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Preface

In these notes we study the basic theory of ordinary di erential equations, with
emphasis on initial value problems, together with some modéng aspects.

The material is covered by a number of text-books. A classidabook with
many examples (and amusing anecdotes) is:

M. Braun, Di erential Equations and Their Applications : An Introduct ion
to Applied Mathematics. Springer Texts in Appl. Math. 11, 4th ed., Springer,
1993.

Among the books in Dutch, a good introduction is:

J.J. Duistermaat, W. Eckhaus, Analyse van Gewone Di erentiaalvergelijkingen.
Epsilon Uitgaven, 2009.

A more advanced text, which can be downloaded from the authds web page, is:

G. Teschl, Ordinary Di erential Equations and Dynamical Systems.
Graduate Studies in Math. 140, AMS, 2012.
http://www.mat.univie.ac.at/ _gerald/ftp/book-ode

Further material for these notes has been taken from Chaptel of:

E. Hairer, S.P. Nrsett, G. Wanner, Solving Ordinary Di erential Equa-
tions | { Nonsti Problems . Springer Series in Comp. Math. 8, 2nd ed.,
Springer, 1993.

This last book is mostly about numerical methods, but the rst chapter gives an
overview of the main developments in the theory of ordinary d erential equations
with many examples and historical references.

Exercises: At the end of each section, a number of exercises are given. @e of
them are marked with an asterisk’ These are optional and will not be used for
the examination. This also applies to the humbered remarks.

Typing errors . This text may still contain a number of smaal erorrs. If you nd
some, please let me know (willem.hundsdorfer@cwi.nl).
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Some notations : In the literature of ordinary di erential equations, a num ber
of di erent notations can be found. In these notes we will useu(t) to denote the
solution u at point t, and u{t) is the derivative.

Instead of u(t) on often seesy(x) or x(t) in the literature, and in the latter
case the derivative is sometimes denoted by (t). This “dot' notation, which goes
back to Newton, is often used in mechanics. Newton's big rivkin the eld of
calculus, Leibniz, used the% notation. The “prime' notation was introduced later
by Lagrange.

For given real functions' 1;' 2 we will use the notation

Yi(t) = o)+ O (t! 0)

if there are ; C > 0 such thatj' 1(t) ' 2(t)j Cijtj¥ forall jtj < . Likewise, we
will write
La®) = o)+ o) (t!0)

if forany "> Othereisa > 0 suchthatj 1(t) ' o(t)j "jtj for all jtj <
So in this latter case, the di erence between' 1(t) and ' ,(t) tends to zero faster
than CjtjK.



1 Introduction: Models and Explicit Solutions

1.1 Ordinary Di erential Equations and Initial Value Proble ms

In these notes we will study ordinary di erential equations (ODES), which give
a relation for a function u between its function valuesu(t) and the derivatives
uqt) = %u(t). The function may be vector valued, u(t) 2 R™. The most common
form that will be considered is

(1.1) uqt) = f (tu(t))

with given f : R R™ ! R™.  If m = 1 this is called a scalar equation; oth-
erwise, if m> 1, we have asystemof ordinary di erential equations. Often we
will refer to (1.1) simply as a di erential equation, but it s hould be noted that
there are other, more general, types of di erential equatioms, most notably partial
di erential equations (PDES).

A function u, de ned on aninterval J R with values in R™, is said to be a
solution of the di erential equation on J if it is di erentiable on this interval and
satis es relation (1.1) forall t 2J .

For a system we will denote the components of the vectou(t) 2 R™ by u; (t)
@ j m). Written out, per component, the system of ordinary di ere ntial
eqguations reads

g ud(t) = fa(tua(t);ua(t); i um(t) ;

2

Often the di erential equation (1.1) will be written more co mpactly as
u= f (tu);

where it is then understood that u is a function of the independent variablet.

Usually, t will stand for “time', but there are also many applications where the
independent variable denotes a distance in “space’, in whiccase it may be more
natural to denote it by x.

If the function f does not depend explicitly ont, the di erential equation is
called autonomous Otherwise it is called non-autonomous. The general form of
an autonomous di erential equation is u®= f (u). For an autonomous equation
the rate of changeu®is completely determined by the “state'u, so there are no
external factors (and hence the name “autonomous').

Example 1.1 The most simple di erential equation is

(1.2) ut) = u(v);

where 2 R is a constant. The solutions are given byu(t) = ce' with arbitrary
number c.



In particular, u = 0 is a solution. Since this solution does not depend on it
is called astationary solution or steady state solution If < 0 then any other
solution converges to this steady state solution ag ! 1 . This is an example of
a stablesteady state. On the other hand, if > 0 then all non-zero solutions will
tend to in nity for increasing time, and in that case the stat ionary solution u =0
is called unstable. (Stability will be an important issue in later sections.)

Usually we consider real valued di erential equations. But sometimes {in
particular with (1.2) { we will also allow complex valued equations and solutions.
Here this would mean 2 C and u(t) 2 C with t 2 R. This scalar complex
di erential equation can also be written as a real equation h R? by identifying
U= ug+iup2 Cwith u=(ug;un)T 2 R? see Exercise 1.1. 3

Models . Ordinary di erential equations arise in many application s from physics,
biology, economy and numerous other elds. The di erential equation is then a
mathematical modelof reality.

Example 1.2 Let u(t) denote a population density of a biological species, for
instance bacteria on a laboratory dish, with su cient food available. Then the
growth (or decline) of this species can be described by the drential equation
u{t)= u (t) u(t)with > O the birth rate and > O the natural death rate.
This is the same as (1.2) with = ,

An obvious objection to this model is that the actual population of a species
will change by an integer amount. However, if the populationis very large, then
an increase by one individual is very small compared to the tal population. In
that case the continuous model may give a good correspondesado reality.

There is, however, an other objection: if > | thatis > 0, the population
will grow beyond any bound with increasing time. This not how real populations
behave, so we need a modi ed model. 3

Example 1.3 To improve the population density model for > |, let us as-
sume that the death rate is not constant, but that it increases linearly with the
population, say as + u(t), with ; > 0. This seems reasonable if food gets
scarce with an increasing population. Then the dierential equation becomes
ul=( u )u, which we write as

(1.3) uf) = u@®@  u )



with = and = = . As we will see later, explicit expressions for the
solutions of this di erential equation can be found. These ae u(t) =0, u(t) =1=
and

et
(1.4) u(t) = P
with ¢ 2 R arbitrary. Solutions are plotted below, with the time axis horizontal.
Of course, for a population model we should restrict ourselgs to the nonnegative
solutions.

\ t

We will see in later sections more interesting examples of s type, for instance
with several species or spatial migration. Those models willead to systems of
di erential equations. 3

We note already that having explicit expressions for the saltions is not so
very common. For more complicated models these will generigl not be known.
Then a so-called qualitative analysis will be helpful.

Example 1.4 For the population model (1.3) we happen to know the solutiors,

but a slight modi cation of the model may change this. Still, it can be possible

to describe the qualitative behaviour of the solutions for d erent starting values.
Consider a scalar problemu®= f (u), u(0) = ug, with f continuous and

f()=0; f(h=0;

f(v)>0 ifa<v<b; /\

f(vy<O0 ifv<aorv>h: /a b\f
Then ug = a or ug = b give steady state solutions. For the other cases the sign
of f tells us in which direction the solution will move as time advances. Ifug > b
then the solution will be decreasing towardsb, whereas ifup < a the solution will
decrease towardsl (see Exercise 1.3). I < ug < b we will get an monotonically

increasing solution, and even if we start just a little bit above a the solution will
eventually approachb. Therefore the qualitative picture is similar as for (1.3). 3

Initial value problems . As we saw in the examples, solutions are not com-
pletely determined by a di erential equation. In these notes we will mainly con-
sider initial value problems where the solution is speci ed at some time pointtg.

The common form of an initial value problem (for a rst-order di erential
eqguation) is

(1.5a) uqt) = f(tu(t);
(1.5b) u(to) = up:

3



Hereto2 R,up2 RM andf : R R™! R™ are given. Unless speci ed otherwise
it will always assumed that f is continuous. Let| be an interval in R containing
to. Afunction u:I! R™ is called asolution of the initial value problem on | if
it is di erentiable with u(tp) = up, and (1.5a) is satised forallt 21 .

Usually we will take to = 0O; this is merely the instant where we press in the
“stopwatch'. The interval | will often be taken as [Q T] with an end time T > 0
(the derivatives at t = 0 and t = T are then one-sided). Further, it may happen
that f isonly dened onl D with asubsetD R™. In that case we have to
ensure that u(t) stays in D. (For the population models it would be quite natural
to de ne f only for nonnegative argumentsu.)

Some initial value problems can be solved explicitly. If tha is not possible
we may use numerical methods to approximate a solution. Sontienes, form =1
and m = 2, it is possible to get already a good idea how a solution wilbehave
qualitatively by looking at the direction of u{t); see e.g. Example 1.4.

We will see in the next section that, under (weak) smoothnessssumptions on
f, the initial value problem (1.5) has a ungiue solution on sone interval [to; T].
It may happen that a solution does not exist for arbitrary lar ge intervals. If the
norm of u(t) tendsto 1 ast" T for some nite T we will say that the solution
blows up in nite time. The time interval is then taken as [tg; T). An example is
provided by (1.4) with ; > 0: ifug< Othenc< and the solution will only
exist up to time T = Llog(jg= ).

Higher-order equations . The di erential equation (1.1) is called a rst-order

di erential equation because only the rst derivative appears. Many problems
from mechanics arise asecond-orderequations because of Newton's law = Ma,
where F is the force on a particle or solid body, M is its mass anda is the
acceleration. This acceleration is the second derivative fothe position, and the
force may depend on velocity and position. Denoting the posion by w and setting
g= MiF, we thus get a second-order equation

(1.6) wolt) = g(t; w(t); wqt)) :

If w(t) 2 R" we can transform this second-order equation to a rst-order
equation in R™, m = 2n. Writing v(t) = w{t) for the velocity, we obtain

(
wqt) = v(t);
vat) = gt w(t); v(t)) :

This is a system of the form (1.1) with

(1.7a)

w Vv

(2.7b) u=- f(t,u) = o(t:w:v)

So by introducing extra variables a second-order equationan be brought into
rst-order form. For higher-order di erential equations t his is similar. Therefore
we can con ne ourselves to studying only rst-order di erential equations.

4



Example 1.5 Suppose a stone is dropped from a tower, or an apple drops from
a tree, with height h at time to = 0. Let w be the height above the ground. The
initial condition is w(0) = h, wq0) = 0 and the motion is described by

(1.8a) woty =

where denotes the gravity constant. Thisequation is easily solvd and the
solution isw(t) = h % t 2 until the time T = 2h= when the object hits earth.

Again, this is just a simple model for the physical reality. An obvious issue
that has not been taken into account is air resistance. If we assume this resistance
is proportional to the velocity we get an improved model

(1.8b) woft) = wqt);

where > 0 is the resistance coe cient. For this equation it is still g uite easy to
nd explicit solutions; see Exercise 1.6

A further re nement is found by not taking the gravity consta nt. It is actually
gravitational attraction between our object and the earth. If R is the radius of
the earth then the distance to the center of the earth isw + R, and the force on
the object will be proportional to (w + R) 2. This gives

00+ — R ? :
(1.8¢) wt) = worrz W Q) ;

where the scaling factor R ? is chosen such that (1.8b) is retrieved forw = 0.
Of course, this modi cation will only be relevant if the init ial position is very
far above the ground. But then we should also incorporate thefact that the air
resistance will be proportional to the air density which varies with the height,
leading again to a more complicated description. 3

We see that even a simple problem {free fall of an object{ can bcome rather
complicated if more and more re ned models are used to desdre the physical
reality. In this case the simplest model is easily solved exaly, but this no longer
holds for very accurate models.

Still there is room for a mathematical analysis. For instan@ the qualitative
behaviour of solutions might be investigated, or maybe it ca be shown that
solutions of a complicated model do not di er much from the sdutions of a more
simple model. (It seems obvious that for apples falling froma tree the re nement
(1.8c) will not be relevant.)

1.2 Explicit Solutions

For some ordinary di erential equations and initial value problems we can write
down explicit expressions for the solutions. This was unddaken by the pioneers
in this eld, such as Newton, Leibnitz and the Bernoulli brot hers, Jacob and
Johann, in the second half of the 17-th century. In this sectbn some examples



are presented for classes of scalar problems that can be setls explicitly (with
some overlap between the classes). As before, smoothnesstiué given functions
is tacitly assumed.

Separable variables. Consider a scalar di erential equation of the form

(1.9) u’=" (t)g(u)

with g(u) 6 0. In this equation the independent variable t and the dependent
variable u are said to be separated. Let (u) =1=g(u). Then

(1.10) (uul= (1):

If A;B are primitive functions for ; , respectively, then the left-hand side equals
4B(u)= (u)ul by the chain rule. Hence we get$B(u) = $A(t) and therefore
the solution satis es

(1.12) B(u(t)) = c+ A(t)

with arbitrary integration constant c2 R.

If we assume thatg(ug) > 0 then also (ug) > 0, soB(v) will be monotonically
increasing for argumentsv near ug. Therefore, in principle, we can locally invert
this function to obtain u(t) = B 1(c+ A(t)) for t neartg. If g(ug) < O the situation
is similar. The caseg(up) = 0 leads to a stationary solution u(t) = ug for all t.

Example 1.6 Consider the initial value problem
u=1+ u?; u(0)= uo:

By writing it as (1 + u?) u®= 1 we nd by integration from to = O to t that

R Re 1
t= o ds= émuo(s)ds
R
= 1+_1V2 dv = arctan(u(t)) ¢ J

in the interval (3 ¢ 3 ). Atthe end

points of this interval the solution blows up. 3

with ¢ = arctan( ug). This gives u(t) = tan( t+ c) ( K t

Linear equations. A scalar di erential equation of the form
(1.12) u’= a(t)u + b(t)

is calledlinear. If b= 0 the equation is called homogeneous.

To solve (1.12), let us rst assume that b = 0. Of course, u = 0 is then a
solution. Non-zero solutions with u(tg) = ug are found by the above procedure
with separation of variables, for which the equation is written as

1 o_ .
qu = a(t) :

6



Let us suppose thatu > 0 (otherwise considerv = u). Then the left-hand side
equals% Iog&x). Therefore, integrating from tg to t gives log@(t)) log(ug) = (t)
with (t) = tto a(s) ds. The solution for this homogeneous case is thus found to be

(1.13) u(t) = uge ®:

To solve the general inhomogeneous linear di erential equiéon (1.12) we use
the substitution u(t) = c(t)e O; this trick is called “variation of constants'. Inser-
tion into (1.12) gives

At)e © + ct)e © qt) = a(t)c(t)e O + (t):

. Rt
Since qt) = a(t), we getc{t) = e On(t) and c(t) = ct)) + e ©(s)ds.
Thus we obtain the expression
z t
(1.14) ut) = e Wug+ el © O)ys)ds:

to

This is known as the variation of constants formula.

Example 1.7 For constant a the variation of constants formula becomes
Z t
(1.15) ut) = et Wy + et Sys)ds:

to

If bis also constant we get

(
ea(t to) o + %(ea(t ) 1)b ifa60;

u(t) = .
up + (t to)b ifa=0:

3

Change of variables. There are several classes of di erential equations that
can be brought in linear or separable form by substitutions @ changing variables.

As an example, we consider theBernoulli equations, which are di erential
equations of the type

(1.16) ul= p(t)u + g(t)u" ; rel:

Solutionsu 0 are found by introducing v(t) = u(t)! ". Di erentiation of v and
a little manipulation gives vo= (1 r)p(t)v+(1 r)g(t). But this is now a linear
di erential equation and we already know how to solve that.

Example 1.8 For the initial value problem u®= juj *1, u(0) = ug, with constant
> 0,thecasesu 0 andu< 0 can be treated separately. In both cases we get
a di erential equation of the type (1.16), where we consider u instead of u for



the negative solutions. The solutions are given by

B uo(l tu,y) ¥ if ug 0;
u(t) = U A . .
o1+ tjugj) if up< 0:

For up > O this follows by taking v = u
giving V0= u (*Du®= | Hencev(t) =
Vo t, which leads to the above formula. The
negative solutions are found in a similar way,
but now with v =( u)

We see that for any up > 0 the solution will blow up in nite time, whereas
for ug 0 the solutions exist for allt > 0. It should be noted that the solutions
for this equation can also easily be found with separation of/ariables. 3

As an other example where a substitution leads to a familiar érm is given by
equations of the type

(1.17) u’= g % fort60;

Setting v(t) = u(t)=t, leads to the seperable equatiorv®= %(g(v) V), which we
know how to solve (in principle).

Exact equations and integrating factors. Let E be a twice continuously
di erentiable function from R? to R. A di erential equation of the form

(1.18) dE(tu)=0

is calledexact For any solution of such a di erential equation we haveE(t;u) = ¢
with some constant ¢, which is an equation betweenu and t from which we may
now solveu as function oft.

We can write (1.18) in a form that is closer to the standard form (1.1) by
dening (tv)= SE(tv)and (tv)= SE(tv) for t;v 2 R. By applying the
chain rule, we see that (1.18) can be written as

(1.19a) (tu)+ (tu)u®=0:
For the functions ; we know that
(1.19b) & (tv)= 8 (tv) (forall t,v2R);

pecause@@v (t;v) = @@;@E(t;_\/) and & (tv)= @ig_@g(t;v). So, an exact di eren-
tial equation can be written in the form (1.19a) with ;  satisfying (1.19b).

