over the 
syntactic operators ; , II. + and op ranges over the semantic operators , 

II, +, respectively. 

c . .!/[(Dis)] =.0'[.1·]y,» where, for D= (x,=g;);. we put (as 

usual) i'n=/•{X;/x;};, and 

(X 1 , .. ., X,,) =fixed point ('!' 1 , ••• , lfl,,) 

with 'Pi=J.Y 1 ..... J.Y,,.0'[g1 ]1·{Y;/x;L· 

We have the usual equivalence theorem 

THEOREM 6.10. (l'[O'] = .!!~O'I1, j(ir all a E Y~r;y4 . 

Proo( Let '!' n: (L 4 -+.Cl')-+ ( L 4 -> Y) be defined as follows. Take any 

FE L4 -+ //'.We put 

lf'n(F)(s) =red ( {a Is~ DE}+ U {a. F(s') Is~ n s' l). 
if the argument of red is nonempty 

= { b }, otherwise. 

Let @n: L 4 -+Y' be defined by .9n[s]='J[s]/'n· We shall show that 
(*) lf'n(90 )=.C!n, thus establishing that tJ0 =(!n and, hence,('=.!!, by 

the usual argument. 

Stage 1. First we prove that 'PD( Cln )( g) = C/1>[ g] for ea_ch g E L1, 
using induction on the complexity of g. The cases g =a or g =fail are cle~r. 
For the other cases, we first obsrve that it is easily verified (by an mduct1ve 
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argument on the complexity of g) that g has no transitions g ~ D • • • iff 
2!0 [g] = {J}. (Note that g has no transitions iff g obeys the syntax g ::= 
fail lg;sl g 1 II g2 1 g 1 + g 2 ). We now consider the case that g has indeed 
transitions. We then have 

g= g1;s. 

lf1 D(f.2!D)(gl; s) 

={al g1; s~ £} + U {a.2JD[s] I g1; s ~o s} 

= ( {a I g1 ~DE}+ U { a.2!D[s'] I g1~0 s'}) 0 .@D[s] 

= lf'D(.@D)(gi)o@D[s] 

= .@D[gl] 0 .@D[s] 

= .@D[g1; s]. 

(ind. hyp.) 

g= g1 II gi. 

'PD(2!D)(gl II g2) 

={al g1 II gz ~o E} + U {a.@D[s] I g1 II g1 ~D s} 

=LJ {a . .@D[g2]lg1~D£} 

+ U {a . .@D[s'll g1] I g1 ~Ds'} 

+ U {a . .@D[g1] I g1 ~DE} 

+U {a.@D[g1lls"]lg2~Ds"} 

=({alg1~D£} 

+U {a . .@D[s']lg1~Ds'}) iL.0iD[g2] 

+ ({al g2 ~D £} 

+U {a.@D[s"]lgz~Ds"}) 1L.@o[g1] 

= (If' D(.@D){g i) lL .@D[g2]) + ( lf1 D(.@D){ g2) lL .@D[g 1]) 

= (.@D[g1] lL .@D[g2] + (2JD[g2] 1L @D[g 1]) (twice the ind. hyp.) 

= .@D[g1 II g2]. 

g = g 1 + g 2 • Left to the reader. 
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Stage 2. We now prove that 'P0(!7D)(s)=.Ci'D[s], for all sEL4, by 
induction on the complexity of s. All cases are as in stage 1, but for the case 

s = x. We only consider the subcase that 'PnCV'n)(x) ::f. { () }. 
We have 'P0 (9n)(x) = {alx--'!..+nE} + U {a.CID[.\:] I x-':.+D,q = 

{al g--'!..+ D £} + U { a.f?D[§] I g-':.+ n .S} = 'Pn(Cln )(g) (with x =gin D) = 

Sl'n[g] (stage l) = fln[x] (def. Ynl· I 

7. (AND/OR) PARALLEL LOGIC PROGRAMMING WITH COMMIT: 

THE BRANCHING TIME CASE 

In the next language studied (L 5 ) we replace the (noncommitting) 
sequential operator ";" by the commit ": ". We recall that the essential 

difference between L 4 and L 5 consists in the fact that, in L 4 , we have the 

equivalence ( * )(s; s 1 ) + (s; s1 ) = s; (s 1 + s1 ). In particular, we have 

(a; fail)+ (a; h) =a; (fail+ h) =a; h 

On the other hand, in Ls we do not have, in general, that ( *) holds. In 

particular, we have that 

(a : fail) + (a : h) ::f. a : (fail + h) (=a:h) 

Our task is, therefore, to develop an underlying mathematical structure 
which makes sufficient distinctions not to identify (the meaning of) the two 

Ls-statements (a : fail)+ (a: h) and a : (fail+ b ). For this purpose, we use 
the (metric) process theory as first described in de Bakker and Zucker 

