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0. INTRODUCTION 

Let T(t) be a C0-semigroup on a Banach space X. It is well-known that the 
adjoint semigroup T*(t) = (T(t))* need not be strongly continuous on X*. 

However, if X is reflexive, it is; this is a theorem of R.S. Phillips [14]. In this 
note we will prove the following converse. 

THEOREM A. Let X be a Banach space with a Schauder basis. The following 
statements are equivalent: 

(1) X is reflexive; 
(2) For every C0-semigroup T(t) on X, the adjoint semigroup T*(t) is 

strongly continuous; 
(3) For every C0-semigroup T(t) of X, the second adjoint semigroup T 8 *(t) 

is strongly continuous. 

The definition of T 8 *(t) is given below. The idea of this theorem consists in 
showing that every Banach space with a Schauder basis { Xn}: = 1 (or more 
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generally, with a Schauder decomposition) admits C0-semigroups T(t) with the 
property that T*(t) is strongly continuous if and only if { Xn}: = 1 is shrinking. 

It follows from the proof of Theorem A that Grothendieck spaces with the 
Dunford-Pettis property cannot have a Schauder decomposition. This was first 
observed by D.W. Dean [3]; see also [12]. 

The Radon-Nikodym property is in many ways a close analogue of reflexivi
ty. Here we will show that a weak*-continuous semigroup on a dual Banach 
space with the Radon-Nikodym property is strongly continuous for t >0. In 
this setting it turns out to be useful to consider Banach spaces with an uncondi
tional basis, since on them C0-semigroups can be constructed in a canonical 
way such that, when X* is nonseparable, the adjoint semigroup fails to be 
strongly continuous even fort >0. These observations, together with the fact 
that separable duals have the Radon-Nikodym property, indicate what ideas lie 
behind the following theorem. 

THEOREM B. Let X be a Banach space with an unconditional basis {xn};= 1. 

The following statements are equivalent: 
(I) X* has the Radon-Nikodym property; 
(2) Every adjoint semigroup on X* is strongly continuous for t > 0. 

In fact, if {xn} ;:"= 1 is an unconditional basis for X, we will show that (1)-(2) 
hold if and only if X* is separable if and only if {xn} ;:"= 1 is shrinking, which 
by a theorem of R.C. James (see [11]) is the case if and only if X does not con
tain a subspace isomorphic to 11• More generally, H.P. Lotz proved that for 
Banach lattices X, X* has the Radon-Nikodym property if and only if X does 
not contain a subspace isomorphic to 11 ; see [7]. 

This note is organized as follows. In section I we will give some definitions 
and standard results which will be used afterwards. After that, sections 2 and 
3 are concerned with Theorems A and B, respectively. In section 4 our results 
are applied to bases in c0 • 

I. PRELIMINARIES 

A one-parameter family { T(t)} 1.,, 0 (briefly, T(t)) of bounded linear map
pings from a Banach space X into itself is called a semigroup if the following 
two conditions are satisfied: 

(1) T(O) =I (I the identity map of X); 
(2) T(t) T(s) = T(t + s) for all t, s ~ 0. 

A strongly continuous semigroup (also called a C0-semigroup) is a semigroup 
that satisfies 

(3) limdollT(t)x-xjj ==0 for all xeX. 
The generator A of a C0-semigroup T(t) is defined by 

D(A) == lxeX:lim _!_(T(t)x-x) exists}; l do t 
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A C0-semigroup is called compact if for ever~· > the operator 
compact. 

A semigroup on a dual space . .\'* is called an 
is a C0-semigroup T(t) on X such that 

semigroup need not be continuous. Therefore it makes sense to define 

EX*: lim 
0 

)x*-x* = Ol. 

Of course, x 0 depends on the particular semigroup m:ider consideration. lt is 
easy to see that X 0 is invariant under T*(l); hence the restriction 
T*(t) to X 0 defines a C0-semigroup on X 0 ; its on 
denoted T 8 *(r). 

We will need the following properties of C11 -semigroups and their adjoints 
12, 9, 17]. 

