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In this contribution we survey recent research at CWI on step-by-step methods for solving initial value 
problems (IVPs) on parallel computers. More general surveys of parallel IVP solvers are given in [5,17,18]. The 
present paper is organized according to the following sections and subsections: 1. nonstiff problems, 1.1. 
explicit block methods, 1.2. predictor-corrector iteration, 1.2.1. Runge-Kutta correctors, 1.3. Richardson 
extrapolation; 2. stiff problems, 2.1. diagonally implicit block methods, 2.2. diagonally implicit iteration, 2.2.1. 
Runge-Kutta correctors, 2.3. Richardson extrapolation. 
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1. NonstifT problems 

The methods surveyed in this section are explicit step-by step methods for nonstiff first-order 
IVPs: 

dy 
- =f(y) 
dt ' 

y(to) =Yo· ( 1.1) 

We shall consider three techniques for constructing methods that are suitable for use on 
parallel computers, viz. (i) block-by-block calculations, (ii) predictor-corrector iteration (PC 
iteration), and (iii) Richardson extrapolation. In the terminology introduced by Gear, these 
techniques result into parallel methods in which the parallelism is called parallelism across the 
method. Methods possessing this form of parallelism can already profit from parallel architec
tures in the case of scalar IVPs. Alternative parallel techniques based on parallelism across 
time and across space (including waveform relaxation) are discussed in [1-3,11,12] where 
further references can be found. 

In order to demonstrate more clearly that the methods of this section do possess the 
property of method parallelism, we shall describe the various methods for scalar IVPs. We 
remark that the methods discussed below can also be applied (with appropriate changes) to 
second-order IVPs without first derivatives. For example, an analysis of parallel Runge-Kutta
Nystrom PC methods can be found in Sommeijer [27]. 
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1.1. Explicit block methods 

Let (l.1) be a scalar IVP and let us define the k-dimensional vector 

(1.2) 

where Yn c denotes a numerical approximation to the exact solution value y(tn+c). A rather 
wide class of explicit methods for solving the IVP (1.1) is given by the block method 

n = 0, 1, 2, ... , ( 1.3) 

where A and B are k X k matrices, e k is the k th unit vector, and where for any given vector 
v = (v), f(v) denotes the vector with entries f(v). Given the initial vector Y0 , (1.3) completely 
determines a sequence of numerical approximations to the exact solution values at the step 
points tn, n ~ 1. Thus, in general, methods of the form (1.3) require k starting values. 

Since the k components of the vectors Y,, + 1 can be computed in parallel (provided that k 
processors are available), the computational time (wall-clock time) needed for one step of (1.3) 
is roughly equal to the time required to evaluate one right-hand side function on a sequential 
computer. In the following, we mean by "sequential costs per step" the computational time 
required per step if k processors are available, and an explicit method is said to have a* 
sequential stages if the computation time required for evaluating all right-hand sides in one step 
is about a* times the computation time required for evaluating one right-hand side evaluation. 
We always assume that we have k processors at our disposal. 

Many (explicit) methods from the literature can be cast into the form (1.3). Table 1 lists 
examples of explicit block methods together with the required number of starting values k, 
their order p at the step points, the block vector c, the number of processors P needed to 
reduce the sequential costs to just a single f-evaluation per step (i.e., a* = 1 ), and the real and 
imaginary stability boundaries f3real and f3imag (cf. [28]). If S denotes the (theoretical) speed-up 
factor if the computation times on one and P processors are compared, then all methods of 
Table 1 have P = S. Notice that the number of processors needed for implementing ( 1.3) is 
often less than k. 

fable I 
Explicit stable block methods of the form (1.3) 

References k p c T P=S f3 real f3imag 

Two-step Adams-Bashforth 2 2 (0, 1) 1 1.00 Cl.00 
Mirankcr-Liniger [22] 2 2 (2, 1) 2 0.59 0.60 
Van dcr Houwen-Sommeijer 

[33, method (4.1)] 2 3 (5 /3, 1) 2 0.64 0.65 

Three-step Adams-Bashforth 3 3 ( - 1, 0, 1) 1 0.55 0.72 
Van der Houwen-Sommeijer 

[33, method (4.7)] 3 4 (0, 17 /10, !) 2 0.53 0.05 

Four-step Adams-Bash forth 4 4 ( - 2, -1, 0, 1) 1 0.30 0.43 
Mirankcr-Liniger [22] 4 4 ( - 1, 0, 2, 1) 2 0.50 0.04 
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1.2. Predictor-corrector iteration 

Consider implicit block methods of the form 

Yn+ I =AYn + hBf(Yn) + hCf(Yn+ 1), n = 0, 1, 2, ... ' (1.4) 

where A, B, and C are k X k matrices, and Yn is defined as before. A large number of 
methods, including Runge-Kutta (RK) methods and linear multistep methods, can be rewritten 
in this form (in fact, (1.4) fits into the class of the general linear methods introduced by Butcher, 
see [6]). If (1.4) is equivalent with an RK method, then we shall call (1.4) a block method of RK 
type. 

