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ABSTRACT

When Fourier techniques are applied to specific problems from computational finance
with nonsmooth functions, the so-called Gibbs phenomenon may become appar-
ent. This seriously affects the efficiency and accuracy of the numerical results. For
example, the variance gamma asset price process gives rise to algebraically decaying
Fourier coefficients, resulting in a slowly converging Fourier series. We apply spec-
tral filters to achieve faster convergence. Filtering is carried out in Fourier space; the
series coefficients are pre-multiplied by a decreasing function. This does not add any
significant computational costs. Tests with different filters show how the algebraic
index of convergence is improved.

Keywords: Fourier cosine expansion method; spectral filters; European options; variance gamma;
portfolio loss distribution; Gibbs phenomenon.

1 INTRODUCTION

Fourier techniques have now become well-established in computational finance for
efficiently pricing certain financial instruments. For instance, European options,
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certain options with early-exercise features and also exotic options, like Asian, multi-
asset or barrier options, have been all priced by Fourier techniques. The Fourier tech-
niques belong to the class of numerical integration option pricing methods. They are
referred to as “transform methods”, because a transformation to the Fourier domain
is combined with numerical integration (Boyarchenko and Levendorskii 2011; Carr
and Madan 1999; Den Iseger 2006; Lord and Kahl 2007). Transform methods can
readily be used for asset price models for which the characteristic function (ie, the
Fourier transform of the probability density function) is available. A specific Fourier
pricing technique, which we consider here, is the COS method (Fang and Oosterlee
2008, 2009). This pricing method is based on Fourier cosine series expansions. The
issues and remedies we address here will, however, be of relevance for other transform
methods as well.

As long as the governing probability density function is sufficiently smooth, an
exponential error convergence in the number of cosine terms is achieved by the COS
method. For certain choices of the asset dynamics, however, the governing probabil-
ity density function is not smooth everywhere. Smoothness issues are encountered,
for example, when we model the asset price by the variance gamma (VG) process
(Madan et al 1998). This results in only algebraic convergence for the option price.
For hedging purposes, agents are also interested in the option Greeks, which measure
risk sensitivities of the option price. Their approximations may even suffer more from
nonsmoothness conditions and for these cases it is desirable to find a faster converging
method for the Greeks. In the field of risk management we deal with discrete random
variables representing individual obligors that may have a default problem. Portfolio
loss modeling with small-sized portfolios typically produces stepwise cumulative
distribution functions and inaccuracies around the discontinuities may occur.

In general, when Fourier techniques are employed to specific cases with nonsmooth
functions, the Gibbs phenomenon may become apparent. This seriously affects the
efficiency and accuracy of the financial valuation. The Gibbs phenomenon reflects
the difficulty of approximating a discontinuous function by a finite Fourier series.
Although the limit of the partial sums represents the original function exactly, in the
finite case there is always an overshoot at a jump discontinuity. The width of this over-
shoot decreases with the number of Fourier terms, but the height of the maximum
does not. The Gibbs phenomenon is also related to the principle that the decay of the
Fourier coefficients is governed by the smoothness of the function concerned. Func-
tions with a discontinuity in one of the derivatives will have algebraically decaying
Fourier coefficients, that result in a slowly converging Fourier series. The local effect
of the Gibbs phenomenon gives rise to oscillations near the jumps. However, there is
also a global effect: although the error decays away from the jumps, the decay rate is
only first order. Thus, the existence of one or more discontinuities drastically reduces
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the convergence rate over the whole domain, and spectral accuracy is lost (Gottlieb
and Shu 1997; Tadmor 2007).

The research field dealing with Gibbs oscillations is wide and well-established.
An excellent overview into the various improvement techniques is given by Tadmor
(2007). We will focus on the use of spectral filters to deal with the Gibbs phenomenon
appearing for nonsmooth densities and discrete distribution functions. This is one of
the very basic techniques in this field, but we will see that it fits very well to the
applications at hand.