PROPOSITION l. l. Let T(t) be a C0-semigroup on a Banach space X. 
O) There exist real constants 1W?:. I and w such that ; :5 

(2) The adjoint semigroup T*(t) = ( T(l))* is weak *-cominuous, that is, 

lim <T*(t)x*-x*,x) = 0 
I l 0 

for all xeX. 
(3) x 0 is a norm-closed, weak*-dense subspace of X*. 

PROPOSITION 1.2. Let T(t) be a semigroup on a Banach space X. 
( l) If the map t _. T(t)x is measurable for all x EX then T(l) is strongly con

tinuous for t > 0. 
(2) If T(t) is weak(J.' continuous (that is, lim1w<x*, T(t)x-x) =0 for all 

x*EX*) then T(t) is strongly continuous. 

A countable collection of closed subspaces { Xn}; = 1 of a Banach space X is 
called a Schauder decomposition of X if for every XE X there is a unique se
quence { Xn}; = 1 C X such that x = L; = 1 Xn and for each n, .x-n E Xn. A sequence 
{xn };:'= 1 in a Banach space X is called a Schmider basis (briefly, basis) if for 
every x EX there exists a unique sequence {an};= 1 of scalars such that 
x= L::'=i anxn. A basis {xn}:=I is called normalized if ilxn!I= I for all n. It is 
well-known that the coordinate junctionals x.~ defined by (x~, L:= 1 anxn> = 
a.'v· are continuous. From this it is easy to see that the maps rr8 and P,v defined by 

.\' 

rr.I\' L anXn = L anXn, P,I\' L anXn = <XnXn 
11-'I n...:... i n ""'-I 

are projections and C=supN!rrNi<oo. Hence if {x,,};= 1 is normalized, then 
ix:! :5 2C for all n = 1, 2, .... The constant C is called the basis constant of 
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{x }00 _ 1 • Analogous definitions exist for Schauder decompositions. For in-
n n- N 

stance, define nN by nN E:=I Xn= Ln=I Xn. In this case the constant C will be 
called the decomposition constant. 

A basis {xn }:= 1 is called shrinking if the coordinate functionals {x:};= 1 

form a basis of X*. This is the case if and only if limN-+oo llx* I [xN,xN+h···lll =0 
for every x*EX*. Here x* I [xN,xN+i, ... J denotes the restriction of x* to the clos
ed linear span [xN,XN+I> ... ] of {xn}:=N· 

{xn}:=t is called bounded/y complete if the following holds: whenever the 
sequence {II I:~=t anxnll}~=I is bounded, then E~=t anXn actually converges to 
some x EX as N-+ oo. 

{xn};=I is called unconditional if for every XEX the expansion I:;=I anxn 
of x converges unconditionally, that is, for every permutation a of the positive 
integers, z::= 1 aa(n)Xa(n) converges. 

As an example, note that the standard unit vector basis of c0 is uncondi
tional and shrinking but not boundedly complete. 

PROPOSITION 1.3. Let {xn}:= 1 be a basis of a Banach space X. 
(1) {xn}:=I is boundedly completely if and only if {x:};'= 1 is a shrinking 

basis for its closed linear span rx:J; 
(2) (M. Zippin [I 8]) A Banach space X with a basis is reflexive if and only 

if every basis of X is shrinking if and only if every basis of X is boundedly 
complete; 

(3) If {xn}:=I is unconditional, then there is a constant K>O such that for 
every tE/ 00 and x= E;=I anXnEX, 

00 00 

II L tnanXnll ::5 K(sup ltn i)ll L anxnll· 
n=l n n=I 

Proofs may be found in [I I] and (16]. 
A Banach space X is called a Grothendieck space if weak*-sequential con

vergence and weak sequential convergence in X* coincide. Every reflexive space 
is trivially Grothendieck. It follows from Theorem A combined with Prop. I. I 
(2) and 1.2 (2) that Grothendieck spaces with a Schauder basis are reflexive. 
More generally, W.B. Johnson [10] proved that Grothendieck spaces with a 
Markusevich basis are reflexive, hence in particular separable Grothendieck 
spaces are reflexive. 