YEquations (1.17) are called homogeneousdi erential equations. This is not to be confused
with the term homogeneous for the linear equation (1.12) with b= 0. The term homogeneous
for (1.17) arises from the fact that a function f (t;v) is called homogeneous (with degree 0) if
f(t;v) = f(ct;ev) for all c2 R, and setting g(v=t) = f (1;v=t) leads to (1.17).



This works also the other way around. Consider the dierential equation

(1.19a) with given continuously di erentiable functions ; . We can de ne
‘v = Ry : v : :
E(tv) = Eo+ to (s;v)ds+ Uo (to;w) dw :
Then
@ @ R @
oe(tv)= (tv); SF V)= Gy (s;V)ds+ (to;v):

Assuming (1.19b) this gives
R
SEtV)= & (svds+ (tv) = (GV):
Hence we obtain again the form (1.18). In conclusion: any dierential equation
(1.19a) for which (1.19b) is satis ed corresponds to an exatcdi erential equation.

It is easy to see that an autonomous di erential equation in the standard form
u®= f (u) cannot be exact (except in the trivial case of constantf ). Likewise, an
equation with separated variables is not exact in the form (19). However, if we
write it as (1.10) then it becomes exact. This is an example whre we can bring
a di erential equation in exact form by multiplying the equa tion by a suitable
function.

Considera(t;u) + b(t;u)u®=0. A function (t;v) 6 0 is called an integrating
factor for this di erential equation if  (t;u)a(t;u) + (t;u)b(t;u)u®= 0 is exact,
thatis (t;u) = (t;u)a(t;u) and (t;u) = (t;u)b(t;u) satisfy relation (1.19b).
Finding an integrating factor is in general very di cult, an d we will not pursue
this topic, but sometimes it is possible with a suitable ans#z (see for instance
Exercise 1.9).

1.3 Exercises

Exercise 1.1 Consider the complex scalar equatioru®= u with = +i .

(a) Discuss growth or decline of the modulus of solutions fothe cases Re< 0,
Re > 0 and Re =0. Discuss the role of Im for the trajectories fu(t):t 0Og
in the complex plane.

(b) Write the complex scalar equationu®= u with = + i as a real system
u%= Au in R?. Give the matrix A 2 R? 2 and its eigenvalues.

Exercise 1.2 Often we will consider the initial value problem (1.5) with a time
interval [0; T] (or with [0; T) if the solution blows up at T).

(a) Transform the problem v0= g(s;V), v(so) = Vo with arbitrary sp 2 R to (1.5)
with to = 0.

(b) Sometimes we want to know what happened in the past, giverthe present
state. Considerv®= g(s;V), v(Sp) = vowith s2 (1 ;sg]. Transform this to (1.5)
with time interval [0 ;1 ).



Exercise 1.3 Consider a scalar di erential equation u®= f (u) with f : R! R
continuous, and assume that for any given initial conditionu(tp) = ug the solution
u(t) exists for all t  to.

(@) Supposev 2 Rand"; > 0 are such thatjf (v)j foralv2[v "v +"].
Show thatif ju(t) vj "fortp t tg,thenju(ty) u(to)] (t1  to).

(b) Let u 2 R. Show that:

tI!ilm u(t) = u o) f(u)=0:

Exercise 1.4 Find explicit solutions of u®= (u a)(u b), with constants 60
and a < b, by transforming it to a Bernoulli type equation. Use this to verify that
(1.3) has the solutions (1.4).

Exercise 1.5 Discuss qualitatively the solutions ofu®= (u a)(u b(u ¢
with a < b < c for the cases > 0 and < 0. (Assume that for any (to; up) 2 R?
there is a unique solution that passes through this point.)

Exercise 1.6 Solve the di erential equation (1.8b) with w(0) = h, wY0) = 0.
Observe that the velocity will remain bounded, in contrast to (1.8a).

Exercise 1.7 Find explicit solutions of u®= 2tu, and for u®=2tu + t.

Exercise 1.8 Solutions may cease to exist because{t) tends to in nity without
blow-up of u.

(a) Derive the solutions of u’= =u. On what interval | do they exist? Make a
sketch of the solutions in the {; u)-plane for the cases > 0and < O.

(b) Do the same for the di erential equation u= t=(u 1).

Exercise 1.9 Consider the di erential equation 3t 2u + tu®= 0. Solve this
equation by nding a suitable integrating factor of the form (t), depending only
ont. Hints: use (1.19b) to get a di erential equation for , solve this equation
(by separation of variables or by educated guessing), and #n nd E(t;u) for the
resulting exact equation by requiring @@ﬁ (t,v)= (t;v)and @@JE (t,v)= (tv).

10



2 Existence and Uniqueness

In this section we will discuss existence and uniqueness oblsitions of an initial
value problem

(2.1) ut) = f(Gu(t);  u(to) = Uo

with given to 2 R, up 2 RMandf :E R R™ ! R™ Recall that, if J
is an interval in R containing tg, then u is said to be a solution of the initial
value problem onJ if u is di erentiable on this interval, ( t;u(t)) 2 E and u{t) =
f(t,u(t)) forall t 2J , and u(tg) = up.

As we saw in the previous section, solutions of initial valuggroblems may cease
to exist after some time becausei(t) or uqt) become in nite; see Example 1.8 and
Exercise 1.8.

\ t t
There is another troublesome situation: solutions may ceasto be unique.
Example 2.1 Consider, fort 0, the following scalar problem:
uqt) = 38W; u@)=1:

A solution is given by u(t) = (1 t)3 and this is the unique solution up to
t = 1. However, after t = 1 the solution is no longer unique: for anyc 1 the
continuously di erentiable function

8
<@ t3 foro t 1;

u(t) = 0 forl t c;
" (c )3 fort c .
is also a solution of the initial value problem. \\\
Likewise we can takeu(t) =0 for all t 1. 3

As we will see, té]gbehaviour in the last example is caused byhe fact that the
function f (v) = 37 v2 is not di erentiable at 0. We will also see in this section
that existence and uniqueness of solutions can be guarantéaunder some weak
smoothness assumptions of the functior .

2.1 Preliminaries

The results in this section will be presented for systems irR™ (m  1). This
requires some basic concepts from calculus and linear algeh which are brie y
reviewed here. For the study of scalar equationsr = 1) these paragraphs can be
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omitted, reading for kvk the modulus of v in the sequel. The essential points of
the results and their derivations are already covered by ths scalar case.

Matrices. Linear mappings from R™ to R™ will be identi ed with matrices
A =(aj) 2 R™ ™ Foragiven normk k on R™, the induced matrix norm for
anm m matrix A is dened by kAk = max,gg kAvk=kvk. It is the smallest
number  such that kAvk kvk for all v 2 R™. (This matrix norm will be
discussed in more detail in later sections.) The most cgmmomorms for vectors
v =(V1;V;:::;Vm) 2 R™ are the Euclidian norm kvk, = = vTv and the maximum
norm kvky =maxi j mjvjj.

Integration.  Integrals of vector valued functions are de ned componentwise:

i_fzu(t) 2 R™ has componentsu; (t) (1 j mkfor t 2 [to; T], then the integral
t . . m s t .
t, U(s) ds is the vector in R™ with components  uj(s)ds(1 j m). We have
Z, Z,
(2.2) u(s) ds ku(s)kds:

to to

This follows by writing the integrals as a limit of Riemann sums, together with
application of the triangle inequality for norms.

Di erentiation. Consider a functiong : R" ! R™ and supposeD R"
consists of an open set together with some of its boundary pots. (The sets D
in this text are always assumed to be of such type.) Theng is called k times
continuously di erentiable on D if all partial derivatives up to order k exist on
the interior of D and can be continuously extended toD. This is then denoted as
g 2 CK(D). For k = 0 we have continuity of g. If g2 C1(D), then g{v) stands for
the m n matrix with entries @—@;,gi (v),

0 1 0 @aw) @a) ©
Gu(v) @y @v
=% : K dw=B &
@g (V) @@ (v)
Om (V) v @y

forv=(vy;::;vn)T 2D R™ If n =1 then gYv) is a row-vector, whereas for
n = m it is a square matrix.

Mean-value estimate. Let g: R™ ! R™ be continuously di erentiable on
D R™. SupposeD is convex, that is, for anyv;v 2 D and 2 [0;1] we have
w()=++ (v ¥)2D. Denote' ()= g(w( )). Then' 4 )= gqw( ){v ), by
the chain-rule. Moreover' (1) ' (0)=g(v) g(v)and' (1) ' (0)= 01. Y)d.
Hence z

9v) o) = glv+ (v ¥) (v Wd:

In particular it is seen that

(2.3) kg(v) g(wk supkgqw)k kv wk:
w2D

12



Gronwall's lemma . The following lemma will be very useful in this section. It
is one of the variants of Gronwall's lemma.

Lemma 2.2 Let ; :Jto;T]! R with continuous, continuously dieren-
tiable, and 0. Suppose that
z t
(t) (t) + (s)ds (for to t T):
to
Then
Z

t
) e )+ e®S Ys)ds (for t t T):

to

R
Proof . Set' (t) = tto (s)ds. Then

m="9% @O+ '@t (o t T):

Multiplying the inequality with the integrating factor e ! shows that
getm=eC @ e' ®:

R
Since' (tg) = 0 we see by integration from tg to t that ' (t) tto e (t 9 (s)ds.
Using again (t) (t)+ ' (t), we obtain

R
(t) M+ e®9 (s)ds:
Applying partial integration completes the proof. 2

2.2 Picard Iteration and Global Existence and Uniqueness
Letf :[to;T] D! R™ be continuous andup 2D R™. Along with the initial
value problem (2.1) we also consider the integral equation
z t
(2.4) u(t) = up+ f(s;u(s)) ds:
to
If uis a solution of (2.1) we see by integration fromty to t that (2.4) will be
satis ed. On thegther hand, if u is a continuous function for which (2.4) holds,
then the integral tto f (s;u(s)) dsis di erentiable with respect to t, with continuous
derivative f (t;u(t)). Therefore u is a solution of (2.1).
The solution will be approximated by a sequence of functionsvg;vy;vo;:::,
where vo(t) = up and
z t
(2.5) w(t) = ug + f(s;vk 1(s)) ds (fort 2 [to; T] , k=1;2;::2):
to
This is called Picard iteration . As we will see shortly, it provides a tool to establish
existence and uniqueness of the solution.

13



For a given setD R™, we consider theLipschitz condition
(2.6) kf(t;v) f(twk Lkv wk (forall t 2 [to; T]and v;v2D);

where L > 0 is called the Lipschitz constant. Note that this Lipschitz condition
guarantees continuity for f with respect to v on D. It will also be assumed that
f depends continuously on its rst argument t.

For the following result {which is known as Picard's theorem or the Picard-
Lindebf theorem { it will rst be assumed that the Lipschitz condition is sati s ed
on the whole R™. Local versions are considered thereafter.

Theorem 2.3 Supposef is continuous on fo; T] R™ and the Lipschitz condition
(2.6) holds with D = R™. Then the initial value problem (2.1) has a unique
solution on [to; T].

Proof . The proof is divided into three parts. First it will be shown that the
sequencd v; g is uniformly convergent. Then it is shown that the limit func tion is
a solution of the initial value problem. Finally, uniqueness is demonstrated.
1. Let j(t)= kvj+1(t) vj(t)kfort 2 [to; T]. By considering (2.5) with j = k

andj = k +1, we see that

R :

j+1 (1) L tto j(s)ds (j =0:;1;2;::0):

R
For j =0 this gives 1(t) L tto o(s)ds L (t to) where =maxp,1; oft).
Next, with j =1;2;:::, it follows by induction that

1

M 5 L to) (G=1;2:):

Further we have

kvi(t)  Viken(t)k k(D +  + ken a(t)

1 k 1 k+1
k1 L(T to) + (k+1)! L(T to) +
P .
_ el (T to) k 1% L(T to)’ ! 0 ask!1l

i=0 j1

According to the Cauchy criterion for uniform convergence ve know that the
sequence vig converges uniformly on fo; T] to a continuous limit function v .
2. For the limit function v we have

kv (t) uo Rttof(s;v (s)) dsk
= kv (1) Vi1 (1) R:tof (s;v (s)) ds+ I:\:tof(s;vk(s)) dsk
kv(t) wa(k+ L(t to)tmaslxt kv (s) w(s)k! 0 ask!1l

We thus see thatv is a solution of the integral equation (2.4), and hence it is &0
a solution of the initial value problem (2.1).

14



3. To show uniqueness, suppose that and o are two solutions of (2.1). Then
for (t) = ku(t) (t)k we obtain as above

Rt
(1) L 4, (s)ds:

From Lemma 2.2 we see that (t) =0 for all t 2 [tg; T], that is u = . 2
Remark 2.4 From the above proof it can also be shown that
k(DK =k Lt to) o) (k=010

with  o(t) = (t to) maxy, s tKf (S;ug)k. Therefore, ku(t) vy (t)k quickly be-
comes small for increasing if t is close totg. Nevertheless, Picard iteration is not
so often used to nd numerical approximations. Other methods, such as Runge-
Kutta methods, are easier to program and require less competr memory. (Note
that to evaluate the integral in (2.5) accurately with numer ical quadrature, many
values ofvy 1(s) for dierent s2 [tp; T] need to be available.) 3

2.3 Local Existence and Uniqueness

The global Lipschitz condition (2.6) with D = R™ excludes many interesting
nonlinear problems. Therefore we consider a local versiomssuming (2.6) to hold
with a ball D = Dy,

(2.7) Do = fv2R™:kv Vvok Rog;

containing ug in its interior, kug Vok < Ryg. If f is continuous on fo;T] D o,
then we know that f is bounded on this compact set: there is a > 0 such that

(2.8) kf (t;v)k (forall t 2 [to;T], v2 Do):

We consider a functionf that coincides with f on [tg; T] D ¢ and is such that
it will satisfy a global Lipschitz condition. This function is de ned as

(29) f(tv)=f(th(v) with h(v) ( Y Tv2Do;
. v)= f(th(v) wi V) = .

Vo + I(\,R?,ok(v Vo) if vZDy:
It is clear that f (t;v) = f(t;v) for v 2 Dy, and v
kf (t;v)k forall v2 R™andt 2 [to;T]. (v)
Moreover, we havekh(v) h(v¥)k 2kv wk for = G
any pair v;v 2 R™; see Exercise 2.8. It follows o
that f does satisfy the global Lipschitz condition Do

on R™ with constant 2L
kf (t;v) f(t;wWk=kf(t;h(v)) f(th(¥)k Lkh(v) h(¥)k 2Lkv wk
forall t 2 [to; T] and v;»2 R™.
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We therefore know that the solution of the initial value problem
(2.10) uqt) = f(tu); u(to) = Uo;
has a unique solutionu on [tg; T], and we also have
(2.11) ku(t) wvok k up wvok+ Rtto kf (s;u(s))kds k ug wvok+ (t top):

Let T be the largest number in fo; T] such that u(t) 2 Do for t 2 [to; T]. From
(2.11) it follows that

T to min T tg 1 Ro kug wvok > 0:
Sincef = f on [tg;T] D o, we see thatu is also a solution of our original

problem (2.1) on the interval [to; T]. Conversely, any solutionu of (2.1) is a solution
of (2.10) as long as it stays inDg, so it must coincide with u. Consequently, (2.1)

has a unique solution on {o; T].
u(t) -
()
/ )

Uo
Vo Do

to 'f’ T

In summary, we have obtained the following result on local eistence and
uniqueness of solutions of initial value problems:

Theorem 2.5 Let Do = fv2 R™ : kv vok Rpg. Assumekup Vvok < Ry,
f is continuous on [o; T] D o, and the Lipschitz condition (2.6) is satis ed with
D = Do. Then the initial value problem (2.1) has a unique solution onan interval
[to;T], T >to, where eitherT = T or ku(T) vok = Ry. 2

We know, by the mean-value estimate (2.3), that iff is continuously di er-
entiable on |to; T] D o, then it satis es the Lipschitz condition (2.6) with some
L > 0. (Actually, we only need continuity of f (t;v) with respect to t.) Local exis-
tence and uniqueness of solutions of the initial value prol@m is then guaranteed
by the above theorem. Instead oft tg, we can also considet tg. This gives
the following result:

Corollary 2.6 Assume that f is continuously di erentiable on an open setE
around (to;ug) 2 R R™. Then the the initial value problem (2.1) has a unique
solution on some interval [ ;to+ ], > O.

Proof. For T;R > 0 small enough the setC= f(t;v):jt toj T;kv ugk Rg
is contained in E. From the mean-value estimate (2.3) it follows that f will ful | a
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Lipschitz condition on C with constant L = max .)2c k(@f( V))k Consequently,
the initial value problem has a unigue solutionu, on an mterval [to;to+ 4] with
a> 0.

To deal with t <t o, we can introducet =2tp tandf(t;v)= f(tv). This
function f will also ful | the Lipschitz condition on C with constant L. Therefore
the initial value problem uYt) = f (t; u(t)), u(to) = up has a unique solutionu on
an interval [to;to+ ], b> 0. Butthen uy(t) = u(2ty t)is seen to be the unique
solution of the original initial value problem (2.1) on [to  p;to].

By combining these two pieces, settingu(t) = ua(t) on [to;to + a] and u(t) =
up(t) on[to b to], it is now seen that this u is the unique solution on the interval
[to mtot a]. Taking =minf ,; pg completes the proof. 2

The maximal interval on which the solution of the initial val ue problem (2.1) will
exist, as well as the interval where the solution will be uniqie, may depend on the
starting point tg and initial value ug. The following two examples illustrate this.