The most simple method for solving equation (1.4) is PC iteration (or fixed-point iteration): 

yUJ = yU- I> - [ yU- IJ -AYn - hBf(Yn) - hCf(YU- I>)], j = l, 2, ... , m, 

Y := y<m) 
n +I ' 

(1.5) 

where y<0J is an initial approximation to the exact solution of the corrector (1.4) to be provided 
by some predictor formula (in order to avoid confusion, we denote from now on the exact 
solution of the corrector (1.4) by Un+ 1). Assuming that the predictor formula is explicit, we 
obtain an explicit step-by-step method for approximating the exact solution at the step points 
tn+i· Predictors of the form (1.3) can be used, provided that the PC pair {(1.3), (1.4)} employ 
identical block point vectors c. 

The k components of the vectors yw can be computed in parallel, so that the computational 
time (wall-clock time) needed for one iteration of (1.5) roughly equals the time required tc 
evaluate one right-hand side function on a sequential computer. Hence, given the initial 
prediction y«», the sequential costs of ( 1.5) per integration step are m + 1 sequential right-hand 
side evaluations originating from the evaluation of f(Yn) and f(yU- 1l), j = 1, 2, ... , m. To 
these m + 1 sequential corrector stages one should add the sequential predictor stages required 
by the predictor. If (1.3) is used as a predictor, then no additional stages are required because 
f(Yn) is both predictor and corrector stage. Hence, the PC pair {(1.3), (1.4)} has u* =m + 1. 

A rigorous convergence analysis of a general class of PC iteration methods, including the 
iteration ( 1.5), may be found in Burrage [5] and in Jackson and N0rsett [17]. However, a first 
indication of the rate of convergence of PC methods can be obtained by considering the 
recursion 

yUl - Un+I =hC[f(Y(j-I)) -f(Un+1)] 

:::::z[y<J-l)_Un+i], Z==hAC, (1.6) 

where ).. denotes an approximation to the derivative af ;ay at Yn (we remark that in the case of 
~ystems of OD Es, ).. should be understood to run through the spectrum of the Jacobian a f ;a y). 
This recursion shows that each iteration reduces the iteration error by a factor of O(h). 
Therefore, one usually chooses PC pairs in which the order of the predictor is not much less 
than that of the corrector so that the order of the corrector is attained within a few iterations. 
Table 2 is the analogue of Table 1 for PC methods with a single iteration (PECE methods with 
u* = 2). 

This table shows that, for a given number of starting values, increasing the order of accuracy 
reduces the size of the stability regions. 
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Table 2 
Stable PECE methods of the form ( 1.5) 

References k p CT P=S f3 real f3imag 

Two-step Adams-Bashforth-Moulton 2 3 (0, 1) 1 2.40 1.20 
Van der Houwen-Sommeijer 

[33, method {(4.3), (4.6))] 2 4 0+1;/5, 1> 2 0.12 0.11 

Three-step Adams-Bash forth- Moulton 3 4 (-1,0,1) 1 1.93 1.18 
Donelson-Hansen [10, Table 2] 3 6 0/3, 2/3, 1) 3 
Van der Houwen-Sommeijer 

[33, method {(4.12), (4.13)}] 3 6 (0, 4, 1) 2 1.77 0.58 

Chu-Hamilton [8, method {(2.7), (2.9))] 4 3 0/4, 1/2, 3/4, 1) 2 4.98 
Shampine-Watts-Worland [26, 39] 4 4 (-1/2, 0, 1/2, 1) 2 0.88 1.16 
Chu-Hamilton [8, method {(2.11), (2.13)}] 4 4 (1/4, 1/2, 3/4, 1) 2 3.34 
Four-step Adams-Bashforth-Moulton 4 5 (-2, -1,0, 1) 1 1.41 0.92 
Donelson-Hansen [10, Table 2] 4 8 0/4, 1/2, 3/4, 1) 4 
Van der Houwen-Sommeijer 

