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Large-Scale Parameter Studies of Cell-Based Models
of Tissue Morphogenesis Using CompuCell3D or VirtualLeaf
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Abstract

Computational, cell-based models, such as the cellular Potts model (CPM), have become a widely used tool
to study tissue formation. Most cell-based models mimic the physical properties of cells and their dynamic
behavior, and generate images of the tissue that the cells form due to their collective behavior. Due to these
intuitive parameters and output, cell-based models are often evaluated visually and the parameters are fine-
tuned by hand. To get better insight into how in a cell-based model the microscopic scale (e.g., cell
behavior, secreted molecular signals, and cell-ECM interactions) determines the macroscopic scale, we need
to generate morphospaces and perform parameter sweeps, involving large numbers of individual simula-
tions. This chapter describes a protocol and presents a set of scripts for automatically setting up, running,
and evaluating large-scale parameter sweeps of cell-based models. We demonstrate the use of the protocol
using a recent cellular Potts model of blood vessel formation model implemented in CompuCell3D.
We show the versatility of the protocol by adapting it to an alternative cell-based modeling framework,
VirtualLeaf.

Key words Cellular Potts model, CompuCell3D, VirtualLeaf, Angiogenesis, Cell-based model,
Parameter study, Quantification

1 Introduction

To study the mechanisms of tissue morphogenesis, it is often useful
to see a tissue as a swarm of interacting cells that follow a set of
stereotypic or stochastic rules, which would be determined ulti-
mately by their genome. The decisions of the cells are then guided
by present and past interactions with adjacent cells and the micro-
environment. In this view, tissue morphogenesis is a problem of
collective cell behavior, in which tissues emerge, sometimes via
non-intuitive mechanisms, from stereotypic or stochastic rules
that the individual cells follow.

A useful computational tool for studying collective cell behav-
ior is cell-based modeling [1, 2]. The inputs to a cell-based model are
the behavioral rules that cells follow. The output of a cell-based
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model is the tissue morphogenesis that follows indirectly from the
collective behavior of the individual cells. Cell-based models have
been applied to a wide range of problems in developmental biology,
including somitogenesis [3], tumor development [4–7], liver
regeneration [8], plant development [9, 10], epithelial branching
[11], cystogenesis [12], and angiogenesis and vasculogenesis
[13–18]. In many cell-based models cell behavior is described at a
phenomenological level, based on experimental observations. More
recent approaches have introduced detailed models of genetic net-
works guiding cell behavior; see, e.g., refs. 3, 19. These studies
demonstrate the utility of cell-based modeling for elucidating the
mechanisms of development.

Because most cell-based simulations cannot be solved analyti-
cally, insight into their behavior must be obtained using computer
simulation. Individual simulations with visual output can give some
initial intuition about the behavior and parameter sensitivity of the
model. To obtain a more systematic overview of the range of
behaviors the model can exhibit, and its sensitivity to parameters,
it becomes necessary to rerun the simulation many times for differ-
ent parameters, and, in case of stochastic models, to obtain statisti-
cal measures of the model results by rerunning many random
instantiations of the model. If values for the model parameters
cannot be determined experimentally, we must test the model for
a range of experimentally plausible parameter values [14, 20]. And
where parameter values are partly known, systematic parameter
studies help predict the response of the system to pharmaceutical
treatments [17, 18] or evaluate the behavior of a tissue. Thus,
systematic parameter studies are a central tool for analyzing cell-
based modeling.

As cell-based models become more complex and take longer to
run, performing such parameter studies can become a challenging
problem both in terms of computational power and in terms of data
management. Here, we describe a protocol and release a set of
Python scripts to automatically set up, run, and analyze large
parameter sweeps of cell-based models on desktop machines,
computational clusters, or in the cloud. Although the protocol
and parts of the scripts can be used with any kind of simulation
tool that can be started from the command line, we illustrate the
protocol in detail with a simulation of vasculogenesis (blood vessel
formation; [13, 21]), developed using the cell-based simulation
package CompuCell3D [22]. CompuCell3D is an implementation
of the cellular Potts model (CPM) [23, 24], a widely used cell-
based simulation method. The CPM is a lattice-based technique
that simulates the stochastic, amoeboid motility of biological cells
in response to local cues from adjacent cells and diffusive signals, in
this way making predictions on collective cell behavior. To illustrate
that the parameter sweep can be applied to any kind of simulation
tool with a command-line interface, we also show how to adapt the
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Python scripts to set up, run, and analyze a parameter sweep for
VirtualLeaf [9], which is an alternative cell-based modeling
technique.

2 Materials

The following materials and prior knowledge are required for using
and extending the code provided in this protocol.

2.1 Python To useCompuCell3D, and to run theCompuCell3D extensions and
parameter sweep scripts presented in this chapter, you will use the
programming language Python.

