
Applied Numerical Mathematics 11(1993)69-81
North-Holland

APNUM 357

Parallel step-by-step methods

P .J. van der Houwen
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, Netherlands

Abstract

69

Van der Houwen, P.J., Parallel step-by-step methods, Applied Numerical Mathematics 11 (1993) 69-81.

In this contribution we survey recent research at CWI on step-by-step methods for solving initial value
problems (IVPs) on parallel computers. More general surveys of parallel IVP solvers are given in [5,17,18]. The
present paper is organized according to the following sections and subsections: 1. nonstiff problems, 1.1.
explicit block methods, 1.2. predictor-corrector iteration, 1.2.1. Runge-Kutta correctors, 1.3. Richardson
extrapolation; 2. stiff problems, 2.1. diagonally implicit block methods, 2.2. diagonally implicit iteration, 2.2.1.
Runge-Kutta correctors, 2.3. Richardson extrapolation.

Keywords. Initial value problems; step-by-step methods; parallelism; Runge-Kutta methods; block methods.

1. NonstifT problems

The methods surveyed in this section are explicit step-by step methods for nonstiff first-order
IVPs:

dy
- =f(y)
dt '

y(to) =Yo· (1.1)

We shall consider three techniques for constructing methods that are suitable for use on
parallel computers, viz. (i) block-by-block calculations, (ii) predictor-corrector iteration (PC
iteration), and (iii) Richardson extrapolation. In the terminology introduced by Gear, these
techniques result into parallel methods in which the parallelism is called parallelism across the
method. Methods possessing this form of parallelism can already profit from parallel architec­
tures in the case of scalar IVPs. Alternative parallel techniques based on parallelism across
time and across space (including waveform relaxation) are discussed in [1-3,11,12] where
further references can be found.

In order to demonstrate more clearly that the methods of this section do possess the
property of method parallelism, we shall describe the various methods for scalar IVPs. We
remark that the methods discussed below can also be applied (with appropriate changes) to
second-order IVPs without first derivatives. For example, an analysis of parallel Runge-Kutta­
Nystrom PC methods can be found in Sommeijer [27].

Correspondence to: P.J. van der Houwen, Centre for Mathematics and Computer Science, P.O. Box, 4079, 1009 AB
Amsterdam, Netherlands.

0168-9274/93/$05.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

70 P.J. uan der Houwen / Parallel step-by-step methods

1.1. Explicit block methods

Let (l.1) be a scalar IVP and let us define the k-dimensional vector

(1.2)

where Yn c denotes a numerical approximation to the exact solution value y(tn+c). A rather
wide class of explicit methods for solving the IVP (1.1) is given by the block method

n = 0, 1, 2, ... , (1.3)

where A and B are k X k matrices, e k is the k th unit vector, and where for any given vector
v = (v), f(v) denotes the vector with entries f(v). Given the initial vector Y0 , (1.3) completely
determines a sequence of numerical approximations to the exact solution values at the step
points tn, n ~ 1. Thus, in general, methods of the form (1.3) require k starting values.

Since the k components of the vectors Y,, + 1 can be computed in parallel (provided that k
processors are available), the computational time (wall-clock time) needed for one step of (1.3)
is roughly equal to the time required to evaluate one right-hand side function on a sequential
computer. In the following, we mean by "sequential costs per step" the computational time
required per step if k processors are available, and an explicit method is said to have a*
sequential stages if the computation time required for evaluating all right-hand sides in one step
is about a* times the computation time required for evaluating one right-hand side evaluation.
We always assume that we have k processors at our disposal.

Many (explicit) methods from the literature can be cast into the form (1.3). Table 1 lists
examples of explicit block methods together with the required number of starting values k,
their order p at the step points, the block vector c, the number of processors P needed to
reduce the sequential costs to just a single f-evaluation per step (i.e., a* = 1), and the real and
imaginary stability boundaries f3real and f3imag (cf. [28]). If S denotes the (theoretical) speed-up
factor if the computation times on one and P processors are compared, then all methods of
Table 1 have P = S. Notice that the number of processors needed for implementing (1.3) is
often less than k.

fable I
Explicit stable block methods of the form (1.3)

References k p c T P=S f3 real f3imag

Two-step Adams-Bashforth 2 2 (0, 1) 1 1.00 Cl.00
Mirankcr-Liniger [22] 2 2 (2, 1) 2 0.59 0.60
Van dcr Houwen-Sommeijer

[33, method (4.1)] 2 3 (5 /3, 1) 2 0.64 0.65

Three-step Adams-Bashforth 3 3 (- 1, 0, 1) 1 0.55 0.72
Van der Houwen-Sommeijer

[33, method (4.7)] 3 4 (0, 17 /10, !) 2 0.53 0.05

Four-step Adams-Bash forth 4 4 (- 2, -1, 0, 1) 1 0.30 0.43
Mirankcr-Liniger [22] 4 4 (- 1, 0, 2, 1) 2 0.50 0.04