[33, method {(4.14), (4.15)}] 4 8 ( -1, 0, 5 /2, 1) 2 0.30 0.14 

A possible approach for improving the stability region starts with correctors with a large 
stability region which is then sufficiently often iterated to obtain more or less the corrector 
solution. In order to achieve that (1.6) converges rapidly to the corrector solution, some norm 
of the iteration matrix Z should be small. Taking the spectral radius of Z, i.e. p(Z) = h I A I p(C), 
as a measure for the rate of convergence, we are led to find correctors with small p(C) 
possessing large stability regions. For example, in [27] we find the block 6-method of order k: 

Yn+i = Yn + (1- 6)hBf(Y,,) + 6hBf(Yn+ 1), 0 < 6 ~ 1, 

CT := (ljk, 2/k, .. ., 1), 
(1.7) 

where B has all its eigenvalues at 1, and whose linear stability region is identical with that of 
the conventional 6-method. Since p(C) = 0, convergence is improved if 6 is decreased. A 
second example is the iteration of highly stable RK-type block methods (see Section 1.2.1). 

A generalization of the PC iteration (1.5) is based on the widely used technique of 
preconditioning (or smoothing) of the residual term in (1.5), that is, the premultiplication of the 
term in square brackets by a k-by-k preconditioning matrix P (possibly depending on j). This 
leads to 

yrn_un+i=z[yU-ll_Un+i], Z:=l-P+hAPC. (1.6') 

Let us choose P such that P =I+ hPCn, where [l is a k X k matrix with bounded elements. 
Then 

z = hPC(AI - n), P :=(I- hcnr 1, 

so that each iteration reduces the magnitude of the iteration error by h. Ideally, the matrix {}, 
should be chosen such that p(Z) is minimized on the spectrum of a/ ;ay. A perhaps more 
practical approach is to compute the dominant value of A during the iteration in one step and 
to choose [l in the next step such that its eigenvalues coincide with this dominant A-value. 
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Another possibility allows P (and therefore f2 and Z) to depend on j and sets f21 = w/, with 
w; scalar. Then we can write p(CTZ) in the factorized form 

p(OZ;) =I Pm( A) I hmp( C"'O(I- w1hcr 1), Pm(A) == D(A - w;)· 

In first approximation (i.e., for w;h small), this leads to a minimax problem for the polynomial 
Pm(A) which can be solved in terms of shifted Chebyshev polynomials and which leads to 
explicit expressions for the parameters w; (see Manteuffel [21]). Notice that the introduction of 
P1 hardly increases the computational costs of the iteration scheme. 

1.2.1. Runge-Kutta correctors 
Of particular interest is the case where the corrector (1.4) is a block method of RK type. We 

shall call such R.K-based PC methods PIRK methods (parallel iterated RK methods). The idea 
of PC iteration of implicit RK methods (IRK methods) to exploit parallelism goes back to 
N0rsett and Simonsen [24] and Jackson and N0rsett [16] and was elaborated in [15,17-19,30]. 

Here, we shall restrict our considerations to PlRK methods without preconditioning and we 
shall use the "last step value predictor" 

y(O) =ye 
11 • ( 1.8) 

For s-stage RK correctors this PIRK method is itself an (explicit) RK method with s * =ms + I 
stages, but with only er* = m + 1 sequential stages. It can be proved (sec Jackson and N0rsctt 
[16-18]) that the (global) order of Yn+ 1 equals p* == min{p, m + l}. Thus, we have the 
theorem: 

Theorem l.l. Let ( 1.4) define an s-stage RK method of order p. Then the PIRK method {( 1.5), 
( 1.8)} represents an (ms+ 1)-stage explicit RK method of order p * == min{ p, m + 1} requiring 
<r * = m + I sequential stages. 

The observation that explicit RK methods of order p * require at least p * sequential stages 
per step point (see Iser Jes and N0rsett [ 15]) justifies the following definition: 

Definition. An explicit RK method is said to be optimal on k processors if its order equals the 
number of sequential stages per step point on k processors. 

In NQ>rsctt and Simonsen [24] the question was posed whether it is possible to find optimal 
RK methods of any order p *. Setting m = p - 1, it follows from Theorem 1.1 that this question 
can be answered in the affirmative: any pth-order RK method of the form ( 1.4) generates an 
optimal RK method of the form {(1.5), (1.8)}. 