A Banach space is said to have the Dunford-Pettis property if the following 
holds: whenever {xn};=I and {x:};'= 1 are sequences in X and X* respectively, 
such that Xn-+O weakly and x:-+O weakly, then <x:,xn>-+O. 

PROPOSITION 1.4. (H.P. Lotz [I2]) Every C0-semigroup on a Grothendieck 
space with the Dunford-Pettis property has a bounded generator. 

Let (Q,I, µ)be a finite measure space. A Banach space X is said to have the 
Radon-Nikodym property with respect to (Q, I, µ) if for every µ-continuous 
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vector-valued measure G : E-. ){ of bounded variation there exists g E 

(µ; X) such that 

G(E) =} gd,u 
E 

for all EE E. X has the Radon-Nikodym property if it has the 
property with respect to every finite measure space. 

A bounded linear operator S: Li [O, i] -· X is called 
there exists a gEl 00 ([0, l]; X) such that 

I 

Sf= Jf(t)g(t)dt for all fE l 1 [0, IJ. 
() 

We will need the following result [4, Thm Hl.1.5; Cor. V 

PROPOSITION 1.5. X has the Radon-Nikodym property lf and 
bounded linear operator S: L 1 [O, l] ..... X is Riesz-representable. 

2. REFLEXIVITY AND SCHAlJDER DECO\lPOSITlONS 

if each 

The main result of this section is Theorem 2.2 below. It asserts that in a 
Banach space with a Schauder decomposition there exist C0 -semigroups vvilh 
properties reflecting those of the decomposition in terms of which they are 
defined. Their construction is based on the following lemma, which is in [16, 
Thm. II.15.4]. 

LEMMA 2.1. let X be a Banach space with a Schauder decomposition 
{ Xn}; ~ 1 with decomposition constant C. Let (Yn) be a sequence of scalars such 
that 

L !Y11+1-Yn\<oo. 
n;;;;; l 

Put y = lim 11 1Yn i- Then for all x= r;;: 1 x,, EX we have 

Oo 

L YnXn! :SC· ·( L !Yn+i-Yn +y). 
n.=. l n:.:.1 

Let P,v be the canonical projection defined in section l and let [P,~ X*l 
denote the closed linear span of the spaces P11* X*: n = I, 2, .... 

THEOREl'vl 2.2. Let X be a Banach space with a Schauder decomposition 
{X,,};;'= 1 with decomposition constant C. Let Os;k1 <k~< ··· _. oo be any se
quence of numbers. Then 

T(t)x,, = e-k, 1x,, (x,, e X,,) 

defines a compact C0 -semigroup on X wich moreover satisfies: 
(a) i T(t)I s C for all t > O; 
(b) x 0 = !Pn* X*j. 
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PROOF. Fix xEX of norm l,x= E;=l Xn with XnEXn. Let e>O be arbitrary 
and take N such that 

00 

II E Xnllse. 
n=N+I 

Let t0 > 0 be so small that 

Since Osk1 <k2< ... also 

e 
1-e-knt s - , (1 Sn SN; 0 St S to). 

N 

Then for Ostst0 we have, using Lemma 2.1, 

N oo 

llT(t)x-xllsll L (l-e-k"1)xnll+ll E (1-e-k" 1)Xnll 
11=! n=N+I 

e oo 
SN·-· max llxnll +Ce(l-ekN+11 + I: le-k"1-e-kn+ 11

1 +l) 
N ls.nsN n=N+I 

s 2eC + 2eC = 4eC. 