Several other techniques have been proposed in the literature to reduce or remove
the Gibbs phenomenon. The optimal filter order for a function with discontinuities is
an increasing function of the distance to the nearest discontinuity. The idea of adaptive
filtering is then to vary the filter order so that it is close to this optimal value. Tadmor
(2007); Tanner (2006) and Tadmor and Tanner (2005) describe adaptive filters recov-
ering root-exponential accuracy. This type of filtering is related to superconvergent
extraction techniques in finite element methods (van Slingerland et al 2011). How-
ever, it is not trivial to efficiently employ an adaptive filter in the context of Fourier
option pricing, so we stay with nonadaptive filters here. Mollifiers are a time domain
equivalent to filters, in the sense that multiplication by a function in Fourier-space
corresponds to a convolution in physical space (which is the basis for mollifiers).
Implementation of mollifiers in a Fourier option pricing technique would require
reconstruction to the time domain, which is computationally relatively expensive.
The same is true for methods like Gegenbauer polynomial reconstruction (see Got-
tlieb and Shu 1997; Tadmor 2007), digital total variation (DTV) filtering (Chan et al
2001; Sarra 2006) and for the hybrid methods (Glasserman and Ruiz-Mata 2006),
where a polynomial reconstruction is used only where needed and filtering is used
elsewhere.

We start in Section 2 with Fourier series and Fourier cosine series and explain how
we can employ the characteristic function of a random variable to approximate the
corresponding density or distribution function. Short introductions to Fourier pric-
ing techniques and the COS method for pricing European options are also given. In
Section 3 the convergence of the series and improvements by spectral filters are
discussed. Extensive numerical experiments are performed in Section 4. Finally,
Section 5 concludes.

2 FOURIER AND FOURIER COSINE SERIES EXPANSIONS

The Fourier series of an integrable function f .y/ supported on a finite interval Œa; b�
is defined as (Stein and Shakarchi 2003)

f .y/ D

1X
kD�1

F F
k exp

�
ik�

2y

b � a

�
; (2.1)
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with Fourier coefficients given by

F F
k D

1

b � a

Z b

a

f .y/ exp

�
�ik�

2y

b � a

�
dy: (2.2)

The COS method for pricing European options is based on the Fourier cosine series
expansion, which is defined by

f .y/ D

1X0

kD0

Fk cos

�
k�
y � a

b � a

�
; (2.3)

with Fourier cosine coefficients given by

Fk D
2

b � a

Z b

a

f .y/ cos

�
k�
y � a

b � a

�
dy: (2.4)

The prime 0 in the summation indicates division of the first term by two. These cosine
series can be seen as a classical Fourier series of a function f ext.y/ D f .jy � aj/,
on an extended interval Œ2a� b; b�, which is mirrored around the midpoint a to make
it an even function.

2.1 Recovery density and distribution function

In financial option pricing we deal with stochastic asset prices. The corresponding
probability density function is usually unknown. However, the characteristic function
is often known (Duffie et al 2000) and can be used to approximate the density and
distribution function, as we explain in this section. In Section 4.3 we discuss a model
for discrete portfolio losses. For example, the loss may be either 0 or 1. An approx-
imation of the distribution function of a discrete random variable, also by using the
characteristic function, is derived here as well.

2.1.1 Continuous random variable.

Suppose we have a continuous random variableX , with cumulative distribution func-
tion F.�/ and probability density function p.�/. The characteristic function '.�/ of X
is defined as

'.u/ WD EŒeiuX �: (2.5)

The density and the characteristic function form a Fourier pair: the characteristic
function is the Fourier transform of the density and the density is the inverse Fourier
transform of the characteristic function:

