An elementary proof of the Ambartzumian-Pleijel identity

By A. J. CABO

CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

(Received 30 April 1991; revised 20 February 1992)

1. Introduction

In [5], Pleijel proved an identity relating the area A of a convex plane domain and the length L of its boundary (of class C^1). In particular, it contains the isoperimetric inequality $L^2 - 4\pi A \ge 0$.

Ambartzumian gave two proofs of a generalized version of the Pleijel-identity for convex polygons. The first proof (in [1]) consisted of direct computations. In his book [2] however, he shows that the identity is an easy consequence of the solution to the Buffon-Sylvester problem.

Pohl proved an analogous formula for closed convex plane curves with smooth boundary, applying Stokes' theorem to a suitable manifold with boundary (see [6]).

The aim of this note is to show that Stokes' theorem may also be used to prove Ambartzumian's Pleijel-type identity for convex polygons directly. It turns out that the use of differential forms leads to considerable simplifications. The interesting question whether this method may be used to derive a Pleijel-type identity for more general convex domains, remains unanswered.

2. Ambartzumian's Pleijel-type identity for convex polygons

Throughout this section, let C denote a (bounded) closed convex polygon in the plane. The main idea of the proof is to compute the integral of a differential form over two of the sides of C. Then by a limiting procedure the result follows immediately.

To be able to perform the integration, we have to give an orientation to the sides. Let a and b be two non-intersecting sides of C that do not share any of their endpoints A_1, A_2 and B_1, B_2 respectively. The set $a \times b$ is a two-dimensional submanifold of \mathbb{R}^4 , which can be parametrized in the following way. Let u and v be the vectors A_2-A_1 and B_2-B_1 respectively. Then $x \in a$ and $y \in b$ have the representation

$$x = A_1 + \theta_1 u, \quad y = B_1 + \theta_2 v,$$

for some numbers $\theta_1, \theta_2 \in [0, 1]$.

If dl_1 (resp. dl_2) is the element of length in a (resp. b), directed from A_1 to A_2 (resp. B_1 to B_2), then the 2-form $dl_1 \wedge dl_2$ has the representation

$$dl_1 \wedge dl_2 = |a| \cdot |b| d\theta_1 \wedge d\theta_2$$

where $d\theta_1 \wedge d\theta_2$ is the canonical 2-form on \mathbb{R}^2 and |x| denotes the length of the side x. Using this parametrization, we can consider $a \times b$ as an oriented manifold with boundary. Define the mapping $\phi:[0,1]^2 \to a \times b$ by

$$\phi(\theta_1, \theta_2) = (A_1 + \theta_1 u, B_1 + \theta_2 v).$$

536 A. J. Cabo

Then we have

$$a \times b = \phi([0,1]^2)$$

and the oriented boundary of $a \times b$ is identified by this mapping with the boundary in \mathbb{R}^2 of the unit square with the usual counter-clockwise orientation. From this identification, it is seen that $a \times \{B_1\}$ and $\{A_2\} \times b$ have the same orientation as a, b respectively, and that $a \times \{B_2\}$ and $\{A_1\} \times b$ have the opposite orientation.

We shall need the following lemma in the proof.

LEMMA. Let a and b be as described above and let (x,y) be a point on $a \times b$. Let dl_1 , dl_2 denote the element of length on a and b respectively and let χ denote the length of the segment joining x and y, that is directed from x to y. Furthermore, let α_1 and α_2 be the angles, lying to the right of χ , formed by χ and the sides a and b respectively.

Then we have, for fixed y

$$d\alpha_1 = \frac{\sin \alpha_2}{\chi} dl_2 \tag{1}$$

and for fixed x

$$d\alpha_2 = -\frac{\sin \alpha_1}{\chi} dl_1. \tag{2}$$

Proof. First fix l_1 . Let h_x be the length of the perpendicular from x onto b. Then

$$\frac{h_x}{-l_2} = \tan(\pi - \alpha_2) = -\tan\alpha_2$$

hence

$$\alpha_2 = \arctan \frac{h_x}{l_2}.$$

Consequently

$$\frac{d\alpha_2}{dl_2} = -\frac{h_x}{l_2^2 + h_x^2} = -\frac{h_x}{\chi^2} = -\frac{\sin\alpha_2}{\chi}.$$

Since clearly $\alpha_1 + \alpha_2$ is constant, the first assertion follows.