This shows that T(t) is a C0-semigroup on X. 
Note that by Lemma 2.1 we have 

llT(t)ll s C· ~ (e-k"1-e-kn+1t) = C· e-k,1 =::;C. 
n=I 

This is (a). 
It is obvious that lPn* X*J cx 0 since on Pn* X* we have T*(t)x,i= e-k" 1x,i. To 
prove the reverse inclusion, let x*= weak* E;= 1 x,i, with x,ie Pn* X*. We claim 
that the weak*-sum T*(t)x*= weak* I:;= 1 e-k" 1x,i is actually strongly con
vergent for every t>O. Indeed, for every x= E:=l Xn we have by Lemma 2.1 

M oo M M 

I ( E e-k"1x,i, L Xn) I = I ( L x,i, E e-k"1Xn) I S 2C llx* II · 2e-kNt llxll · 

Hence 
M 

II L e-kntx,ill s 4Ce-kNt llx*ll· 
n=N 

Since kN--.. oo as N--.. oo we have shown that for t > 0 the sequence 

is Cauchy in X*. From this it follows that T*(t)x* E lPn* X*J for t > 0. Now 
should x* e x 0 , then x* = limt!o T*(t)x* and by the closedness of lPn* X*J it 
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follows that we must have x*e[Pn*X*]. This shows x 0 c(P11*X*] and (b) is 
proved. 

Finally note that for fixed t > 0, 

N 

T(t) = lim E e-k.ipn 
N_."" n~t 

in the uniform operator topology. This is shown in the same way as we did in 
(b ), again using Lemma 2.1. Since each P11 is compact it follows that T(t) is a 
compact semigroup. 

In 2.3, 2.4 and 4.2 we will give examples how information on bases may be 
derived from the semigroups defined in the above theorem. 

COROLLARY 2.3. (D. W. Dean [3]) Grothendieck spaces with the Dunjord
Pettis property do not admit a Schauder decomposition. 

PROOF. If X has a Schauder decomposition then the C0-semigroup T(t) 

defined in Theorem 2.2 has a generator A given by 

which is unbounded, since the sequence (k11 ) is unbounded. Now apply 
Prop.1.4. 

REMARK 2.4. A countable collection of subspaces {X11 };= 1 of a Banach space 
X is called a weak decomposition of X if for every x e X there is a unique se
quence {x11 };'= 1 CX with x11 eX11 , such that x= weak I:;= 1 x 11 • If moreover the 
canonical projections n11 are weakly continuous, then {X11 };= 1 is called a weak 
Schauderdecomposition. It is well-known (see [16}) that a weak decomposition 
is a weak Schauder decomposition if and only if each X11 is closed. If X is a 
Banach space with a weak Schauder decomposition {X11 };= 1 it is possible to 
define weakly continuous semigroups on X as we did in Theorem 2.2. One must 
be somewhat more careful since for weak decompositions one cannot use Lem
ma 2.1. Define em= ll(m · 2m) (m = 1, 2, ... ). Put k 1 ==1. Let t1 >0 be defined by 

Suppose ki. k 2, ••• , km- I and t1, t2, ••• , tm- I have been chosen. Choose km E IN, 
km~km-I + l such that 

€-k,.t,.~ I l 
---<-. 
l-e-tm~1 2m 

Let tm be defined by 
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Observe that t 1>t2> ... _.o and l=k1<k2< ···.It is not difficult to check 
that 

T(t)x,, = e-k· 1x 11 

defines a weakly continuous semigroup on X. By Proposition 1.2 this semi
group is actually strongly continuous. But then straightforward estimates show 
that 

N N 

Ix- E x11 lslT(tN)x-xl+IT(tN)x- E x,,l-+O (N--+rXJ). 
•- I n•I 

In fact we have shown that {X11 };= 1 is actually a (strong) Schauder decomposi
tion. This is a result of W.H. Ruckle. [15) 

THEOREM A. Let X be a Banach space with a Schauder basis. The Jo/lowing 
statements are equivalent: 

(1) X is reflexive; 
(2) For every C0-semigroup T(t) on X, the adjoint semigroup T*(t) is 

strongly continuous; 
(3) For every C0-semigroup T(t) on X, the second adjoint semigroup 

T 0 *(t) is strongly continuous. 