The next question is to find the least number of processors needed to implement an optimal 
explicit RK method of given order p. For example, the fifth-order, six-stage RK method of 
Butcher mentioned in [24] is an example of such a "minimal processor" method: it can be 
implemented on two processors requiring only five sequential stages. So far, the question of 
least number of necessary processors is not yet answered. However, we can immediately deduce 
a lower bound for the number of processors needed to implement optimal RK methods of the 
form {(1.5), (1.8)}: it is well known that, within the class of RK methods, those of Gauss-
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Legendre type require the least number of stages to obtain a given order; to be more precise, 
s-stage Gauss-Legendre methods have order p = 2s. Hence, we have the following theorem 
[30]: 

Theorem 1.2. The PIRK method {(1.5), (1.8)} with m = p - 1, generated by the pth-order Gauss
Legendre method with s = p/2 stages (p even) or by the pth-order Radau /JA method with 
s = (p + 1)/2 stages (p odd), is an explicit Runge-Kutta method of order p* = p with s* = ps - s 
+ 1 stages, which is optimal on l(p* + 1)/21 processors. 

1.2. Richardson extrapolation 

Many times it has been remarked that extrapolation methods possess a high degree of 
parallelism and offer an extremely simple technique for generating high-order methods (cf., e.g. 
Deuflhard [9]). Here, we describe the use of extrapolation for the construction of optimal RK 
methods. 

It will be assumed that we are given a method of order p for integrating (1.1) from t 0 until 
t 1 := t 0 + H with stepsize h. The numerical approximation to the exact solution value y(t0 + H) 
will be denoted by y(t0 + H, h). The method producing this approximation will be called the 
generating method and y(t0 + H, h) will be called the generating function. Let the generating 
function possess an asymptotic expansion in powers of hq, where q = 2 if the method providing 
the values y(t0 + H, h) is a symmetric method and q = 1 otherwise. Using the harmonic 
Romberg sequence {1, 2, 3,. .. }, the first step of the corresponding r-point extrapolation 
method is defined by (see e.g. [13]) 

y t = t c; y (to + H' h_o ) ' t c; = 1, 
i= I l i=J 

r C· 
~ ~=0 
1... ·1 ' 
i= I l (1.9) 

j = p, p + q,. .. , p + (r - 2)q. 

Evidently, y 1 approximates y(t) at the point t 1 = t0 +H. Having computed y 1, we can perform 
a second step by using y 1 as the new initial value at t 1, etc. The quantities h 0 and Hare called 
the inter.nal and basic stepsizes, respectively. If H is fixed (for example, H is the whole 
integration interval), then (1.9) is said to define a global extrapolation process. If H is a 
function of h 0 (for example, H = h0 ), then (1.9) is said to define a local extrapolation process. 

It is clear that the computation of the various terms in the formula (1.9) for y 1 can be 
performed in parallel. Assuming that the computational effort for computing y(t0 + H, h 0 /i) is 
proportional to i, we are led to compute y(t0 + H, h0/r) on the first processor, y(t0 + H, h 0 ) 

and y(t0 + H, h 0/(r - 1)) on the second processor, etc. In this way the number of processors is 
minimized and given by l(r + 2)/2J. 

The following theorem holds for the extrapolated method (1.9) (see e.g. [13]): 

Theorem 1.3. Let the generating method providing the values y(t0 + H, h0/i) be of order p, then 
the extrapolation method defined by (1.9) has order p* = p + (r - l)q. 
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Let us consider the case where the function y(t0 + H, h) is defined by the midpoint rule: 

YI = y 0 + hf ( y 0)' 

}j = 1'J-2 + 2hf(}}-1), 

Y ( t 0 + H, h) = Ym 

j=2, 3, ... ,m, m=H/h, (1.10) 

and let us apply local Richardson extrapolation with H = 2h 0• Then the following theorem 
holds [31]: 

Theorem 1.4. The Richardson-midpoint method {(1.9), (1.10)} with H = 2h 0 is an explicit 
Runge-Kutta method of order p* = 2r with s* = r 2 + 1 stages per step of length H, which is 
optimal on l(p* + 4)/4J processors. 

A comparison with Theorem 1.2 reveals that for p * > 5 the Richardson-midpoint method 
requires less processors to be optimal than the Gauss-Legendre-based PIRK methods. For 
example, an optimal RK method of order ten requires only three processors when using 
Richardson extrapolation of (1.10) and five processors when using PC iteration of the tenth
order Gauss-Legendre method. 