Example 2.7 Consider the di erential equation
uqt) = t2u(t)?:

If we specify u(tg) = ug with given tp; up 2 R, we get an initial value problem.

The function f (t;v) = t?v? is continuously dierentiable on R R. Fur-
thermore, this function will satisfy a Lipschitz condition on any bounded set
[to T;to+T] [up R;up+R]with T;R > 0, butnotonthestrip[tg T;to+T] R.
Consequently, by Corollary 2.6, for anytg; up 2 R, the initial value problem will
have locally a unique solution on some intervaltly ;tg+ ], but we do not know
yet whether a solution will exist on the whole real line.

The local uniqueness property implies that the graphs of twosolutions of the
di erential equation cannot intersect. Further we see immediately that u=0is a
solution, and for any other solution we haveuqt) > 0 if tu(t) 6 0. This already
gives insight in the qualitative behaviour of solutions.

In fact, explicit expressions for the solutions can be deried quite easily because
the equation has separable variables. Fou > 0, u = 0 and u < 0, respectively,
the following solutions of the di erential equation are found:

ut) =3=( t3) if t3<; / J
uit) =0 if t2R;
ut) = 3=(t* ) if t3> /lp/ t

with arbitrary constants ;
Consequently, for_anyug > 0, the initial value problem has a unique soltétion
on theénterval (1 ;% )with = t3+3=up, and the solution blows up ift " =~
(Here Iéaken real, negative if < 0.) Likewise, if up < 0 we get a unlque
solution on ( = t3 + 3=up, and if up = 0 there is the solution u(t) =
forallt 2 R. From the Iocal uniqueness property it follows that there are no other
solutions. 3
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Example 2.8 Consider the initial value problem
p Y
uft)= t ju(®i;  u(to) = uo;

with to;ug 2 R. The function f (t;v) = tIO jvj is continuously di erentiable
around any point (tp; ug) with ug 6 0. Therefore, according to Corollary 2.6, if
Up 6 0 we have locally a unique solution, and insight in its behavour can be
obtained by considering the sign ofu{t). On the other hand, if up = 0, then we
do not know yet whether there is a unique solution.

This equation has again separable variables, and explicitx@ressions for solu-
tions are easily derived. By consideringu > 0, u = 0 and u < 0, the following
solutions of the di erential equation are found:

u(t) = (2 )2 if t2

uit) = 0 if t2R;

uy =A@ )2 it e A0 t
with integration constants ; 2 R, > O.

Let us consider the initial valuepproBIem with up > 0. Then there is a unique
solution u(t) = (2 )2on[ "5 " Jwith = t3+ 4P U5, The solution
can be extended to the whole real line, but this extension is at unique. We can
take u(t) = 0 on theintervals [ 1; Jand[; 2], with 1; > , and then
continue to the right with u(t) = #(t? ) for t 5 and to the left with
u(t)= &2 p)?fort 1 3
Remark 2.9 (Peano's theorem) In Corollary 2.6, the function f was assumed

to be continuously di erentiable on an open setE around (tg; ug) to ensure a local
Lipschitz condition (2.6). In fact, even if f is merely continuous onE then local
existence of a solution of the initial value problem is alredy guaranteed. This is
known asPeano's theorem This theorem is more di cult to prove than the above
results; moreover, uniqueness doesot follow, as illustrated by Example 2.8.

The proof of Peano's theorem can be found in the books listechithe preface.
Also alternative proofs for above existence and uniquenes®sults with Lipschitz
conditions can be found there. For example, in the book of Teshl (2012) existence
and uniqueness is shown using the Banach xed point theoremFor an older proof,
due to Cauchy, based on the approximation method of Euler, weaefer to the book
of Hairer, N rsett & Wanner (1993). 3

2.4 A Perturbation Result

It was mentioned in Section 1 that we may want to know whether wwvo models will
give almost the same outcome, say a simple model that is eagibnalyzed and a
more complicated model that gives an accurate description fothe reality.

Supposef is de ned on [to; T] R™. Consider along with (2.1) also a solution
t of the initial value problem

(2.12) et) = F{t () 5 t(to) = Ho;
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with f~:[tg;T] R™! R™ andup 2 R™.

Theorem 2.10 Let u and & be solutions on {p; T] of (2.1) and (2.12), respec-
tively. Assume f satis es the Lipschitz condition (2.6) with D = R™, and we have
kf (t;v) flt,v)k M forallt2[to;T]andv 2 R™. Then

ku(t) sk e Okup wok+ £ € 1 M (for t2 [to; T]):

Proof . Writing the initial value problems in integral form gives
R
ku(t) w(t)k Kk up tok+ tto kf (s;u(s)) f1s;u(s))kds:

Furthermore, sincekf (s;u) f{s;k k f(s;u) f(s;w)k+ kf (s;&) fIs;m)k,
it is seen that

Kf(s;u(s) fi(s;e(s)k Lku(s) e(sS)k+ M:

Application of Lemma 2.2 with (t) = kug tok+ M (t tg) and = L provides
the proof. 2

As in the previous subsection, this result with a global Lipshitz condition can
be put into a local form with a bounded setDg, where we then only have to require
that kf (t;v) f{t;v)k M fort2 [to;T],v2Do.

In applications, f~and uy are often viewed as perturbations off and ug. In
particular, with f~= f we getku(t) w(t)k e-(t ©kuy wok. This gives a
bound on the sensitivity of solutions of our initial value problem with respect to
perturbations on the initial value.

2.5 Exercises

Exercise 2.1 Determine whether a Lipschitz condition holds aroundv = 0 for the
following scalar functions:

@ f(v)= 5z 0 fW=j= () f(v)= V2
For this last case, do we have a Lipschitz condition on the whie real lineD = R?

Exercise 2.27 Follow the derivation of Theorem 2.5 to nd a lower bound for T,
which may depend onug, such that the initial value problem (2.1) has a unique
solution on [0; T] with the following scalar di erential equations:

(a) u’= u?, (b) u0= j ujt=2 (c) uW=sin( t)e 4.

Exercise 2.3 In the Examples 1.8 and 2.1, formulas are found for solutionsf
ul=juj ** ( > 0)and u®= 3juj®=3, respectively, with initial value u(0) = 1.
Show that there are no other solutions.

Exercise 2.4 Consider the di erential equation

o_ U2

u_71+t2:
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What can you say in advance about local existence and uniquasss of solutions
passing through a point (to; Up) in the (t;u)-plane? Solutions can be found by
separation of variables. Make a sketch of the solutions. On tat intervals do they
exist?

Exercise 2.5 Show that the Picard iteration for the linear initial value p roblem
u{(t) = Au(t), u(0)= uo gives vi(t) = (I +tA + :::+ L(tA)¥)uo, wherel stands
for the identity matrix.

Exercise 2.6 Consider the initial value problem
woft) = g(tw(t);wit);  w(0)= wo; wY0)= wj

for a scalar second-order dierential equation. Letrq;r, > 0. Assume that
g(t; u1; up) is continuous in t, continuously di erentiable in u1;uy, such that

j@—%g(t; U u)j 1 (forj =1;2and allt 2 [0; T], u1;u> 2 R):

Prove that this initial value problem has a unique solution on [0; T]. Hint: Con-
sider (1.7) with the maximum norm in R? and L = maxf1;ry + rg.

Exercise 2.7 Consider the autonomous problemu{t) = f (u(t)), u(tg) = ug on
R™M. Supposef is continuously di erentiable on R™. Show that: either u(t) exists
forall t tg, or there is a nite t; >t such that u(t) exists fort 2 [tg;t1) and
lime, ku(t)k =1 .

Exercise 2.8 For (2.9) it was claimed that kn(v) h(w)k 2kv  wk.

(a) Show that this is valid. Take for conveniencevg = 0, Rg = 1. Hint: write
h(v) = g(kvk)v with g(s) = min(1;2) for s 0, and usejg(s) g(t)j =Y to
demonstrate that k(g(kvk) g(kwk)wk kv  wk if kvk > 1.

(b) One might think that kh(v) h(w)k k v wk always holds. Find a counter
example with the maximum norm on R? with v = (1;1)" and w nearv.
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3 Linear Systems

In this section we will study the solutions of initial value problems for systems of
the type
(3.1) udt) = Au(t)+ g(t);  u(to) = Uo;

with a matrix A2 R™ Mandg:R! R™ continuous. This di erential equation
is called linear with constant coe cients, and if g = 0 it is called homogeneous
Later we will also consider general linear equations wheréd may depend ont.

We will need in this section some concepts from linear algelr; such as norms
on R™ and C™, induced matrix norms and the Jordan normal forms of matrices.
These concepts can be found in the standard text-books on lear algebra (for
instance: Horn & Johnson, Matrix Analysis, 1990) and will not be discussed here
in full detail.

Even though we will be primarily interested in real valued problems, with
A 2 R™ M itis convenient to consider complex matricesA 2 C™ ™. This is due
to the fact that even if A is real, its eigenvalues and eigenvectors are complex in
general. The results obtained thus far for real valued systes carry over directly
to the complex case because we can always rewrite a di ereri equation in C"
as an equivalent system inR?" by taking real and complex parts.

For a given normk k on C™, we de ne the induced matrix norm of a matrix
A2CM ™M py

(3.2) KAK = kAvk,

vaChneo KVK -

Justi cation of this de nition is given in Exercise 3.1. Thi s matrix norm kAk can
be characterized as follows: it is the smallest nonnegativeumber  such that
kAvk kvk for all v2 C™,

Furthermore, note that C™ ™ itself can be viewed as a linear vector space.
The induced matrix norm (3.2) provides a norm on this space, 8 we can discuss
convergence of sequences or series of matrices. Along withettriangle inequality
kA + Bk k Ak + kBk, it is also easy to see thatkABk k AkkBk for all
A;B 2 C™ ™ and in particular kAKk k AKX for any powerk 2 N.

Example 3.1 As onR™, the most common norms onC™ are the Euclidian norm
(also calledlz-norm) and the maximum norm (also known as thel; -norm):

P -
kvkz = {1 jvjj? L kvke =maxy | omivi]

corresponding induced matrix norms forA = (ay) 2 C™ ™ are given by
- P
kAksy = maxfp . eigenvalue ofA Ag; kKAky =maxi j m ?:1 jajk];

where A = (@) is the (Hermitian) adjoint of A. The derivation of these expres-
sions is left as an exercise. 3
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3.1 Matrix Exponentials

It was seen in Section 1 that for the scalar case an explicit $otion for inhomo-
geneous equations (1.12) could be obtained by rst derivingexpressions for the
homogeneous case. For systems we proceed similarly.

So rst, let us consider homogeneous problems

(3.3) uqt) = Au(t); u(0) = uop;

with A2 C™ M andt 2 R. The starting time is taken for the moment astyo =0
for notational convenience. The functionf (t;v) = Av satis es a global Lipschitz
condition with constant L = kAk. We therefore know, by Picard's theorem, that
(3.3) has a unigue solution on any time interval [Q T]. We can also considet 0,
as in Exercise 1.2, and extend the solution to [ T; T] with arbitrary T > 0.

As we will see, the solution is given byu(t) = exp(tA)ug, where the exponent
of the matrix is de ned as

x 1
(3.4) exp(tA) = i (LAY

k=0
Here, in the rst term we take by convention (tA)° = I, the identity matrix.
Instead of exptA) we will usually write € = | + tA + 1(tA)2+ . For this
matrix exponential we have
(3.5) den = petn

Theorem 3.2 The homogeneous problem (3.3) has unique solution(t) = € up,
where e® = exp(tA) is de ned by (3.4). For this matrix exponential, property
(3.5) is valid.

P
Proof . The Picard iterates (2.5) for (3.3) are given byvn(t) = = (Lo & (tA)¥uo
(see Exercise 2.5). We saw in the proof of Theorenb2.3 that thee iterates converge
to u(t) for arbitrary ug. Therefore u(t) = lim ni =0 m(tA)Kug = é*ug, and
we have 3 ug = Ae ug for any ug 2 C™. 2

An important property of the matrix exponential is the follo wing: if A;B 2
C™ ™ are commuting matrices (AB = BA), then

(36) et(A+ B) — etA etB

for all t 2 R. To prove this result we can mimic a proof of the scalar case
with manipulation of the power series. A more elegant proof an be obtained by
using uniqueness of solutions for linear initial value prollems; see Exercise 3.4. In
particular we see form (3.6) that for any s;t 2 R

(37) e(t+ S)A _— etA GSA; (etA) 1_ e tA :
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Finally we mention that, similar as for the scalar case,
tA — |; t n.
(3.8) e = r|]lllin I+ ;A"
The proof of this relation is a little technical; it is treate d in Exercise 3.12.

Variation of constants formula . For inhomogeneous problems (3.1), with
arbitrary starting time tg 2 R, we can derive a formula similar to (1.15) for the
scalar case by consideringi(t) = e” ¢(t) with c(t) 2 R™. An other way to derive
it is to use the idea of integrating factors. Multiplying (3.3) by e A we get

de Aut) = e “ut) Ae u(t) = e “ L) Au(t)= e “g(t):

. . Ry
Integration from to to t givese "u(t) e "Aup= | e *g(s)ds, and therefore
Z t
(3.9) ut) = et WAy, + et 9Ag(s)ds:
to
3.2 Computing Matrix Exponentials

To nd formulas for matrix exponentials, we rst observe thatif B;v 2 C™ ™M
with V nonsingular, then (VBV 1)K = VBXv ! for any power. It therefore
follows directly from (3.4) that

A=vVBV ! =) eh =vdByv L
If B is diagonal, B = diag( 1;:::; m), then €® = diag(e' i;:::;e' m). In the
same way, ifB is block-diagonal with blocksB1;:::; B, on the diagonal (which we

If the matrix A 2 C™ ™ has a complete set ofm independent eigenvectors,
then it is diagonalizable, A = V V ! with =diag( 1;:::; m). The j are
the eigenvalues ofA and the j-th column of V is the corresponding eigenvector.
Furthermore, €' is the diagonal matrix with entries € i on the diagonal. So, for
a diagonalizable matrix we can compute its exponent as

(3.10) eA=veé Vv I e =diag(e' !;:::;et ™)

Unfortunately, not all matrices are diagonalizable. Howe\er it is known (linear
algebra) that we do always have a Jordan decompositio = VJV ! whereJ is
a block-diagonal matrix of the form

0 1 0 1
N k 1

J:% J2 | E; Jk:% . EZka M.
. g

J K

with my+ m2+  + m; = m. The same eigenvalue may appear in several Jordan
blocks Jx. If an eigenvalue appears in a Jordan block of dimension lagy than
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one, it is called defective If all blocks have dimensionmy = 1 we are back in the
diagonal case.
Since any powerJ " is again block-diagonal, with blocksJ,”, we see that

(3.11) eA=velv 1: &Y =Diag(eV;::: eV
It remains to compute the exponential for a single Jordan blak.
For this, we write Jx = | + E, where
01

Thus tE is the matrix with only entries t on the rst upper diagonal, (tE)? has
entries t2 on the second upper diagonal and entries 0 elsewhere, etcnd nally

(tE)M« = O, the zero matrix. Hencee'® is the upper triangular Toeplitz matrix

with entries ji!tj on the j -th upper diagonal,j =1;:::;my 1. Further we have,
according to (3.6), eVk = ¢ k! gF = ¢ ke® | and therefore

(3.12) el = ek I +IE + GPEP+ + o hgtTe TEM Y
0 1t 5t ﬁtmk 11
1t .
= 1 12
t
1

Consequently, we can now compute in principle the exponendil e for any
matrix A. This means that for any homogeneous equationi®= Au we have an
explicit expression for the solutions, and by the variation of constants formula the
same holds for the inhomogeneous problem (3.1).

For actual computations, it is in general much easier to let he exponential
stand in its decomposed form (3.10) or (3.11). This holds in prticular when
dealing with an inhomogeneous term and the variation of congnts formula (3.9);
see e.g. Exercise 3.9.

Finally we mention that (3.11) implies

(3.13a) %ke“k k ek Cke¥Yk with C=kVvk kv *k:

Here the rst inequality follows by writing e” = VvV 1eAV. So, we will have
sup, oke*k < 1 orlimy; kek =01 the same properties hold for keV k. In
the maximum norm, we further have the following simple expression:
™ litil
(3.13b) keVk; = max kekk; = max jet kj L.
1k | 1 k| =0 I
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3.3 Two-Dimensional Problems and Phase Planes
Let us consider some examples for the simple case with real mmwes A 2 R? 2
and solutions u(t) 2 R? of the homogeneous problem (3.3).

Diagonalizable case First assumeA is diagonalizable,A =V V 1,
= ; V= v, Vv, ;

where the columnsyv,;v, 2 C2 of V are the eigenvectors ofA; theseyj are un-
derlined to make it clear that they are vectors themselves, nstead of components.
Then the general solution ofu®= Au is

(3.14) u(t) = cre vy + cpe ?tv,:

The constants c;;c; are determined by the initial condition, ug = civ; + CaVo,
which is just (c1; )T = V' tuo.

This follows from the general formula (3.10) for the matrix exponential. In-
stead of using that formula we can also get an equivalent, butnore direct deriva-
tion by introducing w(t) = (w1 (t);wo(t))T = V Tu(t). Then wqt) = w(t), that
is,

wit)= jw()  (j=1:2):

Hencew; (t) = ¢e it with ¢ = w;(0), and we obtain (3.14) fromu(t) = V w(t).