1. Download and install the latest version of the Python 2.x
branch (see Note 1) from http://www.Python.org/down
load/. Alternatively, Linux users can install Python using their
package manager.

2. Familiarize yourself with Python (see Note 2). We recommend
http://en.wikibooks.org/wiki/Non-Programmer’s_Tutorial_
for_Python_2.6 for readers with no programming experience
and http://docs.Python.org/2/tutorial/ for readers with pro-
gramming experience in other programming languages.

2.2 Cloud Computing Because cell-based simulation models typically take dozens of min-
utes to hours to complete, depending on the technique you use and
the complexity of the model, we recommend using a computer
cluster or a cloud computing service to run multiple simulations
in parallel. You can acquire access to a computing cluster via your
institute or use online services, like Amazon Webservices (http://
aws.amazon.com). If you want to use a computer cluster, familiar-
ize yourself with its usage.

2.3 CompuCell3D CompuCell3D [7] offers an easy-to-use graphical user interface for
setting up and running simulations. CompuCell3D is designed as a
modular framework and can therefore easily be extended, either
using Python or C++.

1. The Python scripts provided in this chapter require the
most recent Numpy version. Download Numpy from
http://sourceforge.net/projects/numpy/files/ and install it
(see Note 3) before installing CompuCell3D. This will prevent
CompuCell3D from installing an older release of Numpy.

2. Download a suitable CompuCell3D installer from http://www.
compucell3d.org/SrcBin. Currently installers are available for
Ubuntu Linux OS X (10.6, 10.8, and 10.9), and Windows. If
there is no installer for your operating system, build Compu-
Cell3D from the source http://www.compucell3d.org/Com
pilingCC3D (see Note 4). When you are installing
CompuCell3D on a cluster, you may also need to compile
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CompuCell3D because of the absence of suitable installers or
because you are not allowed to run an installer from your
account. During the installation of CompuCell3D you must
specify the installation directory; in the remainder of this chap-
ter we refer to this directory as CC3DPATH.

3. Familiarize yourself with the CPM [23, 24] and with Compu-
Cell3D. A step-by-step tutorial explaining the CPM and how to
set up and run simulations with CompuCell3D can be found in
[22] and an overview of the functions of CompuCell3D can be
found in the reference manual [25]. The CompuCell3D instal-
lation includes a variety of example models, which can be found
in the directory “Demos” located in the installation directory of
CompuCell3D.

2.4 CC3DSimUtils As supplementary material to this book chapter, we provide a
Python module CC3DSimUtils. This module can be used to visua-
lize and analyze simulation results, and to set up simulations with
CompuCell3D.

1. Download the supplementary material from http://persistent-
identifier.org/?identifier=urn:nbn:nl:ui:18-22500 and extract it.

2. Create a project directory at any location. In this directory we
will store all code, simulation scripts, and results. We will refer
to the path of this directory as PROJECTPATH.

3. Create a directory named “src” in PROJECTPATH.

4. Get CC3DSimUtils.zip from the supplementary materials and
copy it to the “src” directory. Make sure that the directory
containing CC3DSimUtils is named “CC3DSimUtils”. In the
subdirectory “doc” of “CC3DSimUtils” you will find the docu-
mentation of CC3DSimUtils (“html/CC3DSimUtils.html”).

5. Tell Python about the location ofCC3DSimUtils. For a Python
script that will be executed from the root of PROJECTPATH,
insert the following commands to the beginning of the Python
script:

import sys
sys.path.append("src/")

Alternatively, experienced users can add the path to CC3DSi-
mUtils to the system variable PYTHONPATH.

6. Install the following packages, which are required for CC3DSi-
mUtils (see Note 5):

l Scipy:http://sourceforge.net/projects/scipy/files/(see Note3)

l Python imaging library (PIL): www.pythonware.com/
products/pil/

l Mahotas: http://luispedro.org/software/mahotas (see Note 6)

l Pymorph: http://luispedro.org/software/pymorph
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Installation instructions for these packages can be found
at their websites. Alternatively, use a Python package
manager, such as setup_tools or pip. For example:

>> pip install pymorph

3 Methods

We illustrate the use of CC3DSimUtils using a model of vascular
network formation based on the cellular Potts model, which is
implemented in CompuCell3D. The model is described in detail
elsewhere [13, 21]. Briefly, the model captures the self-
organization of endothelial cells into vascular network-like struc-
tures, based on the following assumptions: (a) endothelial cells have
an elongated shape, they (b) adhere to one another, and (c) they
move and rotate randomly [21]. In a variant of the model, chemo-
taxis speeds up network formation and increases the stability of the
networks [13, 21].

Overall, the presented workflow is as follows. We first organize
the project directory with several subdirectories that will hold all
code, simulation scripts, simulation data, images, and analysis
results. We then run the model once and analyze the dynamics of
network formation. Next, we use this model as the basis for a
parameter study: We show how to set up, perform, and evaluate a
parameter study using CompuCell3D and CC3DSimUtils. Finally,
we illustrate the versatility of the parameter sweep protocol by
adapting the Python scripts to the alternative cell-based modeling
framework VirtualLeaf [9].