Next, fix l_2 and let h_y be defined similarly to h_x . Then

$$\frac{d\alpha_2}{dl_1} = -\frac{d\alpha_1}{dl_1} = -\frac{d}{dl_1} \arctan\left(-\frac{h_y}{l_1}\right) = -\frac{\sin\alpha_1}{\chi}.$$

This proves the lemma.

Observe that if l_2 increases, for l_1 fixed, then the angle α_1 increases. On the other hand, if l_1 increases, for l_2 fixed, then the angle α_2 decreases. As a consequence, we see that the signs of (1) and (2) are correct.

We are now ready to prove the Pleijel-type identity.

Theorem (Ambartzumian-Pleijel). Let C be a convex polygon with n sides a_i of length $|a_i|$. Suppose that C is oriented as described above. Let $f: \mathbb{R} \to \mathbb{R}$ be a C^1 -function. Then

$$\int_{[C]} f(\chi) \, dg = \int_{[C]} f'(\chi) \, \chi \cot \alpha_1 \cot \alpha_2 \, dg + \sum_{i=1}^n \int_0^{|a_i|} f(x) \, dx,$$

where dg denotes the element of an invariant measure on the set G of non-oriented lines in the plane and $[C] := \{g \in G : g \cap C \neq \emptyset\}.$

Proof. First consider two sides a and b with endpoints A_1 , A_2 and B_1 , B_2 respectively. Suppose that a and b are non-intersecting but not parallel and that they do not share an endpoint.

Consider the orientation-preserving differential form $dl_1 \wedge dl_2$, where dl_1 (resp. dl_2) is the element of length along a (resp. b), as defined above. Define the 1-form ω on $a \times b$ by

$$\omega(x, y) = \cos \alpha_1 dl_1 + \cos \alpha_2 dl_2.$$

Then

$$d\omega = -\sin\alpha_1 d\alpha_1 \wedge dl_1 - \sin\alpha_2 d\alpha_2 \wedge dl_2. \tag{3}$$

By the Lemma, (3) may be written as

$$d\omega = -\frac{\sin\alpha_2}{\chi}\sin\alpha_1\,dl_2 \wedge dl_1 + \frac{\sin\alpha_1}{\chi}\sin\alpha_2\,dl_1 \wedge dl_2$$

whence, by the anti-commutativity of the exterior product

$$d\omega = 2\frac{\sin\alpha_1\sin\alpha_2}{\gamma}dl_1 \wedge dl_2. \tag{4}$$

Define $\omega_1 := f(\chi) \omega$. Then we may apply Stokes' theorem (see e.g. [4]) to the 1-form ω_1 on $a \times b$, since the latter is an oriented 2-manifold with boundary. This yields

$$\int_{\hat{c}(a\times b)} \omega_1 = \int_{a\times b} d\omega_1 = \int_{a\times b} f'(\chi)\,d\chi \wedge \omega + \int_{a\times b} f(\chi)\,d\omega.$$

Observe that

$$\frac{-d\chi}{dl_2} = \cos(\pi - \alpha_2) = -\cos\alpha_2,$$

hence

$$d\chi = \cos \alpha_2 dl_2$$
.

Analogously, we have

$$d\chi = -\cos \alpha_1 dl_1$$
.

