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ASYMPTOTIC INVERSION
OF INCOMPLETE GAMMA FUNCTIONS

N. M. TEMME

ABSTRACT. The normalized incomplete gamma functions P(a, x) and Q(a, x)
are inverted for large values of the parameter a. That is, x-solutions of the
equations

Pla,x)=p, Qa,x)=q, pe0,l],g=1-p,

are considered, especially for large values of a. The approximations are ob-
tained by using uniform asymptotic expansions of the incomplete gamma func-
tions in which an error function is the dominant term. The inversion problem
is started by inverting this error function term. Numerical results indicate that
for obtaining an accuracy of four correct digits, the method can already be used
for a = 2, although a is a large parameter. It is indicated that the method
can be applied to other cumulative distribution functions.

1. INTRODUCTION

The incomplete gamma functions are defined by

(1.1) P(a,x)zﬁ%/oxt“"e"dt, Qa, x) = 'I_"(lcﬁ/x 1*~le~tdt,
with
(1.2) Pla, x)+ Q(a, x) = 1.

We take a >0 and x > 0.

We consider the following inversion problem. Let p € [0, 1] be given and
g =1—p. Then we are interested in the x-value that solves the following two
(equivalent) equations

(1.3) Pla,x)=p, Qa,x)=gq,

where a is a fixed positive number. We are especially concerned with solving
(1.3) for large values of a.

This problem is of importance in probability theory and mathematical statis-
tics. Several approaches are available in the (statistical) literature, where often
a first approximation of x is constructed, based on asymptotic expansions, but
this first approximation is not always reliable. Higher approximations may be
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obtained by numerical inversion techniques, which require evaluation of th¢
incomplete gamma functions. This may be rather time consuming, especial’
when a is large.

In the present method we also use an asymptotic result. The approximatio®
is quite accurate, especially when a is large. It follows from numerical results
however, that a three-term asymptotic expansion already gives an accuracy '
four significant digits for a = 2, uniformly with respect to p, g € [0, 1].

The method is rather general. In a final section we mention application ¢
the same method on a wider class of cumulative distribution functions.

2. UNIFORM ASYMPTOTIC EXPANSIONS OF P AND Q

The asymptotic inversion of equations (1.3) is based on the uniform asymp-
totic expansion of the incomplete gamma functions as given in [8]. First %~
summarize these results.

The incomplete gamma functions have the following representations:

P(a, x) = Yerfc(—n+v/a/2) — Ra(n),
Qla, x) = erfc(n/a/2) + Ra(n);

here, erfc is the error function defined by

(2.1)

(2.2) erfcz = 2 /oo e~ dt.
VT J,
The real parameter # in (2.1) is defined by
(2.3) iP=2-1-1na, A= x/a, sign(n) = sign(A — 1).
For the function R,(#n) we derived an asymptotic expansion. Writing
e—anz/z
(2.4) Ra(n) = Jona Sa(n),
we have
— Cn(n)
(2.5) Sa(n)rvz-—a—n—- asa — oo, n €R.
n=0

No restrictions on # are needed. In fact, (2.5) holds uniformly with respec
to n € R (and in a larger domain of the complex plane). In other words, (2.°
holds uniformly with respect to A € [0, co) or with respect to x € [0, o0). 17
particular, the expansion is valid in a neighborhood of A =1 (x =a), a turning
point in the behavior of the incomplete gamma functions for large values of th«
parameter a. The first two coeflicients in (2.5) are

1 1

Co(n) = -1 7
(2.6) 1

Cim=dt L 1 1

W= "G 21p - G=12 12-1)

These two (and all higher coefficients) have a removable singularity at n = !
(A=1,x =a). All Cy(n) are analytic at the origin. The higher coefficien:s
can be obtained from the recursion

(2.7) nCn(n) = Hd—nc,,_l(n) + ,13 1

Vn s nz1,
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where the numbers y, appear in the well-known asymptotic expansion of the
Euler gamma function. That is,

e ¢}

28)  T@~Y (-1, o~ pa, a— oo,
n=0 r (a) n=0

where

(2.9) I™(a) = 1/:2‘-’7;6»%1—(‘1“(‘1), a>0.