3.1 Organize Project

Directory

To organize the simulations, we create a project directory in which
you store simulation and analysis scripts, raw simulation data, sim-
ulation images, and analysis results. The structure of this directory
is based on the structure suggested by Noble [26].

1. Create a project directory at any location, if you have not yet
done so in Subheading 2.3. From now on we will refer to the
path to the project directory with PROJECTPATH. This direc-
tory will be used for all examples in this section.

2. Create the following subdirectories:

l “src”: Holds all non-executable codes, such as theCC3DSi-
mUtils module.

l “bin”: Holds all executable codes, such as analysis scripts.

l “scripts”: Holds all simulation scripts that will be used with
CompuCell3D.

l “log”: Holds text files that list parameter values and ran-
dom seeds for automatically generated simulations.
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l “data”: Holds all raw simulation data.

l “images”: Holds all images that show the configuration of
cells resulting from a simulation.

l “results”: Holds all data files and images resulting from
analysis methods.

3.2 Run the

CompuCell3D Model

from the Command

Line

We run a simulation of the blood vessel formation model using the
command line interface of CompuCell3D. By running Compu-
Cell3D from the command line we can bypass the graphical user
interface, which reduces simulation time. Furthermore, using the
command line enables us to use a computer cluster, because clusters
are usually unable to run a graphical interface. All commands
provided in this section are designed to be executed from the root
of the PROJECTPATH. When we refer to directories, we refer to
subdirectories of PROJECTPATH.

1. Get the file “steppables.zip” from the supplementary materials
and extract it to the “src” directory.

2. Get “longcells_chem.zip” from the supplementary materials
and extract it to the “scripts” directory. The zip file contains
three files: a CC3DML file (“.xml”), and Python file (exten-
sion “.py”), and a “CompuCell3D” file (extension “.cc3d”).
Together, these three files specify a single CompuCell3D
simulation. Change the variable projectpath on line 5 of
“longcells_chem.py” (in subdirectory “longcells_chem” of the
“scripts” directory) to your PROJECTPATH. Windows users
can use either the slash (/) or two backslashes (\cr) in path
definitions.

3. Run the simulation by typing the following in a terminal
emulator (Linux and OS X) or Command Prompt (windows)
(see Notes 7–9):

Linux and OS X

>>CC3DPATH/runScript.sh --noOutput -i
PROJECTPATH/scripts/longcells_chem.cc3d

Windows

>>CC3DPATH\runScript.bat --noOutput --i
PROJECTPATH\scripts\longcells_chem.cc3d

>>This may take up to ~45 min.

4. Next we plot the simulation results, and combine the images
for a number of time steps in a single figure. Get “long-
cells_chem_draw.py” and “default.ctb” from the supplemen-
tary materials. Save “longcells_chem_draw.py” in the “bin”
directory and “default.ctb” in your PROJECTPATH. Run
“draw_longcells_chem.py” (see Note 10):
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>>python bin/longcells_chem_draw.py

The directory “longcells_chem” (subdirectory of “images”)
contains the morphologies of consecutive time steps, and
the “results” directory contains a collage similar to Fig. 1
(“longcells_chem.png”) of the morphologies for 500, 2,000,
5,000, and 10,000 simulations steps combined. The morphol-
ogies are created with the function makeImages from
CC3DSimUtils. This function draws images using the data
files generated by the simulation. The function stackImages
from CC3DSimUtils can be used to combine any set of images
of the same size. See the CC3DSimUtils documentation for
further details.

3.3 Analyzing

a Single CompuCell3D

Simulation

Now we have a set of simulation results and images. We next
present a series of methods to quantify these simulation results.

1. Calculate the compactness of the vascular network simulations.

The compactness is defined as
Acells

Ahull
with Acells the total area of

the largest connected component andAhull the area of the convex
hull. The convex hull can be seen as the smallest “gift wrapping”
around an object. Get “longcells_chem_compactness.py” from
the supplementary materials, save it in the “bin” directory, and
run with

>>python bin/longcells_chem_compactness.py

The “results” directory will contain a tab-separated text file,
“longcells_chem_compactness.data”, which lists the compact-
ness for every time step measured. A plot of this data should
look similar to Fig. 2.