P.J. van der Houwen / Parallel step-by-step methods 71

1.2. Predictor-corrector iteration

Consider implicit block methods of the form

Yn+ I =AYn + hBf(Yn) + hCf(Yn+ 1), n = 0, 1, 2, ... ' (1.4)

where A, B, and C are k X k matrices, and Yn is defined as before. A large number of
methods, including Runge-Kutta (RK) methods and linear multistep methods, can be rewritten
in this form (in fact, (1.4) fits into the class of the general linear methods introduced by Butcher,
see [6]). If (1.4) is equivalent with an RK method, then we shall call (1.4) a block method of RK
type.

The most simple method for solving equation (1.4) is PC iteration (or fixed-point iteration):

yUJ = yU- I> - [yU- IJ -AYn - hBf(Yn) - hCf(YU- I>)], j = l, 2, ... , m,

Y := y<m)
n +I '

(1.5)

where y<0J is an initial approximation to the exact solution of the corrector (1.4) to be provided
by some predictor formula (in order to avoid confusion, we denote from now on the exact
solution of the corrector (1.4) by Un+ 1). Assuming that the predictor formula is explicit, we
obtain an explicit step-by-step method for approximating the exact solution at the step points
tn+i· Predictors of the form (1.3) can be used, provided that the PC pair {(1.3), (1.4)} employ
identical block point vectors c.

The k components of the vectors yw can be computed in parallel, so that the computational
time (wall-clock time) needed for one iteration of (1.5) roughly equals the time required tc
evaluate one right-hand side function on a sequential computer. Hence, given the initial
prediction y«», the sequential costs of (1.5) per integration step are m + 1 sequential right-hand
side evaluations originating from the evaluation of f(Yn) and f(yU- 1l), j = 1, 2, ... , m. To
these m + 1 sequential corrector stages one should add the sequential predictor stages required
by the predictor. If (1.3) is used as a predictor, then no additional stages are required because
f(Yn) is both predictor and corrector stage. Hence, the PC pair {(1.3), (1.4)} has u* =m + 1.

A rigorous convergence analysis of a general class of PC iteration methods, including the
iteration (1.5), may be found in Burrage [5] and in Jackson and N0rsett [17]. However, a first
indication of the rate of convergence of PC methods can be obtained by considering the
recursion

yUl - Un+I =hC[f(Y(j-I)) -f(Un+1)]

:::::z[y<J-l)_Un+i], Z==hAC, (1.6)

where).. denotes an approximation to the derivative af ;ay at Yn (we remark that in the case of
~ystems of OD Es,).. should be understood to run through the spectrum of the Jacobian a f ;a y).
This recursion shows that each iteration reduces the iteration error by a factor of O(h).
Therefore, one usually chooses PC pairs in which the order of the predictor is not much less
than that of the corrector so that the order of the corrector is attained within a few iterations.
Table 2 is the analogue of Table 1 for PC methods with a single iteration (PECE methods with
u* = 2).

This table shows that, for a given number of starting values, increasing the order of accuracy
reduces the size of the stability regions.

72 P.J. van der Houwen / Parallel step-by-step methods

Table 2
Stable PECE methods of the form (1.5)

References k p CT P=S f3 real f3imag

Two-step Adams-Bashforth-Moulton 2 3 (0, 1) 1 2.40 1.20
Van der Houwen-Sommeijer

[33, method {(4.3), (4.6))] 2 4 0+1;/5, 1> 2 0.12 0.11

Three-step Adams-Bash forth- Moulton 3 4 (-1,0,1) 1 1.93 1.18
Donelson-Hansen [10, Table 2] 3 6 0/3, 2/3, 1) 3
Van der Houwen-Sommeijer

[33, method {(4.12), (4.13)}] 3 6 (0, 4, 1) 2 1.77 0.58

Chu-Hamilton [8, method {(2.7), (2.9))] 4 3 0/4, 1/2, 3/4, 1) 2 4.98
Shampine-Watts-Worland [26, 39] 4 4 (-1/2, 0, 1/2, 1) 2 0.88 1.16
Chu-Hamilton [8, method {(2.11), (2.13)}] 4 4 (1/4, 1/2, 3/4, 1) 2 3.34
Four-step Adams-Bashforth-Moulton 4 5 (-2, -1,0, 1) 1 1.41 0.92
Donelson-Hansen [10, Table 2] 4 8 0/4, 1/2, 3/4, 1) 4
Van der Houwen-Sommeijer

