An elementary proof of the Ambartzumian-Pleijel identity

By A. J. CABO
CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

(Received 30 April 1991 ; revised 20 February 1992)

1. Introduction

In [5], Pleijel proved an identity relating the area A of a convex plane domain and the length L of its boundary (of class C^{1}). In particular, it contains the isoperimetric inequality $L^{2}-4 \pi A \geqslant 0$.

Ambartzumian gave two proofs of a generalized version of the Pleijel-identity for convex polygons. The first proof (in [1]) consisted of direct computations. In his book [2] however, he shows that the identity is an easy consequence of the solution to the Buffon-Sylvester problem.

Pohl proved an analogous formula for closed convex plane curves with smooth boundary, applying Stokes' theorem to a suitable manifold with boundary (see [6]).

The aim of this note is to show that Stokes' theorem may also be used to prove Ambartzumian's Pleijel-type identity for convex polygons directly. It turns out that the use of differential forms leads to considerable simplifications. The interesting question whether this method may be used to derive a Pleijel-type identity for more general convex domains, remains unanswered.

2. Ambartzumian's Pleijel-type identity for convex polygons

Throughout this section, let C denote a (bounded) closed convex polygon in the plane. The main idea of the proof is to compute the integral of a differential form over two of the sides of C. Then by a limiting procedure the result follows immediately.

To be able to perform the integration, we have to give an orientation to the sides.
Let a and b be two non-intersecting sides of C that do not share any of their endpoints A_{1}, A_{2} and B_{1}, B_{2} respectively. The set $a \times b$ is a two-dimensional submanifold of \mathbb{R}^{4}, which can be parametrized in the following way. Let u and v be the vectors $A_{2}-A_{1}$ and $B_{2}-B_{1}$ respectively. Then $x \in a$ and $y \in b$ have the representation

$$
x=A_{1}+\theta_{1} u, \quad y=B_{1}+\theta_{2} v
$$

for some numbers $\theta_{1}, \theta_{2} \in[0,1]$.
If $d l_{1}$ (resp. $d l_{2}$) is the element of length in a (resp. b), directed from A_{1} to A_{2} (resp. B_{1} to B_{2}), then the 2 -form $d l_{1} \wedge d l_{2}$ has the representation

$$
d l_{1} \wedge d l_{2}=|a| \cdot|b| d \theta_{1} \wedge d \theta_{2}
$$

where $d \theta_{1} \wedge d \theta_{2}$ is the canonical 2-form on \mathbb{R}^{2} and $|x|$ denotes the length of the side x.
Using this parametrization, we can consider $a \times b$ as an oriented manifold with boundary. Define the mapping $\phi:[0,1]^{2} \rightarrow a \times b$ by

$$
\phi\left(\theta_{1}, \theta_{2}\right)=\left(A_{1}+\theta_{1} u, B_{1}+\theta_{2} v\right)
$$

Then we have

$$
a \times b=\phi\left([0,1]^{2}\right)
$$

and the oriented boundary of $a \times b$ is identified by this mapping with the boundary in \mathbb{R}^{2} of the unit square with the usual counter-clockwise orientation. From this identification, it is seen that $a \times\left\{B_{1}\right\}$ and $\left\{A_{2}\right\} \times b$ have the same orientation as a, b respectively, and that $a \times\left\{B_{2}\right\}$ and $\left\{A_{1}\right\} \times b$ have the opposite orientation.

We shall need the following lemma in the proof.
Lemma. Let a and b be as described above and let (x, y) be a point on $a \times b$. Let $d l_{1}, d l_{2}$ denote the element of length on a and b respectively and let χ denote the length of the segment joining x and y, that is directed from x to y. Furthermore, let α_{1} and α_{2} be the angles, lying to the right of χ, formed by χ and the sides a and b respectively.

Then we have, for fixed y
and for fixed x

$$
\begin{equation*}
d \alpha_{1}=\frac{\sin \alpha_{2}}{\chi} d l_{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
d \alpha_{2}=-\frac{\sin \alpha_{1}}{\chi} d l_{1} \tag{2}
\end{equation*}
$$

Proof. First fix l_{1}. Let h_{x} be the length of the perpendicular from x onto b. Then

$$
\frac{h_{x}}{-l_{2}}=\tan \left(\pi-\alpha_{2}\right)=-\tan \alpha_{2}
$$

hence

$$
\alpha_{2}=\arctan \frac{h_{x}}{l_{2}}
$$

Consequently

$$
\frac{d \alpha_{2}}{d l_{2}}=-\frac{h_{x}}{l_{2}^{2}+h_{x}^{2}}=-\frac{h_{x}}{\chi^{2}}=-\frac{\sin \alpha_{2}}{\chi} .
$$

Since clearly $\alpha_{1}+\alpha_{2}$ is constant, the first assertion follows.