The first few y, are

l

=L

> V2= 383 Y3 = 37840-

I

=1, n

—
9

3. ASYMPTOTIC INVERSION OF THE INCOMPLETE GAMMA FUNCTIONS

We perform the inversion of the equations (1.3) with respect to the parameter
n, by using representations (2.1) with large values of a. Afterwards, we have
to compute A and x from (2.3). We concentrate on the second equation in
(1.3). Let us rewrite the inversion problem in the form

(3.1) serfe(ny/a/2) + Ra(m)=q,  q€l0,1],

which is equivalent to the second equation in (1.3), and we denote the solution
of the above equation by 7(g, a).

To start the procedure, we consider R,(#n) in (3.1) as a perturbation, and we
define the number 79 = 70(g, a) as the real number that satisfies the equation

(32) b erfe(nov/a/2) = g.

Known values are
m0(0, a) =400, mM(3,a)=0, no(l,a)=—oc.

Note the symmetry 7o(q,a) = —no(p, a). Computation of 7o requires an
inversion of the error function, but this problem has been satisfactorily solved
in the literature (see [3, 7).

The value 5 defined by (3.1) is, for large values of a, approximated by the
value 7y . We write

(3.3) n(q,a)=no(g, a)+eNo, a),

and we try to determine the function &. It appears that we can expand this

quantity in the form

(3.4) e(no, )N_+Ez_+ S,

as a — oo . The coefficients &; can be written explicitly as functions of 7o .
We first remark that (3.1) yields the relation

dq _ dx
- 40 x)= £ 06 0%

Using (1.1) and (2.3), we obtam after stralghtforward calculations

a'q 1 __a_ —an?/2
7/ (e ,

(35) % = _F(—t-l—)
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where I™*(a) is defined in (2.9), and
(3.6) fin = =,

the relation between n and A being given in (2.3). For small values of 1 we
can expand

(3.7) fi)y=1-4n+ 4+
From (3.2) we obtain

s

dq _ _ |4 a2

E’%z 2n

Upon dividing these two differential equations, we eliminate ¢, although it is
still present in 7. We thus obtain

(3.8)

dn _ (@) jaw-rd)s2
(3.9) an = 7 e oli= 00 < 1o < 00.

Substitution of (3.3) gives the differential equation

d
(o +e) [1 * ‘3} =T (@)erstmre/2),
dno
a relation between & and 7o, with a a (large) parameter.
It is convenient to write # in place of no. That is, we try to find the function
¢ = ¢&(n, a) that satisfies the equation

(3.10) f(n+e) [1 + Z—ﬂ = F*(a)eﬂe("+€/2).

When we have obtained the solution &(77, a) (or an approximation), we write
it as &(ng, a) and the final value of 7 follows from (3.3). The parameters A
and x of the incomplete gamma function then follow from inversion of the
first relation in (2.3).

4. DETERMINATION OF THE COEFFICIENTS ¢&;

For large values of a we have I*(a) = 1 + & (a™!) (see (2.8)). Comparing
dominant terms in (3.10), we infer that the first coefficient ¢ in (3.4) is defined
by f(n)=e"™, giving

(4.1) & = %lnf(n)-

It is not difficult to verify that f is positive on R, f(0) = 1, and that f is
analytic in a neighborhood of n = 0. It follows that &; = ¢,(#n) is an analytic
function on R. For small values of # we have, using (3.7),

(4.2) &1 =3+ kn+ Zdgnt

The function &;(n) is nonvanishing on R (and hence negative). To show thi§,
consider the equation f2(5) = 1. From (3.6) and the first relation in (2.3) it
follows that the corresponding A-value should satisfy

—Ini=(A—1)(24-3).
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This equation has only one real solution A= 1, which gives 5 = 0. However,
for this value, &, equals —1.