'.u/ D

Z
R

eiuy dF.y/ D
Z

R

eiuyp.y/ dy; (2.6a)

p.y/ D
1

2�

Z
R

e�iuy'.u/ du: (2.6b)
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The Fourier cosine series expansion of the density function reads

p.y/ D

1X0

kD0

Pk cos

�
k�
y � a

b � a

�
; (2.7)

with Fourier cosine coefficients

Pk D
2

b � a

Z b

a

p.y/ cos

�
k�
y � a

b � a

�
dy

D
2

b � a
Re

� Z b

a

p.y/ exp

�
ik�

y � a

b � a

�
dy

�
; (2.8)

where Ref�g denotes taking the real part. If the density function p.y/ decays rapidly
to zero for y !˙1, the integration range in (2.6a) can be truncated without loss of
any significant accuracy:

'.u/ D

Z
R

eiuyp.y/ dy �
Z b

a

eiuyp.y/ dy WD 'Trunc.u/; (2.9)

and therefore the characteristic function can be used to efficiently calculate the Fourier
coefficients (Fang and Oosterlee 2008). Combining (2.8) and (2.9) gives us:

Pk D
2

b � a
Re

�
'Trunc

�
k�

b � a

�
exp

�
ik�

�a

b � a

��

�
2

b � a
Re

�
'

�
k�

b � a

�
exp

�
ik�

�a

b � a

��

WD ˚k : (2.10)

After truncation of the series summation we end up with the approximation

p.y/ �

NX0

kD0

˚k cos

�
k�
y � a

b � a

�
: (2.11)

The distribution function can now be approximated as follows:

F.y/ D P.X 6 y/ �
Z y

a

p.t/ dt �
NX0

kD0

˚k

Z y

a

cos

�
k�

t � a

b � a

�
dt

D
1

2

2

b � a
.y � a/

C

NX
kD1

2

k�
Re

�
'

�
k�

b � a

�
exp

�
ik�

�a

b � a

��
sin

�
k�
y � a

b � a

�
: (2.12)

www.risk.net/journal Journal of Computational Finance



80 M. J. Ruijter et al

If the interval Œa; b� is chosen sufficiently wide, then the series truncation error dom-
inates the error of the approximations (2.11) and (2.12). We refer to Section 3.5 for
details about the series truncation error in the COS formula.

2.1.2 Discrete random variable

If X is a discrete random variable, then a density function does not exist and we use
the following Lévy inversion formula connecting the distribution function, F.�/, and
characteristic function, '.�/. For y � h; y C h 2 C.F /, with C.F / the continuity set
of F , there holds (Gut 2005)

F.y C h/ � F.y � h/

2h
D lim
T!1

1

2h

1

2�

Z T

�T

'.u/
e�iu.y�h/ � e�iu.yCh/

iu
du

D lim
T!1

1

2�

Z T

�T

'.u/e�iuy sin uh

uh
du: (2.13)

Suppose F is concentrated on the interval Œa;1/ and F.a/ D 0. Then we get
(h > 0)

F.aC h/ D lim
T!1

1

�

Z T

�T

'.u/e�iua sin uh

u
du

D lim
T!1

2

�

Z T

0

Ref'.u/e�iuag
sin uh

u
du: (2.14)

Numerical integration with step size �u results in the approximation (y > a; y 2
C.F /)

F.y/ D lim
T!1

2

�

Z T

0

Ref'.u/e�iuag
sin u.y � a/

u
du

�
1

2

2�u

�
.y � a/C

NX
kD1

2

k�
Ref'.k�u/e�ik�uag sin.k�u.y � a//: (2.15)

For �u D �=.b � a/ this, in fact, corresponds to the formula for the distribution
function of a continuous random variable (2.12).