(1982) (and further elaborated in America and Rutten (1989)) and 
sketched briefly in Section 2.3. We introduce the domain ( p, q E ) P of 

processes as solution to the equation ( isometry, to be precise) 

P;; ·~ompact(A U (A X P) ). ( 7.1} 

Elements in P are, for example, p 1 ={a}, p 1 ={(a, {b})}, p 3 = 

{(a,{h}), (a,{c}), p4 ={(a,{h,c})}, Ps={(a,0)}, P6= 
{(a, {(a, {(a, ... )})})}, p 7 ={a, (a, {a}>, (a, {(a, {a})}), ... }. We 

observe, for example, that p 3 and p 4 are different processes. In a picture, we 

can represent them as 

~ a] 
br 1, I\ 

respectively. Process p6 can be obtained as lim,, p;,, with p:1 arbitrary, 
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' I ' > l p 1 1. " ·1h " b. " p 11 + 1 = 1 <a, p,, f· rocess p 7 equa s 1m 11 p 11 , w1 Po ar 1trary, p,, + 1 = 
{a}u(p;;: {a}) (see below for the operators u, : on processes). We 

emphasize that the empty set 0 is a process (in (7.1) we use ·~ompact(·) 
rather than .o/nonemptycompaci( ·) ). The empty process has indeed the 
appropriate properties to model failure (note that 6 has disappeared from 
the scene in Section 7): We shall subsequently define the semantic 

operators "u" and":" such that 0up=pu0=p, 0: p=0, but 

p: 0 i= 0 (in general). 
After this introduction, we first give the syntax for Ls: 

DEFINITION 7.1. (a) (Statements). The class of statements (.1· E ) L 5 1s 

defined by 

b. The classes LL .Qr,d5 , and !h('i/s are defined as usual. 

Remark. The reader who would like to see constructs : s or .1· : (commit 
with empty left- or right-operand) will have to take the trouble to incor
porate a silent atomic action r in A, and read r : s for : s, s : r for s : . 

For the definition of the operational semantics for L,, we introduce the 
transition system T 5 . Fortunately, only one minor variation in the system 
T4 is required. We replace the rule for (Seq Comp) by 

s---"->Ds'IE 

s: .f---"->n s': .fl.f 
(Commit) 

and keep all other rules of T4 unchanged (including the rules for 
(Par Comp)). 

The essential new element in the operational semantics for Ls is the way 
in which the individual transitions, based on T 5 , are assembled together to 

form a process p E P (rather than a set X E /!" as was the case for L 4 ). This 
is described in 

DEFINITION 7.2. a.(/:': f!liu(J 5-+P is given by C'.[<Dls)] =('.!D[s]. 

b. (!D[s] = {a Is---"-> DE} u {<a, (l:n[s']) Is---"-> D s' }. 

Comparing this definition with Definition 6.5, we see the essential 
difference in the clause · · · {<a, l''D[s']) I .. · } which replaces 

· · · U {a. 0D[s'] I · · · }. In addition, there is no special treatment for the case 
that the right-hand side in clause b is empty, since the empty process 0 is 
a valid outcome requiring no amendments (in the form of some { 6} ). 
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EXAMPLES. 1. (l[)[(a: h)+ (a: c)] = {(a, {h) ). (a, [c)) ). 

2. (ID[a:(h+c)]={(a, {h,c})}. 

3. lfD[a+fail]={a}. 

4. (i'[(x=(a:x)+hlx)D=p, where p=lim,,p,,. p0 arbitrary. 

P11+1= {(a, p,,),h}. 

For the denotational semantics, we define the operators +, :, (and I! ) 

on processes p, q in P. We follow the pattern of definition as in Defi;i

tion 6.7. Note, however, that in the present context there is no need for the 

reduction operation. 

DEFINITION 7.3. Let p, q E P. 

a. p u q is the set theoretic union of (the sets) p, q 

b. Let the operator tp :(P x P--+ 1 P)--+ (P x P--+ 1 P) be defined as 

follows. Take cjJ E P x p--+ 1 P: 

tp (r/J )(p )(q) = { (a, q) I a E p} u { (a, r/>(p' )( q)) I (a, p') E p). 

c. Let the operator P,1 : (P x P--+ 1 P)--> (P x P--+ 1 P) be defined as 

follows. Take cjJ E P x p--> 1 P; 

!JI II ( c/J )(JI)( lf) = tp ( </J )( fJ )( lj) U tp ( </J )( q )( p ). 

d. Let :=fixed point ( tp ), II =fixed point ( P 11 
), ~ = 'I' (ii). 

As before, u , : , II, ~ are well-defined and ndi (a detailed proof needs an 

appeal to the compactness of the p, q ). 