Further coefficients in (3.4) are obtained by using standard perturbation
methods. We need the expansion of I™*(a) given in (2.8), and

fm+e)=fm+ef(n)+3/" () +---,

in wh.ich (3.4) is substituted to obtain an expansion in powers of a~!. Putting
all this in (3.10), we find by comparing terms with equal powers of a~!:

1
& = 712/ + 12f'e1 = f = 6e}),
1
& = Tggy7 (28820 + 288 e12] — 241¢) + 28872 + 14451 — 241,
+ [ —288feie — 144 fe3n* — 144 feymet — 36 fef),
1
€4 = —“—'—51840"f(51840f"8182 —4320f¢; + 180f ¢} + 180 f'e; — 4320 "¢y

+51840f'e3 + 51840 fe, + 139f — 2160"e? + 8640 f¢?
— 25920 f¢2 — 10808 ~ 4320 f¢,¢] — 51840 ¢ 3
— 25920 fede; — 8640 e3n’ + 51840 f"ese] + 259201 ele
— 51840 fedne, — 51840 feyn’e; — 25920 felesn
— 12960 fe3n’e? — 6480 feanet + 51840 ("¢ ¢5).

The derivatives f”, ¢|, etc., are with respect to 7, and evaluated at 7. It will be
understood that the complexity for obtaining higher-order terms is considerable.
The terms shown so far have been obtained by symbolic manipulation.

5. EXPANSIONS OF THE COEFFICIENTS &;

The singularities of the mapping 4 — 7, the first relation in (2.3), follow
from the zeros or poles of dn/di = (1 —1)/(An); A=0 is mapped to infinity.
A second candidate is A = 1 with corresponding point 7 = 0, a regular point.
However, when A = exp(27in), with n = +1, £2, ..., the quantity dn/dA
vanishes. Corresponding #-values satisfying 12 = —2znin are singular points
of the mapping, and singular points of the function f defined in (3.6). For
n =+l we obtain 2/mexp(x3ni).

It follows that f is analytic in a strip [Jn| < V2=, and that it can be ex-
panded in a Taylor series around the origin with radius of convergence 2T
All ¢; have similar analytic properties. That is, the coefficients &; can be ex-
panded in series

o0
(5.1) &=y Cinll" ml<2vm,i=1,2,3,....
n=0

The representations of ¢; given in the previous section are not sqitable for nu-
merical computations. First, because of the appearance of derivatives of f and
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&; , secondly, because of the complexity of the expressions. To facilitate numer-
ical evaluations of ¢;, ..., &4, we provide the following Taylor expansions:

- 1, 1 12 7 2 5 4 11,5 101 6
81 = — 3+ 3N+ 1e0" ~ gagoll + 11aa" ~ 327251 ~ 163296007
37 .7 454973 8 1231 .9 2745493 10
+ 5977607 — 7988459520001 T 1591370550011 T+ 8473799046400 1
sl LI99vesl 12
177673385840000/] T 30505427656704000
449 13 756882301459 14
1395917323000 11 F455179048226816000000 11
+ 12699400547 15 _ 3224618478943 6, ...
T57146779782706800000 1 ~ — T70264214140233973760000 /1 )
_ 1 _ 1 533 .2 1579 .3 109 4 102175
&= — 55 — w1+ 2641 ~ 30995201 T 1749600 T 319474007

_ 9281803 .6, _ 919081 7 100824673 .8
3364902080001 T 1851776640001 ~ 371976768563200 11

_ 311266223 9 . 52310527831 0, ...
39996344704000011 T 343186061137920000 /1 5
449 63149 29233 2 346793 .3

+ 102060 — 2099520071 T 367ai600" T 33907904001
_ 18442130 4 14408797 5 1359578327 6
1300470624001 T 7469035520001~ 129994720128000 11

_ 69980826653 7 . _ 987512909021 .8 . ...
39598391669760000/1 T 3T4779091706880000 11 ,

&3 =

319 269383 449882243 2 | 1981235233
"tz

— _ 319 269383 ,, _ 449882243 _ 1981235233 .3
g4= + 183708 ~ 42326323201 ~ 982102968000 666395904000 '/

16968489929 .4 16004851139 5 + 636178018081 6 4.
194992080192000 11 26398927779840000 11 8260539847520000 11 :

On the other hand, for larger values of n we need representations free of deriva-
tives. The derivatives of f can be eliminated by using

fr==f(=1+f*+fn)/n,
=+ A=3n=3f+3+ 5 n+ 20 1) /n?,
fO = = (=302~ 1202 f — 181 + 15/° + 3f + 35f*n + 26 >
+ 620 +3n)/n°,
@ = + f3(=35013n - 260122 — 60fn> — 150f* + 751 + 30n* + 4512
+105/° + 154130 + 340402 + 24 /2n* + 315°n) /n*.