2.2 COS method for European options

The asset price is modeled by a stochastic process and is denoted by S.t/. The risk-
neutral valuation formula for a European option with payoff function g.�/ reads

v.t0; x/ D e�r�tEQŒg.X.T // j X.t0/ D x� D e�r�t
Z

R

g.y/p.y j x/ dy: (2.16)
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HereX.t/ is the state process, which can be any monotone function of the underlying
asset price S.t/. From here it is taken to be the scaled log-asset price, X.t/ WD
log.S.t/=K/, where K is the option’s strike price. EQ denotes the expectation under
risk-neutral measure Q; �t is the difference between the time of maturity T and the
initial time t0 D 0; p.y j x/ is the conditional probability density of X.T /, given
X.t0/ D x, and r is the risk-free interest rate. In other words, the option price is
equal to the expected value of its discounted future payoff, under a certain probability
measure. Explicit expressions for probability density functions p.y j x/ encountered
in finance are often not known, or involve some mathematical special functions,
which make them impractical to calculate. Instead the characteristic function '.u j x/
corresponding to p.y j x/ is often known (Duffie et al 2000).

At first Heston (1993) found a closed-form solution for European options with
stochastic volatility by means of the Fourier transform. In Carr and Madan (1999),
the Fourier transform of the damped payoff function, together with a fast Fourier
transform (FFT), was used to evaluate European options under a broad class of mod-
els. Fourier methods for Bermudan options were then developed in, among others,
O’Sullivan (2005) and Lord et al (2008). For recent developments in pricing exotic
options, like Asian and multi-asset options, we refer to Fusai et al (2011), Surkov
(2009), Zhang and Oosterlee (2013) and Ruijter and Oosterlee (2012). In this paper
we consider a specific Fourier technique, the COS method, which is short for Fourier
cosine pricing method. The method is based on the Fourier cosine series expansion
of a density function. It can be used to efficiently approximate the expected value
of an arbitrary function of random variables. The method was developed in the first
place for pricing financial options, like European options (Fang and Oosterlee 2008)
and Bermudan options (Fang and Oosterlee 2009). Below we briefly summarize the
derivation of the COS formula.

We can replace the density function by its Fourier cosine series expansion,

p.y j x/ D

1X0

kD0

Pk.x/ cos

�
k�
y � a

b � a

�
; (2.17)

whose coefficients are approximated by, similarly to (2.10),

Pk.x/ D
2

b � a

Z b

a

p.y j x/ cos

�
k�
y � a

b � a

�
dy

�
2

b � a
Re

�
'

�
k�

b � a

ˇ̌̌
ˇ x
�

exp

�
ik�

�a

b � a

��
WD ˚k.x/: (2.18)

The Fourier cosine series expansion of the payoff function is given by

g.y/ D

1X0

kD0

Gk cos

�
k�
y � a

b � a

�
; (2.19)
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with the coefficients

Gk D
2

b � a

Z b

a

g.y/ cos

�
k�
y � a

b � a

�
dy: (2.20)

For several payoff functions, including plain vanilla puts and calls, the cosine coef-
ficients Gk are available in closed form. Truncating the integration range and substi-
tuting the series (2.17) into (2.16), interchanging summation and integration, using
definition (2.20) and replacing the coefficients Pk.x/ by ˚k.x/ we get a formula for
v.t0; x/, written as the product of Fourier cosine coefficients:

v.t0; x/ �
b � a

2
e�r�t

1X0

kD0

˚k.x/Gk : (2.21)

Truncating the series, we obtain the next approximation, the COS pricing formula:

Ov.t0; x/ WD e�r�t
NX0

kD0

Re

�
'

�
k�

b � a

ˇ̌̌
ˇ x
�

exp

�
ik�

�a

b � a

��
Gk

D e�r�t
NX0

kD0

Re

�
�

�
k�

b � a

�
exp

�
ik�

x � a

b � a

��
Gk : (2.22)

The last equality holds for processes with independent increments, such as Lévy
processes, which include the log-versions of geometric Brownian motion, variance
gamma and CGMY models. In that case, the characteristic function can be written as
a product of eiux and a part independent of x, that is '.u j x/ D eiux�.u/.