Diagonalizable case with complex eigenvalueH.the eigenvalues are complex, then
also the eigenvectors are complex. Even though formula (34) is still correct, it
is then not very transparent. It can be rewritten by using 1.2 = i , since
complex eigenvalues of a real 2 2 matrix will be complex conjugate. Using
e 12t = el(cos(t) isin(t)), we obtain from (3.14) a formula

(3.15) u(t) = e' cos(t)d, + e sin(t)d,

with real vectors d; 2 R? (they must be real, becauseu(t) is real for all t). These
two vectors are not related anymore to the eigenvectors. Ingad, by considering
u(0) = ug, uq0) = Auy, itis seenthatd, = upandd, = (A 1 )uo.

Defective case.For the case of a single, defective eigenvalue, we have therdan
decompositionA = VJV 1 with

J= ; V= vV, ;

where now only v, is an eigenvector ofA. For v,, which is called a generalized
eigenvector, we have A | )v, = v4. From (3.12) we now obtain

(3.16) u(t) = (cr+ cot)el vq + et v,
1 2

Again, the initial condition speci es the constants c;; ¢ by up = ci1vq, + CoVv,.
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Instead of using the general formula (3.12), equation (3.16can also be derived
directly, which may give some more insight in the appearancef the te' term. If
we setw(t) = V lu(t), then wqt) = Jw(t), that is,

wi(t) = wa(t)+ wa(t);  wa(t)= wo(t):

The second equation givesv,(t) = e! w,(0), of course. But then it is seen by the
scalar variation of constants formula (1.15) that w1 (t) = e w1(0) + tet w»(0). By
the back-transformation u(t) = V w(t) we arrive again at (3.16).

Phase portraits . Already for the simple 2 2 case there are some interesting
features. To get insight in the behaviour of solutions, we cald try to compute
and plot the components u;(t) and uy(t) versus time t for a number of initial
conditions. However, it is much more clear what is happeningby considering
trajectories, which will be discussed here.

For a real system in two dimensions, let us calk(t) = uy(t) and y(t) = ux(t).
Then the solution between two time points, sayt = t, andt = t,, gives a curve
f(x(1);y(t)) : t 2 [ta;tp]g in the xy-plane. This curve is called atrajectory or orbit.
The xy-plane itself is usually called the phase plane If we draw a number of
trajectories, with di erent initial positions and t 2 R, we obtain a so-calledphase
portrait .

Some phase portraits are presented in Figure 3.1. Each plotoacresponds to
solutions with a certain matrix A 2 R? 2. We see that there are a number
of di erent cases that can be distinguished. For the followng discussion, rst
observe that the origin always corresponds to a stationary alution. If all other
trajectories stay bounded fort 2 [0;1 ) the origin is called a stable stationary
solution. Otherwise, if some trajectories tend to in nity, we call it unstable This
behaviour, and also how the solutions tend to O or diverge frm the origin (the
shape of the trajectories), is determined by the eigenvalug

Let us rst suppose that the eigenvalues of the matrix A are not defective,
so formula (3.14) applies. If ) the eigenvalues are real with the same sign, all
solutions will converge (negative sign) to the origin or diverge from it (positive
sign). The origin is then called a stable or unstablenode The curvature of the
orbits is primarily determined by the ratio r = ;= » of the eigenvalues (as can
be seen by consideringv = V !u, for which we getw,* = ¢ w,?).

In case the eigenvalues are complex, they must be complex dogate, 1.2 =

i , and we can use formula (3.15). If i) 6 0 then the solutions will spiral
towards the origin ( < 0) or away from it ( > 0), and the origin is then called a
focus or spiral point. If (iii ) =0 then the solutions become periodic.

We can also have {v) two real nonzero eigenvalues of opposite sign. Then the
origin is called a saddle pointfor the di erential equation. Only solutions that
start at a multiple of the eigenvector corresponding to the regative eigenvalue will
tend to the origin. All other solutions will eventually tend to in nity.

Another phase portrait is obtained if (v) one eigenvalue is zero and the other
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X

Figure 3.1: Phase portraits for the various cases: i) negative, real eigenvalues; i{)
imaginary eigenvalues with negative real part; (i ) purely imaginary eigenvalues; {v)
real eigenvalues of opposite sign;v) negative and zero eigenvalue;\(i) negative, defective
eigenvalue.

(vi)

one is not. Then all initial values ug that are a multiple of the eigenvector corre-
sponding to the zero eigenvalue give stationary solutions.

Finally (vi), for the defective case with a single eigenvalue and only aneigen-
vector v,, formula (3.16) applies. For larget the term cpte® v, will dominate.
Again the sign of determined stability or instability. If = 0 we get a rather
special situation: the origin is unstable but the growth of olutions is only linearly,
instead of exponential.

Example 3.3 (Damped oscillator) The scalar linear second-order equation
(3.17) x%t) +2 x Q) + x(t) =0;

arises in many applications. The initial values arex(0) = xg, X{0) = yo. Setting
y(t) = xqt) we get the rst-order system

xqt) 0 1 x(t)
yqt) 2 y(t)
The eigenvalues and eigenvectors of this matrix are
p 1 .
12 = 2 5 vyy= (G=1,2):
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For the origin to be a stable stationary point we therefore nesd 0 and 0.
For such ; , three cases can distinguished.
Over-damping: if 2> , both eigenvalues are negative and the solutions are

x(t) = cre '+ e 2

with constants c;;c, 2 R determined by the initial values Xg;yo. The phase
portrait will be as in Figure 3.1 (i).

Critical damping: if 2 = we have only one eigenvalue and it is defective.
Therefore we get the solutions

X(t)=(c + cot)e U
Here the phase portrait corresponds to Figure 3.1\i).

Damped oscillation: if 2 < the eigenvalues are complex conjugate, and we
get the solutions

p

Y coslt )+ ce ! sin(lt); I = 2;

x(t) = e
This can also be written asx(t) = ce ' cos{t #) with ¢ = P ¢ + ¢ and
# = arctan( co=c;). The phase portrait will now be as in Figure 3.1 (i ).

From the phase portraits we cannot see how fast the convergee to the steady
state will be. For the three cases we plot the solution versugime (time axis
horizontal) with the same  and xo = yo, but varying . It can now be observed
that that the fastest decay of x(t) without oscillations is achieved with critical
damping, not with over-damping.

N\
Voo

The solutions for 2 6 are also easily found by simply trying x(t) = e!.
Inserting this in the di erential equation, it is directly s een that this will indeed

give a solution if = 1. Furthermore, linear combinations of solutions will
again give a solution, leading to the constantsc; and ¢,. Guessing the general
solution for the defective case 2= is less obvious. 3

3.4 Linear Systems with Variable Coe cients

Solving linear systems of di erential equations with a time-dependent matrix A(t)
is very much harder than for constant coe cients. In fact, explicit expressions for
solutions are then only found for some special cases.

Suppose thatA(t) = (a; (t)) 2 C™ ™ is continuous in t, that is, all entries
a;j (t) are continuous. We consider

(3.18) utt) = A@u(t);  u(to) = Uo
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with top 2 Rand ug 2 C™. BecauseA is time-dependent, it is here more convenient
to allow arbitrary starting points tg, and we will consider alsot <t o. As before,
we could have restricted ourselves to real valued matricesral initial vectors.

With a constant matrix A, the solution is u(t) = exp((t to)A)up. In view of
formula (1.13) for the sgglar case, one might think that the ®lutions of (3.18) will
be given by u(t) = exp( tto A(s) ds)up. However, this is not correct in general. In
fact, it will only be valid if the A(t) commute with each other, A(t)A(s) = A(s)A(t)
for all t;s, and in applications this rarely the case.

We do know that the problem (3.18) will have a unique solution on any
bounded interval | containing tg, becauseL = maxiy kA(t)k will be a global
Lipschitz constant on |  C™ for f (t;v) = A(t)v. Furthermore, it is easy to
see that linear combinations solutions of the di erential quation are again solu-
tions: if wjo(t) = A(w; (t) for j =1;:::;m then u(t) = i G W (t) also solves
uqt) = A(t)u(t). This is often called the superposition principle. (The w; are
underlined to make it clear that they are vectors themselvesrather than compo-
nents of a vectorw.) If the Vgctors w; (to) are linearly independent, we can nd
coe cients ¢ such that ug = jm=1 G W; (to), which will then provide a solution of
our initial value problem (3.18).

This can be written in matrix form by letting W (t) = ( w4 (t) wy(t) :::w, (1))
be the m m matrix with columns w; (t). This W(t) is called a fundamental
matrix or fundamental matrix solution if

(3.19) WaH = AW(E);  W(to) = Wo

with Wo 2 C™ ™ nonsingular. Thenu(t) = W (t)W, 'ug is the solution of (3.18).
In other words, if we de ne

(3.20) S(t;tg) = W(t)W(to) 1;
then the solution of the initial value problem (3.18) is given by
(3.21) u(t) = S(t;to) uo:

Note that S(t;tp) does not depend on the choice oWy = W (tg). Actually,
V(t) = S(t;tp) is again a fundamental matrix solution, but now with V(tg) =
S(to;to) = |, the identity matrix. This S(t;to) is the generalization of the solu-
tion operator exp((t tg)A) of the constant-coe cient case. Although we cannot
nd explicit expressions in general, there are some interdsg properties that can
be demonstrated.

Since we have uniqueness of solutions of the initial value pblem (3.18) with
arbitrary starting points tg, the solutions of uqt) = A(t)u(t) with initial value ug
at to and with u; = S(t1;tp)ug at t; must coincide. Consequently we have

(3.223) S(t2;to) = S(t2;t1) S(ty;to) ;
for any tg;ty;t2 2 R. Taking t, = tg, it is also seen that

(3.22b) S(ti;to) = S(to;ta) *:
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Apparently, S(ti1;tp) is invertible for arbitrary tg;t; 2 R. In fact, the time
evolution of the determinant of a fundamental matrix solution is precisely know.
We have the following result, where detV) is the determinant of W and tr(A) is
the trace of A, the sum of the diagonal elements.

Theorem 3.4 Let W(t) be a fundamental matrix solution (3.19). Then

(3.23) det(W(t)) = exp tho tr(A(s)) ds det(W(tp)) :

Proof. Let (t)=det(W(t)). We have, forh! 0,
W(t+ h) = W(t)+ hwqt)+ O(h?) = (I + hA(t)W(t) + O(h?);
and therefore
(t+ h) = det(| + hA(t)) (t) + O(h?):

It is known from linear algebra that the determinant of a matr ix is the product of

its eigenvalues and the trace is the sum céthe eigenvaluesf | piii omare the

eigenvalues ofA(t), then det(l + hA(t)) = ~;(1+h j)=1+h ; j+ 0(h?),
det(l + hA(t)) = 1+ htr(A(t))+ O(h?):

It follows that %( (t+ h) (1) =tr( A(t)) (t) + O(h). Hence

M = r(A®) O
from which the result follows. 2
Relation (3.23) is known asLiouville's formula. It generalizesAbel's identity for

di erential equations which deals with the special systemsobtained from linear,
scalar second-order equations.

Example 3.5 Let x; and X, be two solutions of the second-order equation

x%0t) = p(t)xqt) + a(t)x(t);

with continuous p(t) and g(t). Writing this in the usual way as a rst-order system
with 0
x(t 0 1
u(t) = ; A(t) = ;
W= O qn

we see from (3.23) that (t) = x1(t)xJ(t) x§(t)x2(t) satis es
R
(3.24) (=exp . p(s)ds  (to):

which is called Abel's identity.

If we have somehow found one solutiorx1 6 0, say by a lucky guess, then the
second solutionx; is obtained by solving the scalar equatiorx9(t) = a(t)xa(t)+ (t)
with a(t) = xQ(t)=x.(t) and b(t) = (t))=xa(t) in an interval where x; is not zero.
The general solution is then given byx(t) = cix1(t) + coXxo(t). 3
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Variation of constants formula . We now consider the inhomogeneous system
(3.25) u{t) = A(u() + g(t);  u(to) = Uo:

To nd the solution, we can again make the "variation of constants" ansatz, u(t) =

S(t; to)c(t) with c(to) = up. Dierentiation gives uqt) = A(t)u(t) + S(t;to)cXt) ;

and compq@son with (3.25) shows thatc{t) = S(to;t)g(t): Integration thus gives

c(t) = uo+ S(s to)g(s) ds: This leads to the following expression for the solution:
z t

(3.26) u(t) = S(t;to)up + S(t;s)g(s) ds:

to

Volumes in the phase space. Consider the homogeneous di erential equation
uqt) = A(t)u(t) wigh real matrix A(t) 2 R™ M. Let Do be a set inR™ with

volume Vol(Do) = [ dv. We can now de ne the set of points inR™ obtained
from solutions at time t of the di erential equation with u(tg) 2 Do,

D;= fv2 R™:v=u(t); uis solution of uYs) = A(s)u(s); u(to) 2 Dog:

For any continuously di erentiable function ' : R™ I R™ which is injective
(one-to-one), we know, by the formula for substitution of variables in multiple
integrals, 7 7

dv = jdet(' Qv))jdv:
' (Do)

We haveD; = S(t;tp)Dg and the determlnant of S(t; to) is known by the Liouville
formula. Taking ' (v) = S(t;to)v with t;to xed, gives ' qv) = S(t;to) and

Z,
(3.27) Vol(Dy¢) = exp tr(A(s))ds Vol(Dy):

to
In particular, if tr( A(s)) =0 for all s, then the volume of Do will be preserved in
time.

In fact, the same formulas remain valid if we consider soluthns of the inho-
mogeneous di erential equations in (3.25) with arbitrary source termsg(t). This
is not surprising, because for xedt and to the variation of constants formula
with ug = v givesu(t) = S(t;to)v+ r(t;te) = ' (v), with r(t;to) the result of the
inhomogeneous term, which is independent of. So, an inhomogeneous term will
lead to a shift of D¢ but not to a deformation.

Remark 3.6 Similar results for volumes are known for nonlinear di erertial equa-
tions, usually considered in autonomous form,u® = f (u) with a continuously
di erentiable function f. The ow of the dierential equation is the function

t :R™ 1 R™ that maps, for a givent, the initial value v = u(0) to the solution
value u(t) at time t. Similar as above, it can then be shown that forD; = ' {(Dg)
we have z

dvol(Dy = divf (v)dv;
D¢
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where the divergence di¥ (v) = P m @—@:,fi(v) is the trace of the Jacobian matrix
fqv). In particular, we have again preservation of volumes unde the ow if
divf (v) = 0 for all v 2 R™. The dicult point in the proof of this result is to
show that ' {(v) will be continuously di erentiable w.r.t. v. This is true if f itself
is continuously di erentiable, but the proof is rather lengthy.

As an example, consider a Hamiltonian system

= SHEd: = SHED  (=1:2:00);

wherep=(p)) 2 R"andg=(q) 2 R" are general momenta and positions of a
mechanical system, andH : R | R is called a Hamiltonian. This ts in the
form uqt) = f (u(t)) in R™, m = 2n, with

|

@ . ’
- p . - @cﬁ(p1q)
"= oq 0 T ehpg

If H is twice di erentiable, then the divergence off is zero, and therefore the ow
will be volume preserving. In mechanics this is known as Liouille's theorem. 3

3.5 Exercises

Exercise 3.1 The induced matrix norm is given by (3.2), but it is not obviou s
that this expression is well-de ned. Show that (3.2) is equialent to

kAk = maxfk Avk :v2 C™; kvk = 1¢:

Note: it is allowed to put here "'max’ instead of “sup', becaus' (v) = kAvk de nes
a continuous function' : C™! R, and the setfv2 C™ : kvk = 1g is compact.

P
Exercise 3.2 For A=(ax)2C™ ™, let =maxi | m g j@kj. Show that
kAvk; kvk; for any v 2 C™. Then show that there is av 2 C™ for which
equality holds, and conclude that kAk; = . Hint: to show that equality can

hold, consider a vectorv all of whose components are one in modulus.

Exercise 3.3 Recall from linear algebra that a matrix A 2 C™ ™ is called Her-

mitian if A = A, and it is called unitary if A A = I. If A is Hermitian, then

A = U U 1 with diagonal and unitary U. Furthermore, if U is unitary, then

kUvk, = kvk, for any v 2 C™. (For real matrices the terms symmetric and or-
thogonal are used instead of Hermitian and unitary.)

(@) Assume A is Hermitian, and let i;::: m be its eigenvalues. Show that
kAk, = max;j ij. 0

(b) Show that for an arbitrary matrix A 2 C™ ™ we havekAk, = maxf

eigenvalue ofA Ag. Hint: consider kAvkZ=kvk? and use the fact that A A is
Hermitian.
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Exercise 3.4 To prove (3.6) for commuting matrices, without manipulatio n of the
power series, we can proceed as follows. First show th&“B = BAX and e”B =
Be!A. Then show that $(e®e®) = (A + B)e”e®. Finally, use unigueness of
solutions of u®= (A + B)u, u(0) = ug to show that (3.6) is valid.

Exercise 3.5 Construct an example with A; B 2 R? 2 for which e'(A*B) g ¢A¢lB
Hint: you can take any noncommuting pair A;B . Pick a simple pair with some
zero columns.

Exercise 3.8 Compute e” for the following matrices A:

13 4 1 1 2
6 2 2 5 5 1

The eigenvalues for the last matrix are complex, but the expoent of tA should be
real. Computation by hand directly from (3.10) is already sanewhat complicated.
It is easier to proceed as in (3.15).

Exercise 3.7 Suppose thatA = (a;) 2 R? 2 has complex roots 1, = i with

< 0. We know that all solutions will spiral towards the origin. Determine the
orientation of the spiral directly from the sign of a1 (or a;2). Hint: consider in the
phase plane the direction ofuq0) starting with u(0)=(1 0) T (or u(0)=(0 1) 7).