Fig. 1

Next, fix l_{2} and let h_{y} be defined similarly to h_{x}. Then

$$
\frac{d \alpha_{2}}{d l_{1}}=-\frac{d \alpha_{1}}{d l_{1}}=-\frac{d}{d l_{1}} \arctan \left(-\frac{h_{y}}{l_{1}}\right)=-\frac{\sin \alpha_{1}}{\chi} .
$$

This proves the lemma.
Observe that if l_{2} increases, for l_{1} fixed, then the angle α_{1} increases. On the other hand, if l_{1} increases, for l_{2} fixed, then the angle α_{2} decreases. As a consequence, we see that the signs of (1) and (2) are correct.

We are now ready to prove the Pleijel-type identity.
Theorem (Ambartzumian-Pleijel). Let C be a convex polygon with n sides a_{i} of length $\left|a_{i}\right|$. Suppose that C is oriented as described above. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{1}-function. Then

$$
\int_{[C]} f(\chi) d y=\int_{[C]} f^{\prime}(\chi) \chi \cot \alpha_{1} \cot \alpha_{2} d g+\sum_{i=1}^{n} \int_{0}^{\left|a_{i}\right|} f(x) d x
$$

where dg denotes the element of an invariant measure on the set G of non-oriented lines in the plane and $[C]:=\{g \in G: g \cap C \neq \varnothing\}$.

Proof. First consider two sides a and b with endpoints A_{1}, A_{2} and B_{1}, B_{2} respectively. Suppose that a and b are non-intersecting but not parallel and that they do not share an endpoint.

Consider the orientation-preserving differential form $d l_{1} \wedge d l_{2}$, where $d l_{1}\left(\right.$ resp. $\left.d l_{2}\right)$ is the element of length along a (resp. b), as defined above. Define the 1 -form ω on $a \times b$ by

$$
\omega(x, y)=\cos \alpha_{1} d l_{1}+\cos \alpha_{2} d l_{2}
$$

Then

$$
\begin{equation*}
d \omega=-\sin \alpha_{1} d \alpha_{1} \wedge d l_{1}-\sin \alpha_{2} d \alpha_{2} \wedge d l_{2} \tag{3}
\end{equation*}
$$

By the Lemma, (3) may be written as

$$
d \omega=-\frac{\sin \alpha_{2}}{\chi} \sin \alpha_{1} d l_{2} \wedge d l_{1}+\frac{\sin \alpha_{1}}{\chi} \sin \alpha_{2} d l_{1} \wedge d l_{2}
$$

whence, by the anti-commutativity of the exterior product

$$
\begin{equation*}
d \omega=2 \frac{\sin \alpha_{1} \sin \alpha_{2}}{\chi} d l_{1} \wedge d l_{2} . \tag{4}
\end{equation*}
$$

Define $\omega_{1}:=f(\chi) \omega$. Then we may apply Stokes' theorem (see e.g. [4]) to the 1 -form ω_{1} on $a \times b$, since the latter is an oriented 2 -manifold with boundary. This yields

$$
\int_{\hat{i}(a \times b)} \omega_{1}=\int_{a \times b} d \omega_{1}=\int_{a \times b} f^{\prime}(\chi) d \chi \wedge \omega+\int_{a \times b} f(\chi) d \omega .
$$

Observe that

$$
\frac{-d \chi}{d l_{2}}=\cos \left(\pi-\alpha_{2}\right)=-\cos \alpha_{2},
$$

hence

$$
d \chi=\cos \alpha_{2} d l_{2}
$$

Analogously, we have

$$
d \chi=-\cos \alpha_{1} d l_{1}
$$

Consequently

$$
d \chi \wedge \omega=d \chi \wedge \cos \alpha_{1} d l_{1}+d \chi \wedge \cos \alpha_{2} d l_{2}=-2 \cos \alpha_{1} \cos \alpha_{2} d l_{1} \wedge d l_{2}
$$