2. Analyze where the elongated cells align with one another and
where defects in alignment occur. To do so, we first quantify and
visualize the relative orientations of the cells. Calculate an angle
θ between the cell at a pixel x! and the average orientation in
the neighborhood of x!. The orientation of a cell, v!, is the

Fig. 1 Morphologies at 500, 2,000, 5,000, and 10,000 time steps, for a simulation with “longcells_chem”
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orientation of the long axis of that cell. Assuming that cells are
close to elliptic, we can approximate v!by the orientation of the
eigenvector corresponding to the largest eigenvalue of the cell’s
inertia tensor. For a cell C, defined as the set of pixels with
coordinates x!¼ x1; x2f g that the cell occupies, the inertia

tensor is defined as I ðCÞ ¼

X
x!2C

x2
2 �

X
x!2C

x1x2

�
X
x!2C

x1x2
X
x!2C

x1
2

0
BBB@

1
CCCA.

The average cell orientation within a disk of radius r centered
on x! is called the director:

n! x!; r
� � ¼ v! σ y!� �� �� �

y!2Z2: x!� y!�� ��<r
� �. The angle θ

between the cell orientation v! and the director n! is a measure
for local cell alignment:

θ x!; r
� � ¼ cos�1 n! x!;r

� �
� v! σ x!� �� ��� ��

n! x!;r
� ��� �� v! σ x!� �� ��� ��

	 

. Get “longcells_

chem_alignment.py” from the supplementary materials, save it
to the “bin” directory, and then run with

>>python bin/longcells_chem_alignment.py

This script calculates θ for r ¼ 3 at each pixel and plots it on the
morphology. The script stores the resulting images in the sub-
directory “longcells_chem” of “images”. It also creates a collage
similar to Fig. 3 (“longcell_chem_reldir_r¼3.png” in “results”),
which combines plots of θ for r ¼ 3 at time steps 500, 2,000,
5,000, and 10,000.

3. The2DnematicorderparameterSðrÞ ¼ cos 2θ X
!

σð Þ; r
� �� �D E

σ
,

with X
!

σð Þ the center of mass of cell σ, quantifies the degree of
local alignment in amorphologywith a number between 0 and 1.
S(r) ! 1 for cells aligning with one other on overage over a
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Fig. 2 Time evolution of the compactness for a single simulation of
“longcells_chem”
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distance r, and S(r) ! 0 for cells with random orientations.
Get “longcells_chem_orderparameter.py” from the supplemen-
tarymaterials and save it in the “bin”directory.Run the scriptwith

>>python bin/longcells_chem_orderparameter.py

This script produces a file, named “longcells_chem_orderpara-
meter.data”, in the “results” directory that contains the order
parameter for radii 20, 40, and 600 for every 250th time step.
Note that radius r ¼ 600 the disk covers the whole 400 � 400
simulation domain, so S(600) becomes a global order parame-
ter. Plotting the evolution of the order parameters should result
in an image similar to Fig. 4.

3.4 Setting Up and

Running a Parameter

Sweep with

CompuCell3D

We showed how to set up, run, and analyze a single simulation using
CompuCell3D and CC3DSimUtils. To gain insight into how spe-
cific parameters affect the model behavior, a model should be
simulated repeatedly with different parameter values. In case of a
stochastic model, such as the CPM, the simulation for each parame-
ter value should be repeatedmultiple times to obtain good statistics.

Fig. 3 Angle θ between cells and the local director (for r ¼ 3) mapped on the morphologies at 500, 2,000,
5,000, and 10,000 time steps, for a simulation with “longcells_chem”
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Fig. 4 Time evolution of the order parameter for radii 20, 40, and 600 (global) for
a single simulation of “longcells_chem”
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Here we show how to set up and run such a parameter sweep. First,
we create a driver script that runs and analyzes a single simulation.
Next, we show how to automatically create the simulation scripts for
each parameter value and simulation repeat. In this example we vary
the surface tension and turn chemotaxis on or off.

1. Get “driver.py” from the supplementary materials and save it as
a subdirectory of PROJECTPATH called “bin”. The driver
script runs a simulation (Subheading 3.2) and analyzes the
simulation results (Subheading 3.3). Change the variables
projectpath and cc3dpath in “driver.py” such that pro-
jectpath points to your PROJECTPATH and cc3dpath
points to your CC3DPATH. For example, to run the driver
script for “longcells_chem.cc3d” run the driver script with

>>python bin/driver.py longcells_chem

The concept of collecting all operations concerning a single
simulation in one driver script can be applied to any modeling
method that can be invoked from the command line.

2. (For cluster users) When a driver script is used on a cluster, you
may also include commands to compress and pack the data to
facilitate data transfer to your desktop machine. The command
system in the Python module “os” can call the compression
utilities from your driver script. To create a compressed archive
containing all files starting with “longcells_chem” and ending
with “.data”, append the following line to the driver script:

os.system(“tar --czf data_longcells_chem_001-1.
tar.gz longcells_chem_001-1*.data”)

3. To automatically set up the simulation, we use template simu-
lation scripts. Get “templates.zip” from the supplementary
materials and extract it in the root of PROJECTPATH. This
will create a new folder named “templates” and in it you find
four files: “longcells_chem.py”, “longcells_chem.xml”, “long-
cells_nochem.py”, and “longcells_nochem.xml”. The first two
files serve as templates for the simulations with chemotaxis and
the second two files serve as templates for the simulations
without chemotaxis.