Let /', = .1'--> P. The mappings 9: L,--> r,--> P and.//: .:1'11·1;,.-> Pare 

given in 

DEFINITION 7.4. a. C/~a11·= {a]. V~xL'=/'X, C/ 1lfail]1·=0. 

b .. 0:'[.1· 1 op s 2]1·=Ci[s 1]1· op C/[.1· 2L"/, where op ranges over the 

syntactic operators +,:,II, and op over the semantic operators u, :, !I. 
respectively. 

c .. #[(Dis)] =Y[s]/' 1» with /'n as usual. 

The equivalence off!· and .II for ;l/i"'/s is established in almost the same 

way as was done for .1'1"'14 . In fact, the only difference is that in the 

present case the proof is slightly simpler, since the complications having 

to do with the reduction operator have disappeared. Thus, we have 

THEOREM 7.5. For each r:rE.i'l1·9 5• (! [cr] =.//[cr]. 

By way of conclusion of this section we observe that the way our defini

tions are organized have as remarkable benefit that the definitions off! and 
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.It, and the proof of their equivalence, are almost identical for !J>~b.~ 4 and 
!J>~,,.95 , notwithstanding the essential difference in the underlying mathe
matical structure: the objects in !/ are very much simpler than the objects 
in P. 

8. (AND/OR) PARALLEL LOGIC PROGRAMMING WITH COMMIT: 

INCREASING THE GRAIN SIZE 

The last language, L 6 , of our list of abstractions of logic programming 
languages embodies a version of (and/or) parallel logic programming 
which combines both the (noncommitting) sequential composition (;) and 
the commit (:) operator. This language was designed as a step on the way 
towards the semantic modelling of logic languages such as Concurrent 
Pro log ( CP from Shapiro ( 1983) ). The emphasis is here on CP's commit 
operator; see de Bakker and Kok ( 1988, 1990) for a discussion of its notion 
of read-only variables. We do not want to go into details here (once more 
referring to de Bakker and Kok ( 1988, 1990 ). Rather, we give a brief hint 
as to how CP's constituent concepts appear in L 6 • Take a CP program 
with clauses 

head+- guard I body. 

Here head is some (logical) atom, guard and body are conjunctions of 
(logical) atoms, and I is CP's commit. Such a clause would induce, in a 
corresponding L 6 program, a declaration of the form 

x <= (unification step; parallel execution of atoms in guard): 

(parallel execution of atoms in body). 

From this declaration ( cf. also the appendix), it should at least be clear 
that the combined presence in L 6 of ";" and ":" is necessary to model 
normal sequencing together with committing behaviour). (In de Bakker 
and Kok (1988, 1990) another operator is introduced which turns some 
statement s into an atomic-noninterruptible-version, denoted by [s ]. ) 

Why the terminology "increase in grain size?" Consider, by way of 
example, a statement such as s 1 =a: (b + c) which we compare with 
s2 = (a 1 ; a2 ): ((b 1 ; b2 ) + (c 1 ; c2 )). We shall design our semantic model such 
that the meanings of s 1 and s 2 are (pictorially) represented by 
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Thus, the atoms or grains a, h, care enlarged to a 1a2 , h 1h", c1c". In the 
precise mathematical notation, we obtain the processes { <a, : h, c} ) l and 
{<a1a2, {<h1h2,c1c2})}. The presence of entities of the latter form 
necessitates an extension of the process domain as introduced in Section 7. 
Instead of P satisfying P~.~ompaci(Au(AxP)) we now work with Q 
satisfying Q ~ &nonempty compaci(R u (A+ x Q) ). Details follow. Furthermore, 
the combined presence of";" and":" requires a refinement of the trans
ition system T6 which now involves two types of transitions --'!.+ 1 and --'!.+" , 
corresponding to steps of a noncommitting (a. · .. ) versus steps of a 
committing ((a, · · ·)) kind. 

After these introductory remarks, we are now ready for the precise 
definitions. 

We start with the syntax. 

DEFINITION 8.1. a. (Statements). The class of statements (.1· E ) L6 is 
defined by 

b. The syntactic classes L~, Q'ul 6, and !h,,,7 6 are obtained from L 6 

as usual. 

The operational semantics for L 6 is defined in terms of a trans1t10n 
system T6 and associated definition of (!' which provides a synthesis of the 
ideas for T4 and T 5 (and their associated definitions of {C'j. 