PROOF. (1)::::) (2) is Phillips's theorem, from which also (I)~ (3) follows. We 
have to prove (2) ~ (1) and (3) ~ (1). Suppose X is nonreflexive. Applying 
Prop. l.3 (2), let {x11 };= 1 be a nonshrinking basis of X; let T(t) be the C0 -

semigroup on X as in Theorem 2.2. By (b) of Theorem 2.2 and the definition 
of a shrinking basis we have x 0 = [x:J =t-X*, that is, the adjoint semigroup 
T*(t) is not strongly continuous on X*. This gives (2) ~ (1). Next, again assume 
that X is nonreflexive and let {x11 };= 1 be a nonboundedly complete basis of X; 
let T(t) be the C0-semigroup on X as in Theorem 2.2. If follows by Prop. 1.3 
( l) that { x:}: = 1 is a nonshrinking basis of [x:J = X 0 and hence by the same 
argument x 00 = [x:*J =t-X 0 *, proving (3) ~ (1). 

Theorem A does not hold for arbitrary Banach spaces. For instance, let 
X = L 00 [0, 1] or more generally any Grothendieck space with the Dunford
Pettis property. Since every C0-semigroup on X has a bounded generator, it is 
obvious that the adjoint of such a semigroup is strongly continuous and has a 
bounded generator as well. Note that these spaces always are nonseparable [10). 
Therefore one still may ask whether Theorem A holds for arbitrary separable 
Banach spaces X, since not every separable Banach space has a basis [6]. For 
instance, it is known (11) that c0 and 11 contain subspaces Y without a basis. 
In these two cases however the answer is easy, since Y contains a complemented 
subspace Z isomorphic to c0 or / 1 respectively [I I]. On Z we may construct a 
C0-semigroup whose adjoint is not strongly continuous; this semigroup can be 
extended to Y by putting it identically I on the complement of Z. Hence, 
Theorem A holds for closed subspaces of c0 and 11• 
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By a theorem of A. Pelczynski (13] a Banach space is reflexive if and only 
if every closed subspace with a basis is. This, in combination with Theorem A, 
gives the following corollary. 

COROLLARY 2.5. A Banach space X is reflexive if and only if for every closed 
subspace Y of X, every C0-semigroup T(t) on Y has a strongly continuous ad
joint T*(t} on Y*. 

3. THE RADON-N!KODYM PROPERTY AND UNCONDITIONAL BASES 

LEMMA 3 .1. Every weak *-continuous semigroup T(t) on a dual Banach space 
X* with the Radon-Nikodym property is strongly continuous for t>O. 

PROOF. Fix an arbitrary x*eX*. By the uniform boundedness theorem, there 
is an M< oo such that I T(t)x*I :s; M for all t e [O, l]. Define S: L 1 [O, I]-> X* by 

I 

Sg = weak* J g(t) T(t)x*dt. 
0 

Since ( T(t)x*, x) is continuous for each x e X, it follows that ( g(l} T(t)x*, 
x) e L 1[O,11 for all xe X, and the above integral is well-defined. Sis bounded: 

I I 

ISgl= sup IJ(g(t)T(t)x*,x)dtl s sup Jig(t)i l<T(t)x*,x>idt:sMlgl 1• 
lx!=I o lxl=l o 

Since X* has the Radon-Nikodym property, by Proposition 1.5 there is an 
hel00 ([0,l]; X*) such that 

I 

Sg = J g(t)h(t)dt 
0 

for all geL 1(0, I]. For O::st< I and e>O small enough, let£= [t,t+el and put 
g = (1 le)XE• where x is the characteristic function. It follows that 

/H 1 l+e l 
weak* S - T(r)x*dr = S - h(r)dr. 

, e , e 

By the Lebesgue differentiation theorem, for almost all t e [O, I) the right-hand 
side converges to h(t) as e.-.. 0. Hence, for such t we have 

l / +' 
- S (T(r)x*,x)dr-> (h(t),x) (e-> 0) 
e ' 

for all xeX. But the integrand on the left-hand side is continuous, and 
therefore the integral converges to (T(t)x*,x). So T(t}x*=h(t) a.e. In par
ticular, T(t)x* is measurable on (0, 1 ], hence on (0, oo ). It follows from Prop. 1.2 
( l) that T(t) is strongly continuous for t > 0. 