4. Automatically generate the scripts needed to run aCompuCell3D
simulation. Get “preprocess.py” from the supplementary materi-
als, save it in the “bin” folder, and run with

>>python bin/preprocess.py

For each parameter value specified in “preprocess.py” this
script creates for each repeat a CompuCell3D script, and a
directory containing a CC3DML script and Python script in
the “scripts” directory. For each simulation repeat a unique
random seed is generated to ensure that each simulation is
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different (see Note 11). Each simulation is identified by an
automatically generated simulation name, constructed as
[description]_[number]-[repeat]. We use the [description]
to differentiate between simulations with and without chemo-
taxis: “longcells_chem” and “longcells_nochem”. The three-
digit simulation [number] is used to link a simulation to a
parameter value. The [repeat] is a number that is used to set
apart the simulation repeats. Besides the scripts for Compu-
Cell3D, “preprocess.py” also generates log files (in the direc-
tory “log”) that store the parameter values (“longcells_1-10.
sim”) and the random seeds (“longcells_1-10_10x.seed”).
“preprocess.py” is specific for changing the surface tension in
a set of templates. For other CompuCell3D models and/or
other parameter sets, adapt “preprocess.py” using the func-
tionality in the Experiment class of CC3DSimUtils. See the
CC3DSimUtils documentation for more details.

5. (For cluster users) The simulations become faster if you save
the simulation results on a section of the file system local to the
node you are running on (often called “scratch space”), and
move the data to your home directory when the simulation is
finished. Point the variable datapath in “preprocess.py” to the
scratch space, and add commands to the driver to copy the data
back to your home directory. For this we recommend using the
Python standard library modules os and shutil.

6. (For cluster users). The script “preprocess_cluster.py” automat-
ically generates the job scripts needed to schedule the simula-
tions on cluster using PBS [27]. Get “preprocess_cluster.py”
from the supplementary materials to the “bin” directory, create
a directory “clusterscripts” in PROJECTPATH, and run “pre-
process_cluster.py”:

>>python bin/preprocess_cluster.py

After running the script, there will be a number of PBS scripts
in the “clusterscripts” directory and should look like the
following:

#PBS -S/bin/bash
#PBS -lnodes¼1
#PBS -lwalltime¼8:00:00
cd $HOME
python driver.py longcells_chem_001-1 > log/
longcells_chem_001-1.out 2> log/longcells_chem_
001-1.err &
. . .

python driver.py longcells_chem_001-8 > log/
longcells_chem_001-8.out 2> log/longcells_chem_
001-8.err &
wait
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Submit the job script with “qsub” to add the run to the queue
on the cluster. Each PBS script contains 8 jobs and requests an
8-core node (see Note 12). To change these parameters,
change the variables cores and ppn in “preprocess_cluster.
py”. You may also need to modify the function createPBS in
“CC3DPipeline.py” in CC3DSimUtils to fit the hardware and
scheduling software of the cluster you are using.

7. When all simulations are finished we have a collection of raw
data files, data analysis results, and images. For each simulation
all data files should be located in the “data” directory, in a
subdirectory with the simulation name, for example: “PRO-
JECTPATH/data/longcells_chem_001-1/”. Similarly, the
images are expected to be in a subdirectory with the simulation
name in the directory “images”: “PROJECTPATH/images/
longcells_chem_001-1/”. If this is not the case, move your
data files and/or images to these locations.

3.5 Analyzing a

CompuCell3D

Parameter Sweep

After running the parameter sweep we have raw data, data analysis
results, and images for each simulation. Here we show how to
collect and present this data.

1. Create a morphospace, a collage of simulated morphologies
as a function of one or two simulation parameters. Get
“postprocess_morphospace.py” from the supplementary mate-
rials, save it to the “bin” directory, and run it with

>>python bin/postprocess_morphospace.py

Now, you should find an image named “longcells_1-10_
morphospace_100000.png” in the “results” folder, which
should look similar to Fig. 5. The morphospace is created

Fig. 5 Morphospace showing the effects of varying surface tensions with and without chemotaxis
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with the function morphImages, from CC3DSimUtils. See
the CC3DSimUtils documentation for more details.

2. Calculate the compactness as a function of the surface tension.
Get “postprocess_compactness.py” from the supplementary
materials and save it in the “bin” directory. Run it with

>>python bin/postprocess_compactness.py

The script collects the compactness at the last time step of each
simulation repeat for each tested parameter value and it calcu-
lates the mean and standard deviation over the simulation
repeats. The results can be found in “longcells_chem_1-
10_10x_compactness.data” (simulations with chemotaxis) and
“longcells_nochem_1-10_10x_compactness.data” (simulations
without chemotaxis) in the “results” directory. Plotting this
data should result in a plot similar to Fig. 6.

