
Hack your DSL with Rascal: Exercises
Tijs van der Storm, Pablo Inostroza Valdera, CWI

Part I
Before starting coding, make sure you have opened a Rascal console associated with the project
RascalQLTutorial (right-click on any Rascal file in the project and select 'Start console'). Then, in the console,
do:

import exercises::ImportThis;
import exercises::Snippets;
past statements from exercises/Snippets.rsc and see what happens.

The exercises can be complete by directly editing exercises/Part1.rsc and exercises/Part2.rsc.

0. FizzBuzz
(See http://c2.com/cgi/wiki?FizzBuzzTest)

Write a program that prints the numbers from 1 to 100. But for multiples of three print “Fizz” instead of the number
and for the multiples of five print “Buzz”. For numbers which are multiples of both three and five print "FizzBuzz".

Tips

[1..101] gives the list [1,2,3,...,100]
use println to print.

1. Adding unless
Add an unless statement which is to be used similar to ifThen statements:

unless (x > 1) { "What is your age?" age: int }

add a production to Question in QL.rsc
add a constructor to Question in AST.rsc
add a tc rule to the type checker in Check.rsc
add a normalize rule to the normalize in Normalize.rsc (NB: the semantics of unless(e, s) is equivalent
to if(not(e), s))

http://c2.com/cgi/wiki?FizzBuzzTest

Check in the IDE that the type checker indeed signals errors in unless conditions and bodies, and that its conditions
appear in the outliner.

Tip

implement unless analogous to ifThen in all cases

Optional Exercises

a. change the typechecker so that a warning is issued in the case of ifThen(not(_), ...) .
b. fix the outliner (Outline.rsc) so that unless conditions appears in the outline.
c. fix the formatter (Format.rsc)to pretty print unless .

2. Date valued questions
Add support for date valued questions:

add syntax to QType to allow date fields (Lexical.rsc)
add new QType constructor for date types (AST.rsc)
add new case to type2widget in Compile.rsc to generate DateValueWidgets (see
resources/js/framework/value-widgets.js)

3. Conditional expressions
Add conditional expression x ? y : z

add production to Expr (QL.rsc)
Make sure it's low in the priority hierarchy i.e. x && y ? a : b should be parsed as (x && y)
? a : b .

add new Expr constructor in AST.rsc
add new case to typeOf in TypeOf.rsc
add new case to tc in CheckExpr.rsc
add new case to expr2js in Expr2JS.rsc

Part II

4. Explicit desugaring of unless to ifThen using visitvisit

Warm up

I. use visit print out all labels in a form
II. use visit count all questions (question/computed)

Explicit desugaring of unless :

use visit to traverse and rewrite the Form

use pattern matching to match on unless nodes.
rewrite unless nodes to ifThen using =>

The desugar function is called before compilation so the compiler (Compile.rsc) does not have to be changed to
support unless , even if no normalize() was used.

Tip

See examples of visit in Resolve.rsc and Outline.rsc

Optional

a. add unlessElse , and desugar it to ifThenElse .
b. write a transformation using visit to simplify algebraic expressions (e.g., 1 * x , 0 + x , true &&

x , false && x , etc.).

5. Extract data dependencies
Warm up

I. use deep matching (using /) to find all variables (Id) in a form.
II. use deep match to find all question with label value (within the quotes) equal to name; make sure there are

such labels in your test code.

A computed question is dependent on the questions it refers to in its expression. Such dependencies can be
represented as a binary relation (a set of tuples). The goal of this exercise is to extract such a relation.

use the Node and Deps types and nodeFor function shown in (Dependencies.rsc)
visit the form, and when encountering a computed question record edges to the Deps graph to record a
data dependency.
use deep match (/) to find Id s in expressions

Tips

check out examples of deep match in Compile.rsc and Check.rsc
have a look at controlDeps , defined in (Dependencies.rsc) for inspiration
use the function visualize(Deps) (Visualize.rsc) to visualize the result of your data dependency graph.
Click on nodes to see the location they correspond to.