[33, method {(4.14), (4.15)}] 4 8 (-1, 0, 5 /2, 1) 2 0.30 0.14

A possible approach for improving the stability region starts with correctors with a large
stability region which is then sufficiently often iterated to obtain more or less the corrector
solution. In order to achieve that (1.6) converges rapidly to the corrector solution, some norm
of the iteration matrix Z should be small. Taking the spectral radius of Z, i.e. p(Z) = h I A I p(C),
as a measure for the rate of convergence, we are led to find correctors with small p(C)
possessing large stability regions. For example, in [27] we find the block 6-method of order k:

Yn+i = Yn + (1- 6)hBf(Y,,) + 6hBf(Yn+ 1), 0 < 6 ~ 1,

CT := (ljk, 2/k, .. ., 1),
(1.7)

where B has all its eigenvalues at 1, and whose linear stability region is identical with that of
the conventional 6-method. Since p(C) = 0, convergence is improved if 6 is decreased. A
second example is the iteration of highly stable RK-type block methods (see Section 1.2.1).

A generalization of the PC iteration (1.5) is based on the widely used technique of
preconditioning (or smoothing) of the residual term in (1.5), that is, the premultiplication of the
term in square brackets by a k-by-k preconditioning matrix P (possibly depending on j). This
leads to

yrn_un+i=z[yU-ll_Un+i], Z:=l-P+hAPC. (1.6')

Let us choose P such that P =I+ hPCn, where [l is a k X k matrix with bounded elements.
Then

z = hPC(AI - n), P :=(I- hcnr 1,

so that each iteration reduces the magnitude of the iteration error by h. Ideally, the matrix {},
should be chosen such that p(Z) is minimized on the spectrum of a/ ;ay. A perhaps more
practical approach is to compute the dominant value of A during the iteration in one step and
to choose [l in the next step such that its eigenvalues coincide with this dominant A-value.

P.J. can der Houwen / Parallel step-by-step methods 73

Another possibility allows P (and therefore f2 and Z) to depend on j and sets f21 = w/, with
w; scalar. Then we can write p(CTZ) in the factorized form

p(OZ;) =I Pm(A) I hmp(C"'O(I- w1hcr 1), Pm(A) == D(A - w;)·

In first approximation (i.e., for w;h small), this leads to a minimax problem for the polynomial
Pm(A) which can be solved in terms of shifted Chebyshev polynomials and which leads to
explicit expressions for the parameters w; (see Manteuffel [21]). Notice that the introduction of
P1 hardly increases the computational costs of the iteration scheme.

1.2.1. Runge-Kutta correctors
Of particular interest is the case where the corrector (1.4) is a block method of RK type. We

shall call such R.K-based PC methods PIRK methods (parallel iterated RK methods). The idea
of PC iteration of implicit RK methods (IRK methods) to exploit parallelism goes back to
N0rsett and Simonsen [24] and Jackson and N0rsett [16] and was elaborated in [15,17-19,30].

Here, we shall restrict our considerations to PlRK methods without preconditioning and we
shall use the "last step value predictor"

y(O) =ye
11 • (1.8)

For s-stage RK correctors this PIRK method is itself an (explicit) RK method with s * =ms + I
stages, but with only er* = m + 1 sequential stages. It can be proved (sec Jackson and N0rsctt
[16-18]) that the (global) order of Yn+ 1 equals p* == min{p, m + l}. Thus, we have the
theorem:

Theorem l.l. Let (1.4) define an s-stage RK method of order p. Then the PIRK method {(1.5),
(1.8)} represents an (ms+ 1)-stage explicit RK method of order p * == min{ p, m + 1} requiring
<r * = m + I sequential stages.

The observation that explicit RK methods of order p * require at least p * sequential stages
per step point (see Iser Jes and N0rsett [15]) justifies the following definition:

Definition. An explicit RK method is said to be optimal on k processors if its order equals the
number of sequential stages per step point on k processors.

In NQ>rsctt and Simonsen [24] the question was posed whether it is possible to find optimal
RK methods of any order p *. Setting m = p - 1, it follows from Theorem 1.1 that this question
can be answered in the affirmative: any pth-order RK method of the form (1.4) generates an
optimal RK method of the form {(1.5), (1.8)}.

The next question is to find the least number of processors needed to implement an optimal
explicit RK method of given order p. For example, the fifth-order, six-stage RK method of
Butcher mentioned in [24] is an example of such a "minimal processor" method: it can be
implemented on two processors requiring only five sequential stages. So far, the question of
least number of necessary processors is not yet answered. However, we can immediately deduce
a lower bound for the number of processors needed to implement optimal RK methods of the
form {(1.5), (1.8)}: it is well known that, within the class of RK methods, those of Gauss-

74 P.J. van der Houwen / Parallel step-by-step methods

Legendre type require the least number of stages to obtain a given order; to be more precise,
s-stage Gauss-Legendre methods have order p = 2s. Hence, we have the following theorem
[30]:

Theorem 1.2. The PIRK method {(1.5), (1.8)} with m = p - 1, generated by the pth-order Gauss­
Legendre method with s = p/2 stages (p even) or by the pth-order Radau /JA method with
s = (p + 1)/2 stages (p odd), is an explicit Runge-Kutta method of order p* = p with s* = ps - s
+ 1 stages, which is optimal on l(p* + 1)/21 processors.