3. Quantify thedegreeof cell alignmentby calculating themean and
standard deviation of the order parameter. Get “postprocess_
orderparameter.py” from the supplementary materials, save it
into the “bin” directory, and run the script with

>>python bin/postprocess_orderparameter.py

This script calculates the mean and standard deviation of the
order parameter S(r, t) as a function of time for radii r ¼ 20
and r ¼ 40, and the global order parameter (r ¼ 600) for all
simulation repeats of one surface tension. The results can be
found in “longcells_chem_003_10x_orderparameter.data”
and “longcells_nochem_003_10x_orderparameter.data”, in
the “results” directory. With the data in these files we generated
the plot in Fig. 7 for simulations of 1,000,000 time steps. Note
that to reduce simulation time the scripts presented in this
chapter produce only 100,000 time steps.
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Fig. 6 Compactness for simulations with and without chemotaxis, plotted against
the surface tension. The compactness was calculated at 100,000 time steps,
and for each parameter the simulation was repeated 10 times (error bars
represent standard deviation)

Parameter Studies with Cell-Based Models 313



4. To relate cell motility to the degree of cell alignment, we detect
clusters of aligned cells in the morphology. We loosely define a
“cluster” as a set of cells aligned with the local director,

θ x!; r
� �

< θ�, with θ* a threshold value. Clusters are separated

from other clusters by regions with values of θ x!; r
� �

> θ�

(dark gray regions in Fig. 3). More formally, clusters are
detected as follows:

(a) Define a binary matrix B of dimensions equal to the simu-
lation domain.

(b) Assign a value of B x!� � ¼ 1 to all cell pixels x! for which

θ x!; r
� �

θ�, with θ* a threshold value and B x!� � ¼ 0 for all

other pixels.

(c) In B detect all connected components larger than 50
pixels. A set of cells forms a cluster if each cell overlaps
with the same connected component in B for 50 % of its
area or more.

5. To study how aggregation of aligned cells in clusters affects cell
behavior we measured the translation and rotation of the cells
as a function of cluster size. The translational diffusion coeffi-
cient Dt quantifies the translational motility of cells. It is
derived from the mean squared displacement (MSD) of a cell:

X
!

σ; tð Þ � X
!

σ; 0ð Þ
��� ���2D E

σ
¼ 4Dtt . The rotational diffusion

coefficient Dr is derived from the mean squared rotation
(MSR) of a cell: h(α(σ, t) � α(σ, 0))2iσ ¼ 2Drt.

6. Calculate the translational and rotational diffusion coefficients.
Get “postprocess_diffusion.py” from the supplementary mate-
rials, save it in the “bin” directory, and run the script with

>>python bin/postprocess_diffusion.py

Fig. 7 Time evolution of the order parameter for radii 20, 40, and 600 (global).
Each line represents the average order parameter of ten simulations and the grey
areas represent the standard deviation
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This script creates time series of the MSD and the MSR of each
cell as a function of the cluster size and uses those time series to
calculate the translational and rotational diffusion coefficients.
First, cells are binned according to cluster size for each time
step, with a bin size of five cells and the first bin running from
two to five cells. Then, the MSD and MSR of each cell are split
into chunks of ten consecutive time steps, during which that
cell belonged to the same cluster size bin. Using these binned
chunks the translational and rotational diffusion coefficients are
calculated with a least square fit of, respectively, the MSD and
MSR. The diffusion coefficients, together with the standard
error of the estimate of the fit, are stored in “longcells_no-
chem_003_10x_diffusion.data” in the “results” directory. In
Fig. 8 we plot the translational and rotational diffusion coeffi-
cients calculated using data from time step 500 to 250,000
(similar to our previous work [21]). As mentioned before, the
scripts presented in this chapter only produce 100,000 time
steps in order to reduce simulation time.

3.6 Adapting

the Protocol

to Alternative

Simulation Packages

The scripts described in Subheadings 3.4 and 3.5 can be adapted to
any simulation package that is (1) invoked from the command line
and (2) for which model parameters are specified in a text file. As an
example, we show how to use the scripts used in Subheadings 3.4
and 3.5 to set up, run, and analyze for the cell-based, vertex-based
modeling framework VirtualLeaf [9, 28]. A model in the Virtual-
Leaf is defined by the so-called plugin and the model parameters are
defined in the so-called leaf file. With the leaf file and the plugin,
VirtualLeaf can be invoked from the command line. Thus, Vir-
tualLeaf meets both of the requirements of the parameter sweep
protocol.
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Fig. 8 Diffusion coefficients as a function of the cluster size. (a) Translation
diffusion coefficient and (b) rotational diffusion coefficient. These diffusion
coefficients were calculated from ten simulations of 250,000 time steps. The
error bars represent the standard error of the estimates of the least square fit
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1. Create a project directory for your VirtualLeaf project
(as described in Subheading 3.1).

