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ABSTRACT
Dealing with LIDAR data in the context of database management
systems calls for a re-assessment of their functionality, performance,
and storage/processing limitations. The territory for efficient and
scalable processing of LIDAR repositories using GIS enabled database
systems is still largely unexplored. Bringing together hard core
database management experts and GIS application developers is a
sine qua non to advance the state of the art. In particular to assess
the relative merits of both traditional row-based database engines
and the modern column-oriented database engines.

1. INTRODUCTION
The GIS application field is quickly expanding. Macro structures
such as urban modeling, land use exploration, road/rail infrastruc-
ture maintenance are combined with micro structure analysis, such
as factory infrastructures, in car sensors, and historical sites. The
input for model based analysis is increasingly coming from modern
scanning technology, such as LIDAR (Light Detection and Range),
which produces huge point clouds.

Modern GIS database platforms, such as PostGIS, Oracle Spatial
and Graph, and the ESRI toolkit, contain a plethora of features to
handle anything from regular raster images up to highly complex
geometric models. However, the scale at which point clouds are
produced is hitherto an area largely unexplored in these generic
data management platforms. This applies even more to the compu-
tational requirements to distill the geometric models from the raw
point cloud data using declarative query languages.

The Netherlands eScience Center (NLeSC)1 has taken the lead to
start a few national projects to push the technology envelop by call-
ing for innovations close to the core of database management sys-
tems in the context of concrete urban and historic applications.

This work-in-progress paper sheds some light on the possibilities a
modern column store can offer and the challenges it needs to deal
with. Column stores have become the de-facto standard for man-

1http://www.esciencecenter.nl/

aging large data warehouses. All major database vendors (Oracle,
IBM, Microsoft) provide columnar extensions and some vendors
(SAP HANA) are straight column store implementations. Although
column stores have a proven track record in business analytics, their
pros- and cons- for GIS applications are not yet well understood.

Our approach centers around understanding the impact of the point
cloud data on the different layers of a Database Management Sys-
tem (DBMS). It touches key issues from (adaptive) data loading to
optimization of queries over point clouds. The preliminary results
obtained through a micro benchmark illustrate both the capabili-
ties to handle point cloud queries efficiently, but also the relative
merits of traditional index structures and compression techniques
on the performance characteristics. The results are obtained from
two easily accessible open-source database systems, MonetDB and
PostgreSQL, but are indicative on what to expect from other sys-
tems as well.

The remainder of the paper is organized as follows. Section 2 pro-
vides a short introduction about the column-store technology and
the architecture of the column-store MonetDB in particular. In Sec-
tion 3 we summarize the challenges posed by point clouds on the
DBMS. The preliminary evaluation in Section 4 shows the promis-
ing results. We conclude with an outlook in Section 5.

2. BACKGROUND
In this section we identify the major differences between column-
stores and row-stores and why they are suitable for GIS systems. At
the same time we identify the features of MonetDB, an open-source
column-store, which offer advantages in comparison to other sys-
tem in the family.

2.1 Column-stores
In the recent years we have seen the introduction of a number of
column-oriented database systems [10, 17]. For read-intensive an-
alytical processing workload, such as the ones encountered in data
warehouses, a column-store offers order-of-magnitude gains com-
pared to traditional row-store architectures.

The most relevant optimizations specific to column-oriented DBMSs
are late materialization, block iteration and column-specific com-
pression [5]. For late materialization, columns read off disk are
joined together into rows as late as possible in a query. Together
with block iteration, i.e., multiple values from a column are passed
as a block from one operator to the next, vectorized query pro-
cessing is achieved. Instead of using Volcano-style per-tuple itera-
tors as in row-stores [9], values of fixed-width are iterated through
as an array. For column-specific compression, column-stores can



take advantage of techniques, such as run-length encoding, for di-
rect operation on compressed data when using late-materialization
plans [6].