2. Stiff problems 

In this section we shall consider parallel step-by-step methods that are suitable for integrat
ing stiff first-order IVPs. Such methods are necessarily implicit. However, all methods 
discussed below require the solution of systems whose dimension does not exceed the dimen
sion of the IVP. The methods are respectively based on (i) diagonally implicit block-by-block 
calculations, (ii) diagonally implicit iteration of (1.4), and (iii) local Richardson extrapolation of 
the implicit Euler method and of the trapezoidal rule. For similar methods for integrating 
special second-order IVPs, we refer to [36,37]. 

2.1. Diagonally implicit block methods 

We shall call the method a diagonally implicit block method (DIB method) if C = D, where 
D is a diagonal matrix. On parallel processors, DIB methods require the same sequential costs 
as required by the celebrated backward differentiation formulas (BDFs). 

The particular family of DIB methods of RK type is identical with the family of "strictly 
diagonal" IRK methods studied by Jackson and N(l)rsett [17]. They proved that this family 
contains only methods of order at most two (for linear problems, the order can be raised to 
s + 1, s being the number of stages of the IRK method). However, in the class of general DIB 
methods we can find methods of higher order and with (linear) stability regions that are 
considerably larger than those of the higher-order BDFs. In order to characterize the stability 
region we use the stability definition: 

Definition. A method is said to be A(a, {3, y )-stable if 
(i) its region of stability contains the infinite wedge {z: -a< 'IT - arg(z) <a}, 0 <a~ TI/2, 

and all points in the nonpositive halfplane with I z I > {3; 
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Tabk 3 
Values of er, {3. y. and 8 for the BDFs and for DIB methods 

Method c' Order p er (3 'Y 8 

BDF1 (-1,0. II 3 88.4° 1.94 1.046 0 

DIB 1 (21 I to. I) 3 90° 0 0 0.94 

BDF4 ( - 2. - I, 0, I ) 4 73.2° 4.72 0.191 0 

DIB4 (5. 13/4. I) 4 900 0 0 0.92 

DIB4 (3, 5, I) 4 90° 0 0 0.37 

BDF5 ( - 3, - 2, - I. (), I) 5 51.8° 9.94 1.379 0 

DIB5 (-2.747, -2.122, I) 5 > 89.9° 0.16 1.0000026 0.993 

DIB5 (1.6153, 4.7871, I) 5 > 89.9° 0.30 1.000069 0.89 

(ii) 'Y is the maximum value of the spectral radius of M( z) == (I - zC)- 1( A + zB) when z 
runs through the region of instability lying in the nonpositive halfplane. 

Table 3 compares the values a, {3, ')', and 5 == p(M( -oo)) of the BDFs and of a few DIB 
methods derived in [29]. 

Iserles and N0rsett [15] and Jackson and N0rsett [17] have generalized DIB methods by 
replacing the entries of C by (possibly rectangular) matrices and by requiring the matrices 
appearing on the diagonal to be (square) diagonal matrices. For RK-type methods they derived 
a number of order results and derived examples of parallel methods with good stability 
properties. 

2.2. Diagonally implicit iteration 

In this section, the PC iteration ( 1.5) is replaced by the diagonally implicit iteration scheme 

yui - hDf(f<il) = yu-l> _ hDf(Yu-1>) 

-[r(j-l)_AY,,-hBf(Y,,)-hCf(Y(j-I))], j=I, 2, ... ,m, (2.1) 

y ==Ytm> n+ I ' Yn+.1 ==e[Y,,+l• 

where D is a diagonal matrix with positive entries. Evidently, by virtue of the diagonal structure 
of D, the method (2.1) is highly parallel, because in each iteration the k components of the 
iterate yui can be computed concurrently. It will be assumed that the (components of the) 
iterates are computed by one or more iterations in a modified Newton process. This Newton 
iteration process will be called inner iteration and the iteration process (2.1) with iteration 
index j will be called outer iteration. As in the case of PC iteration, predictors of the form (1.3) 
can be used, provided that their block points equal those of the corrector. However, as the 
iteration scheme is itself implicit, one may also consider implicit predictors. We shall say that 
the method has a* sequential (diagonally implicit) stages per step if in that step a* sequential 
implicit relations are to be solved. 