Exercise 3.8 Let D = ajiap, ajpay; and T = a1 + agy be the determinant and
trace of a matrix A 2 R2 2. Determine in the T-D plane the regions in which the
various possibilities (){( vi) occur and distinguish the stable/unstable cases.

Exercise 3.9 Consider the inhomogeneous problenu{t) = Au(t) + e' b, with
vector band a real or complex number. AssumeA = Vdiag( j)V 1. Show that
the solution is given by

u(t) = e®u(0) + r(t)

with r(t) = Vdiag( j(t))V band

Note: if ; is purely imaginary, Re( j)=0,and = j,thenj (t)j becomes very
large after some time. This is known as theresonancee ect.

Exercise 3.10 Let ag;a; 2 R. The di erential equation

x %% %x°+ %X:O (t> 0)

is called the Cauchy-Euler equation. Assumeag < %(1 a1)?. Solve the equation
by introducing s = log(t) as independent variable. What is the behaviour for
larget?
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Exercise 3.11 For the linear system of di erential equations with variabl e coe -

cients a
_ 1 2e
uo(t) - O 2 U(t)

explicit expressions for the solutions can be found quite esly, because we can
rst solve the second equation to getu,(t) and then solve the rst equation to get
the componentu;(t). Show that

e t et e t
W(t) = 0 e 2t
is a fundamental matrix solution and det(W (t)) = e 3. [Note that the eigenvalues
of the matrix A(t) in this example are 1 and 2, but the fundamental matrix
solution W (t) is not bounded fort!1 ]

Exercise 3.127 To prove relation(3.8) we rst derive, in part (a), a small le mma.
(a) Consider a polynomial of degreen with coe cients p; (p, 6 0) and roots |,

Pot+ piz+ +paz" = pa(z )z 2z n):

Prove, by induction to n, that pol + ptA+ +phA"=pa (A _ 1) i (A gl).

(b) For any z 2 C, the binomial formula gives 1+ 2 " = " P L . Z% with

on= wn=land =01 1@ 2) @ K21)2(0;1) fork=2;:::5n.
Now show that
P

P
h  (I+ %A)n = k=0 %(1 kn)(PA)+ %(tA)k§

ke (I + LAk ek 1+ LKAK)" I 0 asn!l
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4 Stability and Linearization

4.1 Stationary Points

In this section and the following ones we will mainly look atautonomoussystems
of di erential equations

(4.1) uqt) = f (u()

with f : R™ I R™ continuously di erentiable. Even though explicit expressions
for the solutions cannot be found in general, we may be able tmbtain a good
gualitative description of solutions. For this, we rst stu dy the behaviour of
solutions near stationary points.

Any u 2 R™ which is a zero of the functionf corresponds to a stationary
solution of the di erential equation, u(t) = u for all t 2 R. Therefore,u is often
called astationary point or equilibrium point for the di erential equation (4.1).

De nition 4.1  The stationary point u is said to bestableif for any " > 0 there
isa > 0 such that any solution of (4.1) with ku(0) u k< existsfort O
and satisesku(t) u k<" forallt O. Ifu is stable and thereisa > 0 such
that ku(t) u k! O(ast!1l ) wheneverku(0) u k< , then the stationary
point u is called asymptotically stable On the other hand, if u is not stable, we
call it unstable

It is important to note that stability, as de ned here, is a lo cal property. It
roughly means that solutions that start su ciently close to u remain close. The
behaviour of solutions that do not start close tou is not involved in the de nition.
Some of those solutions may drift o to in nity.

For example, for the scalar equation (1.3), wheref (v) = v (1  v) with
; > 0, we already saw that there are two stationary points: the urstable point
u = 0 and the asymptotically stable stationary point u = 1= . Only solutions
with u(0) = ug > O will tend to u = 1=, whereas any solution that starts with
u(0) = ug < 0 will diverge towards 1

Remark 4.2 In these concepts of stability and asymptotic stability a norm k k
on R™M is involved, and we did not specify which norm this is. In fact it does
not matter because it is known (from linear algebra) that all norms on R™ are
equivalent in the sense that ifk k and k k are any two norms onR™, then
there are positive constantsC and C such that

Ckvk  k vk C kvk (forall v2 R™M):

For instance, Witfb the Euclidian norm and the maximum norm on R™ we have
kvk:  k vko mkvk; . Therefore, boundedness or convergence to zero are
properties that are the same in any norm, and consequently stbility and asymp-
totic stability are not in uenced by the choice of the norm on R™. 3
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4.2 Stability for Linear Systems

To investigate stability for general autonomous equations we begin with the simple
case of a linear homogeneous system of di erential equati@in R™,

(4.2) uqt) = Au(t):

Clearly u = 0 is then a stationary point, and if the matrix A 2 R™ ™ is not
singular it is also the only stationary point. Since the solutions are u(t) = e u(0),
stability means that there is a K 1 such that ke k K (for all t 0); see
Exercise 4.1. For asymptotic stability we needke”k! 0 (ast!1 ). Observe
that for this linear case stability and asymptotic stabilit y are global properties,
describing the behaviour of solutions that are not necessdy close tou =0, due
to the fact that if u is a solution, then so isc u for any c2 R.

Theorem 4.3 The stationary point u = 0 is stable for (4.2) if and only if
Re 0 for any eigenvalue of A, and eigenvalues with Re = 0 are not defective.
The point is asymptotically stable if and only if Re < 0 for all eigenvalues.

Proof . Let = maxyRe g, where 1; »;:::; | are the eigenvalues ofA with
corresponding dimensionany; mo;:::; m; of the Jordan blocks.

According to the formulas (3.13), we have sup ke k < 1 if and only if 0
and my = 1 for any eigenvalue |, with Re = 0. Moreover, limy; ke k=0is
seen to be equivalentto < 0. 2

For the asymptotically stable case, where all Re ¢ < 0, we also have
(4.3) ke“k Ke @  forallt O;

with a constant a > 0 suchthat maxi Re < a< 0,andK 1. This can again
be shown from (3.13), but it also follows by the following argiment: for A’ = al + A,
we getke k = e ®keAk, and sinceA has eigenvalues’, = a+ < 0, we know
that ke k K (for t 0) with someK 1.

4.3 Stability for Nonlinear Systems

As a next step towards stability for nonlinear di erential e quations, we consider
di erential equations of the following type:

(4.4) u{t) = Au(t) + g(u(t)) ;
with a nonlinear term g: R™ ! R™ that satis es

. kg(vk _
(4.5) lim S =0

This implies that g(0) =0, so u =0 is still a stationary point of (4.4).
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Theorem 4.4 Supposeg is continuously di erentiable and satis es (4.5). Then
the following statements about stability of u = 0 hold.

(@) If Re < O for all eigenvalues of A, thenu =0 is an asymptotically stable
stationary point of (4.4).

(b) If Re > 0 for some eigenvalue oA\, then u = 0 is an unstable stationary
point of (4.4).

Proof of (a) . We will only give a proof of statement (a). For systems, the poof
of (b) is more technical; see Exercise 4.2 for the scalar cagm = 1).

Assume Re < O for all eigenvalues of A. For a solution of the di erential
equation with initial value u(0) = up, we have, by the variation of constants
formula (3.9), R
ut) = ehug + et FMg(u(s)) ds:

Let K landa> 0beasin (4.3). From (4.5) we see that there is arfi > 0 such
that
kg(v)k % kvk wheneverkvk ":

We will show that for any initial value kuok &, the solution tends to O ast ! 1

Suppose that kugk <" . By the local existence and uniqueness result of
Theorem 2.5, we know there is a time interval [0T], T > 0, for which the solution
exists, andku(t)k " fort 2 [0; T]. On this interval we therefore have

1 Rt
ku(t)k e @K kugk + 1a ,e &t Sku(s)kds;
and consequently
R
etku(t)k K kuok + 2a e*ku(s)kds:

Setting (t) = e?ku(t)k we can apply Lemma 2.2 (Gronwall) with = K kugk
and = la Thisgives (t) € 2K kuok, and therefore

ku()k e 23K kuok:

Consequently, ifkugk o then ku(t)k e @=2" <" for t 2 (0; T]. But then
it follows from Theorem 2.5 that the solution can be continued for larger t , still
having ku(t)k e 32" py the above argument. We can therefore conclude that
any solution with kugk ? will remain at distance less than" from the origin for
alltime t 0, and limy;  ku(t)k =0. 2

There is no statement in this theorem if the eigenvalues of A are such that
max Re = 0. In this case stability or instability depends criticall y on the nonlin-
earity g. Examples can be easily found fom =1 (with A = 0). Some examples
that are more in line with the theorem are considered in Exerése 4.4.

Linearization . At rst sight, it seems that the result of Theorem 4.4 only
applies to special nonlinear systems. However, as we will seshortly, the result

37



can be applied to any autonomous system (4.1) with a nonlineafunction f which
is continuously di erentiable. To see this we will consider linearization around a
stationary point u .

Recall from vector calculus that the functionf : R™ ! R™ is said to di eren-
tiable in v 2 R™ if there exists a matrix A = (&; ) 2 R™ ™ such that
im kf (v+w) f(v) Awk _

w! 0 kwk 0:

Moreover, if all partial derivatives of f exist and are continuous aroundv, then A
will be equal to the Jacobian matrix f {v) of partial derivatives, aj = @—@;,fi(v).
For such a given pointv 2 R™, we can deneg(w) = f(v+ w) f(v) fYvw
for w 2 R™. This function g(w) is continuously di erentiable (with derivative
gqw) = fqv+ w) fqv)) and we havekg(w)k=kwk ! 0 forw! O.

This will be applied to our di erential equation uqt) = f (u(t)) with v=u .
Consider a solutionu and let

w(t) = u(t) u :

Then wqt) = f(u + w(t)) = f(u )+ fYu )w(t) + g(w(t)) with kg(w)k=kwk! 0
for w! 0. Sincef (u ) =0, we obtain

(4.6) wit) = Aw(t) + g(w(t)

with A = fqu ), and w = 0 is a stationary point of this di erential equation.
We can therefore apply Theorem 4.4 provided that the maximumof the real parts
of the eigenvalues of A is not zero. Stability or instability of w = 0 for (4.6)
can be directly translated to the same property for the stationary point u of the
di erential equation (4.1). This gives the following result:

Corollary 4.5 Supposef is continuously di erentiable. Let u be a stationairy
point of the di erential equation uqt) = f(u(t)), and A = fqQu ). IfRe < 0
for all eigenvalues ofA, then the stationary point u is asymptotically stable. On
the other hand, if there is an eigenvalue ofA with positive real part, then u is
unstable. 2

The di erential equation v{t) = Av(t) with A = f Qu ) is called the linearized
equation of uqt) = f (u(t)) near the stationary point u . From this linearized
equation we can often determine the stability of the statiorairy point u of our
nonlinear system (4.1).

Example 4.6 The systemu®= f (u) in R? with

u Ui Ups+ u2
u= Y f(u)= 1 et e

Uy ur(l+ uf)

has two stationary points: u = (0;0)" andu =(0;1)T.
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Near the origin the system has the form

u 1 1 up U3
ud 1 0 Uz uu?

. . , P S
The eigenvalues of the linearized system are % %I 3, so the origin is asymp-

totically stable.
Near the other stationary point, u = (0;1)", we considerw; = u; and w, =
u, 1. This giveswd = wy+ wp + w$ and wd = wy(2 + 2w, + w$), that is,

0 2
wy 11 w1 w3

0o = + 2
w5 2 0 Wo 2W1Wo + W5

Here the eigenvalues of the linearized system are% % Since one eigenvalue is
positive, this stationary point is unstable. (For this example, the nonlinear term
g(w) is written down explicitly, but that is not necessary.) 3

Remark 4.7 If the Jacobian matrix A = f u ) has no eigenvalues with real part
zero, then not only stability of the linearized equation v® = Av is the same as
for u®= f (u) near u , but also topological structure of the phase portrait (with
nodes, spirals or saddle points) will be the same locally, icluding the orientation
of the trajectories. This result is known as the Grobman-Hartman theorem 3

4.4 Periodic Solutions and Limit Cycles

In the previous sections we often took the initial time to to be zero. This was
without loss of generality because we can always ude tg as a new independent
variable. However, for the following discussion it is convaient to allow arbitrary
starting time points tg 2 R, and we also considet <t q.

For the autonomous systemu{qt) = f (u(t)) with initial value u(tg) = ug and
with f : R™ I R™ continuously di erentiable, local existence and uniquenes is
guaranteed by Theorem 2.5. It may happen that a solutionu blows up in nite
time, limy¢, ku(t)k = 1 with a t. >tg. If not, then the solution will exist for all
t >t . Likewise we may follow the solutions backwards in timet <t o, and either
the solution will exist for all t<tgorlimy ku(t)k= 1 atsomet <ty.

Let (t ;t+) be the maximal interval for which a solution of the initial v alue
problem exists, where we allowt; = 1 (and likewiset = 1 ) if there is no
blow-up in nite time. Consider the trajectory U= fu(t):t <t<t ,g. Suppose
t is another solution of the di erential equation, 4qt) = f (&(t)), but now with
a di erent starting value and possibly a di erent starting t ime, e(tg) = tp. This
gives a second trajectoryd = fu(t) : t <t < tig with maximal interval of
existence € ;t:).

Theorem 4.8 Assumef : R™ ! R™ is continuously di erentiable. Then two
trajectories U and U either coincide (O = U), or they have no point in common
(O\U = ;). Consequently, for every point ug in the phase spaceR™, there is
exactly one trajectory passing through that point.
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Proof . Supposeu; 2 U\U . Then there aret; 2 (t ;ty) and t3 2 (t ;t3) with
t(t1) = u(ty) = up. Considerv(t) = fu(t t; + t3). This v satis es again the
di erential equation v{t) = f (v(t)), and we havev(t;) = u(t1) = us. So,u and v
are solutions of the same initial value problem, with start time t;. By uniqueness
for the initial value problem it follows that u(t) = v(t) for all t 2 (t ;t+). But
then u(t) = w(t ty+ t3) forall t 2 (t ;ts), which shows that U U. In the
same way it follows that U U . 2

The above theorem tells us that the trajectories of di erent solutions cannot
intersect. In the same way it is seen that the trajectory of a ®lution may not
intersect itself in one point; see Exercise 4.6. A solution ray, however, catch-up
with itself. This happens if the solution is periodic,

4.7) u(t+ T) = u(t) forall t 2 R:

Here the smallestT > 0 for which this holds is called the period of the solution.

The trajectory of a periodic solution is a closed curve in thephase space. On
the other hand, if V.~ R™ is a closed curve that does not contain stationary
points, and u is a solution with u(t) 2 V for all t, then there is ac > 0 such that
kuqtk cfor all t, that is, the speed by whichu moves along its trajectory U is
strictly positive, cf. also Exercise 4.7. It follows that u is periodic andU = V.

The trajectory of a periodic solution may be surrounded by the trajectories of
other periodic solutions; see for example Figure 3.1i{ ). For nonlinear systems it
may also happen that a periodic solution attracts or repels rarby other solutions.
In that case the trajectory of the periodic solution is called a limit cycle.

Some examples . In the examples foru®= f (u) in R? we will usually denote
the components ofu by x = u; and y = u,. Further we will often suppress in the
notation the explicit dependence of ofx;y on the time t. With a slight abuse of
notation, these x;y will also occasionally denote independent variables.

The following two examples are based on second-order di ergial equations
of the form x%% a(x)x%+ b(x)x = 0, with a or b not constant.

Example 4.9 (Du ng equation: periodic solutions) Consider the system
(
4.8) x0=y;
' yo=x x* y;
with parameter 0. It is known as the Du ng equation (without forcing).

There are three stationary points: (0;0), ( 1;0). The Jacobi matrix A = f qu)
is given by

_ 0 1
(4.9) A= 1 3x2
. P——0o .
The eigenvalues forx = 0 are % % 2+ 4. Hence the origin is an unstable
stationary point (with one negative and one positive eigenalue). For x = 1 we
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Figure 4.1: Trajectories for Du ng's equation with =0and =0:1.

nd the eigenvalues % %p 2 8. If > 0 both eigenvalues have negative real
part, so the stationary points (1;0) and ( 1;0) are then asymptotically stable. If
= 0 the eigenvalues are purely imaginary and Theorem 4.4 doesot apply.

In fact, as will be seen shortly, for = 0 we get periodic solutions. Even though
we do not have explicit expressions for these solutions, wean compute an explicit
expression for the orbits. From (4.8) with =0 we obtain (x x3)x%= yy° and
integration shows that %E(x;y) =0, where

E(xy) = y? x2+ 3x%:
The trajectories are therefore level curvesE (x;y) = ¢ with ¢ an integration con-
stant.? These are closed curves, and the corresponding solutionseatherefore
periodic, except for the level curveE (x;y) = 0 that contains the unstable station-
ary point at the origin. A number of these orbits in the phase pane are plotted
in the left panel of Figure 4.1.
The right panel of that gure contains a plot of two solutions f or the case

> 0. We see that these solutions converge far! 1  to one of the two stable
stationary points, so it appears that there are no periodic ®lutions anymore. This
can be seen by di erentiating ' (t) = E(x(t); y(t)) with respect to t, to give

"qt) = %E(x;y)z( x+2x3)x%+2yy0= 2y2:

Therefore, ' (t) = E(x(t);y(t)) will be monotonically decrﬁ:\sing for any solution.
For a periodic solution, with period T, we would have OT y(t)?dt = 0, that is
y(t) =0 for all t 2 [0;T]. It follows that there are no periodic solutions. (It can
also be shown that any solution will tend to one of the statiorary points.) 3

20ften the expression of the orbits is derived by simply dividing the second equation of (4.8) by
the rst equation and setting %, = =% = 9 tg optain the separable scalar equation & = 2

Here x is now viewed as an independent variable andy a dependent variable (depending on x).
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In this example a di erentiable function E : R?> ! R was found such that
%E(x(t);y(t)) 0 for any solution of the di erential equation. For mechanical
systems thisE may represent the energy of the system, which can decreasetime
because of friction.