We first discuss the process domain (p, q E ) Q which we use as semantic 
universe. Q may be seen as a domain incorporating notions both from the 
linear time model Y = Jilnc( R) (with special role of c5; R as in Section 6) and 
the branching time model P. We define Q as solution to the isometry 

Q ~ Jilnonempty compact( RU (A+ X Q) ). (8.1) 

In a moment, we shall describe formally how a domain Q satisfying (8.1) 
can be obtained. Informally, we add the following comments. First, note 
that we do not include 0 as a valid element in Q. This is motivated by the 
reappearance of c5 ER which, as before, plays the role of modelling failure. 
Second, we consider a few examples of processes q in Q : q 1 = { <ah, { c} ) } , 

f w} f < b ( d } >} f " b"' l 1· ' h ' . th=la , q3 =, a, 1c ,e , q4 =,av, r= 1mnq,,, were q0 1s 
arbitrary, q;, + 1 = { ab, < h", { c} ) } . Third, we note that entities { < v, q)} are 
processes for v EA +, but not for v EA'" or v EA*. { 8 }. Intuitively, it makes 
no sense to "perform" q after some v which is infinite or ends in 11. 
Altogether, we observe a certain interplay between linear time objects inter
mingled with branching structure. The definitions below will be organized 
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such that '';" influences the linear time aspects. Thus, the semantic 

operator ", " modelling ";" will yield, for example, { ab} 0 { ( cd, q)} = 

{ ( ahcd, q >}. On the other hand, the commit operator will impose branch

ing structure. E.g., {ah} : { c, d} = {(ah, { c, d} > }. 
The way in which we solve (8.1) does not completely follow the usual 

pattern of solving domain equations as described in de Bakker and Zucker 

(1982) or America and Rutten (1989). Rather, we apply a somewhat more 

ad hoe technique which is a uniform variant of the definitions in Kok 

(1988). We construct a sequence of complete ultrametric spaces (Q 11 , d11 ) 11 , 

defined by 

with (Y = ),:1/'nonempty compact(R) and d the usual metric on Y, and 

Q,, +I= ;jOnonompty eompact( RV (A+ X Q,,)) 

where d,, + 1 is defined as follows: The distance d,, + 1 is the Hausdorff metric 

(On Sets in Qll+ I) derived from the point metric d,, +I (On elements In 

Ru (A+ x Q,,)) defined in 

d,, 1 I ( V, W) = d( V, \\' ), 

dn + I ( V, < W, q)) = d( V, W) 

=2 II 

d,, +I ( < V, p ), ll') Similar 

d,, + i( < v, p >, <It', q >) = d( v, \\') 

= 2 ".d,,(p, q), 

for r•, w ER 

if v of. ll' 

if v = wand length( v) = n 

if [' # I\' 

if v =wand length (v) = n. 

Observe that Q,,<:;Qn+I• n=O, 1, .... Now let (Qw,l(,)=(U,,Q,,,U,,d,,), 

where, for any p, qEQw, dw(p,q)=d,,,(p,q), with m=min{klp,qEQd. 

Next, we define (Q, d) as the completion of (Q,,,, l(,). By techniques as in 

de Bakker and Zucker (1982 ), it can be shown that ( Q, d) satisfies the 
isometry ( 8.1 ). 

Remark. By way of example, note that, by the above definitions, we 
have that lim,,{ac5, (h", {c})}= {ac5,h'"}. 

Notation. For q E Q, we shall use y to range over (the set) q. Thus, _v 
is an element of R or of A+ x Q. 

Below, we shall need various semantic operators involving q E Q. The 

first of these is prefixing a finite nonempty word v to some q: 
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DEFINITION 8.2. Let v EA+, q E Q. We put 

v.q={v.ylyEq}, 

where v.w is as usual for WE R, and v. (w, q') = (t•. w, q' ). 

We are now sufficiently prepared for the definition of T,, and associated 
@. In the present section, we shall use transitions of three forms, 

S~vE, u ' s--. 1.ns " ' S -l.D .\' 

(From now on, we drop the subscript D for easier readability.) Transitions 
s ~ 1 s' are intended to model noncommitting sequential steps----which in 
the associated definition of e· will reappear as a.f[s']. On the other hand. 
transitions s ~2 s' model commit steps which we find back in the definition 
of{!! as (a, Cl[s'] ). Thus, we see the combined appearance of features from 
Sections 6 and 7. Moreover, the semantic definitions will be organized such 
that, on the one hand, ( v. p 1) ll_ p2 = v. (p 1 ll_ p 2 ), and, on the other hand, 
{ < v, p 1)} lL p2 = { ( v, p 1 II p 2) }. (More about this after the definition of 
T6 .) In order to have the operational semantics respect these identities, the 
transitions for parallel composition are phrased in terms of "ll_" rather than 
of" II" (as before). As last introductory remark we announce that we shall 
devote the next section to the analysis of a related system where the 
transitions s ~ E, .1· ~ 1 s', s ~2 s' are replaced by transitions with a 
larger grain size: instead of a EA we shall allow arbitrary i· EA+ as 
"atomic" steps, and we design T 7 in terms of s ~ E, s ~ 1 s', .1· ~2 s'. 
To avoid confusion, we emphasize that in the present section we have 
already increased the grain size <d' the processes, working with processes 
such as { (ah, { ( cd, { e, f})})} instead of (only) with processes such as 
{(a, {(h, {(c, {e,f})})})}. 