Each optimization, depending on the workload, has different per-
formance impact. With compression, when possible, column-stores
are order-of-magnitude faster than row-stores, but not in all the
cases. The block iteration optimization offers about factor of 1.5
improvement on average, while late materialization offers about
factor of 3 performance improvement in most of read-intensive an-
alytical processing workloads [7].

In addition to being a mature representative of the column-store
family, MonetDB was chosen for its specific features, such as us-
ing the operator-at-the-time paradigm, partitioned execution for ef-
ficient many-core parallelism, and in-memory secondary indexes.
Such features help MonetDB to outperform PostgreSQL on our
evaluation, Section 4.3.

2.2 MonetDB
MonetDB is a modern in-memory column-stored database system,
designed in the late 90’s with a proven track record in various fields
[8, 15] 2. Its software stack consists of three layers. The bottom
layer is formed by a library that implements a column storage ex-
ecution engine, including a rich set of highly optimized relational
operators. The middle layer provides a convenient abstraction over
the kernel libraries, and a concise programming model for plan gen-
eration and execution. The top layer consists of an SQL compiler
and data management system.

All SQL queries are translated into a parametrized version by fac-
toring out all constants. Such query templates can be re-used more
easily at the cost of better run-time optimization. Furthermore, it
exploits an operator-at-a-time execution paradigm where complete
intermediates are a by-product of every step in the query execution
plan. Full materialization benefits fast algorithms and it enables
easy re-use of intermediates among the queries [13]. Furthermore,
MonetDB exploits partitioned parallelism which offers much bet-
ter opportunities for speedup and scale up than pipeline parallelism.
By taking the large relational operators and partitioning their inputs
and outputs, it is possible to use divide-and-conquer to turn one big
query into many independent little jobs. This is an ideal situation
for speed up and scale up [11].

2.3 MonetDB’s in-memory indexes
MonetDB has an unconventional approach towards index manage-
ment. Unlike contemporary wisdom, the system itself decides what
and how to index at runtime. The rational behind this choice is the
design for memory intensive systems, where re-creation of an index
in memory is often much cheaper than maintenance of a persistent
copy on disk. The indices are maintained under update, but will not
be kept on disk.

MonetDB uses column imprints [16], a novel and powerful, yet
lightweight, cache conscious secondary index. A column imprint
is a collection of many small bit vectors, each indexing the data
points of a single cacheline. An imprint is used during query eval-
uation to limit data access, and thus minimize memory traffic. The
compression for imprints is CPU friendly and exploits the empir-
ical observation that data often exhibits local clustering or partial

2The system including our extensions can be downloaded from
http://monetdb.cwi.nl

ordering as a side effect of the construction process. Most impor-
tantly, column imprint compression remains effective and robust
even in the case of unclustered data, while other state-of-the-art so-
lutions fail. The storage overhead, when experimenting with real
world data sets, is just a few percent over the size of the columns
being indexed.

3. THE LIDAR CHALLENGE
In this section we elicit the DBMS issues raised by handling LI-
DAR data.

3.1 LIDAR data management
Airborne laser scanning technology makes it easy to collect large
amounts of point data sampling the elevation of the terrain be-
neath, as well as using stationary laser scanner devices to gather the
ground-based structures. The LAS file format has become the de-
facto standard for storing and distributing the acquired points [1].
As the sampling density of LIDAR sensors increases so does the
size of the resulting files. Typical LAS files contain millions of
points today, but soon billions will be commonplace.

The LIDAR sensors measure many variables and these vary by sen-
sor and capture process. Some data sets might contain only X, Y,
and Z values. Others will contain many more variables: X, Y, Z;
intensity and return number; red, green, and blue values; and oth-
ers. The challenge for a point cloud database management system
extension is efficiently storing this data while allowing fast access
to these variables. The complexity in handling LIDAR comes from
the need to deal with multiple variables per point.