Further it is noted that in Figure 4.1 some green and red dashé lines are
drawn. The green line indicates that y® = 0 and the red line corresponds to
x% = 0. In this example the dashed red line coincides with thex-axis. Such
lines are often convenient since they divide the phase planm regions where we
know that the solutions will move along a trajectory in an upward-right, upward-
left, downward-right or downward-left direction. This can give already a rough
indication how the trajectories will look like.

An example with limit cycles is found in Exercise 4.5. The folowing example is
more di cult, but also more interesting. We will not fully an alyze it, so it should
be merely considered as an illustration.

Example 4.10 (van der Pol equation: limit cycle) An interesting equation
with a limit cycle in R? is given by the van der Pol equation

x0=y;
o= x+ (1 x?y;

W|th > 0. Here Wephave only one stationary point:u = 0. The eigenvalues of

= f90) are 2 ? 2 4. Hence the eigenvalues have positive real part, and

therefore u =0 is an unstable stationary point. It can be also be shown (na too
di cult) that all solutions are bounded for t 0.

(4.10)

Figure 4.2: Trajectories for the van der Pol equation.

Furthermore, it can be shown (much more dicult) that there i s a unique
periodic solution, and this periodic solution acts as a limi cycle. All solutions
spiral clockwise towards this limit cycle, either from the inside or from the outside,
as shown in Figure 4.2 for two values of . If gets larger, the convergence to the
limit cycle becomes faster. 3
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45 Exercises

Exercise 4.1 Consider the linear systemu{t) = Au(t) with stationary point
u =0. Show that the formal "; -de nition of stability for u =0 is equivalent to
the existence of aKk 1 such thatke®k K (forallt 0).

Exercise 4.2 For the scalar case (h = 1) the proof of Theorem 4.4 is much
easier (by taking into account the sign ofu®. Prove statements (a) and (b) of the
theorem for m = 1 by considering u®= au+ g(u) with constant a < 0 or a > 0,
respectively, and with jg(v)j %jajjvj for jvj ", "> 0small.

Exercise 4.3 Determine the stationary points for the system

x%=(3  y)x;
yo=(1+ x y)y;

and discuss the stability of these points kK ;y ).

Exercise 4.4 Consider the following systems of di erential equations

x0=y X (x2+y?); x0=xy  x (x*+y?);

yo= x y (x*+y); yo= X%y (x*+y?);
with = 1. Explain why Theorem 4.4 is not applicable. Demonstrate sability
or instability of the origin, by introducing E(x;y) = x?+ y2.

(a) (D)

Exercise 4.5 Determine the limit cycles and stationary points of the following
two systems:

(
(a)

X0= x vy xpx2+y2; b x%= y+ xcosk?+ y?);
yo=x+y y x2+y2; yo= x + ycosk? + y?):

Again, study the behaviour of E(x;y) = x2 + y2.

Exercise 4.6 Supposeu is a solution of the autonomous di erential equation
(4.1) with f : R™ I R™ continuously di erentiable. Let T > 0. Show that if
u(to + T) = u(tp) for sometp, then u(t + T) = u(t) for all t.

Exercise 4.7 Let D R™, a;b > 0, and supposef : R™ | R™ is continuously
di erentiable and kf (v)k a, kf {v)f (v)k bforall v 2 D. Further assumeu is a
solution of the autonomous problemu{t) = f (u(t)), u(0) = ug such that u(t) 2 D
forall t 0. Show that

ku(t+ h) u(t)k %ha ift 0, h2(0;a=h:
Hint: to derive this inequality, you may use the formula
Ry
u(t+ h) u(t) = huqt) + h? o1 )t + h)d;

which can be derived by partial integration of the integral term.
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5 Some Models in R? and R®

5.1 Population Models with Two Species

In this section we will study some simple, but interesting, population models
with two species. Recall that for one species, the populatio density u(t) can

be described in rst instance by u® = au where a > 0 is the natural growth

rate (birth rate minus death rate). If the population increa ses this is no longer a
realistic model, and a term bu? with b > 0 should be added to describe internal
competition (e.g. over food). The resulting di erential equation

(5.1) u’=au bvw

is called the logistic equation In population dynamics it is also known as the
Verhulst model

5.1.1 Predator-Prey Model

We now consider two species: a prey population with density(t) and a preda-
tor population with density y(t). Assume that for the prey population food is
abundantly available, so the population is only held in che& by predation. The
number of contacts per unit time between predators and prey $ proportional to
xy, leading to the di erential equation x°= 1x 1Xy with 1; 1> 0. In the
same way it can be argued that the predators will have a natur&rate of decline if
there is no prey, but this predator population will increase at a rate proportional

to xy. This givesy®= 2y + oxy with 5, 2> 0.
The resulting system of di erential equations
( x0= 1x Xy

yo= Ly + oxy;

with parameters 1; 2; 1; 2 > 0, is known as the predator-prey modelor the
Lotka-Volterra model. Obviously, only solutions with x;y 0 are relevant. Al-
though we cannot solve the equations explicitly, there are riteresting properties
of the solutions that can be derived.

Assume that (Xo; Yo) is an initial value at time tg = 0. First, observe that if
Xo = 0, then we get the solution x(t) =0, y(t) = e 2'y,. Therefore the positive
y-axis in the phase plane is a trajectory. In the same way it is een that the
positive x-axis is a trajectory, corresponding toyg = 0. Since trajectories cannot
intersect {they can only meet in stationary points{ it can al ready be concluded
that x(t);y(t) > O for all t wheneverxo;yo > 0.

The system has two stationary points: the origin, which is urstable, and the
more interesting point (x ;y ) =( 2= 2; 1= 1). The eigenvalues for the linearized
problem at this stationary point are purely imaginary, whic h does not give much
information about stability, but it is a rst indication tha t the solutions might be
periodic.
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Proposition 5.1 Let 1; 2; 1; 2 > 0. Then all trajectories in the positive
guadrant of the phase plane are closed curves, correspongjtio periodic solutions.

Proof . AssumeXxg;Yyo > 0. Note that xX:=x = 1y only depends ony, and
yEy = ,  ox only depends onx. Hence %x)(y%:y) can be written in two
ways:

—X2+ 2 x0= 71 1 Y%

Integration shows that the trajectories are given by E (x;y) = ¢ with integration
constant c and

E(x;y) = 1logly) 1y + 2log(x)  o2x:
The equation E(x;y) = cis equivalent to

1(ly)  2(x) = e’ with 1(y) =y t=e 1y 2(X) = X 2=e 2X -

1(y) 2(x)
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The function j(z)= z i=ei* denedforz 0, hasone maximuminz = =,
and we have (0) = limz1 j(z) = 0. The product function 1(y)  2(X)
(for x;y  0) therefore has a single maximum, attained in the stationaiy point
(X ;¥ )=( 2=2; 1= 1), and the contour lines 1(y) 2(x) = €° are closed curves
in the rst quadrant around this stationairy point. Since th ere are no stationary
points on these curves, they correspond to trajectories of @riodic solutions. 2

A number of these trajectories are plotted in the left panel d Figure 5.1. Each
trajectory corresponds to a periodic solution, with some péod T. Even though
the solution itself and its period are unknown, we can compug the average values
over one period.

Proposition 5.2 Let 3; »; 1; 2> 0. Then the average values
T o x(tydt; y= 1 gyt)dt;

are given byx= ,=,andy= 1= ;.

X =
Proof . From the rst equation in (5.2) it is seen that xX=x= ; 1y. Hence
R R
Fo0A=x@)dt = F 7( 1 wy®)dt= 1 1y:

R
Now, OT(xo(t)zx(t)) dt = log(x(T)) log(u(0)) = 0 since x(T) = x(0). Conse-
quently y = 1= ;. The value for X is found in the same way. 2
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Figure 5.1: Trajectories for the Lotka-Volterra model. Left panel: equation (5.2). Right
panel: equation (5.3) with small ‘damping' factors ;; » > 0. The dashed lines indicate
x%=0 or y°=0; these lines cover thex- and y-axis.

Volterra's principle . Proposition 5.2 has some important consequences for
practical situations, for instance with insecticide treatment. Suppose that in a
greenhouse there is an insect populatiox (e.g. aphids) feeding on the plants, and
there is a predator insect populationy (e.g. ladybird beetles) for which x is prey,
and assume these populations will evolve according to equiain (5.2). Now suppose
that to decrease the populationx some insecticide is sprayed. This insecticide will

have an e ect on x: the constant ; will be lowered to -, = 1 1. However,
the insecticide will also have a (possibly smaller) e ect ony: the value , will
increase to » = o, + 2. The interaction coe cients 1; > may be altered

slightly, but let us assume they will not change at all and ~ is still positive. As
a results the new average value ok will increaseto X =( ,+ 2)= 2, which is
of course contrary to the intention. This remarkable e ect is known asVolterra's
principle.

Originally, Volterra studied the model to explain the observation by sherman
in the Mediterranean Sea that during the First World War the p ercentage of
predatory sh showed a large increase (from 10% to 35%) compad to food sh.
It seemed obvious that the greatly reduced level of shing duing this period should
be responsible. But it was not clear why this would a ect the predators and prey
in a dierent way. We now see that since reduction of shing will increase 3
and decrease », this leads to an increase of the ratioy=x, in agreement with the
observations.

These conclusions have been criticized because they are bdson the simple
model (5.2). Biologists do observe oscillations for predair-prey ecosystems, but
these oscillations tend to damp out. This calls for an improed model.

Competition within species . To improve the model, competition within the
two populations over available resources may be taken into@ount. This leads to
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the model (

x9= 1x x2 XV
(5.3) 1 1 1XY

yo= oy ay? 4+ oxy;

with constants 1; » > 0 as in the Verhulst model. As we will see shortly, they
will act as "damping' parameters.

If 1; o are small compared to the other parameters, then the solutins will
slowly spiral towards the stationary point (x ;y ) in the positive quadrant given
byx = (12+ 21,y = (12 21wth =( 1+ 12 % and
this point has become asymptotically stable. Apart from the origin, which is still
unstable, a third stationary point ( 1= 1;0) has appeared, which is also unstable
for small 1. A typical trajectory is displayed in the right panel of Figu re 5.1.

If we increase 1, there is a transition around 1= 1 2= 2. If 1> 1 2= 5,
then the point ( 1= 1;0) becomes asymptotically stable, whereas the other sta-
tionary point has moved out of the rst quadrant (and has become unstable). This
is considered in more detail in Exercise 5.1.

5.1.2 Competitive Species Model

The next model describes the struggle for survival betweenwto species competing
for the same limited food supply. Following the same modellg guidelines as
before, we now arrive at the system

(

x9= 1x  1x2  qxy;

(5.4)
o= 2y 2y oXy;

with parameters 1; » > 0 describing natural growth, 1; 2 > 0 giving competi-
tion within each species, and 1; » > 0 describing competitive interaction between
the species. Depending on these parameters, the two speciemy coexist, or one
species will drive the other one to extinction.

As for the previous models, the positivex- and y-axis are covered by trajec-
tories, connected by stationary points. So, again we know tht any initial value
(Xo; Yo) With Xg;yo > O will lead to a solution that remains in the positive quad-
rant. To get a qualitative picture of the trajectories, the lines

1=f(xy):r 1 1x 1y=0g; 2=f(xy): 2 2y 2x=0g9

are important. On ;1 we havex®= 0, and on ", we havey®= 0. In the gures

below, *; is drawn as red dashed, >, as green dashed. Likewise, on the-axis
(green dashed) we have/® = 0, whereasx®= 0 on the y-axis (red dashed). The
stationary points are located on the intersections of the geen and red lines.
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Coexistence of two species . Let us rst study the case where

(5.5) < <

L
I\.)||\1
o b
l—\lp

As we will see shortly, the two species can then eventually exist.® In fact, for
the other cases, one of the species will die out in the long run
The lines "1, ", divide the rst quad-

rant of the phase plane into four regions: g
1

S... = f(xy): x°> 0;y°> 0Og; R

S.. =f(xy):x%> 0;y°< 0g; ’*1\\ S .

S . =f(xy):x%< 0;y°> Og; 2 (S

S. =f(xy):x%< 0;y°< 0g; foTel

: T

In S, .. we know that solutions will move b Sew "S~—__
along a trajectory in upward-right direc- SR W T
tion, in S ., it is upward-left, and so on. =1 2= 2

This gives already a rough indication how the trajectories will look like. The
intersections of the green and red dashed lines are the stathary points.

For this case (5.5), there are four stationary points in the rst quadrant. Sta-
bility can be investigated with Theorem 4.4, provided that the eigenvalues of the
matrix A = fqQu ) do not have real part equal to zero. By computing these
matrices and their eigenvalues we see that the origin is unable (two positive
eigenvalues). The stationary points ( 1= 1;0) and (0; »= ») are also unstable,
with one positive and one negative eigenvalue (saddle poiit The remaining sta-
tionary point ( X ;y ), on the intersection of *; and ", has two negative eigenvalues,
so this point is asymptotically stable. (Computation by hand is here already a
little cumbersome.)

All solutions with initial value ( Xo;Yyo) in the positive quadrant, Xo;Yyo > 0,
will eventually tend to this stationary point ( X ;y ).

To see this, let us rst suppose that (xo;Yo) 2 S. ... Sincexand y®are positive
onsS, .., itis seen that %(x + y) is strictly positive on this region away from the
stationairy points, and it follows that the solution must ei ther tend to (x ;y ),
or it will cross the lines "1 or ",, entering S,. or S ... For (Xo;yo0) 2S . itis
similar.

On the region S ., , away from the stationairy points, %( X + y) is strictly
positive (solutions are “swept' in upward-left direction). In fact, if (Xo;y0) 2S .,
the solution will stay in this region and it will ultimately a pproach the stationary
point (x ;y ). This is intuitively clear by considering the direction of t he ow in
this region. To prove the statement, rst note that on this re gion y°> 0, so the
solution will not approach the x-axis. Now suppose that the solution reaches;
at some given timet;. Then x{t1) = 0 and by di erentiation of the rst equation

3The constants j = j=j and = ;= j measure the relative internal and external com-
petition. Case (5.5) corresponds to 3 > ~ and ™ > ~;, which means that for both species the
relative internal competition is larger than the relative e xternal competition in the other species.
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Figure 5.2: Trajectories competitive species model with parameters (%) or (5.6).

in (5.4) we see thatx°t1) =  1x(t1)yqt1) < 0. But this would mean that x(t)
has a maximum att = t1, which gives a contradiction with the fact that xqt) < 0
for t<t 1. In the same way it is seen that the solution cannot reach ,.

An illustration with some trajectories is presented in Figure 5.2 (left panel).

Extinction of one species . As a second case we consider the model (5.4) with

> >

(5.6)

-l
Nl[\)
o b
l—\lp—\

There are again four stationary points in the rst quadrant, with the origin being
unstable. Now it is seen by some calculations that the statioary points ( 1= 1;0)
and (0; .= ») are asymptotically stable, whereas the stationary points(x ;y )
with x ;y > 0 has become an unstable saddle point.

By considering the regionsS . as in the previous case, it can be shown that
any solution that starts with ( Xo;Yo), Xo;Yo > 0, will eventually tend to one of
the two stable stationary points, except for initial values that are precisely on
the trajectories that connect the saddle point (X ;y ) with the origin or in nity.
For all other solutions one of the two species will eventuall become extinct. An
illustration with some trajectories is presented in Figure 5.2 (right panel).

An example for the case 1= 1> 2= 5, 2= »2< 1= 1istreated in Exercise 5.2.
For such parameters, speciex will ultimately survive while y becomes extinct,
irrespective of the initial state.

5.2 A Chaotic System in R3

For autonomous systems inR? we have seen that solutions may tend to in nity,
either in nite time oras t!1 . Bounded solutions can be stationary, tend to a
stationary point, or they can be periodic or tend to a limit cy cle, for example.

In fact, there is a famous result, called thePoincae-Bendixson theorem, that
states the following : Suppose a solutioru of uqt) = f (u(t)), with f 2 C1(R?),
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stays fort  tg in a closed bounded seD  R? which contains no stationary
points. Then the solution must be periodic or it tends to a limit cycle ast!1

In R® this is no longer true, as was known already before PoincagBendixson.
Examples can be found in mechanical systems without frictia, such as the spher-
ical pendulum, with precessing orbits. Nevertheless, it wa thought for a long
time that the behaviour of solutions of autonomous systemsn R3 would not be
fundamentally di erent from systems in R2.

It was a big surprise when Lorenz introduced in the 1960's a siple system
of di erential equations in R* with a totally di erent behaviour. This system is

given by 8 .
2 X°= (Y X);
(5.7) yo= xz+rx vy;

>
: 0

z°=xy bz

with positive constants ;r and b. This system was obtained as simpli ed meteo-
rological model with thermodynamic quantities x(t), y(t) and z(t) at time t.