We present the system T6 for L 6 • We also use the notation s ....!!..+, s' as 
shorthand for any of the three possibilities s ....!!..+ E, s ....!!..+ 1 s', s ....!!..+ls'. 

DEFINITION 8.3 (Transition system T6 ). 

a~E 

g....!!..+;s 
--,,-, 
x-;s 

s-..E...+i s' 

s+.~~;s' 

x<= gin D 

(Elem) 

(Ree) 

(Choice) 
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s ___!!__,; s' 

.\'+s~;s' 

S1 lLs2~is' 

s1 lls2 ~;s' 

s____::_. E 

s :.\'~ 2 § 

s 1Ls2 ~1 .\' 

S~1.S 1 

s;S~ 1 s';S 

s: .\' ____::_. 1 s': .\' 

S~2 s' 

- '1 ' -s;s--> 1 s ;s 

(Choice} 

(Par Comp) 

( ~ 1 intro) 

( ~ 2 intro) 

(Seq Comp) 

(Commit) 

(Left Merge) 

The axiom and first two rules of T6 are clear. The rule for (Par Comp) 
states that a step from s 1 II s 2 is either a step from s 1 (case s 1 lL .1· 2 ) or from 
s2 (case s2 1L.1· 1). The next two rules introduce the ~ 1 and ~ 1 transitions. 
In the final group of rules, the type of transition ( ~ 1 or ~ 2 ) is always 
inherited. We draw attention in particular to the rules for left merge. After 
an ~ 1 step from s lL sis performed, the step after that has again to be from 
the (new) left operand in s' lL S. On the other hand, after an ~2 step is 
taken, next a step from both operands (in s' II .I') is possible. 

Before defining ~' and !iJ for L6 , due to the reappearance of b, we again 
have to reduce processes by applying, wherever possible, simplifications 
{ b} up= p (note that p is now nonempty by the definition of Q). Reduc
tion is defined in 

DEFINITION 8.4. a. For p E Q, a EA we put 

Pa= {yla.yEp}. 
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b: We define the mapping red: Q _,, Q by red([ c5}) = 1 c) l. For 
p =I= {6}, we put · 1 1 

red( p) = {a I a E p} u LJ {a. red( p 11 ) I p,, i= 0 } 

u { (a,red(p')) I (a, p') E p }. 

Remark. Note that, in clause a, Pu may be the empty set and that, since 

Y ranges over Ru (A+ x Q), y cannot be e in the definition of p11 • 

EXAMPLES. red( { c.5, a}) = {a}, red( { ac.5, ab, c}) = {ah, c}, red( { ab, (ah. 

{ c} ) } ) =a. red( { c.5, ( b, { c})}) = { ( ab, { c})}. 

We can now give 

DEFINITION 8.5. a. (r: 2/'z;;!J 6 _,, Q is defined as (I[ (DI s)] = (i'D[s]. 

b. (rn[s] =red( {a Is___!!_.,. £} u U {a. (!D[s'] Is __!!_.,. 1 s'} 

u { (a, (!D [s'] ) Is __!!_,. 2 s'} ) 

if the argument of red is nonempty 

= {c5}, otherwise. 

We see the already discussed mixed character of the right-hand side 

delivering both noncommitting and committing outcomes (a.... and 

(a, ... ) ). 

EXAMPLE. 

(iiD [ (a; b) + (a; fail)] = red( {ah, a. c5}) = {ah} 

(f1D[(a: b) +(a: fail)]= red( {(a, {b }), (a, {c5})}) 

= { (a, { b} ) , (a, { c5 } ) } . 

f!'D is well-defined by the familiar contractivity argument. It may be 

enlightening to observe that the presence of an empty process 0 in our 

domain would invalidate this argument. Allowing p or q to be empty we no 

longer have that d(a.p,a.q)~~d(p,q), a property which does hold for 

nonempty p and q. Note that in both scenarios (with or without empty 

processes), we have that d((a,p), (a,q))=~d(p,q). 

We proceed with the denotational definitions. The definition of the 

various semantic operators is now somewhat more involved. The operators 

+, , :, II, ~are defined in 
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DEFINITION 8.6. Let p, q E Q. 

a. p+q=red(puq), where "u" is the set-theoretic union of (the 

sets) p, q. 

b. The higher order mappings <P , cJ>,, <P 11 all from ( Q x Q _,. 1 Q) to 

( Q x Q _,. 1 Q ), are defined as follows. Let ~ E Q x Q _,. 1 Q; 

<P (<,t))(p)(q)= {v.qlvEpnA +} + {vlvE pn(A"'uA*. {b})} 

+ { (v, <f(p')(q)) I (v, p') E p} 

cP (<f )(p )(q) = { ( ti, q) Iv E p n A + } + { v Iv E p n (A'" u A*. { b})) 

+ { (v, <f(p')(q)) I (v, p') E p} 

<P11(<,t))(p)(q) = <P (<f )(p)(q) + <P (<f )(q)(p). 

c. We put c =fixed point ( <P ), : =fixed point ( <P ), II =fixed point 

(<P11 ), ~ = cf>,(11 ). 