The integration range Œa; b�must be chosen carefully to avoid significant errors. An
interval which is too small will result in integration range truncation errors, and a too
wide interval may give rise to cancelation errors. For now we mention the results given
by Fang and Oosterlee (2008), in which a rule of thumb for choosing the integration
range is given:

Œa; b� WD
h
�1 � L

p
�2 C

p
�4; �1 C L

p
�2 C

p
�4

i
; L D 10: (2.23)

where �1; �2; : : : are the cumulants of the underlying stochastic process X.t/, given
in Fang and Oosterlee (2008, Table 11).

2.2.1 The option Greeks

The Greeks indicate the sensitivities of the option price with respect to a change in
its underlying or model parameters, such as the asset price or the volatility. They are
used to hedge the risks in a portfolio. The most well-known Greek parameter is the
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option Delta, �, ie, the first derivative of the option price with respect to underlying
asset price S.t/. Gamma, � , is the second derivative of the option price with respect
to the asset price. By the COS pricing formula (2.22) we naturally find the following
approximations (x D log.S=K/),

� D
@v.t0; x/

@S
�
@ Ov.t0; x/

@x

1

S

D e�r�t
NX0

kD0

Re

�
�

�
k�

b � a

�
exp

�
ik�

x � a

b � a

�
ik�

b � a

�
Gk
1

S
; (2.24a)

� D
@2v.t0; x/

@S2
�

�
@2 Ov.t0; x/

@x2
�
@ Ov.t0; x/

@x

�
1

S2

D e�r�t
NX0

kD0

Re

�
�

�
k�

b � a

�
exp

�
ik�

x � a

b � a

���
ik�

b � a

�2
�

ik�

b � a

��
Gk

1

S2
:

(2.24b)

3 CONVERGENCE AND IMPROVEMENTS BY SPECTRAL FILTERS

In this section, we use, without loss of generality, the interval Œa; b� D Œ0; 2�� and
we consider the classical Fourier series. As the Fourier cosine series of a function is
equivalent to the symmetrically extended version on an extended domain, the theory
here also applies to Fourier cosine series.

3.1 Convergence of Fourier series

The partial sum of the Fourier series of a function f .y/ on Œ0; 2�� is given by

fN .y/ WD
X
jkj6N

F F
k eiky : (3.1)

To make statements about the convergence rate we look at pointwise convergence. Iff
is a continuous periodic function on Œ0; 2��, so f .0/ D f .2�/, and the Fourier series
of f is absolutely convergent,

P1
kD�1 jF

F
k
j <1, then the Fourier series converges

uniformly to f . For a noncontinuous function there is no uniform convergence and
its Fourier series converges to the average of the left- and right-hand limits at a jump
discontinuity. In the case that discontinuities of any order are present, the Fourier
series expansion only exhibits algebraic convergence. For jump discontinuities, we
even encounter zeroth order convergence, which leads to the Gibbs-overshoot.

The speed at which the Fourier coefficients decay depends on the smoothness of
the function, as is stated in the following theorem.
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Theorem 3.1 (Integration-by-parts coefficient bound (Boyd 2001)) If

f .0/ D f .2�/; f .1/.0/ D f .1/.2�/; : : : ; f .n�2/.0/ D f .n�2/.2�/ (3.2)

and f .n/.y/ is integrable, then

F F
k � O.jkj�n/ as jkj ! 1: (3.3)

Here f .n/ denotes the nth derivative of f .y/. The integrability of f .n/ requires that
f .y/, f .1/.y/; : : : ; f .n�2/.y/ should be continuous.

The absolute error of truncation of the expansion after N terms is denoted by

ETr.N / WD jf .y/ � fN .y/j 6
1X

kDNC1

jF F
k C F F

�kj: (3.4)

In general the convergence rate of a Fourier series depends on the smoothness of the
function on the expansion interval. We refer to Boyd (2001) for the definitions of
algebraically and exponentially converging terms. The following proposition allows
us to bound the series truncation error of geometrically and algebraically converging
series.