Proposition 5.3  Suppose;r;b > 0, and let Bx denote the closed ball around
the point (0;0; + r) with radius R. Then there is an R > 0 such that for any
solution u = (x;y; z) of (5.7) we have :

(@ if u(tp) 2Bgr, thenu(t) 2Bg forall t to;

(b) if u(tp) 2BR, then u(t1) 2 Br for somety >tg.

Proof . Settingc= +r and
E(x;y;z) = X2+ y2+(z 0©)?;
it follows by some calculations that %E(x;y; z) = F(x;y;z) with

Fxy;z) = 2 x2+y2+ bz 1092 + ibé:

The set of points (x;y;z) in the phase space for whichF (x;y;z) = 0 is an
ellipsoid. Let R > 0 be such that this ellipsoid is contained inBg-,. Then there is
ad> 0suchthat F(x;y;z) < dfor all (x;y;z) outside Bg. Hence any solution
starting outside Br will enter this sphere in nite time, and once inside it cannot
get out again. 2

It is obvious that the origin is a stationary point. It follow s by some calcula-
tions that this point is asymptotically stable if r < 1, and this does not give very
interesting solutions. If r > 1 the origin becomes unstable and two additional
stationary points appear:

X =y = pb(r 1); z =r 1.

It can be shown (cumbersome calculation when done by hand) @t both these
points are are asymptotically stable forr slightly larger rhan 1, but they become
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Figure 5.3: Orbits near the Lorenz attractor with time intervals [0 ; T], T = 8;16;64. The
initial values are xo = 10,y9 =0, z5 = 50.

unstable if >b +1 and

r>r¢= ( +bb+f)‘:

There are no other stationary points, so now the question is \wat happens to these
bounded solutions.

Let us considerb = %, =10, giving ro 247, andr = 28 > r . For these
parameter values, Lorenz found by numerical simulations tkat solutions do not
approach a limit cycle. Accurate numerical trajectories ae plotted in Figure 5.3,
and a same behaviour is observed for any initial value. Solubns are attracted
to the ‘wings' of a setV RS known as the Lorenz attractor (or the “Lorenz
butter y"), they rotate for a while near one wing, and then su ddenly jump to the
other wing, where this process continues.

The precise time when such a jump occurs is very unpredictalel see Figure 5.4.
Repeating the simulation with a slightly perturbed initial value will show the
same behaviour but with di erent jumping times after a while. Therefore the
two solutions will di er substantially after some time, but they both come closer
and closer to the attractor V (which happens to be a fractal set, forming the two
‘'wings' and laments connecting them).

Remark 5.4 We saw in Proposition 5.3 that there is a ball B such that any
solution starting in this ball will stay in it. There is more w e can say about
the behaviour of solutions inside this ball. Writing (5.7) as u®= f (u) with u =
(x;y;2)7, it is easily seen that the the trace off {u) equals ( +1+ b), which
is constant and negative. Using this, it can be shown (c.f. Remark 3.6) that
there are setsDp= B D 1 D with exponentially decreasing volumes,
Vol(Dy) = e K( *1+ D\o|(Dy), such that u(t) 2 Dy forall t k. So any solution
gets trapped in smaller and smaller volumes, and eventuallyit will tend to the
attractor V= Dg\D 1\D 2\ which has volume zero. 3
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Figure 5.4: Plot of x(t) for t 2 [0;100]. Initial values as in Figure 5.3.

In view of the unpredictability, systems like (5.7) are often called chaotic. Since
Lorenz's discovery much work has been done on such systemsyder the name of
“chaos theory'. It has been proven, among other things, thathe Lorenz attractor
has a fractal structure, with volume zero. It has helped to urderstand why long
term weather prediction is so di cult, often phrased as 'a buttery apping its
wings over Brazil, can cause a tornado over Texas two weekstl'. In spite of
some initial hype, many interesting results and concepts hee emerged.

5.3 Exercises

Exercise 5.1 Consider the Lotka-Volterra model (5.3) with ;= ,= 1= ,=1
and with > =0. We keep 1> 0 as a free parameter.

(a) Determine stationary points and stability properties for 12 (0;1)and ;> 1.
(b) Determine the regionsS . to get an indication about possible trajectories.
(c) Show that the predator population y will eventually become extinct if ;> 1.
What will happen with the prey population x ?

Exercise 5.2 Consider model (5.4) with 1= ,= 1= »,=1,and 1> ».
(a) Determine the stationary points and their stability pro perties.

(b) Determine the regionssS . .

(c) Show that the speciesy will eventually become extinct if x(0) > 0.
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6 Quantitative Stability Estimates

The stability results presented in the previous sections ag qualitative results,
without concern of the constants involved. This is often notadequate, in particular
for large systems. For this reason we will consider some quttative stability
estimates, with a given normk k on R™.

In this section we will consider a solutionu on [tg; T] of the initial value problem
in R™M

(6.1a) uft) = f(tu(t); u(to) = Uo;
together with a solution & of the perturbed problem
(6.1b) aqt) = £t u(t)) ; t(to) = o ;

wheref; f~: [to;T] R™! RM™ and up;tp 2 R™. Let D R™ be a convex set
such that u(t);e(t) 2 D for t 2 [to; T]. It will be assumed that

(6.1c) kf (t;v) f(tv)k M (forall t2 [to; T],v2D):

The aim in this section is to nd useful upper bounds for ku(t) w(t)k under
suitable additional assumptions onf . For this it will be convenient to introduce
di erential inequalities with generalized derivatives.

6.1 Dierential Inequalities
For a continuous function' : R! R we consider

C(t+h) @),
h ,

(6.2) D' (t) =limsup
h#0

which is a so-calledDini derivative. Of course, if' is dierentiable in t then
D*' (t) = ' qt). An inequality of the type D*' (t) g(t;' (t)) for t 2 [to;T] is
called adi erential inequality .

Lemma 6.1 Let'; :R! R be continuous, andg: [to;T] R! R. Assume
that for t 2 [tg; T]

D™ (1) ot (1); D' ()>g( (t); (o) (to):
Then ' () (t) forall t 2 tg; T].

Proof . Suppose' (t2) > (t2) for somet, 2 [to; T]. Lett; tg be the rst point
to the left of t, such that ' (t1) = (t1). Then, for h > 0 small,

"(tat h) () > (ta+th)  (ta);
and thereforeD*' (t;) D™ (t1). This gives a contradiction, because

D*' (t1)  9o(ty;" (t2)) = g(ty; (t2)) <D™ (t1): 2
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Corollary 6.2 SupposeD™' (t) !' (t)+ on|[to;T]with !; 2 R. Then
) €0 )+t et g (for t 2 [to; T]) :

Here, by convention, 1(e * ') 1)=(t to)in case! =0.

Proof . For arbitrary > 0, let q)y=1! (t)+( + )with (tg) =" (to).
Application of Lemma 6.1 with g(t;" )= !'" + shows that' (t) (t) on [to; T,
and the inequality for ' (t) now follows by letting I 0. 2

We will mostly apply this with being the norm of a vector valued function,
" (t) = kw(t)k. Even if w is di erentiable, its norm may not be so, but the Dini
derivative will exist. Since kw(t+ h)k k w(t)k k w(t+ h) w(t)k by the triangle
inequality, it follows that

(6.3) D*kw(t)k k wqt)k:

Estimates with Lipschitz Constants . As a typical application of di erential
inequalities, we rst present an alternative proof of Theorem 2.10. This serves to
refresh the memory, but it will also make the generalizationin the next subsection
more clear. So, we consider (6.1) with a constani 0, and assume thatf
satis es the Lipschitz condition

(6.4) kf (t;v) f(t;wk Lkv wk (forall t 2 [to; T], v;w2D):
Let ' (t) = ku(t) w(t)k. Then
D*' (1) ku%t) wt)k L (t)+ M;
and Corollary 6.2 now gives on {p; T] the upper bound
(6.5) kut) ek € Okuy ok+ £ et 1 M:

As we saw before, the usual way to establish the Lipschitz catition (6.4) for
a continuously di erentiable f is to require

(6.6) &5 (t;v) L forallt2[to;T]andv2D ;

where @@\f (t;v) denotes the Jacobi matrix with partial derivatives w.r.t. v2 R™.

6.2 Estimates with Logarithmic Matrix Norms

In many applications the Lipschitz constant L is large, and then an estimate
like (6.5) may not be very useful. For example, for linear aubnomous systems
uqt) = Au(t), a stability estimate with Lipschitz constant L = kAk essentially
amounts to

(6.7) ke“k e*Ak  fort O:
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Such an estimate will often be a crude over-estimation, as islready seen with

m=1, a O, whereje?j € for t> 0. We will improve this estimate (6.7),

replacing kAk by a quantity (A) which is often much smaller than the norm ofA.
The logarithmic norm of a matrix A 2 R™ ™ is de ned as

kI + hAk 1

(6.8) (A) = lim  n(A); h(A) = -

Properties of this logarithmic norm are discussed later, bt it should be noted
here already that it is not a norm: it can be negative. For exanple, if m = 1,
a<0,then (a)= a.

First we consider an application where, instead (6.6), it isassumed that

(6.9) @@J (t;v) ! forallt2 [tg;T]andv 2D ;

Theorem 6.3 Consider (6.1) with constant M 0 and f; f~ continuously di er-
entiable on [to; T] D , and assume (6.9) is valid. Then, for allt 2 [to; T],

kut) wok €0 Okuy wok+ £ €€ 1 M:

Proof . The proof will only be given for linear equations, f (t;v) = A(t)v + g(t)
with A(t) 2 R™ ™ such that (A(t)) ! fort 2 [to; T]. For the general nonlinear
case the proof is a bit longer and more technicat.

Let ' (t) = ku(t) w(t)k. Both u and o are twice continuously di erentiable.
Forthe dierence w(t) = u(t) u(t) we therefore havew(t+h) = w(t) + hw{t) +
h? 01(1 W%t + h)d , and consequentlykw(t+ h)k k w(t) + hw{t)k + h?K
with K = I maxgyp, 1 kwfs)k. Hence

"(t+ h) kou(t)+ hf(tu(t) wt) hf{tet)k + h?K

Ku(t) wt)+h f(tu() f(wt) k+ hM + h?K
k 1 + hA(t)k' (t) + hM + h2K;

which gives

(t+h|)1 (t) k|+hAr$t)k 1, )+ M + hK:
Letting h #0 it follows that D*' (t) !' (t)+ M. The stability estimate is now
obtained from Corollary 6.2. 2
Properties of logarithmic norms . To discuss logarithmic norms, we should

rst verify that the de nition (6.8) makes sense. For this, o bserve that for any

R
“For the general case one can introduceA(t) = 01 @@vf (te(t) + (u(t) e&(t))d . Then
f(tu(t)) f(te(t)= A(t) (u(t) wu(t)). Using property (6.10c), it can be shown that  (A(t))
I by writing the integral as a limit of a Riemann sum.
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h > 0 we have k Ak h(A) k Ak. Moreover, h(A) is monotonically non-
increasing inh: if 0 < < 1 then

f(A)  E Kl + hAK+KL )k 1 = p(A):

Hence the limit in (6.8) exists, and (A) k Ak.
The importance of logarithmic norms lies in the following result, which tells
us that (A) is the smallest number! such that ke k €' forallt O.

Lemma 6.4 For A2 R™ ™M we have
(A) ! 0 k ek €& (foral t 0):

Proof . To prove the implication from right to left, note that | + hA = €™+ O(h?).
Therefore, ifke"k &' (fort 0), thenkl + hAk 1+ h! + O(h?) (for h #0),
and hence (A) !.

The estimate ke k € () fort 0 follows from Theorem 6.3, withM = 0.
For this linear case with constant matrix A, a more direct proof is possible by
using formula (3.8), written as

tA — n - | .
e Ilhrgo(l + hA) (t=nh xed, n!1 ):

If (A) !,thenkl + hAk 1+ !h + o(h) for h #0. Hence
k(I + hA)"k 1+'h + o(h) "o (t=nh xed, n!'1 );
from which it is seen that ke k €' . 2

Some properties of logarithmic norm are:

(6.10a) (cl + A) = c+ (A) if c2 R;
(6.10b) (cA) = ¢ (A) if c O;
(6.10c) (A+ B) (A)+ (B)

for arbitrary A;B 2 R™ ™. Proof of these properties is straightforward.
For some common vector norms, the corresponding logarithnainorms are easy
to compute.

Example 6.5 Let A =(4g;)2 R™ ™. For the maximum norm on R™, it follows
from a direct calculation, using the expression for the indeed matrix norm, that

P L
1 (A) = maxi ai + jgija] ;
see Exercise 6.4. For the Euclidian norm we have
2(A) = max . eigenvalue of%(A + AT)

Again this can be shown, by some calculations, from the expssion for the induced
matrix norm. See also Exercise 6.5 for an alternative proof. 3

For applications it is important to notice that the inequali ty ke®k et (A) js
in general only sharp fort # 0. The extent to which the inequality will be adequate
for larger t may depend crucially on the choice of a suitable norm.
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6.3 Applications to Large Systems

Systems of ordinary di erential equations (ODES) with larg e dimensionm arise in

many applications, for instance with large electrical ciraiits. Historically, the rst

systems that were studied described problems in elasticittand heat conduction,

leading to partial di erential equations (PDEsS). Here we consider an example

which is related to the problem of heat conduction, as introdiced by Fourier.
Consider the system of ODEs

(6.11) uwt) = 7z U 1) 20+ ya )+ r(up(t);

with component index j =1;2;:::;m, h= =1 and ug(t) = um+1 (t) = 0. Initial
values uj (0) are assumed to be given for all components, and> 0,r :R! R.

This system is related to the partial di erential equation

(6.12) @@y(s;t) = %v(s;t) + r(v(s;t))

with spatial variable s 2 [0;1]. Herev(s;t) may stand for a temperature in a rod
of length 1, or it may denote a concentration of a biological pecies that varies
over space and time. For example, iff(v) = av bV’ with a;b > 0, then (6.12)
combines the simple Verhulst model for population growth wth spatial migration
by di usion. We consider equation (6.12) fort 2 [0;T] and 0< s < 1. Together
with the initial condition v(s;t) = vp(s) we also have boundary conditionsv(0;t) =
0, v(1;t) = 0. This is called an initial-boundary value problem for a PDE.

space, and use the approximations

(6.13) @Q;v(s;t) = h_12 v(s hit) 2v(s;t)+ v(s+ h;t) + O(h?)

at the grid points, omitting the O(h?) remainder term, then we obtain the ODE
system (6.11) where the componentsi; approximate the PDE solution at the grid
points, u; (t)  v(sj;t). The resulting ODE system is often called asemi-discrete
systembecause space has been discretized but time is still contious.

j i
0 S1 S2 Sm 1

On the other hand, if we start with (6.11) and then let m ! 1  the patrtial
di erential equation (6.12) can be obtained. This is how (6.12) was derived by
Fourier. Actually, Fourier considered the heat distributi on in a rod without source
term r. Equation (6.12) with r = 0 is known as the heat equation

We can write the system (6.11) in vector form as

(6.14) ult) = fu) = Au(t) + g(u(t);

57



with matrix A 2 R™ ™ and with g obtained by component-wise application ofr,

0 ) 1 1 r(u1)1
(6.15) A = W% 1 ..2 l § ; ou) = %r(UZ)E
1 2 r(um)

foru=(u;) 2 R™. We are of course mainly interested in the behaviour for smal
h > 0, that is, large m. In the following we consider the maximum norm.

Stability . It is directly seen that ; (A) 0, and hence
ke ky  1;

Note that kAk; = iz and therefore the estimateke” k; gtkAk1 js not very
useful for small h.
If r satis es a Lipschitz condition, say jr(v) r(¥)j "jv ¥ onR, we have
1 FQu)) ~onR™. Infact, if r is dierentiable and rqv) ! on R we get, by
using property (6.10c), the sharper estimate

(6.16) 1 (Fqu)) 1 (A)+ 1 (qu) ! for all u2 R™:

Remark 6.6 Similar results are valid the Euclidian norm; see Exercise &. For
this, note that A is symmetric, and fromke®k; 1 (fort  0) we know that all
eigenvalues are nonpositive. 3

Convergence . If the PDE solution v is four times continuously di erentiable
w.r.t. the spatial variable s, then it follows by Taylor expansion that (6.13) is
valid with a remainder term bounded by Kh?2 for small h > 0, with K =
% maxs;tj%v(s;t)j. If 1 (fYQu)) I on R™ we can apply Theorem 6.3 with
t (1) = v(sj;t), kf (u) f{u)k Kh?2, to obtain

(6.17) max juy () V(s ) L gt 1 kn?:
j m :

In case! =0 the right-hand side readstK h 2. Hence for any given time interval
[0; T] we have forh ! 0 convergence {in the sense of (6.17) { of the ODE solution
towards the PDE solution.

Properties of the ODE system can then be transferred to the PIE solution. For
example, for the heat equation ¢ = 0), the combination of (6.17) with ke*k; 1
fort O gives

(6.18) max jv(s;t)] max jv(s; 0)j (forallt 0):
0s1 0s1
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6.4 Exercises
Exercise 6.1 Let'; :R! Randg:[to;T] R! R be continuous. Assume

() D™ (@® ot @®; D" @® 9ot ®); (o) (to) ;

for t 2 [to; T]. In general, this is not a su cient condition to have

() (@) () (orall t2[to;T]:

(a) Demonstrate this with g(t;' ) = P j" j. Hint; use non-uniqueness of solutions
of ' 0= g(t;" ), ' (to) = 0.
(b) Show that if g(t;' ) satis es a Lipschitz condition w.r.t. ', then assumption

( )is sucient for (). Hint: consider , satisfying 2(t) = g(t; n(t))+ o

Exercise 6.2 Consider the initial value problem
ut) = t?+ u(t)?; u©)=1":

Show that: T u(t) tan(t+ 1) foro t< 1.