3.2 Compressed LIDAR
Column stores excel in using various public and proprietary com-
pression schemes. The prime reason is to reduce the IO cost when
accessing large blocks on slow secondary storage or remotely over
the network. Unlike traditional systems, they either read multiple
MB in one go, exploit the opportunities of a compressed file sys-
tem or rely on the memory mapping capabilities of the underlying
operating system. Compression is also a key component in LIDAR
data management. The LIDAR data easily results in 0.5GB sized
files. An application domain compression scheme reduces LAS
files to 5-15% of their original size [2]. The LASzip compressor
is loss-less, non-progressive, streaming, order-preserving, and pro-
vides random-access.

3.3 Query workload
In our initial exploration we purposely limited ourselves to the core
of GIS applications, i.e. retrieving objects in a well-defined spatial
area. Furthermore, we do not tweak the internals of either system
beyond normal database management practices. A spatial index
structure is often required to reduce the overhead in scanning disk-
based data. However, such structures are becoming less of an issue
in the memory sizes of modern servers, which easily reach >1TB
of RAM. More coarse grain index structures and exploitation of the
tens of processor cores are to be called for.

4. PRELIMINARY EVALUATION
In this section we report on our preliminary experiments using the
latest MonetDB software release (Jan2014) and PostgreSQL 9.3.2
/ PostGIS 2.1.1 with PointCloud 1.0 extension [3]. Both systems
support the GEOS 3.4.2 library and use LASzip 2.1.0 for loading.
The hardware configuration is a HP DL380p Gen8 server (2 x 8-
core Intel Xeon processors, E5-2690 at 2.9 GHz, 128 GB main



memory) and RHEL 6 operating system. The storage system used
in the experiments is comprised of 88 TB SATA 7200 rpm in RAID
6 configuration.

4.1 Database loading
A hindrance for large scale adoption of database management sys-
tems in handling point clouds is the time it takes to bulk-load the
data into the proprietary database structures. Often this comes with
a size explosion, because the systems are generally poor in handling
compressed data files.

Unfortunately, most database systems still require a decompression
step and bulk loading operation before they can access the data it-
self. MonetDB is no exception to this rule at this moment, although
good progress in adaptive loading is underway [12]. PostgreSQL
uses an external tool called PDAL (see http://www.pdal.io) to load
the point cloud data into the database. The specially designed
point cloud module retains part of the compression opportunities
by blocking large number of points in chunks.

The first experiment sheds some light on the scope of the problem.
We acquired from our companion project 3 a sample of the Dutch
elevation map, called the Algemene Hoogtekaart Nederland [4].
This data set can be freely used for experimentation. We considered
several sizes where each data set includes the previous one:

Data set Points LAZ files Disk size
20M 20,165,862 1 37 MB

210M 210,631,597 17 366MB
2201M 2,201,135,689 153 3310 MB

23090M 23,090,482,455 1492 35673 MB

Table 1: Data sets description

In this test we compare MonetDB using a flat table with the point
cloud solution of PostgreSQL which is based on grouping the points
in blocks. For the latter we used 3000 points per block and dimen-
sional compression (see [3] for details on the used compression).
In table 2 we show the loading details for the different databases
and data sets.

DB Data set Time[s] Size [MB]
Total Index

MonetDB 20M 78.77 517 56
MonetDB 210M 809.70 4956 136
MonetDB 2201M 8378.05 50838 459
MonetDB 23090M 88395.00 545177 16678
PostgreSQL 20M 82.76 102 1
PostgreSQL 210M 857.15 1012 5
PostgreSQL 2201M 8452.95 10268 52
PostgreSQL 23090M 125797.82 106422 561

Table 2: Data loading performance for LAZ files

The times of MonetDB and PostgreSQL are similar and they scale
well in the file sizes. In MonetDB the dominant part of loading
stems from the conversion of the LAZ files into CSV format, i.e.
around 15 sec for 20MB, and the subsequent parsing of the CSV
records by the database engine. On the other hand PostgreSQL
uses the PDAL tool to directly read from LAS/LAZ files. It also
illustrates the effectiveness of the PostgreSQL PointCloud block-
based storage structure, which achieves a factor of 5 compression
over the fully exploded storage structure of MonetDB. A secondary

3Massive Point Clouds for eSciences (see http://pointclouds.nl)

index is created by MonetDB the first time it encounters a query.
It uses the imprint indexing scheme, which comes with a 5-12%
storage overhead.