2. Adapt “driver.py” to run and analyze VirtualLeaf simulations.

(a) To run the simulation, “driver.py” uses the function os.
system (on line 26), which attempts to execute its argu-
ment on the command line. For example, for a VirtualLeaf
model defined in “plugin.cpp” and the parameters defined
in “leaf.xml”, this argument must be (see Note 13) as
follows:

/path/to/VirtualLeaf/bin/VirtualLeaf --b --l leaf.
xml-mlibplugin

Assign the path to the VirtualLeaf executable to execpath
(line 7) and assign the executable name, i.e., “VirtualLeaf”
to executable (lines 10–11). Next, define a new variable
named plugin, before line 26, that points to the plugin in
which your model is defined (e.g., ‘libplugin’). Now,
change line 26 to the following:

os.system(‘execpath+/+executable+ --b --l
‘+projectpath+/scripts/+id+.xml --m ‘+plugin)

(b) Remove the commands on line 28 and further, and replace
them with calls to your own analysis functions.

3. Create a template leaf file for your model that contains the
default parameter values for your model.

4. Create a new Python script to automatically generate leaf file,
based on “preprocess.py”.

(c) Copy line 1 of “preprocess.py” to import the necessary
Python libraries.

(d) Create a function buildLeafFile to change specific
parameter values in a template leaf file. Because leaf files
are based on XML, you can use “Experiment.py” as an
example on how to adapt an XML file using Python.
Besides changing specific parameter values, buildLeaf-
File also assigns a random seed, sets the intervals at which
the simulation generates graphical and numerical output,
and sets the filenames and location of the output. As with
the CompuCell3D simulations, model output files should
be identified by the simulation description, simulation
number, and repeat number: description_number-repeat,
and be stored in a directory with the same name in the
“data” directory of PROJECTPATH.

(e) Define a variable projectpath (see line 47 of
“preprocess.py”):

projectpath ¼ [PROJECTPATH]

replacing [PROJECTPATH] for your PROJECTPATH.
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(f) Define the parameters of the parameter sweep. These are
simname for the simulation description, offset for the
first simulation number, repeats for the number of
repeats, and rep0 for the first repeat number (see lines
51–58 of “preprocess.py”). For example:

simname ¼ ’leaf’

offset ¼ 1

repeats ¼ 10

rep0 ¼ 1

(g) Set the simulation time (simtime) and the frequency at
which output is generated (savefreq) (see lines 59–62
of “preprocess.py”). For example:

simtime ¼ 1000

savefreq ¼ 25

(h) Create a list of parameter values, named par, that will be
tested in the parameter sweep (see line 64 of “preprocess.
py”).

(i) Create output files for simulation settings and seeds, and
write the file headers (see lines 70–76 of “preprocess.py”):

runid ¼ simname+’_’+str(offset)+’-’+str
(offset+len(par)-1)

# open log file for parameter values

out ¼ open(’log/’+runid+’.sim’,’w’)

out.write(’#id\tPARAMETERNAME’)

# open log file for random seeds

sout ¼ open(’log/’+runid+’_’+str(repeats)
+’x’’.seed’,’w’)

sout.write(’#id\tseed’)

(j) Iterate over the parameters and the simulation repeats
(see lines 79–101 of “preprocess.py”). The outer loop is
used to write the tested parameter values to the log files.
In the inner loop the random seed is generated and the
leaf file is created:

seeds ¼ []

for i,p in enumerate(par):

out.write(’\n’+name+’_’+string.zfill(i
+offset,3)+’\t’+str(p)+’\n’)

for n in range(rep0,repeats+rep0):

simid ¼ name+’_’+string.zfill(i+off-
set,3)+’-’+str(n)

seed ¼ random.randint(1,10**9)
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# check if seed is unique

while seed in seeds:

seed ¼ random.randint(1,10**9)

seeds.append(seed)

sout.write(’\n’+simid+’\t’+str(seed))

#--- Create leaf file ---#

buildLeafFile(. . .)

5. Adapt “preprocess_cluster.py” to create a set of scripts for the
PBS job scheduler.

(a) Change numlist (line 7) such that it represents the ranges
from the lowest simulation number to the highest simula-
tion number.

(b) Change replist (line 9) such that it represents the range
from the lowest repeat number to the highest repeat
number.

(c) Replace basename (line 13) with your simulation
description.

(d) Change cores (line 17), ppn (line 19), and runtime (line
21) to fit the type of node, number of processors per node,
and simulation time you will request on the cluster.

(e) Replace line 25 with

joblist ¼ [name+’_’+string.zfill(num,3)+’-
’+str(n) for name in simnames for num in
numlist for n in replist]

6. Depending on the analysis performed in the driver script, create
your own set of post-process scripts. For this, you can use post-
process scripts from Subheading 3.5 as examples:

l “postprocess_morphospace.py” can be used as an example
for creating morphospaces.

l “postprocess_compactness.py” can be used as an example
to collect values for one time point per simulation, and
mapping that data on parameter values.

l “postprocess_orderparameter.py” can be used as an exam-
ple on how to collect time course data for multiple
simulations.