1.2. Richardson extrapolation

Many times it has been remarked that extrapolation methods possess a high degree of
parallelism and offer an extremely simple technique for generating high-order methods (cf., e.g.
Deuflhard [9]). Here, we describe the use of extrapolation for the construction of optimal RK
methods.

It will be assumed that we are given a method of order p for integrating (1.1) from t 0 until
t 1 := t 0 + H with stepsize h. The numerical approximation to the exact solution value y(t0 + H)
will be denoted by y(t0 + H, h). The method producing this approximation will be called the
generating method and y(t0 + H, h) will be called the generating function. Let the generating
function possess an asymptotic expansion in powers of hq, where q = 2 if the method providing
the values y(t0 + H, h) is a symmetric method and q = 1 otherwise. Using the harmonic
Romberg sequence {1, 2, 3,. .. }, the first step of the corresponding r-point extrapolation
method is defined by (see e.g. [13])

y t = t c; y (to + H' h_o) ' t c; = 1,
i= I l i=J

r C·
~ ~=0
1... ·1 '
i= I l (1.9)

j = p, p + q,. .. , p + (r - 2)q.

Evidently, y 1 approximates y(t) at the point t 1 = t0 +H. Having computed y 1, we can perform
a second step by using y 1 as the new initial value at t 1, etc. The quantities h 0 and Hare called
the inter.nal and basic stepsizes, respectively. If H is fixed (for example, H is the whole
integration interval), then (1.9) is said to define a global extrapolation process. If H is a
function of h 0 (for example, H = h0), then (1.9) is said to define a local extrapolation process.

It is clear that the computation of the various terms in the formula (1.9) for y 1 can be
performed in parallel. Assuming that the computational effort for computing y(t0 + H, h 0 /i) is
proportional to i, we are led to compute y(t0 + H, h0/r) on the first processor, y(t0 + H, h 0)

and y(t0 + H, h 0/(r - 1)) on the second processor, etc. In this way the number of processors is
minimized and given by l(r + 2)/2J.

The following theorem holds for the extrapolated method (1.9) (see e.g. [13]):

Theorem 1.3. Let the generating method providing the values y(t0 + H, h0/i) be of order p, then
the extrapolation method defined by (1.9) has order p* = p + (r - l)q.

P.J. van der Houwen / Parallel step-by-step methods 75

Let us consider the case where the function y(t0 + H, h) is defined by the midpoint rule:

YI = y 0 + hf (y 0)'

}j = 1'J-2 + 2hf(}}-1),

Y (t 0 + H, h) = Ym

j=2, 3, ... ,m, m=H/h, (1.10)

and let us apply local Richardson extrapolation with H = 2h 0• Then the following theorem
holds [31]:

Theorem 1.4. The Richardson-midpoint method {(1.9), (1.10)} with H = 2h 0 is an explicit
Runge-Kutta method of order p* = 2r with s* = r 2 + 1 stages per step of length H, which is
optimal on l(p* + 4)/4J processors.

A comparison with Theorem 1.2 reveals that for p * > 5 the Richardson-midpoint method
requires less processors to be optimal than the Gauss-Legendre-based PIRK methods. For
example, an optimal RK method of order ten requires only three processors when using
Richardson extrapolation of (1.10) and five processors when using PC iteration of the tenth­
order Gauss-Legendre method.

2. Stiff problems

In this section we shall consider parallel step-by-step methods that are suitable for integrat­
ing stiff first-order IVPs. Such methods are necessarily implicit. However, all methods
discussed below require the solution of systems whose dimension does not exceed the dimen­
sion of the IVP. The methods are respectively based on (i) diagonally implicit block-by-block
calculations, (ii) diagonally implicit iteration of (1.4), and (iii) local Richardson extrapolation of
the implicit Euler method and of the trapezoidal rule. For similar methods for integrating
special second-order IVPs, we refer to [36,37].

2.1. Diagonally implicit block methods

We shall call the method a diagonally implicit block method (DIB method) if C = D, where
D is a diagonal matrix. On parallel processors, DIB methods require the same sequential costs
as required by the celebrated backward differentiation formulas (BDFs).