In addition we tested PostgreSQL using a flat table with and with-
out the spatial functionality provided by PostGIS. However, we de-
cided to skip them for this comparison because the loading times
and the required storage were much higher than the solutions that
we present here. Concretely, the loading times were up to ten times
higher than the other solutions and the storage requirements were
up to five times larger than the requirements of MonetDB.

4.2 Database querying
To assess the state of the art in using (open-source) DBMS as a
geo-spatial filtering device, we ran a micro benchmark of just four
SQL queries against the height map of the Netherlands:

Q1:Small rectangle, axis aligned, 51 x 53 m
Q2:Large rectangle, axis aligned, 222 x 223 m
Q3:Small circle at (85365 446594), radius 20 m
Q4:Large circle at (85759 447028), radius 115 m

Table 3 shows the SQL phrasing for these straightforward queries.
We purposely assembled the result set as a table at the server side to
get a glimpse on their internal performance behavior. Sending the
result set to the client merely blurs the picture with additional IO. In
PostgreSQL the different queries are defined as Well-Known-Text
(WKT) and they are loaded in a table as PostGIS geometry types.

MonetDB Rectangle
CREATE TABLE results (x DOUBLE, y DOUBLE, z DOUBLE);
INSERT INTO results SELECT * FROM flat WHERE
x between [x0] and [x1] and y between [y0] and [y1];

MonetDB Circle
CREATE TABLE results (x DOUBLE, y DOUBLE, z DOUBLE);
INSERT INTO results SELECT * FROM (SELECT * FROM flat
WHERE (x between [cx]-[r] and [cx]+[r])
AND (y between [cy]-[r] and [cy]+[r])) a

WHERE power(x-[cx],2) + power(y-[cy],2)<power([r],2);
PostgreSQL Rectangle - Circle
CREATE TABLE results AS (SELECT PC_GET(qpoint,’x’) as x,
PC_GET(qpoint,’y’) as y, PC_GET(qpoint,’z’) as z FROM (
SELECT PC_EXPLODE(PC_INTERSECTION(pa,geom)) as qpoint
FROM patches,qpolygons WHERE PC_INTERSECTS(pa,geom)

and qpolygons.id=[qid]) as qtable);

Table 3: SQL phrases for the different databases and queries

The results of these experiments are shown in Table 4. The dif-
ference in the number of points in the circles is due to a polygon
approximation used in PostgreSQL.

Each query is ran twice, i.e., in a cold state (Run 1) and a warm
database state (Run 2). During the first query of the first run, Mon-
etDB takes the time to built an imprint index, which is subsequently
used in any filter operation against the table. The current imple-
mentation creates an imprint for individual columns, which is sub-
optimal for spatial search where range conditions on 2 and 3 di-
mensions are often used. The 23090M run for MonetDB illustrates
a situation when the system fails to create the imprints index and
falls back to a linear scan.