As in the case of PC iteration, one may again apply residual conditioning by inserting a 
matrix P in front of the residual term (in square brackets) occurring in (2.1). An alternative 
modification of (2.1) was suggested by Butcher [7]. In the notation used here, this modification 

1 

v 
~ 

v 
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inserts a k X k matrix Q in front of those vectors yU> and yu- 1> that appear outside the 
residual term. A combination of preconditioning and the Butcher modification seems to be an 
efficient approach for accelerating the convergence of diagonal iteration. The corresponding 
iteration scheme reads 

yU> = Q- 1x<n )0 = 1 2 rn ' ' , .... , ' 
xu> _ hDf(X(j)) =x0 - 1> -hDf(xu-1)) 

-P[Q- 1xu-ii -AYn -hBf(Yn) -hCf(Q- 1xu- 1>)] (2.1') 

Y := y<m) n+ I ' y n + I := er fn + I · 

Notice that in the case of PC iteration (i.e., D = 0), the Butcher modification reduces to 
preconditioning of the residual by Q- 1P. The analogue of the error recursion (1.6') is given by 

yu>_ un+1 ==z[yu-1i_ un+1], 

z := Q- I [I - hD A] - I [ Q - p + h (PC - DQ) A] . 

The choice Q - P = h(DQ - PC)[l is of particular interest and leads to 

Z = Q- 1hAD(I-hA.D)- 1(D- 1PC- Q)(I-A. - 1n), 

P == (Q -hDQD)(I -hear 1, 

where the matrices D, a, and Q are still free. Assuming that the diagonal entries of D are 
positive, we find 

di hA.I 
11 z 11 ~ n h, A), (( h, A.) := 11 Q- 1 11 II D- 1 Pc - Q 11 III - A. - 1 n 11 1 + d 

1 
hA 

1 
, 

where d is the maximal diagonal entry of D. 

2.2.1. Runge-Kutta correctors 
So far, we only investigated diagonal iteration of the form (2.1) using correctors of RK type. 

In order to be compatible with the notation used in earlier papers on this topic, we shall change 
to the familiar notation adopted for RK methods, that is, the corrector (1.4) and the step point 
formula in (1.3) are written in the form 

Y= Yne + Mf(Y), Yn+1 = Yn + hbTf(Y), 

and the method (2.1) assumes the form 

yU>-hDf(YU>) =yne +h(A-D)f(YU- 1>), j= 1, 2, ... ,m, (2.2) 

(2.3) 

For stiff problems, the right-hand side evaluations in the step point formula (2.3) may give 
rise to instabilities and, consequently, the accuracy may be reduced considerably (cf. [25]). 
However, if the underlying corrector in (2.2) is stiffly accurate, that is b TA - I = e '[ (e s denoting 
the sth unit vector and s being the number of stages of the corrector), then one may replace 
the step point formula by the "last component" formula 

_ Ty(m) 
Yn+I -es ' (2.4) 

11 
1 
I 
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Table 4 
Stability results for PDIRK methods 

Predictor (2.5) Type Corrector p*=p o-*=m+l Stability 

B = D = diag(Ae - Ce), I Radau IIA p p-2 Finite stability region 
BAe = A 2e II Radau IIA 3 2 A-stable 

Radau IIA 5 4 A(a)-stable, a= 89.997° 
Radau IIA 7 6 A(a)-stable, a= 89.95° 

B = D = diag(Ae), I Radau IIA 3 2 Strongly A-stable 
C=O Radau IIA 5 4 Strongly A-stable 

Radau IIA 7 6 Strongly A(a)-stable, a = 83.3° 
II Radau IIA 3 3 Lla)-stable, a= 89.75° 

Radau IIA 5 5 Lla)-stable, a= 89.12° 
Radau IIA 7 7 L(a)-stable, a= 89.02° 

which does not contain right-hand side evaluations anymore. This formula is much more stable 
and therefore we shall confine our considerations to stiffly accurate correctors. The methods 
using (2.3) and (2.4) will be called PDIRK methods (parallel diagonally implicitly iterated RK 
methods) of type I and type II, respectively. 

In [35], RK correctors were iterated using predictors of the form 

(2.5) 

where either B = 0 or B = D and where C is an arbitrary full matrix. For given m, this PD IRK 
method belongs to the class of DIRK methods. However, when implemented on a parallel 
system, the method is effectively an SDIRK method because each processor has to compute 
just one LU decomposition for the inner iteration process. 