If T(t) in Lemma 3.1 is an adjoin! semigroup, the above result is implicit in 
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W. Arendt [l], where it is obtained by an entirely different method of proof. 
It is classical result of N. Dunford and B .J. Pettis [5] that separable duals 

have the Radon-Nikodym property. For such spaces the above lemma is much 
easier to prove. Indeed, by Pettis's measurability theorem [4, Cor. II.1.4], 
for each x* e X* the map t--+ T*(t)x* is strongly measurable. Now apply 
Prop. 1.2 (1). 

Every nonreflexive Banach space X with a basis admits a C0 -semigroup 
whose adjoint is strongly continuous precisely for t > 0. In fact, the semigroup 
from the proof of Theorem A, (2) => (1), will do, as is easily verified. However, 
this is a rather non-constructive example. The following example is adapted 
from [1], where it is credited to H.P. Lotz. 

EXAMPLE 3.2. Let J be the James space consisting of all sequences of scalars 
x = (a1, a2, ••• ) for which 

llxll = sup[(ap, -aP2)2 + (aP2 -ap,)2+ ·· · + (ap"' , -aPj + (ap,,, -ap,)2] 112 < oo 
and 

Jim a11 = 0, 
n-> oo 

where the sup is taken over all possible choices of integers m and p 1 < 
p 2 < ·· · <Pm. Let x11 denote the nth unit vector. On J define a C0 -semigroup 
T(t) by 

T(t)Xn = e-n/Xn. 

Since {x11 };= 1 is a shrinking basis for J, the unit vectors x; of J* form a basis 
for J* and we have 1° =l*. One can show that J** is isomorphic to J!±)ICe, 
where e = (1, 1, ... ). Consequently J** is separable and therefore has the Radon
Nikodym property. Hence T**(t) is strongly continuous for t > 0 by Lemma 
3.1. It follows from Theorem 2.2 (b) (applied to the C0-semigroup T*(t) on 
J *) that e $ J *8 . Therefore T**(t) is not strongly continuous at t = 0. 

This example is interesting for another reason. There are many examples of 
C0-semigroups on Banach spaces X such that dim X*/X0 = oo. The above ex
ample shows that x 0 can also have any finite codimension in X*: 

COROLLARY 3.3. For each n E rN there exists a Banach space X and a 
C0-semigroup T(t) on X such that dim X*!X8 = n. 

PROOF. If n = 0, let T(t) be any C0-semigroup on a reflexive space. Otherwise, 
consider the C0-semigroup T*(t) on J* from Example 3.2. Since J**=J!±)Ce= 
J* 8 !±)1Ce we see that dim J**/J*0= 1. Let X=l*xJ*x ··· xJ*, n times, 
together with the 'product' semigroup obtained from n copies of T*(t). 

THEOREM B. Let X be a Banach space with an unconditional basis {x11 };;'= 1. 

The following statements are equivalent: 
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(I) 

m connn1wus > 

PROO!·. (l) "'"' follows from Lemma 3. l. I! !ht~refore remaim lo be shown 
"" (!)holds. \Ve remarked that ha\e !he Radon-

property. Hence it suffi..:es to show un;;onditkmal ba~is 

and O<c< l such that 

lim 
\ 

the contrary is true. Then there E.~·*. 

>f. 

Choose a sequence of 0 = < < ··· and a sequence 
°",. 1 C X of norm- I vectors as follows. Let .:: 1 = x,, be any norrn-l 

vector such that 

Choose sufficiently large such that 

"' . L a 1,,xn> >c. 
r. ! 

Put y 1 = E~·~l a 1nXn. We may, by choosing }'/1 enough, multiply y 1 wilh 
an appropriate scalar so as to make a norm-I vector of it without affeeting the 
b . 1· Ch , .. ,, a ove mequa ity. oose Z;; = .:... ·" ,, f 1 a;;,,x,, E .i, , 2, ... ] of norm l 

such that 

,Z:;) > £. 

Choose N2 such that 

;,·, 
~ fK2nX,,) > t;. 
'\'1 +- l 

Define y 2 = }.; ;~:, .v, + 1 a2,,x" and again assume without loss of generality that y2 
has norm l. Continue in this way. By construction of the y 11 we have for all n, 

,y,,)i > £. 