During a warm run, the in-memory imprint structure in MonetDB
has been created and the PostgreSQL buffers are partly filled. For
MonetDB we used its SQL trace option to gain insight into the



DB Data set Run Number of points
Q1 Q2 Q3 Q4

MonetDB * * 74872 718021 34691 563037
PostgreSQL * * 74872 718021 34667 563014

Time[s]
MonetDB 20M 1 6.11 0.24 0.11 0.27
MonetDB 20M 2 0.04 0.08 0.05 0.12
MonetDB 210M 1 34.88 0.44 0.36 0.41
MonetDB 210M 2 0.14 0.23 0.15 0.26
MonetDB 2201M 1 201.77 1.26 0.89 1.23
MonetDB 2201M 2 0.67 0.71 0.60 0.81
MonetDB 23090M 1 10.41 7.60 5.37 5.74
MonetDB 23090M 2 5.17 5.18 5.22 5.42
PostgreSQL 20M 1 0.84 7.24 0.44 17.07
PostgreSQL 20M 2 0.82 7.19 0.44 16.98
PostgreSQL 210M 1 0.83 7.06 0.44 16.89
PostgreSQL 210M 2 0.82 7.18 0.46 16.99
PostgreSQL 2201M 1 0.86 6.72 0.47 16.87
PostgreSQL 2201M 2 0.82 7.13 0.46 16.82
PostgreSQL 23090M 1 1.21 6.99 0.63 18.24
PostgreSQL 23090M 2 0.86 7.22 0.52 17.92

Table 4: Query results for cold- and hot- runs

cost factors of the query components. An immediate observation
is that MonetDB effectively uses all cores in scanning the LIDAR
columns. The PostgreSQL figures indicate that such parallel scans
can be an attractive alternative performance-wise.

While PostgreSQL presents constant query times, in MonetDB we
observe much faster query times for the smaller data sets and in-
creasing query costs for larger sets that can be fully attributed to
scanning a large portion of the imprint index. We foresee multi-
column imprint structures as an important direction for improve-
ment. The experimentation platform is large enough to even ac-
commodate the 2201M point cloud challenge but for very large
data sets (like 23090M) the query performance in MonetDB de-
creases considerably. Therefore, for such data sets, alternative stor-
age structures like the blocking approach used by PostgreSQL, should
be investigated since they offer more stable query responses.

4.3 Conclusion
From the results above, even though some effort is still required
to deal with its current limitations, MonetDB can be considered
more modern than PostgreSQL, because it is designed from an in-
memory perspective and relies on the operating system to move
data between the storage hierarchies in an efficient manner. All
queries are also highly parallel, using the cores available wherever
possible. On the contrary, PostgreSQL represents the traditional
buffer-based and iterator query engine approach. Tuning the buffer
size to use all available memory by itself does not help because the
logic of chasing data in buffers remains. Furthermore, PostgreSQL
does not by default support multi-core query processing.

5. SUMMARY AND OUTLOOK
In this paper we have identified column stores as a viable alternative
for point cloud data management. The initial experiments against a
well-known open-source column-store, MonetDB, show that out of
the box performance is competitive to PostgreSQL with the point-
cloud module. The in-memory parallel scans using a single dimen-
sion indexing scheme seems effective, re-iterating the experience
that fast scans in memory are a viable alternative to the well-known
spatial access methods. It does not require special steps during data
bulk loading, nor parameter tuning by the database administrator.

However, much more leverage can be expected from column store
technology. A good example are two on going projects, DataVault
and SciQL, which extend MonetDB with new data analysis features
in other sciences.

• DataVault [12] is an ongoing project to automate efficient
access to foreign file repositories in MonetDB. It has already
shown its capabilities in handling FITS (astronomy), MSEED
(seismology) and NetCDF (meteorology) file formats. The
technology is well suited to be expanded to directly work
with LAZ files on a need to know basis for individual queries.

• SciQL [14] is an ongoing project to improve database query
expressiveness using ARRAYS as first class citizens. Its pro-
totype implementation has shown its capabilities in e.g. re-
mote sensing, where large regular grids of satellite images
are analyzed.

Within the NLeSC projects Massive Point Clouds for e-Sciences
and Big Data Analytics in the Geo-spatial Domain we will further
deepen our understanding of the potentials of several GIS database
management systems. The ultimate goal is to be able to directly
query the 640B points comprising the ’flat’ Netherlands at a 5 cm
height precision and density of 10 points/m2.
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