The particular family of DIB methods of RK type is identical with the family of "strictly
diagonal" IRK methods studied by Jackson and N(l)rsett [17]. They proved that this family
contains only methods of order at most two (for linear problems, the order can be raised to
s + 1, s being the number of stages of the IRK method). However, in the class of general DIB
methods we can find methods of higher order and with (linear) stability regions that are
considerably larger than those of the higher-order BDFs. In order to characterize the stability
region we use the stability definition:

Definition. A method is said to be A(a, {3, y)-stable if
(i) its region of stability contains the infinite wedge {z: -a< 'IT - arg(z) <a}, 0 <a~ TI/2,

and all points in the nonpositive halfplane with I z I > {3;

76 P.J. rnn der Ho11wen / Parallel step-by-step methods

Tabk 3
Values of er, {3. y. and 8 for the BDFs and for DIB methods

Method c' Order p er (3 'Y 8

BDF1 (-1,0. II 3 88.4° 1.94 1.046 0

DIB 1 (21 I to. I) 3 90° 0 0 0.94

BDF4 (- 2. - I, 0, I) 4 73.2° 4.72 0.191 0

DIB4 (5. 13/4. I) 4 900 0 0 0.92

DIB4 (3, 5, I) 4 90° 0 0 0.37

BDF5 (- 3, - 2, - I. (), I) 5 51.8° 9.94 1.379 0

DIB5 (-2.747, -2.122, I) 5 > 89.9° 0.16 1.0000026 0.993

DIB5 (1.6153, 4.7871, I) 5 > 89.9° 0.30 1.000069 0.89

(ii) 'Y is the maximum value of the spectral radius of M(z) == (I - zC)- 1(A + zB) when z
runs through the region of instability lying in the nonpositive halfplane.

Table 3 compares the values a, {3, ')', and 5 == p(M(-oo)) of the BDFs and of a few DIB
methods derived in [29].

Iserles and N0rsett [15] and Jackson and N0rsett [17] have generalized DIB methods by
replacing the entries of C by (possibly rectangular) matrices and by requiring the matrices
appearing on the diagonal to be (square) diagonal matrices. For RK-type methods they derived
a number of order results and derived examples of parallel methods with good stability
properties.

2.2. Diagonally implicit iteration

In this section, the PC iteration (1.5) is replaced by the diagonally implicit iteration scheme

yui - hDf(f<il) = yu-l> _ hDf(Yu-1>)

-[r(j-l)_AY,,-hBf(Y,,)-hCf(Y(j-I))], j=I, 2, ... ,m, (2.1)

y ==Ytm> n+ I ' Yn+.1 ==e[Y,,+l•

where D is a diagonal matrix with positive entries. Evidently, by virtue of the diagonal structure
of D, the method (2.1) is highly parallel, because in each iteration the k components of the
iterate yui can be computed concurrently. It will be assumed that the (components of the)
iterates are computed by one or more iterations in a modified Newton process. This Newton
iteration process will be called inner iteration and the iteration process (2.1) with iteration
index j will be called outer iteration. As in the case of PC iteration, predictors of the form (1.3)
can be used, provided that their block points equal those of the corrector. However, as the
iteration scheme is itself implicit, one may also consider implicit predictors. We shall say that
the method has a* sequential (diagonally implicit) stages per step if in that step a* sequential
implicit relations are to be solved.

As in the case of PC iteration, one may again apply residual conditioning by inserting a
matrix P in front of the residual term (in square brackets) occurring in (2.1). An alternative
modification of (2.1) was suggested by Butcher [7]. In the notation used here, this modification

1

v
~

v

P.J. van der Houwen / Parallel step-by-step methods 77

inserts a k X k matrix Q in front of those vectors yU> and yu- 1> that appear outside the
residual term. A combination of preconditioning and the Butcher modification seems to be an
efficient approach for accelerating the convergence of diagonal iteration. The corresponding
iteration scheme reads

yU> = Q- 1x<n)0 = 1 2 rn ' ' , , '
xu> _ hDf(X(j)) =x0 - 1> -hDf(xu-1))

-P[Q- 1xu-ii -AYn -hBf(Yn) -hCf(Q- 1xu- 1>)] (2.1')

Y := y<m) n+ I ' y n + I := er fn + I ·

Notice that in the case of PC iteration (i.e., D = 0), the Butcher modification reduces to
preconditioning of the residual by Q- 1P. The analogue of the error recursion (1.6') is given by

yu>_ un+1 ==z[yu-1i_ un+1],

z := Q- I [I - hD A] - I [Q - p + h (PC - DQ) A] .

The choice Q - P = h(DQ - PC)[l is of particular interest and leads to

Z = Q- 1hAD(I-hA.D)- 1(D- 1PC- Q)(I-A. - 1n),

P == (Q -hDQD)(I -hear 1,

where the matrices D, a, and Q are still free. Assuming that the diagonal entries of D are
positive, we find

di hA.I
11 z 11 ~ n h, A), ((h, A.) := 11 Q- 1 11 II D- 1 Pc - Q 11 III - A. - 1 n 11 1 + d

1
hA

1
,

where d is the maximal diagonal entry of D.