T(t)x,, = 

where x,, is the nth basis vector. By Prop. 1.3 (3), there is a K > 0 such that 
T(t);: :5K for all t?:.0. From this it is easy to see that T(l) is a Cll-semigroup 

on X. Now let t > 0 be arbitrary and fixed. We will show that T*(t)xti tt .X 0 . 

let me il'~. m?:. l. By the irrationality of the number rt, we can find a positive 
integer k such that 

, l-e1(' > 2-£. 
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We have the following estimates. 

This proves Theorem B. 

It is natural to ask whether an analogue of Corollary 2.5 holds for Banach 
spaces whose dual have the Radon-Nikodym property. H.P. Lotz's theorem on 
11 in Banach lattices [7] shows that for Banach lattices this is indeed the case: 
If the dual of a Banach lattice does not have the Radon-Nikodym property, 
then X contains a copy of 11; on 11 we have a C0-semigroup whose adjoint is 
not strongly continuous fort >0 by Theorem B. For general Banach spaces we 
remark that J. Hagler [8] proved that a separable Banach space with a 
nonseparable dual has a subspace with a basis whose dual is nonseparable. 
Therefore it would be enough to prove Theorem B, (2) => (1), without the 
assumption that the basis of X should be unconditional. (note that we made a 
rather crude step at this stage in just using that the basis of a space with 
nonseparable dual necessarily must be nonshrinking). The following theorem 
shows that in order to solve this problem, it suffices to construct a C0-

semigroup on X whose adjoint has a nonseparable orbit. 

THEOREM 3.4. Let T(t) be a C0-semigroup on a Banach space X. Let 
x* e X*. The orbit { T*(t)x*: t~ O} is separable if and only if t-+ T*(t)x* is 
strongly continuous fort> 0 if and only if t-+ T*(t)x* is weakly continuous for 
t>O. 

PROOF. It is obvious that strong continuity implies weak continuity. If 
t-+ T*(t)x* is weakly continuous for t > 0 then it is certainly weakly separable, 
which is the same as strongly separable. Suppose { T*(t)x*: t~ O} is separable. The 
proof that the map t-+ T*(t)x* is strongly continuous for t > 0 is a slight 
modification of the argument given in [9, Thm 10.3.2]. Choose numbers O<a< 
r</J<f. and let 11 be so small that /J<f.-11. Now T*(f.)x*= T*(r)T*(f.-r)x* 
is independent of r, hence certainly integrable on [a, /3] wirth respect to r. 
Therefore 

p 
(/J- a)[T*(f. ± 11)- T*(f.)]x* = J T*(r)[T*(f. ± 11 - r)- T*(f.- r)]x*dr. 

a 

The norm of the integrand is majorized by 2M llx*ll, where M is such 
that llT*(t)il=llT(t)ilsM on [O,f.+11]. Since r-+[T*(f.±17-r)-T*(f.-r)]x* 
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is measurable (by Pettis' measurability theorem), so is ll[T*(e ± 17 - -r)
T*(c;- -r)]x*ll · This gives 

(/3- a) II [T*(e ± 17)- T*(e)Jx*JI 

e-a 
5.M f ll£T*(a±17)-T*(a)]x*llda~o (17~0); 

~-{J 

see [9, Thm 3 .8.3]. 

THEOREM 3.5. Let T(t) be a C0-semigroup on a Banach space X. Let 
x*eX*. Then t-+- T*(t)x* is strongly continuous for t;;;:O if and only if 
t-+- T*(t)x* is weakly continuous for t;;::: 0. 

PROOF. We only have to prove the 'if' part. If T*(t) is an adjoint semigroup, 
then there is a positive M such that ~ T*(t) II s M in a neighbourhood of t = 0 
(since such an estimate holds for its predual T(t)). Now the proof can be finish
ed in exactly the same way as in [17,Ch.IX, l]. 

These two theorems can be considered as the 'orbitwise' analogous for ad
joint semigroups of Prop. 1.2. The point of their proofs is that we have bounds 
on T*(t) beforehand, since we are dealing with adjoint semigroups. 

