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ABSTRACT. We prove the following partial converse to a theorem of Lot:z;: If ev
ery Co-semigroup on a Banach lattice E with quasi-interior point is uniformly 
continuous, then E is isomorphic to a C(K)-space with the Grothendieck 
property. 

Let us say that a Banach space X has the Lotz property if every C0-semigroup 
on X is uniformly continuous. In [L] it was shown by Lotz that every Grothen
dieck space with the Dunford-Pettis property has the Lotz property, after some 
special cases were obtained by several authors, notably Coulhon [C], Kishimoto
Robinson [KR], and Lotz himself. Examples of Grothendieck Dunford-Pettis 
spaces are loci and L 00 (Q, µ) and, more generally, a-Dedekind complete 
C(K)-spaces. We will give a partial converse of Lotz's result, which uses the fol
lowing lemma [Ne]. A strongly continuous semigroup {T(t)}r>o on a Banach 
lattice E is called a multiplication semigroup if each T(t) is a band-preserving 
operator. 

Lemma 1. Let E be a Banach lattice with quasi-interior point u > 0. Let v $ 0 
be arbitrary. Then there exists a multiplication semigroup on E with generator 
A such that u E D(A) and Au = v. 

Theorem 2. Let E be a Banach lattice with quasi-interior point. Then the fol
lowing assertions are equivalent 

( 1) E has the Lotz property, 
(2) E has the Grothendieck property and the Dunford-Pettis property, 
(3) E is isomorphic to a C(K)-space with the Grothendieck property. 

Proof. (1) => (3). Let u > 0 be a quasi-interior point of E. Let v $ 0 be 
arbitrary, and let A be the generator of a multiplication semigroup on E with 
Au = v. Such a semigroup exists by the lemma. This semigroup is uniformly 
continuous by assumption, whence A is a bounded band-preserving operator. 
By [W], such operators preserve ideals. Hence v =Au E Eu, the ideal generated 
by u. If v E E is arbitrary, v E Eu follows from v = v+ - v-. We have 
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shown that E = Eu , in other words, u is actually a strong order unit for E . 
By the Kakutani representation theorem, E is Banach lattice isomorphic to a 
C(K) space. We still have to prove that E is Grothendieck. By [N] it suffices 
to show that E does not contain a complemented subspace isomorphic to co . 
If such a subspace exists, say E = c0 E9 F, however, then T(t) E9 idF, where 
(T(t)x)n := e-ntxn, defines a strongly continuous semigroup on E that is not 
uniformly continuous. 

(3) =? (2). Every C(K)-space has the Dunford-Pettis property. 
(2) =? (1). This follows from Lotz's theorem. 

Remark. It follows from the theorem that every Grothendieck Dunford-Pettis 
lattice with a quasi-interior point is a C(K)-space. 

Remark. In [Le] the so-called surjective Dunford-Pettis property is introduced. 
It is shown there that every Grothendiek space with the surjective Dunford
Pettis property has the Lotz property. Moreover, an example is constructed of 
a Grothendieck lattice with a weak order unit having the surjective Dunford
Pettis property but not the Dunford-Pettis property. This shows that Theorem 
2 fails for Banach lattices with a weak order unit. 

A Banach space is called weakly compactly generated (WCG) if it is the 
closed linear span of one of its weakly compact subsets. Every separable and 
every reflexive Banach space is WCG. It is well known [J] that every WCG space 
with the Grothendieck and the Dunford-Pettis property is finite dimensional. 

Corollary 3. If an infinite-dimensional Banach lattice E has the Lotz property, 
then E cannot be weakly compactly generated. 

Proof. Suppose E is weakly compactly generated. If E contains a copy of 
co, then by Veech's version of Sobczyk's theorem [V], this c0 is automatically 
complemented. Therefore E contains no copy of c0 , and hence E has order 
continuous norm (see , e.g, [S, Theorem II. 5 .15]). In particular, closed ideals 
are projection bands. Since E is infinite dimensional, there is an u > 0 such 
that Eu is infinite dimensional. If every C0-semigroup on Eu is uniformly 
continuous, then Eu is isomorphic to a C(K) by Theorem 2 and hence contains 
a copy of c0 , a contradiction. So the complemented subspace Eu , and hence 
E , admits a C0-semigroup with unbounded generator. 

The proof shows that a Lotz lattice cannot have order continuous norm. 
Hence by [S, Theorem 11.5.14] we have 

Corollary 4. Every infinite-dimensional a-Dedekind complete Lotz lattice con
tains a sublattice isomorphic to 100 • 
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