The definitions of .@ and j{ are now standard. Let I'6 = .f _,. Q. We 

define 0': L 6 _,. I'6 _,. Q and v#: f!ho9 6 _,. Q in 

DEFINITION 8.7. a . .@[ah= {a}, .@[xh=yx, .'22'[fail]y= {b}, .01[s1 op 

s 2h = £2[s 1]y op .9[s2]y, with op ranging over;, :, II, +,op ranging over 
0 , :, II,+, respectively. 

b .. #[(Dis)] =9[s]r 0 , with Yn as usual. 

We conclude this section with the proof of 

THEOREM 8.8. For (!)D, £i!, y n as before, and s E L 6 : 

Proof Let .90 =).s . .@[shn· As always, it is sufficient to show that 9 0 

is a fixed point of the operator Pn: (L6 _,.Q)_,.(L6 _,.Q) given (for 
FEL6 _,.Q) by 

'P 0 (F)(s) =red ({a Is_::__..£} u U {a.F(s') Is _::_.. 1 s'} 

u { (a, F( s')) Is_::__.. 2 s' } ) 

if the argument of red is nonempty 

= {b }, otherwise. 
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!he proof follows the pattern as in the proof of Theorem 6.10. Essential 
mtermediate results are the following: 

'PD(«:l!D)(g; s) = 'P0 (9D)(g) c 90 ~sl] 

(thisusesthat(a.p) q=a.(p q)and 

{(a,p)}cq={(a,p q)ll 

'P vU})D)(g: s) = 'P D(9'v)(g): 9D[s] 

(this uses that (a.p): q = a.(p: q) and 

{ (a, p) } : q = { (a, p : q) ll 

'[Jf)(£t'D}(.l?°I + g2) =I.JI D(QD)(gl) +I.JI D(QD)(g2) 

'Pn(Pi'n)(g, II g1) =I.JI D(9D)(g1 llg2) + 'Pn(9D)(g2 lL g1) 

'PoU?to)(g1 lL g1) =I.JI DU?nHg1) lL .QD[g2] 

(thisusesthat(a.p) ~q=a.(p ll_q)and 

{ (a, p) } lL q = { (a, p II q > } ). 

These results are to be embedded in an argument which is very much like 

that of the proof of Theorem 6.10. I 

9. INCREASING THE GRAIN SIZE IN THE TRANSITIONS 

We conclude our study of flow of control concepts in uninterpreted logic 

programming with the discussion of a somewhat more specialized topic. 

We ask (and answer affirmatively) whether it is also feasible to base(' for 

L 6 on transitions 

s~E, ' ' S---+2S, 

thus increasing the grain size of the atomic steps. One might defend the 

case that this is a more natural style of transitions since the semantic 

domain is designed such that "steps" r, w, etc. (appearing in the process 

domain Q) take the place of the "steps" a, h, etc. (from the process 

domain P). In other words, we are now dealing with processes such as 

{ (v, { (w, · · ·)} >} rather than {(a, { (h, · ··)})},explaining why it is 

natural to also increase the step size in the transitions. We indeed 

demonstrate in this section that, on the basis of a rather natural extension 

of T 6 , we can define an operational semantics (derived from transitions 

s ~ 1 s') which is equivalent to the denotational semantics of Section 8 
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(Definition 8.7) and, hence, also to (!) as in Definition 6.8. The price to be 
paid for this somewhat more satisfactory operational semantics is rather 
more effort to be spent on the equivalence proof. 

DEFINITION 9.1. The system T7 consists of 

a. The axiom a--!:!...; E 

b. All rules of T6 , with a throughout replaced by v 

c. The new rule 

s1 ~ E, s 2 ~is' (Inc Atom) 

The accompanying definition for(!:'* is 

DEFINITION 9.2. a. (!1*: :!/>zo96-""Q is given by (l'*[<D\s)Il=(li~[s]. 

b. (i:'b[s] =red( { v\ s -4 £} u U { r.llb[.\"'] Is -"-+ 1 s'} 

u { < v, (l:'t[s']) Is -"-+ 2 s'} ), 

if the argument of red is nonempty 

= {6}, otherwise. 

where the transitions are with respect to T7 • 

Note that, in this definition and elsewhere in Section 9, the sets involved 
are (turned into) compact sets as a result of applying the red or "'+" 
operators. 