4. NONSHRINKING BASES IN co 

Theorem A guarantees the existence of a C0-semigroup without strongly 
continuous adjoint on the nonreflexive space c0 (and, more generally, on every 
separable Banach space containing c0 , since by A. Sobczyk's theorem (11], c0 

is complemented in such spaces). The following theorem shows that it can be 
hard to give an explicit example of such a semigroup. 

THEOREM4.1. Let T(t) be a C0-semigroup on c0; llT(t)ll:5Mew1• If M<2, 
then T*(t) is strongly continuous on l 1. 

PROOF. Choose e>O such that M-l+e<l. Let x0 = l:n anenel 1 be ar
bitrary (en denoting the nth unit vector of 11 ); llx0 II = 1. Let N be such that 
Jll::=N+l anenJl<e/5. Choose 11>0 so small that llT*(t,)xoJl:5M+e/5 and 
l(T*(t1)x0-x0)nl:5e/(5N) (n=l,2, ... ,N). Such t1 exists by the weak*
continuity of the map t~ T*(t)x0 and by the estimate IJT(t)IJ =sMew1• We have 

N N N 

I: l(T*{t,)xo)nl;;::: I: l(xo)nJ- I: j(T*(t,)xo-Xo)nl 
n=I n=I n=I 

e e 2e 
;:::1---N·-=l--. 

5 5N 5 
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Therefore 
N 

llxo-T*(t1)Xoll = L l<T*(ti)Xo-Xo)nl + L l(T*(ti)Xo-Xo)nl 

e 
<- + L - 5 

n~N+I 

n=l n~N+l 

00 

l(T*(t,)xo)n I+ L 
n~N+I 

Put x1 =x0 -T*(t1)x0 • In the same way, there is an t2 >0 such that 

llx1 - T*(tz)X1 II ::s (M -1 + e) llx1 II ::s (M-1 + e)2. 

Put x2 = x1 - T*(f 2)x1. Proceed with the construction inductively in the ob
vious way. After n steps, we have t 1, t2 , •.• , tn > 0 and vectors x1>Xz, ... , Xn such 

that Xn = Xn - l - T*(t n)Xn - I and 

l\xo-T*(t1)Xo-T*(t2)X1 - ··· - T*(tn)Xn-i\I 

= llxn-1 - T*(tn)Xn-ill ::S (M -1 +et 

Since / 1 has the Radon-Nikodym property, by Lemma 3.1 we get that 
T*(t;)x; _ 1 E (c0)0 for all i = 1, 2, .... Since (M -1 + e)n--* 0 as n--* oo we have 
proved that x0 is in the closure of (c0)0. By 1.1 (3), (c0) 0 is closed and 
therefore x0 E (c0) 0 . Hence (c0)* = /1 = (c0 ) 0 , as was to be shown. 

We noted that the standard unit vector basis of c0 is shrinking. Of course, 
this basis has basis constant C= 1. By M. Zippin's theorem we are told that 
there exists a nonshrinking basis for c0 , since c0 is nonreflexive. What can be 
said of the basis constant of such a basis? 

COROLLARY 4.2. Every nonshrinking basis of c0 has basis constant C~ 2. 

PROOF. Let { Xn} ;;' = 1 be nonshrinking basis of c0 with basis constant C. Let 
T(t) be the C0-semigroup, defined with respect to {x11 };;'=l' as in Theorem A. 
Then T*(t) is not strongly continuous. By Theorem 2.2, II T(t)ll ::s C. Now by 
Theorem 4.1 we must have C ~ 2. 

The results of Theorem 4.1 and Corollary 4.2 are optimal: let Z; denote the 
ith unit vector of c0 and putyn= L7= 1 Z;, then the basis {Yn},:;"= 1 is nonshrink
ing and has basis constant 2. Moreover, the semigroup T(t) as defined in 
Theorem 2.2 satisfies II T(t)ll ::s 2 and has an ad joint which is not strongly con
tinuous. Using a very different approach, another example of such a semigroup 
on c0 was constructed by A. Di Bucchianico and A.J. Stam (private com
munication]. 
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