The first relation easily follows from (3.6) and the first relation in (2.3). Using
these relations in the earlier expressions for ¢;, and eliminating the derivatives
of previous ¢;, it follows that we can write 7% ~!¢; asa polynomial in 7, f, & :

1273y = + 12 - 1212 = 12fn — 12f*ne; — 12fn’e, — n* — 61},

12n%e3 = — 30+ 12/2ne, + 121 n%e; + 241253, + 6e3n® — 12/2 + 60> n’e;
+3120 + 123+ 4214 + 183 n%e + 6. 2ned + 36 f*ne,
+ 12630 £ + 126302 £ = 1208, + ey + f° — 1210 + 12ein* f*,
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1440n"es = + 2880f2ne; + 28801 7%, — 3840 /2n3e, + 5040 /2 — 720035,
— 48031 — 1920 f%e3n® — 1440 f*e}n® — 4080 /> ne + 17040
+ 2160122 + 2040 f2n% + 5760137 — 6120017 — 47160 *n?

— 11880137 + 3600 * — 2640 f*e3n° — 8640 f>n3e?

— 3600 1%n%? — 3600 f*ne; — 24480 fCne, — 21603y f
—2160e?1* f2 + 48 + 3600n¢, + 12012 — 5¢* — 25680 f*
~240/2n* — 120/ + 5040 fn — 2160e3n° f> — 2160e37* f
—2160/3n%3 — 7201*n%e} — 12012n’e, — 100801522

— 900} 7* — 23040 f°n3e? — 16560 f*n*e? — 36003n e

— 240n%e, f — 5040e3n? f* — 576001 n%e; — 43440 *n¢,
— 10440 3%, — 180n%e?.

The coefficients ¢;, ..., &4 are bounded on R. To show this, one needs

fmy~-n, n—-co,  fn)~217"", 75— +o0,

and the above representations of g;. We find

2

In || 1 L3
.2 ~ :F—— A e Y —— ~
(52 & n K 12° K 1292° &4 3607

as 7 — #oo. In deriving the behavior at —oco, one should take into account
that (see (3.6) and the first relation in (2.3))

A -~
(5.3) S+ =T~ —ne™ g oo,

6. NUMERICAL EXAMPLES

In a separate publication we present numerical approximations (in the form
of rational functions) for the coefficients ¢;, together with a computer program
for computing the inverse of the error function and the incomplete gamma
functions. The inversion of the first relation in (2.3), that is, the computation
of A when 7 is given, will be considered as well. In this section we present
some first numerical results, which show the power of the asymptotic method.

When p =g = % , the asymptotics is quite simple. Then 7o of (3.2) equals
zero, and from (4.2) and the expansions in §5 we obtain (3.3)~(3.4) in the form

(6.1) ne~—lat = Lt + diaT + fhma

In this case we give an expansion of the requested value x . Recall that x = a
(see (2.3)), and that A can be obtained from the first relation in (2.3) with 7
given by (6.1). Inverting

L =1 -12=3A- 1P+ 50—+,
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we obtain
A=l+n+inrt+&n’ —shon*+ Zn’ + -
Substituting (6.1), we have

(6.2) x~a(l-da7 + a? + A0 + 28074 1),
When a =1 and ¢ = %, the equations in (1.3) reduce to e™* = %, with
solution x =1In2 = 0.693147..., while expansion (6.2) gives x ~ 0.694...,
an accuracy of about three digits. When a = 2 and ¢ = 4, the equations in
(1.3) become (1+x)e™ = 1, with solution x = 1.6783469... ; in this case our
expansion (6.2) gives x ~ 1.67842..., an accuracy of four significant digits.
This shows that (6.2) is quite accurate for small values of the (large) parameter
a. Computer experiments show that for other g-values the results are of the
same kind (see Table 6.1).

In a second example we take a =2 and g = 0.1; inverting (3.2), we obtain
o = 0.9061938 . Using (3.4), we compute

1 ~ 1o — 0.308292/2 — 0.0180893/4 + 0.0023105/8 = 0.747814.