We prove, for .it, as in Definition 8.7, 

THEOREM 9.3. For each (J E &io96 , (l*[(J] = .lt[(J]. 

Proof We define the usual mapping lffD: (L 6 -"" Q)---> (L 6 ......, Q). Take 
FEL 6 -+Q. We put 

lffD(F)(s)=red( {vis_:_. E} u U {v.F(s')\s_:_. 1 s'} 

u { <v, F(s')) \s--"...-. 2 s'}) 
if the argument of red is nonempty 

= { 6 }, otherwise. 

We show that IJID(9D)=Q!D (="1.As.9[s]yD). The proof follows the 
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standard pattern, but the rule (Inc Atom) causes some complications. We 
first state the key properties of If' D(..@D)(s), for s ranging over L 6 : 

s::a 

s=x 

s =fail 

s=s1lls2 

s=:.1·1 li._s2 

If' D(£0v)(a) = {a} 

If' D(£0v)(x) =If' D(.PD)(g), x <=gin D 

If" D(.@D )(fail) = {b} 

If" D(.@D)(sl; S2) = tp D(.PvHs1) 0 .@D[s2] 

+ { v I S1--..:.+ E} 0 If' v(.PDHs2) 

If" DU!flv)(si : S2) =If' D(.@D)(si) : £ZID[s2] 

If' D(.@D)(s1 + S2) =If' D(22lv)(si) +If' v(f0D)(s2) 

'l'v(£ZID)(s1 lls2)= lf'v(22lvHs1 1Ls2)+ lf'vU2'D)(s21Lsil 

If" D(.@D)(s1 lL s2) =If' v(.PvHs1) IL £ZID[s2l 

We give some details of the cases s = s1; s2 and s = s1 IL s2 . We consider 
only the cases that the outcomes are i= { o}: 

If' D(£zivHs1; Sz) 

= red ( { v I s 1 ; s 2 --..:.+ E} u U { v . .@ D [ S] I s 1 ; s 2 --.:'..+ 1 s} 

u { (v, £Zlv[s])ls1;s2--.:'..+2s}) 

= ( { V1 I S1~E} 0 22ln[s2] 

+ u {v1.£ZID[s'] ls1 ~ls'} 0 £Zlv[S2] 

+ { (v1, £ZID[s'])ls1 ~1s'} 0 £ZID[s2]) 

+ ( { v1 v2 I (s 1 ~ E) /\ (s2 -'2+ E)} 

+ U { (v 1 v2).£Zln[s"] I (s 1 __'.'.!... E) /\ (s2-'2+1 s")} 

+ { (v 1 v2 , £Zln[s"]) I (s1 __'.'.!... E) /\ (s2 -'2+2 s")}) 
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+ { <v 1, .90 [s']) Is,~ s'} lL .<;i!v[s2] 

= 'Po(9!D)(s1) lLBv[s2l 

Next, we show that 'P0(9!0 )=.@D, thus establishing that (i;''h= <j;1i, whence 

@* = j( on !l'io:; 6 . 

We abbreviate 'P n(90 ) to IP 0 , and we prove that d(.<iJD, 'P 0 ) = 0. 

Stage 1. For each gE L~, 

d(.S~\>[g], PD(g)) ~ ~d(:::f!,,, P vl· 

(Note that, clearly, for alls, d(.9D[s], 'P 0(s)) ~ d(9n, 'PD).) We use induc
tion on the complexity of g, and treat here only the (most complex) case 

g=:g 1 ;s. We have 

E2n [g 1; s] = 9n[g 1] 0 .<;i!n[s] 

= (0!n[g 1] 0 9o[s] + ( {VI g 1 __::_. E} '.0:ln[s]) 

(by Lemma 9.4 below) 

IP o(g1; s) = ( P n(g 1) 0 9o[s]) + ( {v I g1 -'.2.. £} 'P n(s)). 

Clearly, we have d(f00[gi] 0 9 0[s], 'P0(gi),f0D[s])~d(ft'D[g 1 ], 
PD(g 1 ))~~d(.9n, Pn) (ind. hyp.). Also 

d( { v I g 1 ~ E} 0 £2 D [ s] ' { v I g I __::_. E} 0 tp D ( s) ) 

~!d(0!n[s], IP0 (s)) 

~1d(.s2!v, Po). 

(since e ~ { v I g 1 ~ £}) 

Putting these two inequalities together, we have shown that 

d(£2D[g1;s], 'Pn(g1;s))~1d(9!v, 'Pn). 

(We use here that, for d any Hausdorff metric, d(X1 u X 2 , Y1 u Y2 ),,,:;: 

max{d(X;, Y,)I i= 1, 2}.) 