Exercise 6.3 Let "> 0 small, and

(a) Compute the eigenvalues ( = diag( ;)) and eigenvectors {/), and determine
upper bounds forke” k; in the maximum norm. What happens if"! 07?

(b) Compare this with the following estimates: ke k; k Vky kV ki ke' kg ,
ke k;  e*Aki gnd kehk, et 1 (A,

(c) Consider the normkwk = kV lwk; onR?. Determine (A) in this new norm.
(Long calculations can be avoided; considekl + hAk.)

P
Exercise 6.4 Let A=(g;)2R™ Mand =max; a; + j@ijaijj . Show that
ki + hAky; =1+ h if h> 0 is su ciently small. Consequently ; (A) =

. . . p—
Exercise 6.5 Let A2 R™ M. Consider the Euclidian normkvk, = = vTv on R™.
(@) Let B = (A + AT). Show that

kek, 1 (forallt 0) viBv 0 (forall v2R™):

Hint: consider $ku(t)k? for a solution of u{t) = Au(t), u(0) = uo.
(b) Since B = 3(A + AT) is symmetric, we haveB = U U ! with U orthogonal
(UT = U 1 andreal =diag( ;). Show that

viIBv 0 (forallv2R™) max;, j O (1 j m):

(c) For generalA 2 R™ ™ show that 5(A) is the largest eigenvalue of%(A+ AT).
Hint: from property (6.10a) we know that »(A) ' i (A 1) O.
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7 Boundary Value Problems

In this section we will study boundary value problems for ordnary di erential
equations, also known as two-point boundary value problems In such problems
the independent variable is often a space coordinate, and iwill therefore be
denoted by s. This will also be convenient when boundary value problems e
discussed in connection with partial di erential equations.

The general form of a two-point boundary value problem on an mterval [a; b
is
(7.1) us)= f s;u(s) ; h u(a);u(b) =0;
with f :[a;b) R™! RM™andh:R™ RM™! RM™ General statements about
existence and uniqueness of solutions are much more di culthan for initial value
problems. In many applications boundary value problems do ppear in the special
form of a scalar second-order di erential equation, and sub forms are considered
in the following. Also, for convenience of notation, we take[a; b =[0; 1].

In this section we will mainly restrict ourselves to two-point boundary value
problems of the form

(7.2a) w%%s) = g s;w(s);wqs) ;
(7.2b) w)= ; w(@)= ;

with g:[0;1] R2?! R. The next example shows that, even for smooth functions
g, this problem may not have a unique solution.

Example 7.1 Consider the problem
(7.3) wP= e¥;  w0)=0; w()=

Instead of the right boundary condition, we rst consider th e initial conditions

w(0) =0, wq0) = , and denote the solution asw(s; ). Figure 7.1 shows numer-
ical approximations for =2;4;:::;16. It appears that no matter how large is

chosen, we cannot getv(1; ) larger than some critical value .

NP o bp N ow s oo

o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7.1: Solutions w(s; ) versuss 2 [0;1], for =0;2;4;:::;16.
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It follows that the boundary value problem (7.3) does not hawe a solution if
> .. On the other hand, if < ( the solution is not unique. In Exercise 7.6
this will be analyzed. 3

7.1 Existence, Uniqueness and Shooting

It is clear from the above example, that to guarantee unique slvability of the
boundary value problem (7.2), it is not su cient that g is di erentiable. Also a
Lipschitz condition is not su cient. We do have the followin g result:

Theorem 7.2 Assumeg(s;uz; Uy) is continuous in s, continuously di erentiable
in ug; Uy, and there areqp; g1; Po; P1 2 R such that

0 @ Gedsuiw) @i W gpo(Sun) P

for all s 2 [0;1] and u;;u, 2 R. Then the boundary value problem (7.2) has a
unique solution.

To prove this theorem, we will rst derive some intermediate results, which are
of interest on their own. As in Example 7.1, we consider alongvith the boundary
value problem (7.2) also the initial value problem consistng of the dierential
equation (7.2a) with initial condition

(7.4) w0)= ; wY0)=

where 2 R. Let us denote the solution of this initial value problem aswf(s; ),
and introduce
(7.5) F()=w(; )

It will be shown that F has precisely one root , and w(s; ) is then the solution

of our boundary value problem. This approach, where is determined such that
the boundary values (7.2b) are satis ed is calledshooting Here is considered as
the “shooting angle’, aiming atw(1; ) =

Lemma 7.3 Let g satisfy the assumptions of Theorem 7.2. Then the functiorF
is de ned and continuous onR.

Proof . We can formulate the di erential equation (7.2a) in a rst- order form
u%= f (s;u) in R? with

u
u: 1 =
uz

uz

w
v g(s; uz; u2)

;o fsu)=
This function f satis es a global Lipschitz condition; see Exercise 2.6. Weéherefore
know that the initial value problem (7.2a), (7.4) has a unique solution for any

2 R. Moreover, from Theorem 2.10 withM = 0 it follows that w(1; ) depends
continuously on , and the same thus holds forF ( ). 2
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Lemma 7.4 Assumep;q:[0;1]! R arecontinuous,and0 o q(s), po p(S)
for all s2 [0;1]. Let u be the solution of

u®= p(s)u®+ q(s)u; u@)=0; uY0)=1":
R
Thenu(s) ,e™tdt forall s2 [0;1].

Proof . Sinceu(0) = 0, uY0) = 1, there is an s; 2 (0;1] such that u(s) > 0
for s 2 (0;s1). On this jpterval we have u® p(s)u® 0. Multiplication by an
integrating factor exp( Osp(t) dt) shows that

R
d% exp o pt)dt uYs) 0:

Rs o
Therefore exp  ,p(t)dt u¥s) u¥0) O, which gives
RS
u{s) exp p(t)dt es (0 s s):

R R
Using u(s) = , uqt) dt, it follows that u(s) ;5 ePtdt for all s 2 [0;sy].
It is now cleargthat u(s;) > 0. Consequentlyu(s) > 0 on the entire interval
(0;1], andu(s)  , ePtdt for all s 2 [0; 1]. 2

Lemma 7.5 Let g satisfy the assumptions of Theorem 7.2. Then thereisa> 0
suchthatF( ) F(9) ( Dforall >

Proof . For given > =, denotew(s) = w(s; ), w(s) = w(s;") and let v(s) =
w(s) w(s). ThenF() F(7)= v().
Denoting h; (s; uz; uz) = @—%g(s; ui;uy), j =1;2, we have

vO= g(s;wiwd  g(siwswd + g(s;wi w9 g(s;wiwd
— R1 . . R1 \agr 140 0
= ohissw+ viw9d v+ Jhy(s;wwl+ vOd v
Hencev satis es a linear initial value problem
vP= p(s) VP + q(s)v; v(0)=0; vY%0)= =
where 0 o q(s)and po  p(s) for all s 2 [0:1]. Appligation of Lemma 7.4 to
u(s) = v(s)=( 7) shows that v(1) ( D with = 01 ePot dt. 2

Proof of Theorem 7.2 . The proof of the theorem is now simple. We know that

F() F(@)+ if 0; E :
F() F(@O)+ if 0:
Since F is also continuous and strictly /
monotonically increasing, it follows that
it has a unique root . 2
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Alternative results for linear problems . The most restrictive assumption
in Theorem 7.2 isqp 0, that is, nhonnegativity of @—%g(s; uz; u2). It will be seen
in the next subsection, for the simple equationw®= qw, that this assumption is
not always necessary, but it cannot be omitted in the theorem

There are other results available in the literature, in particular for linear prob-
lems. As a typical case we consider

(7.6) w%= p(s)w’+ q(s)w+r(s); w0 = ; w ()= ;
together with the corresponding homogeneous problem
(7.7) vO%= p(s)vP+ q(s)v; v(0)=0; v(1)=0:

The next theorem gives a link between existence and uniquess for (7.6) and
the simpler problem (7.7). Moreover, we will see in the proofhow to construct
solutions of the boundary value problem (7.6) from solutiors of two initial value
problems.

Theorem 7.6 Let p;q;r be continuous on [Q1]. Then the problem (7.6) has a
unique solution for arbitrary ; 2 R if and only if the homogeneous problem
(7.7) only has the trivial solution v = 0.

Proof . DenoteLu = u® pu® qu. Let ui;u, be de ned by

Lug=r; ug(0)= ; uf©0)=0;
Luz =0; u0)=0; u(0)=1:

These uq;u, are well de ned because the linear initial value problems hge a
unique solution. Further we consider the linear combinations u = u; + ¢ uy with
c2 R. We have

Lu=r; u(=

This will provide a solution to (7.6) if u(l) = uy(1) + cux(1l) = , which can be
achieved with somec 2 R if uy(1) 6 0.

Suppose that (7.7) only has the trivial solution. Then ux(1) 6 0 and therefore
(7.6) has a solution. Moreover, this solution is unique, beause ifw;; w» are two
solutions thenv = w;  w» solves (7.7).

On the other hand, if (7.7) has a non-trivial solution v, then with any solution
w of (7.6) we get other solutionsw + cv. 2

Remark 7.7 The above theorems can also be formulated for other boundary
conditions. The conditions in (7.2), (7.6), where the valueof w is speci ed at the
boundaries, are known asDirichlet conditions. We can also specify the deriva-
tive wC at a boundary point, and that is known as a Neumann condition. Also
combinations are possible, such as

agw(0) + aw{0) = ; bow(1)+ bwi1) = ;

which still ts in the general form (7.1). 3
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Remark 7.8 Linear di erential equations in boundary value problems often ap-
pear in the form

(k(swWYs)®  1(s)w(s) = f (s)
with di erentiable, positive k(s). At rst sight, this form of the di erential equa-

tion seems dierent from (7.6), but division by k(s) returns (7.6) with q(s) =
kqs)=k(s), p(s) = I(s)=k(s) and r(s) = f (s)=Kk(s). 3

7.2 Eigenvalue Problems

There are interesting applications where one is actually iterested in cases where
the boundary value problem doesnot have a unique solution. As a simple, but
important example we consider

(7.8) ws) = w(s); w() = w(l) = 0:

We want to nd 2 R such that this problem has a solutionw not identically
equal to zero. As we will see, this is only possible for certaivalues of . Of
course,w = 0 is always a solution.

Problem (7.8) has the formLw = w , with linear operator L, and this problem
is therefore called aneigenvalue problemwith eigenvector and eigenfunctionw.

We see from Theorem 7.2 that if 0, then we only have the trivial solution
w = 0. This can also be seen more directly: the generaﬂ §o|uti0$10fptbe di erential
equation isw(s) = ¢+ cpsfor =0and w(s) = e ° +ce 5 for > 0,
and from the boundary conditions w(0) = w(1) = 0 it follows that we must have
ci=¢c=0.

On the other hand, if < 0, then the general solution of the di erential
equation was found in Example 3.3 to be

w(s) = ¢ coszO i js)+ c sin(p ijs):

Here the homogeneous boundagy conditionsv(0) = w(1) = 0 imply ¢; = 0 and
cosin( j j) = 0. Therefore, if | j is a multiple of we can nd a solution
w 6 0. This gives the following result:

Proposition 7.9  Problem (7.8) has the eigenvalues
= %7 (=120
The corresponding eigenfunctions are given by (s) = sin( js ) for s2 [0;1]. 2

Remark 7.10 Important generalizations of the above result for (7.8) areknown
for the Sturm-Liouville eigenvalue problems k(s)wqs))? I(s)w(s) = w (s),
w(0) = w(l) = 0, with k;I given smooth functions and 0< ko  k(s) ki,
lo I(s) I, on [0;1]. It is known, among other things, that such a prob-

lem possesses an in nite sequence of eigenvalueg > , > 3 > with
i 2[lo+ koj2 %11+ kej? 3, j =12 i » with corresponding eigenfunctions
w; that satisfy the orthogonality property 01 wi(s)wj(s)ds=01if i 6 j. 3
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The heat equation . Eigenvalue problems arise in a natural way from the study
of partial di erential equations. Let us consider the heat equation

(7.9) @@y(s:t) = @%V(s:t)

with space variables 2 [0; 1] and time variablet 0, together with the boundary
conditions v(0;t) = v(1;t) = 0. Now we can try to nd solutions by the ansatz
(educated guess)

(7.10) v(s:;t) = et w(s);

with separated variables, where we are interested in havingv not identically equal
to zero. Inserting this expression into (7.9) we see thatv should be a non-trivial
solution of the boundary value problem (7.8).

With the eigenvalues and eigenvectors found above, we thusbtain solutions
vi(s;t)=e KR sin(js ) (j 2 N) for the heat equation. These solutions are often
called fundamental solutions. By taking linear combinations we then also obtain
solutions of the form

X 2;2
(7.11) v(s;t) = ae 1lsin(js);
j 1
with coecients a 2 R, =1;2;:::
Solutions of the heat equation (7.9) are speci ed by an inital condition v(s;0) =
' (s). Trying to match the coe cients a; to the initial pro le, Fourier was led to
the representation X
‘()= g sin(js );
j 1
W{]ich we nowadays call aFourier series representation of' .° Since the integral
o Sin(js )sin( ks ) ds equals O ifj & k and % if j = k, we nd that the Fourier
coe cients are given by
z 1
a =2 sin(js )' (s)ds:
0

For a proper mathematical justi cation of these equalities with in nite series we
refer to the course "Fourier Theory' or text-books on Fourieg series.

The wave equation . The propagation of sound in air or vibrations in an elastic
medium are described by the so-calledvave equation

(7.12) %v(s; t) = @Q;v(s; t):

SNowadays it is known that the Fourier series converges for any ' in the function space L,[0; 1],
consisting of square integrable functions with identi cati on of functions that di er only in isolated
points (or sets of measure zero). In Fourier's time that was not clear, and he had great trouble
getting his results published; see for instance M. Kline, Mat hematical Thought from Ancient to
Modern Times, Vol. 2, 1990.
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The study of this equation {by Johann Bernoulli, d'Alembert and others{ pre-
ceded Fourier's study of the heat equation. For this wave egation with homoge-
neous boundary conditionsv(0;t) = v(1;t) = 0 we can obtain solutions by making
the ansatz v(s;t) = cos(t )w(s) or v(s;t) = sin( t )w(s). Similar as above, this
leads to an eigenvalue problem

(7.13) w= 2w w(0) = w(1)=0;

and we now nd nontrivial solutions for the values j = | (j =1;2;:::) with
corresponding eigenfunctionsw; (s) = sin( js ).
This gives solutions for the wave equations by the series

X
(7.14) v(s;t) = a; cos(jt )+ by sin(jt ) sin(js );

i1
with coe cients aj;h 2 R determined by the initial conditions, v(s;0) = ' (s),
@@t\/(s;O) = (s) for s 2 [0:1]. Note that since the wave equation is a second-order
equation in t, both v(s;0) and @@t\/(s;O) are to be speci ed.

7.3 EXxercises

Exercise 7.1 The form of a hanging cable, held xed at the two ends, is desdbed

by p
w%s)= 1+ wqs)?; wO)= ; w(@)= ;

where s is the horizontal space componentw(s) is the vertical height, and > 0
is the weight of the cable per unit length. Show that this problem has a unique
solution and nd this solution. Hint: & log(u+ 1+ u2) =(1+ u?) 2. Fitting
the general solution of the di erential equation to the boundary conditions requires
some calculations.

Exercise 7.2 A nontrivial solution of the eigenvalue problem (7.8) will satisfy
wYq0) 6 0 (why?), and we may therefore requirewq0) = 1 (scaling). Show that
(7.8) ts in the general formulation (7.1) with u(s) = (w(s);wYs); )" 2 R

Exercise 7.3 Let p;q2 R. Determine those constantsp; g for which the linear

problem w%°= pw®+ gw+ r(s), w(0) = , w(1l) = , has a unique solution for all

;2 R and any continuousr : [0;1]! R.

Exercise 7.4 Compute the eigenvalues and eigenfunctions of the problem
w?% w;  w(@©)=0; w{1)=0;

with a Dirichlet condition at the left boundary and a Neumann condition on the
right.
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Exercise 7.57 Consider the partial di erential equation
Sy = SkOZNsD  19VsY

with boundary conditions v(0;t) = v(1;t) = 0. Find relations for u and v such
that v(s;t) = u(t)w(s) is a solution of this partial di erential equation. Which
eigenvalue problem do we get fow, and how isu related to an eigenvalue ?

Exercise 7.6° To understand the numerical observations in Example 7.1, wewill
try to analyze the behaviour of the solutions of w®= &%, w(0) = 0, wY0) =
for varying , and in particular of H( ) = w(1).

(@) Let v= w® Show that w =log( Vv9 and

0_ 1,2
vV = EV Cc

with integration constant ¢ = 1 + % 2. Hint: multiply the di erential equation

by v. Observe that v{s) < 0 on [0 1]. Note: the relation %vz = &Y+ ccanbe

used to draw trajectories in the phase plane, but to determire w(1) we have to do
more work.

(b) Determine ; ; as function of such that
_ es 1.
vie) = w1

Remark: this guess is motivated by the fact thatu(s) = coth( s) solvesu®=1 u?.

(c) Show that w(1) ! 1 if 11 (this involves some calculation). Conclude
that ¢=sup ,gH( )< 1, and show that the boundary value problem (7.3) has
no solution if > ¢, and it has multiple solutions if < .. Remark: the actual

value of . is dicult to establish analytically; numerically we nd c 224,
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