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1. Introduction

In [S], Pleijel proved an identity relating the area A of a convex plane domain and
the length L of its boundary (of class C'*). In particular, it contains the isoperimetric
inequality L*—47m4 > 0.

Ambartzumian gave two proofs of a generalized version of the Pleijel-identity for
convex polygons. The first proof (in [1]) consisted of direct computations. In his book
[2] however, he shows that the identity is an easy consequence of the solution to the
Buffon-Sylvester problem.

Pohl proved an analogous formula for closed convex plane curves with smooth
boundary, applying Stokes’ theorem to a suitable manifold with boundary (see [6]).

The aim of this note is to show that Stokes’ theorem may also be used to prove
Ambartzumian’s Pleijel-type identity for convex polygons directly. It turns out that
the use of differential forms leads to considerable simplifications. The interesting
question whether this method may be used to derive a Pleijel-type identity for more
general convex domains, remains unanswered.

2. Ambartzumian’s Pleijel-type identity for convex polygons

Throughout this section, let €' denote a (bounded) closed convex polygon in the
plane. The main idea of the proof is to compute the integral of a differential form over
two of the sides of (. Then by a limiting procedure the result follows immediately.

To be able to perform the integration, we have to give an orientation to the sides.

Let @ and b be two non-intersecting sides of (' that do not share any of their
endpoints A,,4, and B,,B, respectively. The set axb is a two-dimensional
submanifold of R, which can be parametrized in the following way. Let » and » be
the vectors 4,—A4, and B,—B, respectively. Then rea and yeb have the
representation

r=A,+0,u, y=B,+0,v,

for some numbers 6,, 6,0, 1].
If dl, (resp. dl,) is the element of length in a (resp. b), directed from 4, to 4,
(resp. B, to B,), then the 2-form dI, A dl, has the representation

i, Adl, = |al.|b|d6, A d6,,

where d6, A df, is the canonical 2-form on R?* and |«| denotes the length of the side a.
Using this parametrization, we can consider ax b as an oriented manifold with
boundary. Define the mapping ¢:[0,1]*—a x b by

$(0,,0,) = (4,+06,u, B, +6,v).
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Then we have
axb=¢(0, 1]

and the oriented boundary of a x b is identified by this mapping with the boundary
in R? of the unit square with the usual counter-clockwise orientation. From this
identification, it is seen that a X {B;} and {4,} x b have the same orientation as a, b
respectively, and that a x {B,} and {4,} xb have the opposite orientation.

We shall need the following lemma in the proof.

LeMMA. Let a and b be as described above and let (x,y) be a point on a X b. Let dl,, dl,
denote the element of length on a and b respectively and let y denote the length of the
segment joining x and y, that is directed from x to y. Furthermore, let oy and a, be the
angles, lying to the right of y, formed by y and the sides a and b respectively.

Then we have, for fixed y

da, = 22224, (1)
and for fixed x do, = —Su;a‘ dl,. (2)

Proof. First fix [;. Let h, be the length of the perpendicular from x onto . Then

h .
—_—j— =tan (m—a,) = —tana,
2
hence a, = arctan 75
da h h sin o
Consequent] eI T T2
onseauenty d, ” ErRT ¢ g

Since clearly o, +a, is constant, the first assertion follows.

B,

e
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Next, fix /, and let A, be defined similarly to 4,. Then

day  doy  d h,\ _ sina,
a, -, dllarctan( L) P

This proves the lemma.

Observe that if [, increases, for [, fixed, then the angle o, increases. On the other
hand, if [, increases, for [, fixed, then the angle a, decreases. As a consequence, we
see that the signs of (1) and (2) are correct.

We are now ready to prove the Pleijel-type identity.

TuEOREM (Ambartzumian-Pleijel). Let (! be a convex polygon with n sides a, of length
la;|. Suppose that C' is oriented as described above. Let f:R— R be a C*-function. Then

n flag)

S dg = J f(x)xcota, cota,dg+2 | flx)dx,
(el i=1

[C] 0

where dg denotes the element of an invariant measure on the set (I of non-oriented lines
in the plane and [("={ge g n C * J}.

Proof. First consider two sides « and b with endpoints 4,, 4, and B,, B,
respectively. Suppose that ¢ and b are non-intersecting but not parallel and that
they do not share an endpoint.

Consider the orientation-preserving differential form di, A dl,, where dl; (resp. dl,)
is the element of length along a (resp. b), as defined above. Define the 1-form » on

xb by
“ by w(x, y) = coso, dl, + cos o, dl,.

Then dw = —sinoa, do, Adly—sina,da, Adl,. (3)
By the Lemma, (3) may be written as

sino, . sina
do = — Esina, di, Adl + !
X X

sin o, di; A dl,

whence, by the anti-commutativity of the exterior product

sin a, sin e,
—1—2ql, Ad

doy =2 ly. )

Define w, = f(x) w. Then we may apply Stokes’ theorem (see e.g. [4]) to the 1-form
w, on a x b, since the latter is an oriented 2-manifold with boundary. This yields

J W, = f dw, = J _f’(X)dwa+f flx)do.
faxb) axb axb axb

—d
Observe that d; X = cos (m—o,) = —cosa,,
2
hence dy = cosa,dl,.
Analogously. we have dy =—coso, dl,.

Consequently

dy ANw=dyAcosa,dl,+dy A cosa,dl, = —2cosa, cosa,dl; Adl,.
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By (4), f ﬂmdw=2j SN SR 41, Adl,.
axb axb X

Hence (5) may be written as

‘[ ﬂmﬂiﬁﬂgﬁdhAﬂ2=J' am%p%ag«mdhAd@+§f foo. (6)
axb X axb 2 J ataxw)

At the beginning of the section, we showed that the boundary d(a x b) of « xb is

U (@x{B}Hu U ({4;xb).

Consequently . e
J ﬂmw=f ﬂmw+f ﬂmw+f ﬂmw+f fx)e
Aaxb) {4, 1xb [4,)xb ax|B} ax{By}
= —J o) COS%dlﬁJ fx)cosa, dl, 0
{4,1xb {4,)%b
+J fly) cos “1dl1°‘J J(x)cosa, di,,
axiB,} axiBy} Y,

where one has to take the orientation into consideration. Equation (7) corresponds
to equation (21) in [1], in a version for directed lines.

Next, we let the endpoint B, of b tend to the endpoint 4, of a, i.e. the distance
between B, and A4, tends to zero. Then in the limit, where 4, = B, we get

|} b}
f fyw = | fla)de+ J fia) de— f
d(axb) 0

0 axiB,}

flx)cosa, dl1“f S(x) cosa,dl,.

{4,1xb
(8)

Summation of (6) over all sides of (', using (8) as well as the lemma, completes the
proof of the theorem. Observe that indeed terms of the form fl(;l"' Jf(x) de appear twice
in the sum. Furthermore, there is cancellation of terms of the form

J fly)cosa,dl, and J Sflx)cosa, di,
{Agdxa;

. aiX{Aj}
as desired.

This note is a version of one of the sections of the author’s master’s thesis [3]. The
author would like to thank P. Groeneboom again, under whose supervision she had
the pleasure of writing it.
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