Consequently

$$d\chi \wedge \omega = d\chi \wedge \cos \alpha_1 dl_1 + d\chi \wedge \cos \alpha_2 dl_2 = -2 \cos \alpha_1 \cos \alpha_2 dl_1 \wedge dl_2.$$

By (4),
$$\int_{a \times b} f(\chi) \, d\omega = 2 \int_{a \times b} \frac{\sin \alpha_1 \sin \alpha_2}{\chi} dl_1 \wedge dl_2.$$

Hence (5) may be written as

$$\int_{a \times b} f(\chi) \frac{\sin \alpha_1 \sin \alpha_2}{\chi} dl_1 \wedge dl_2 = \int_{a \times b} \cos \alpha_1 \cos \alpha_2 f'(\chi) dl_1 \wedge dl_2 + \frac{1}{2} \int_{\partial (a \times b)} f(\chi) \omega. \quad (6)$$

At the beginning of the section, we showed that the boundary $\partial(a \times b)$ of $a \times b$ is

$$\bigcup_{i=1,2} (a \times \{B_i\}) \cup \bigcup_{i=1,2} (\{A_i\} \times b).$$

Consequently

$$\int_{\partial(a\times b)} f(\chi) \,\omega = \int_{\{A_1|\times b} f(\chi) \,w + \int_{\{A_2|\times b} f(\chi) \,\omega + \int_{a\times \{B_1\}} f(\chi) \,\omega + \int_{a\times \{B_2\}} f(\chi) \,\omega
= -\int_{\{A_1|\times b} f(\chi) \cos \alpha_2 \,dl_2 + \int_{\{A_2|\times b} f(\chi) \cos \alpha_2 \,dl_2
+ \int_{a\times \{B_1\}} f(\chi) \cos \alpha_1 \,dl_1 - \int_{a\times \{B_2\}} f(\chi) \cos \alpha_1 \,dl_1,$$
(7)

where one has to take the orientation into consideration. Equation (7) corresponds to equation (21) in [1], in a version for directed lines.

Next, we let the endpoint B_1 of b tend to the endpoint A_2 of a, i.e. the distance between B_1 and A_2 tends to zero. Then in the limit, where $A_2 = B_1$, we get

$$\int_{\hat{c}(a\times b)} f(\chi) \, \omega = \int_0^{|\alpha|} f(x) \, dx + \int_0^{|b|} f(x) \, dx - \int_{a\times |B_2|} f(\chi) \cos \alpha_1 \, dl_1 - \int_{\{A_1|\times b} f(\chi) \cos \alpha_2 \, dl_2. \tag{8}$$

Summation of (6) over all sides of C, using (8) as well as the lemma, completes the proof of the theorem. Observe that indeed terms of the form $\int_0^{|a_i|} f(x) dx$ appear twice in the sum. Furthermore, there is cancellation of terms of the form

$$\int_{\{A_i\}\times a_j} f(\chi) \cos \alpha_2 \, dl_2 \quad \text{and} \quad \int_{a_i\times \{A_j\}} f(\chi) \cos \alpha_1 \, dl_1$$

as desired.

This note is a version of one of the sections of the author's master's thesis [3]. The author would like to thank P. Groeneboom again, under whose supervision she had the pleasure of writing it.

REFERENCES

- [1] R. V. Ambartzumian. Convex polygons and random tessellations. In Stochastic Geometry: A Tribute to the memory of Rollo Davidson (Wiley, 1974), pp. 176-191.
- [2] R. V. Ambartzumian. Combinatorial Integral Geometry (Wiley, 1982).
- [3] A. J. Cabo. Chordlength distributions and characterization problems for convex plane polygons. Master's thesis, University of Amsterdam (1989).
- [4] V. GUILLEMIN and A. POLLACK. Differential Topology (Prentice-Hall, 1974).
- [5] A. PLEIJEL. Zwei kurze Beweise der isoperimetrischen Ungleichung. Arch. Math. (Basel) 7 (1956), 317-319.
- [6] W. F. Pohl. The probability of linking of random closed curves. In Geometry Symposium Utrecht, Lecture Notes in Math. vol. 894 (Springer-Verlag, 1980), pp. 113-126.