Given the underlying corrector, there remains the choice of the matrix D, the number of 
+erations m, and the matrices B and C in the predictor formula. If we do not want to solve the 

rrector until convergence, but instead want an efficient method after a fixed number of 
rations, then the stability of the resulting method is crucial. Restricting ourselves to Radau 

.1A correctors, we find for such "fixed-number-of-iterations" methods the stability results listed 
in Table 4 (here, p and p* denote the order of the corrector and the PDIRK method, 
respectively). 

Next we consider fixed-number-of-iterations PDIRK methods where B = D =di with d a 
free parameter. For such methods, the following theorem can be proved: 

Theorem 2.1. For any corrector, there exist values of d such that the methods listed in Table 5 are 
L-stable. 

Table 5 
L-stable PDIRK methods 

Predictor (2.5) 

B = D = di = diag( Ae - Ce) 
B=D=dl, C=O 
B=D=dl, C=O 

Type 

II 
I 
II 

p* =p 

1.;; p.;;; 6, p = 8 
1.;; p.;;; 6, p = 8 
1.;; p.;;; 8, p = 10 

o-*=m+l 

p 
p 
p+l 
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A further possibility is to define PDIRK methods which leave the whole matrix D as a set of 
free parameters. We could try to exploit the increased freedom for improving the order of 
accuracy for a given value of m while preserving A- or L-stability (for example, we still miss an 
L-stable method of order seven requiring seven sequential stages). However, there is a 
drawback associated with all DIRK methods and, therefore, also with any PDIRK method 
using the predictor (2.5) and a fixed number of iterations. This is caused by the phenomenon of 
order reduction (c.f., e.g. [14]). Order reduction reduces the observed order of RK methods to 
their stage order (or their stage order plus one). Most DIRK methods are particularly sensitive 
to order reduction because their stage order is only one or two. Thus, instead of keeping the 
number of iterations fixed, it may be more efficient to iterate until the corrector solution is 
approximated sufficiently close, so that the stage order of the PDIRK method may be 
considered to be equal to that of the corrector (recall that s-stage Gauss-Legendre, Lobatto 
IIIA and Radau IIA methods all have stage orders). In this approach, the matrix D should be 
chosen such that the rate of convergence is improved, rather than increasing the order of 
accuracy for a given value of m. In [32] fast converging PDIRK methods have been constructed 
be minimizing the spectral radius of the matrix D- 1A -1. These "minimal spectral radius" 
methods were tested on a number of stiff problems and turn out to be much more efficient 
than the fixed-number-of-iterations methods discussed above. The main results derived in (32] 
and an error analysis of minimal-spectral-radius PDIRK methods are presented in [34]. 

2.3. Richardson extrapolation 

Similar to the construction of parallel nonstiff methods by Richardson extrapolation (see 
Section 1.3), we can construct parallel stiff methods, just by choosing a stiff method for defining 
the function y(t0 + H, h) (see [31]). For example, consider the generating method defined by 
the backward Euler method 

Yj = lf-1 + hf(}j), 

y (to + H, h) = ym ' 

j=l,2,. . .,m, m=H/h, 

and Jet us apply local Richardson extrapolation with H = h 0 • 

(2.6) 

Theorem 2.2. The Richardson-Euler method {(1.9), (2.6)} with H = h 0 is a DIRK method of order 
p * = r with s * = r( r + 1) /2 diagonally implicit stages per step of length H and er* = p * sequential 
singly diagonally implicit stages on l(p* + 2)/2J processors. 

These Richardson-Euler methods can be shown to be L(a)-stable where a decrea·>es almost 
monotonically from 90° for r = 2 to 89.83° for r = 10. 

Finally, we consider extrapolation methods generated by the trapezoidal rule: 

Yo =yo, 

Yj = 1'.;·-1 + th[f(lJ-1) + f(}})j, 
y(t0 +H,h)=Ym. 

j= 1, 2, ... ,m, m =H/h, (2.7) 



80 P.J. rnn der Houwen / Parallel step-by-step methods 

Theorem 2.3. The Richardson-trapezoidal method {(1.9), (2.7)} with H = 2h 0 is a DIRK method 
of order p* = 2r with s* = r 2 + 1 diagonally implicit stages and u * = p* sequential singly 
diagonally implicit stages on l(p* + 4)/4J processors. 

These methods are A(a )-stable with a decreasing from 79.2° for r = 2 to 50.6° for r = 8. 
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