4 Notes

1. There are two Python branches: Python 2.x and Python 3.x,
which are not fully compatible. All codes supplied with this
chapter and CompuCell3D are compatible with Python 2.6
and new versions of the Python 2.x branch.
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2. Python uses indentations to delimit blocks of codes. In code
that is copied from different sources, indentation may be bro-
ken due to different indentation lengths or mixing of tabs and
spaces. See http://www.Python.org/dev/peps/pep-0008/
#indentation and http://www.Python.org/dev/peps/pep-
0008/#tabs-or-spaces for more information on how to cor-
rectly indent your code.

3. Windows users should install the Numpy or the Scipy version
that fits with your Python version. First check your Python
version:

>>python --V

Note the first two digits of the Python version, e.g., 2.7. Now
go to the download page of Numpy or Scipy and select the
latest version. Here you should find an installer that ends with
your python version, e.g., “numpy-x.y.z-win32-superpack-
python27.exe”.

4. When you compile CompuCell3D, always check the Compu-
Cell3D website for the most recent instructions and dependen-
cies. Here we list some extra instructions for the compilation of
CompuCell3D.

l The CompuCell3D developers recommend to use “cmake-
gui”; for systems without a graphical user interface the
“cmake curses gui”, also known as “ccmake”, can be used
as an alternative.

l Ensure that you compile CompuCell3D with the “release”
flag because omitting this flag significantly increases
simulation time. The “release” flag can be set with the
“cmakegui” or “ccmake”.

5. CC3DSimUtils needs freetype fonts for the labels on images.
You may need to install freetype (http://www.freetype.org/
download.html) and/or to change the variable fontpath in
the function definitions of makeImage, stackImages, and
morphImages (all in “ImageUtils.py” in CC3DSimUtils).

6. For windows users we strongly recommend to download the
installer for Mahotas at http://www.lfd.uci.edu/~gohlke/
pythonlibs/. Building the source of Mahotas, for example
using pip, is not recommended.

7. CompuCell3D interprets all paths relative to its own path.
Therefore, when running a simulation using runScript.sh you
should specify the full path to the simulation file, for example.

l Windows:C:\Users\username\project_name\scripts
\script.cc3d
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l Linux:/home/username/project_name/scripts/
script.cc3d

l OS X:/Users/username/project_name/scripts/
script.cc3d

8. On windows, running runScript.bat changes the working
directory to the CC3DPATH. Make sure to change it back to
the PROJECTPATH afterwards.

9. In this model we use a connectivity constraint to ensure that
each cell consists of single connected component. Calculating
the connected components is computationally expensive;
therefore CompuCell3D checks only for local connectivity by
checking if a cell is a single connected component within a small
neighborhood. This can cause pixels to become frozen, because
any change in their neighborhood breaks local connectivity. We
fixed this by adding an extra test to the connectivity constraint
for pixels that fit the pattern of a frozen pixel. We used this fixed
connectivity constraint for all our simulations.

This plugin (“ConnectivityFroNo.zip”) can be downloaded
from the supplementary materials and compiled as a part of the
CompuCell3D developer zone; see the CC3D developers’ man-
ual [29] for instructions.

10. On Windows the Python installation directory may not be in
the $PATH; this results in an error like the following:

‘Python is not recognized as an internal or external
command, operable program or batch file.

Adding the installation directory of Python to your $PATH
system variable should solve this problem.

11. Random seeds are used to initialize a random generator. Every
time a random generator is initialized with the same results, it
returns the same sequence of pseudo-random numbers. Thus,
if we run a CompuCell3D simulation twice with identical seeds,
we get identical results. If no random seed is provided, Com-
puCell3D uses the current time to generate a random seed.
When multiple simulations are started at the same moment, for
example on a computer cluster, they will get the same seed.
Thus, predefining random seeds has two advantages: (1) the
results are reproducible and (2) the random seeds in parameter
sweep are unique.

12. It is often more efficient to leave one core of a node idle. This
core is then reserved for system processes while the remaining
nodes are reserved for user processes, i.e., the simulations. To
do so, set ppn (processes per node) in “preprocess_cluster.py”
to one less than there are cores (number of cores of the
requested node).
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13. Due to a bug in the current version of VirtualLeaf (1.0.1), if
VirtualLeaf is invoked with both a leaf file and a plugin in
which another leaf file is defined, the leaf file defined in the
plugin will be used. To correct this problem, add the following
code to “virtualleaf.cpp’ after the line with

"model_catalogue.InstallFirstModel();", and
recompile:

if (leaffile) {

main_window->Init(leaffile);

}
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