An inversion of the first relation in (2.3) gives A = 1.944743, and hence x =
22 = 3.889486. Computing Q(2, x) with this value of x gives 0.1000186,
an accuracy of four digits. A more accurate value of x can be obtained by a
Newton-Raphson method, giving x = 3.8897202. It follows that the value of
x obtained by the asymptotic method is accurate within four significant digits.

In Table 6.1 we give more results of numerical experiments. We have used
(3.4) with three terms. The first column under each a-value gives the relative
accuracy |x, — x|/x, where x, is the result of the asymptotic method, and x
is a more accurate value obtained by a Newton-Raphson method. The second
column under each a-value gives the relative errors [Q(a, x;) — 4l/q .

TaBLE 6.1
Relative errors |x, — x|/x and |Q(a, x4) — q|/q for several
values of q and a; x, is obtained from the asymptotic expan-
sion (3.4), x is a more accurate value.

a 1 5 10

q

TR 231074 2.1 3 1.1;07% 1.6;~5 9.4;078 1.7
0.1 6.610 7% 1.5,73 2.0;07% 9.3,¢ 1.410=7 8.8077
0.3 8.710 ™% 1.0 3 231078 6.41976 1.610 "7 6.010~7
0.5 7.000 "% 4.8074 6.710~7 1.20° 541078 14,077
0.7 49,074 17,074 27078 2.6;076 1.700 77 2.6,077
0.9 1.9;0 =3 2.0y ~* 2.5107% 8.8,077 1.810~7 9.3,0°8

0.9999 515073 5.1,077 391076 1.8;9~° 6.0, 8 4.8 !
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The numerical inversion of the error function, equation (3.2), can be based
on formula 26.2.23 of [1], where the inversion is written in terms of the function
O(x) = %erfc(x/ v2). The equation Q(xp) = p is considered with 0 < p <
0.5, but symmetry of the Q-function can be used for 0.5 < p < 1. In [3, 7]
more results can be found on the inverse of the error function.

Inversion of the incomplete gamma functions is considered in [1] in terms
of the chi-square distribution (see formulas 26.4.16-18). In [2] an algorithm
is published (in Fortran). In [4] several algorithms are discussed. In [5] an
algorithm in Fortran is given for the incomplete gamma functions and their in-
verses. In [6] asymptotic methods are used; in our notation: (1.3) is considered
for small values of g, with a fixed. These results can be used in addition to
our results when ¢ is small and a € (0, 2), say.

7. GENERALIZATIONS

The method described in the previous sections can be applied to other cu-
mulative distribution functions. Consider the function

(7.1) Rm= & [ e,

where a > 0 and n € R. We assume that f is an analytic function in a domain
containing the real axis, and that f is positive on R with the normalization
f(0) = 1. In [9] it is shown that several well-known distribution functions can
be written in this form, including the incomplete gamma and beta functions. It
is also shown that the representation

(7.2) F,(n) = %Cffc(—'?va/z)Fa(OO)+Ra('7)

holds, where R,(7n) can be expanded as in (2.4)-(2.5). F,(oo) is the complete

integral, and can be expanded in the form

00 An
ar

n=0

(7.3) Fy(00) ~ asa — oo, 4Ag = 1.

By dividing both sides of (7.1) by F,(co), we obtain a further normalization,
which is typical for distribution functions.

The inversion of the equation Fy(n)/Fy(c0) = g, with ¢ € [0, 1] and a a
given (large) number, can be performed as in the case of the incomplete gamma
functions. As in (3.2), let 7o be the real number satisfying the equation

Lerfe(—nova/2) = q.

Then the desired value # is written as in (3.3), and an expansion like (3.4)
can be obtained by deriving the differential equation (3.8), with f of (7.1) and
I'™(a) replaced with F,(00).

From [9] it follows that the incomplete beta function defined as

X
Lp,q) = /0 P1(1-1-'dt,  xe[0,1,p>0,4>0,

B(p,q)
with B(p, q) = T'(p)T(q)/T(p + q), can be inverted in this way. The large
parameter is @ = p + ¢, and the inversion method describc?d aboxfe holds for
the case that both p and ¢ are large. That is, a representation as in (7.1) and
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(7.2) can be given when the beta density is not too skew. The condition on p
and ¢ is: when we write

p=asin’f, ¢g=acos’h, 0<6<in,

then 6 should be bounded away from 0 and i7.
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