2.2.1. Runge-Kutta correctors
So far, we only investigated diagonal iteration of the form (2.1) using correctors of RK type.

In order to be compatible with the notation used in earlier papers on this topic, we shall change
to the familiar notation adopted for RK methods, that is, the corrector (1.4) and the step point
formula in (1.3) are written in the form

Y= Yne + Mf(Y), Yn+1 = Yn + hbTf(Y),

and the method (2.1) assumes the form

yU>-hDf(YU>) =yne +h(A-D)f(YU- 1>), j= 1, 2, ... ,m, (2.2)

(2.3)

For stiff problems, the right-hand side evaluations in the step point formula (2.3) may give
rise to instabilities and, consequently, the accuracy may be reduced considerably (cf. [25]).
However, if the underlying corrector in (2.2) is stiffly accurate, that is b TA - I = e '[(e s denoting
the sth unit vector and s being the number of stages of the corrector), then one may replace
the step point formula by the "last component" formula

_ Ty(m)
Yn+I -es ' (2.4)

11
1
I

78 P.J. van der Houwen / Parallel step-by-step methods

Table 4
Stability results for PDIRK methods

Predictor (2.5) Type Corrector p*=p o-*=m+l Stability

B = D = diag(Ae - Ce), I Radau IIA p p-2 Finite stability region
BAe = A 2e II Radau IIA 3 2 A-stable

Radau IIA 5 4 A(a)-stable, a= 89.997°
Radau IIA 7 6 A(a)-stable, a= 89.95°

B = D = diag(Ae), I Radau IIA 3 2 Strongly A-stable
C=O Radau IIA 5 4 Strongly A-stable

Radau IIA 7 6 Strongly A(a)-stable, a = 83.3°
II Radau IIA 3 3 Lla)-stable, a= 89.75°

Radau IIA 5 5 Lla)-stable, a= 89.12°
Radau IIA 7 7 L(a)-stable, a= 89.02°

which does not contain right-hand side evaluations anymore. This formula is much more stable
and therefore we shall confine our considerations to stiffly accurate correctors. The methods
using (2.3) and (2.4) will be called PDIRK methods (parallel diagonally implicitly iterated RK
methods) of type I and type II, respectively.

In [35], RK correctors were iterated using predictors of the form

(2.5)

where either B = 0 or B = D and where C is an arbitrary full matrix. For given m, this PD IRK
method belongs to the class of DIRK methods. However, when implemented on a parallel
system, the method is effectively an SDIRK method because each processor has to compute
just one LU decomposition for the inner iteration process.

Given the underlying corrector, there remains the choice of the matrix D, the number of
+erations m, and the matrices B and C in the predictor formula. If we do not want to solve the

rrector until convergence, but instead want an efficient method after a fixed number of
rations, then the stability of the resulting method is crucial. Restricting ourselves to Radau

.1A correctors, we find for such "fixed-number-of-iterations" methods the stability results listed
in Table 4 (here, p and p* denote the order of the corrector and the PDIRK method,
respectively).

Next we consider fixed-number-of-iterations PDIRK methods where B = D =di with d a
free parameter. For such methods, the following theorem can be proved:

Theorem 2.1. For any corrector, there exist values of d such that the methods listed in Table 5 are
L-stable.

Table 5
L-stable PDIRK methods

Predictor (2.5)

B = D = di = diag(Ae - Ce)
B=D=dl, C=O
B=D=dl, C=O

Type

II
I
II

p* =p

1.;; p.;;; 6, p = 8
1.;; p.;;; 6, p = 8
1.;; p.;;; 8, p = 10

o-*=m+l

p
p
p+l

P.J. uan der Houwen / Parallel step-by-step methods 79

A further possibility is to define PDIRK methods which leave the whole matrix D as a set of
free parameters. We could try to exploit the increased freedom for improving the order of
accuracy for a given value of m while preserving A- or L-stability (for example, we still miss an
L-stable method of order seven requiring seven sequential stages). However, there is a
drawback associated with all DIRK methods and, therefore, also with any PDIRK method
using the predictor (2.5) and a fixed number of iterations. This is caused by the phenomenon of
order reduction (c.f., e.g. [14]). Order reduction reduces the observed order of RK methods to
their stage order (or their stage order plus one). Most DIRK methods are particularly sensitive
to order reduction because their stage order is only one or two. Thus, instead of keeping the
number of iterations fixed, it may be more efficient to iterate until the corrector solution is
approximated sufficiently close, so that the stage order of the PDIRK method may be
considered to be equal to that of the corrector (recall that s-stage Gauss-Legendre, Lobatto
IIIA and Radau IIA methods all have stage orders). In this approach, the matrix D should be
chosen such that the rate of convergence is improved, rather than increasing the order of
accuracy for a given value of m. In [32] fast converging PDIRK methods have been constructed
be minimizing the spectral radius of the matrix D- 1A -1. These "minimal spectral radius"
methods were tested on a number of stiff problems and turn out to be much more efficient
than the fixed-number-of-iterations methods discussed above. The main results derived in (32]
and an error analysis of minimal-spectral-radius PDIRK methods are presented in [34].