By (4),

$$
\int_{a \times b} f(\chi) d \omega=2 \int_{a \times b} \frac{\sin \alpha_{1} \sin \alpha_{2}}{\chi} d l_{1} \wedge d l_{2} .
$$

Hence (5) may be written as

$$
\begin{equation*}
\int_{a \times b} f(\chi) \frac{\sin \alpha_{1} \sin \alpha_{2}}{\chi} d l_{1} \wedge d l_{2}=\int_{a \times b} \cos \alpha_{1} \cos \alpha_{2} f^{\prime}(\chi) d l_{1} \wedge d l_{2}+\frac{1}{2} \int_{\partial(a \times b)} f(\chi) \omega . \tag{6}
\end{equation*}
$$

At the beginning of the section, we showed that the boundary $\partial(a \times b)$ of $a \times b$ is

Consequently

$$
\bigcup_{i=1,2}\left(a \times\left\{B_{i}\right\}\right) \cup \bigcup_{i=1,2}\left(\left\{A_{i}\right\} \times b\right) .
$$

$$
\left.\begin{array}{rl}
\int_{\partial(a \times b)} f(\chi) \omega= & \left.\int_{\left\{A_{1} \mid \times b\right.} f(\chi) w+\int_{\left\{A_{2} \mid \times b\right.} f(\chi) \omega+\int_{a \times\left\{B_{1}\right\}} f(\chi) \omega+\int_{a \times\left\{B_{2}\right\}} f(\chi) \omega\right) \\
= & -\int_{\left\{A_{1}\right\} \times b} f(\chi) \cos \alpha_{2} d l_{2}+\int_{\left\{A_{2} \mid \times b\right.} f(\chi) \cos \alpha_{2} d l_{2} \tag{7}\\
& +\int_{a \times\left\{B_{1}\right\}} f(\chi) \cos \alpha_{1} d l_{1}-\int_{a \times\left\{B_{2}\right\}} f(\chi) \cos \alpha_{1} d l_{1},
\end{array}\right\}
$$

where one has to take the orientation into consideration. Equation (7) corresponds to equation (21) in [1], in a version for directed lines.

Next, we let the endpoint B_{1} of b tend to the endpoint A_{2} of a, i.e. the distance between B_{1} and A_{2} tends to zero. Then in the limit, where $A_{2}=B_{1}$, we get

$$
\begin{equation*}
\int_{\partial(a \times b)} f(\chi) \omega=\int_{0}^{|a|} f(x) d x+\int_{0}^{|b|} f(x) d x-\int_{a \times\left\{B_{2}\right\}} f(\chi) \cos \alpha_{1} d l_{1}-\int_{\left\{A_{1} \mid \times b\right.} f(\chi) \cos \alpha_{2} d l_{2} . \tag{8}
\end{equation*}
$$

Summation of (6) over all sides of C, using (8) as well as the lemma, completes the proof of the theorem. Observe that indeed terms of the form $\int_{0}^{\left|a_{i}\right|} f(x) d x$ appear twice in the sum. Furthermore, there is cancellation of terms of the form

$$
\int_{\left\{A_{i} \backslash \times \alpha_{j}\right.} f(\chi) \cos \alpha_{2} d l_{2} \text { and } \int_{a_{i} \times\left\{A_{j}\right\}} f(\chi) \cos \alpha_{1} d l_{1}
$$

as desired.
This note is a version of one of the sections of the author's master's thesis [3]. The author would like to thank P. Groeneboom again, under whose supervision she had the pleasure of writing it.

REFERENCES

[1] R. V. Ambartzumian. Convex polygons and random tessellations. In Stochastic Geometry: A Tribute to the memory of Rollo Davidson (Wiley, 1974), pp. 176-191.
[2] R. V. Ambartzumian. Combinatorial Integral Geometry (Wiley, 1982).
[3] A. J. Cabo. Chordlength distributions and characterization problems for convex plane polygons. Master's thesis, University of Amsterdam (1989).
[4] V. Guillemin and A. Pollack. Differential Topology (Prentice-Hall, 1974).
[5] A. Pleijel. Zwei kurze Beweise der isoperimetrischen Ungleichung. Arch. Math. (Basel) 7 (1956), 317-319.
[6] W. F. Pohl. The probability of linking of random closed curves. In Geometry Symposium Utrecht, Lecture Notes in Math. vol. 894 (Springer-Verlag, 1980), pp. 113-126.

