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1. Introdndfon 

In l5], Pleijel proved an identity relating the area A of a convex plane domain and 
the length L of its boundary (of class 0 1 ). In particular, it contains the isoperimetric 
inequality L2-4nA ~ 0. 

Ambartzurnian gave two proofs of a generalized version of the Pleijel-identity for 
convex polygons. The first proof (in [1 ]) consisted of direct computations. In his book 
l2J however, he shows that the identity is an easy consequence of the solution to the 
Buffon-Sylvester problem. 

Pohl proved an analogous formula for closed eonvex plane curves with smooth 
boundary, applying Stokes' theorem to a suitable manifold with boundary (see [6]). 

The aim of this note is to show that Stokes' theorem may also be used to prove 
Ambartzumian's Pleijel-type identity for convex polygons directly. It turns out that 
the use of differential fi.mns leads to considerable simplifications. The interesting 
question whether this method may be used to derive a Pleijel-type identity for more 
general convex domains, remains unanswered. 

2. Arnbartznrnian'8 Pleijel-type identity for convex polygons 

Throughout this section, let C denote a (bounded) closed convex polygon in the 
plane. The main idea of the proof is to compute the integral of a differential form over 
two of the sides of 0. Then by a limiting procedure the result follows immediately. 

To be able to perform the integration, we have to give an orientation to the sides. 
Let a and b be two non-intersecting sides of C that do not share any of their 

endpoints A 1 ,A2 and B 1 ,B2 respectively. The set a x b is a two-dimensional 
submanifold of ~4 , which can be parametrized in the following way. Let u and v be 
the vectors A 2 -A 1 and B2 -B1 respectively. Then xEa and yEb have the 
representation 

x=A1 +81 u, y=B1 +e2 v, 

for some numbers 01 , 02 E [O, 1). 
If dl 1 (resp. dl2 ) is the element of length in a (resp. b), directed from A1 to A 2 

(resp. B1 to B 2 ), then the 2-form dl 1 /\ dl2 has the representation 

dl1 /\ dl2 = lal. !bi d01 /\ d02 • 

where d8 1 /\ d0 2 is the canonical 2-form on IR 2 and Jxl denotes the length of the side :r. 
Using this parametrization, we can consider a x b as an oriented manifold with 

boundary. Define the mapping <f'i:lO, 1)2 -;..axb by 

<f'i(()1, 82) = (Ai+ el U, BI+ 02v). 
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Then we ha,·c 
a x b = <fa([O, 1]2) 

and the oriented boundary of a x b is identified by this mapping with the boundary 
in IR 2 of the unit square with the usual counter-clocbvise orientation. From this 
identification, it is seen that a x {B1} and {A 2} x b have the same orientation as a, b 
rer;pectively, and that a x {B2} and {A 1} x b have the opposite orientation. 

\Ve shall need the following lemma in the proof. 

LEMMA. Let a and b be a8 de8cribed above and let (x, y) be a poi~nt on a x b. Let dl1 , dl 2 

denote the element of length on a and b re8pectively and let x denote the length of the 
segment joining x and y, that is directed from x toy. Fitrthermore, let a 1 and a 2 be the 
angles, ly·huj to the right of X· formed by x and the sides a nnd b respectively. 

Then we have, for fixed y 

( 1) 

and for fixed x d =_sin a 1 il a2 c. i· x 
(2) 

Proof. First fix Z1 . Let hx be the length of the perpendicular from x: onto b. Then 

hence 

Consequently 

hx . 
-l = tan(7T-a2 ) = -tana2 

2 

hx a 2 = arctan -1 . 
2 

Since dearly a 1 + cx2 is constant, the first assertion follows. 

x 

x 

-/1 

Fig. 1 
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Next, fix l 2 and let hY be defined similarly to hx. Then 

da2 = - da1 = _ !!:__ arctan (- hy) = - sin a1 . 
dll dll dll l1 x 

This proves the lemma. 

537 

Observe that if l2 increases, for l1 fixed, then the angle a1 increases. On the other 
hand, if l1 increases, for l 2 fixed, then the angle a 2 decreases. As a consequence, we 
see that the signs of ( 1) and (2) are correct. 

We are now ready to prove the Pleijel-type identity. 

THEOREM (Ambartzumian-Pleijel). Let C be a convex polygon with n 8ides ai of length 
lad. Suppo8e that C is oriented as described above. Let f: IR--+ IR be a 0 1-function. Then 

where dg denotes the element of an invariant mea.sure on the .set G of non-oriented l1:ne8 
in the plane and [0] =={gEG:g n 0 =!= 0}. 

Proof. First consider two sides a and b with endpoints A1, A 2 and B1, B2 

respectively. Suppose that a and b are non-intersecting but not parallel and that 
they do not share an endpoint. 

Consider the orientation-preserving differential form dl1 /\ dl2 , where dl1 (resp. dl2 ) 

is the element of length along a (resp. b), as defined above. Define the 1-form w on 
a x b by 

Then (3) 

By the Lemma, (3) may be written as 

whence, by the anti-commutativity of the exterior product 

d _ 9 sin a 1 sin a 2 dl dl 
(J) - ~ 1 /\ 2· 

x 
(4) 

Define w1 == f(X) w. Then we may apply Stokes' theorem (see e.g. [4]) to the 1-form 
w1 on a x b, since the latter is an oriented 2-rnanifold with boundary. This yields 

J <v1 =J dw 1 =J f'(x)dx/\w+J f(x)dw. 
•'«ixb) axb axb axb 

Observe that 

hence 

Analogously, we have 

Consequently 

-dx 
~ = cos(7T-ct2) = -cosa2 , 

2 

dx = cos a2 dl2. 

dx = -cosa1 dl 1• 

dx /\ w = dx /\cos a 1 dl 1 +dx /\cos cc:2 dl2 = -2 cos a 1 cosa2 dl1 /\ dl2 • 
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By (4), f f(X) dw = 2 J sin a1 sin a2 dl1 A dl2. 
axb axb X 

Hence (5) may be written as 

J sin a sin a. J , 1 J f(X) 1 • dl1 A dl2 = cos a 1 cos a 2 f (X) dl 1 /\ dl2 +-2 f(X) w. (6) 
axb X axb ~axw 

At the beginning of the section, we showed that the boundary 8(a x b) of a x bis 

Consequently 
l=l,2 

f f(x)w= I f(x)w+ I f(x)w+J f(x)w+J f(x)w 
o(aXb) J {Ai}Xb J {A2IXb ax{Bi} ax{B2l 

= - I f(X) cos a 2 dl2 + I f(X) cos a 2 dl2 J {A 1}XD J {A 2 }Xb 

(7) 

+f f(X) cosa1 dl1 -J f(X) cosa1 dl1 , 
ax{B1 } ax{B2) 

where one has to take the orientation into consideration. Equation (7) corresponds 
to equation (21) in [l], in a version for directed lines. 

Next, we let the endpoint BI of b tend to the endpoint A 2 of a, i.e. the distance 
between B1 and A 2 tends to zero. Then in the limit, where A2 =BI, we get 

Summation of (6) over all sides of 0, using (8) as well as the lemma, completes the 
proof of the theorem. Observe that indeed terms of the form f~ 11 f(x) d;r appear twice 
in the sum. Furthermore, there is cancellation of terms of the form 

as desired. 

This note is a version of one of the sections of the author's master's thesis [3]. The 
author would like to thank P. Groeneboom again, under whose supervision she had 
the pleasure of writing it. 
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