Stage 2. We now show that d(fZ!ds], 'P 0 (s)) ~ ~d(9D, PD), for all 

s, by induction on the complexity of s. For each case this proceeds 
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as in sta~el, except for_ the case s=x. Then dWll[x],t/in(X))= 

d(!tD[g],'PD(g))::::;;~d(§D,'Pn)(since g is guarded, stage! applies). 

Altoget_!1er, we have dCl?2Jn[s], .PD(s));;;;~d(Ci'D, 'Pn), for all s. Hence. 

dCl?lJn, 'PD)= 0, as was to be shown. I 

We have one lemma still to be filled in. For convenience. we use the 

notation (for p, q E Q) pc; q as short hand for p + q = q. 

LEMMA 9.4. For each sEL6 , 

{vis-'::.., E) c;.Qn[s]. 

Proof We introduce the auxiliary relation s 1 -+-+D s2 by the transition 

system 

x ......... [) g, for x =gin D 

for each arbitrary L6-context C[ ·]. 

It is direct from the definition of -+-+ D that, if s 1 .....,... D s2 holds, then 

.SiJD[.1· 1] 2 Si'D[s2]. We use .....,...[) in the formulation of the following 

straightforward 

Claim. Ifs___::_, E then either 

( v = a) " ( s .....,... D a), or 

there exist s 1 , s2 , v1 , v2 EA+ such that v=1• 1.r 2 • s 1 ~E. 

s2 2, E, and s.....,... D s 1 ; s2 • 

We now prove the assertion of the lemma by induction on the length of 

v. If v=a, we have aEE2'D[a] c;QD[s]. If v=v 1 v2 (v 1, l' 2 EA t ), then 

s 1 ~ E, s2 -'.2. E, and s __,_.D s 1 ; s2 • By induction, u1 E90 [s 1]. v2 E 90 ~s 2 ~. 

and we obtain v1 v2 E!ZD[s 1 ;s2]. Since 9D[s 1 ;s2]c;9n the desired 

result follows. I 
Altogether, we have completed the investigation of the transition system 

T6 , establishing that increasing the grain size in its transitions does not 

affect the associated operational semantics for L 6 • 

APPENDIX 

We provide a brief sketch of the translation of a rudimentary (and/or) 

parallel logic program into, for example, the language L 4 . The approach 



176 J. W. DE BAKKER 

followed in the translation is a (considerably) simplified version of the 
translation (due to Joost Kok) as described in de Bakker and Kok 
(1988, 1990). 

Let a, a1 , ••• ,ii, ... be elements of .s:ltom, the set of (logical) atoms as used 
in logic programming. We consider clauses c of the form a+- a 1 " ••• /\ an 
(n ~ 0), programs n which consist of a finite set of clauses { c 1, ... ,ck}, k;;;:; 1, 
and goals of the form ii 1 " • • • "iim, m ~ 0. We provide a translation into 
L 4 of a pair <n, g).The translation assumes a version of L 4 (with corre
sponding semantics) which works for arbitrary interpretations (rather than 
for no interpretation). That is, we assume a set I of states, and interpret 
the elementary actions in A as, possibly partial, state transformations. One 
further technical step is required to cope with possible clashes between 
(individual) variables in the clauses or goal. We assume that the set of 
individual variables Jvai is partitioned into disjoint sets Jvai,,., with 
ae !\!*,the set of all finite, possibly empty, sequences of natural numbers. 
Moreover, we assume that all individual variables in n and g are initially 
from Jvai,, and we assume injections a: Jvai~ ~ .§vai~.~· for each a, 
a. e I\!*. The injections ex are extended in the natural way to the atoms in 
dtom. We now describe the translation: 

For A we take dlom x .s:ltom. 

For f!JJvai we take dtom x !\!*. 

For I we take the set of substitutions (in the usual sense of logic 
programming). 

As interpretation of an elementary action (a 1 , a 2 ) we take 
[(al> a2 )](cr) = mgu(a1> cr(a2 )) a er, where mgu denotes a fixed most general 
unifier. 

We define the auxiliary mapping trl: Cf6t au,u x Pvar ~ Lff by 
putting 

trl(a+-a 1 /\ ••• /\a., (ii, ex))= (ex(a), a); ((ex(a 1 ), ex. I) II··· II (ex(a,,), ex.n)). 

Let n = { c1, ... ,ck}. Take for the set of L4-declarations D: 

D = ((a, a)<;:: trl(c 1, (ii, ex))+ · · · +(ck> (ii, a))) (a.ale ;;.o,.,,,. 

Note that, returning for a moment to the general L4 syntax, D is of the 
form 

<x<;::a1;(x11 II ···II X1n 1)+ ··· +ak; (xkl II ···llxknk)xeh,,,. 

Finally, take as translation of < n, g) the L4-program 
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