2.3. Richardson extrapolation

Similar to the construction of parallel nonstiff methods by Richardson extrapolation (see
Section 1.3), we can construct parallel stiff methods, just by choosing a stiff method for defining
the function y(t0 + H, h) (see [31]). For example, consider the generating method defined by
the backward Euler method

Yj = lf-1 + hf(}j),

y (to + H, h) = ym '

j=l,2,. . .,m, m=H/h,

and Jet us apply local Richardson extrapolation with H = h 0 •

(2.6)

Theorem 2.2. The Richardson-Euler method {(1.9), (2.6)} with H = h 0 is a DIRK method of order
p * = r with s * = r(r + 1) /2 diagonally implicit stages per step of length H and er* = p * sequential
singly diagonally implicit stages on l(p* + 2)/2J processors.

These Richardson-Euler methods can be shown to be L(a)-stable where a decrea·>es almost
monotonically from 90° for r = 2 to 89.83° for r = 10.

Finally, we consider extrapolation methods generated by the trapezoidal rule:

Yo =yo,

Yj = 1'.;·-1 + th[f(lJ-1) + f(}})j,
y(t0 +H,h)=Ym.

j= 1, 2, ... ,m, m =H/h, (2.7)

80 P.J. rnn der Houwen / Parallel step-by-step methods

Theorem 2.3. The Richardson-trapezoidal method {(1.9), (2.7)} with H = 2h 0 is a DIRK method
of order p* = 2r with s* = r 2 + 1 diagonally implicit stages and u * = p* sequential singly
diagonally implicit stages on l(p* + 4)/4J processors.

These methods are A(a)-stable with a decreasing from 79.2° for r = 2 to 50.6° for r = 8.

References

[1] A. Bellen, Parallelism across the steps for difference and differential equations, in: A. Bellen, C.W. Gear and E.
Russo, eds., Numerical Methods for Ordinary Differential Equations, Proceedings L 'Aquila Symposium, Lecture
Notes in Mathematics 1386 (Springer, Berlin, 1989) 22-35.

[2] A. Bellen, Z. Jackiewicz and M. Zennaro, Stability analysis of time-point relaxation Heun method, Rept. 1/30,
Progetto Finalizzato "Sistemi Informatici e Calcolo Parallelo", C.N.R. (1990)

[3] A. Bellen, R. Vermiglio and M. Zennaro, Parallel ODE-solvers with stepsize control, J. Comput. Appl. Math. 31
(1990) 277-293.

[4] K. Burrage, The error behaviour of a general class of predictor-corrector methods, CMSR Rept., University of
Liverpool, England (1989).

[5] K. Burrage, Solving nonstiff IVPs in a transputer environment, Appl. Numer. Math. 8 (1991) 201-216.
[6] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge- Kutta and General Linear

Methods (Wiley, New York, 1987).
[7] J.C. Butcher, Private communication, Pre-Dundee Symposium, Manchester, England (1991).
[8] M.T. Chu and Hamilton, Parallel solution of ODE's by multi-block methods, SIAM J. Sci. Statist. Comput. 3

(1987) 342-353.
[9] P. Deuflhard, Recent progress in extrapolation methods for ordinary differential equations, SIAM ReL'. 27

(1985) 505-535.
[10] J. Donelson and E. Hansen, Cyclic composite multistep predictor-corrector methods, SIAM Numer. Anal. 8

(1971) 137-157.
[11] C.W. Gear, Massive parallelism across time in ODEs, in: Proceedings International Conference on Parallel

Methods for Ordinary Differential Equations, Grado, Italy (1991); also: Appl. Numer. Math. 11(1993)27-43 (this
issue).

[12] C.W. Gear and Xu Xuhai, Parallelism across space in ODEs, in Proceedings International Conference on Parallel
Methods for Ordinary Differential Equations, Grado, Italy (1991); also: Appl. Numer. Math. 11(1993)45-68 (this
issue).

[J3] E. Hairer, S.P. N0rsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff problems (Springer,
Berlin, 1987).

4] E. Hairer and G. Wanner, Solving Ordinary Differential Equations, II: Stiff and Differential-Algebraic Problems
(Springer, Berlin, 1991).

5] A. !series and S.P. N0rsett, On the theory of parallel Runge-Kutta methods, IMA J. Numer. Anal. 10 (1990)
463-488.

[16] K.R. Jackson and S.P. N1:1rsett, Parallel Runge-Kutta methods, Manuscript (1988).
[17] K.R. Jackson and S.P. N1:1rsett, The potential for parallelism in Runge-Kutta methods, Part 1: RK formulas in

standard form, Tech. Rept. No. 239 /90, Department of Computer Science, University of Toronto, Toronto,
Ont. (1990).

[18] K.R. Jackson and S.P. N1:1rsett, The potential for parallelism in Runge-Kutta methods, Part 2: RK predictor­
corrector formulas (in preparation).

[19] I. Lie, Some aspects of parallel Runge-Kutta methods, Rept. No. 3/87, Division Numerical Mathematics,
University of Trondheim, Norway (1987).

[20] Lianhua Lu, The stability of block 8-methods, IMA J. Numer. Anal. (submitted).
[21] T.A. Manteuffel, The Tchebyshev iteration for nonsymmetric linear systems, Numer. Math. 28 (1977) 307-327.
[22] W.L. Miranker and W. Liniger, Parallel methods for the numerical integration of ordinary differential

equations, Math. Comp. 21 (1967) 303-320.

P.J. L'an der Houwen / Parallel step-by-step methods 81

[23] S.P. Norsett, Semi-explicit Runge-Kutta methods, Rept. Mathematics and Computation No. 6/74, Department
of Mathematics, University of Trondheim, Norway (1974).

[24] S.P. Norsett and H.H. Simonsen, Aspects of parallel Runge-Kutta methods, in: A. Bellen, C.W. Gear and E.
Russo, eds., Numerical Methods for Ordinary Differential Equations, Proceedings L 'Aquila Symposium, Lecture
Notes in Mathematics 1386 (Springer, Berlin, 1989) 103-107.

[25] L.F. Shampine, Implementation of implicit formulas for the solution of ODEs. SIAM J. Sci. Statist. Comput.
(1980) 103-118.

[26] L.F. Shampine and H.A. Watts, (1969) Block implicit one-step methods, Math. Comp. 23 (1969) 731-740.
[27] B.P. Sommeijer, Explicit high-order Runge-Kutta-Nystrom methods for parallel computers (in preparation).
[28] B.P. Sommeijer, Stability boundaries of block Runge-Kutta methods (in preparation).
[29] B.P. Sommeijcr, W. Couzy and P.J. van der Houwen, A-stable parallel block methods for ordinary and

integro-differential equations, Appl. Numer. Math. 9 (1992) 267-281.
[30] P.J. van der Houwen and B.P. Sommeijer, Parallel iteration of high-order Rungc-Kutta methods with stcpsize

control, J. Comput. Appl. Math. 29 (1990) 111-127.
[31] P.J. van dcr Houwcn and B.P. Sommeijer, Parallel ODE solvers, in: Proceedings International Conference on

Supercomputing, Amsterdam, (ACM, New York, 1990).
[32] P.J. van der Houwen and B.P. Sommeijer, Iterated Runge-Kutta methods on parallel computers, SIAM J. Sci.

Statist. Comput. 12 (1991) 1000-1028.
[33] P.J. van dcr Houwen and B.P. Sommeijer, Block Rungc-Kutta methods on parallel computers, Z. Angew. Math.

Mech. 72 (1992) 3-18.
[34] P.J. van der Houwen and B.P. Sommeijer, Analysis of parallel diagonally-implicit iteration of Runge-Kutta

methods, in: Proceedings International Conference on Parallel Methods for Ordinary Differential Equations,
Grado, Italy (1991); also: Appl. Numer. Math. 11 (1993) 169-188 (this issue).

[35] P.J. van der Houwen, B.P. Sommeijer and W. Couzy, Embedded diagonally implicit Runge-Kutta algorithms on
parallel computers, Math. Comp. 58 (1992) 135-159.

[36] P.J. van der Houwen, B.P. Sommeijer and Nguyen huu Cong, Stability of collocation-based Runge-Kutta­
Nystrom methods, BIT 31 (1991) 469-481.

[37] P.J. van der Houwcn, B.P. Sommeijer and Nguyen huu Cong, Parallel diagonally implicit Rungc-Kutta-Nystrom
methods, Appl. Numer. Math. 9 (I 992) 1 I 1-13 I.

[38] A Woltbrandt, A study of Rosenbrock processes with respect to order conditions and stiff stability, Ph.D.
Thesis, Chalmers University of Technology, Goteborg, Sweden (1977).

[39] P.B. Worland, Parallel methods for the numerical solution of ordinary differential equations, IEEE Trans.
Comput. 25 (1976) 1045-1048.