Proposition 3.2 (Last coefficient error estimate (Boyd 2001)) The truncation er-
ror is of the same order of magnitude as the last coefficient retained in the truncation
for a series with (at least) geometric convergence.

If the series has algebraic convergence index n > 1, ie, if ak � O.1=kn/ for large
k, then

ETr.N / � O.jNaN j/: (3.5)

In the numerical experiments in Section 4.1 we will observe that the Fourier coef-
ficients of an .n � 2/-times continuously differentiable function, f 2 C n�2, will
converge with an algebraic index of convergence n (see Theorem 3.1). According
to the proposition above we would expect truncation error ETr.N / to decrease with
order O.N 1�n/. However, we find a faster convergence, of order n. This may be due
to the alternating behavior of the series.

3.2 Spectral filter

In this section we explain the notion of spectral filters, by which we aim to mitigate
oscillations related to the Gibbs phenomenon and achieve faster convergence for
problems in financial mathematics. Filtering is carried out in Fourier space and the
idea is to pre-multiply the expansion coefficients by a decreasing function in such a
way that these decay faster. A properly chosen filter will improve the convergence
rate away from discontinuities. The following definition is from Vandeven (1991) and
Gottlieb and Shu (1997).
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Definition 3.3 (Fourier space filter of order p) A real andC1.Œ0; 1�/ even func-
tion Os.�/ is called a filter of order p if

(1) Os.0/ D 1 and Os.`/.0/ D 0, 1 6 ` 6 p � 1,

(2) Os.�/ D 0 for j�j > 1,

(3) Os.�/ 2 Cp�1, � 2 .�1;1/.

Conditions (2) and (3) imply Os.`/.1/ D 0, 0 6 ` 6 p � 1.

The filtered partial sum of a Fourier series is simply defined by

f OsN .y/ D
X
jkj6N

Os.k=N /F F
k eiky : (3.6)

We can rewrite this as a convolution in physical space:

f OsN .y/ D
1

2�

Z 2�

0

s.y � t /f .t/ dt;

with

s.x/ D
X
jkj61

Os.k=N /eikx; x 2 Œ0; 2��: (3.7)

Note that Os.k=N / D 0 for jkj > N . A filter is a continuous function which only
modifies high frequency modes, not the low modes. Filtering may remove the Gibbs
phenomenon from a discontinuity, the error depends on the distance to the disconti-
nuity, as we will confirm in Section 3.3. Since the approximation will be smoothened,
convergence in the vicinity of a “jump” will not improve. Filtering does not affect
the total mass of the resulting approximation (which should be 1 for a probability
density), since the first coefficient is never altered. To be precise,Z 2�

0

f OsN .y/ dy D
X
jkj6N

Os.k=N /F F
k

Z 2�

0

eiky dy

D Os.0=N /F F
0 2� D

Z 2�

0

f .y/ dy: (3.8)

3.2.1 Examples of spectral filters

The following filters are well-known from the literature (Gottlieb and Shu 1997;
Hesthaven et al 2007; Vandeven 1991).

� Fejér filter (Fejér 1900): Os.�/ D 1 � j�j, with order p D 1.

� Lanczos filter (Lanczos 1956): Os.�/ D sin.��/=.��/, with order p D 1.

� Raised cosine filter: Os.�/ D 1
2
.1C cos.��//, with order p D 2.
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The following general pth order spectral filters also exist.

� Exponential filter (Gottlieb and Shu 1997): Os.�/ D exp.�˛�p/, where p must
be even and ˛ D � log "m, with "m the machine epsilon.

� Vandeven filter (Peyret 2002; Vandeven 1991):

Os.�/ D 1 �
.2p � 1/Š

..p � 1/Š/2

Z j�j
0

tp�1.1 � t /p�1 dt: (3.9)

� Erfc-Log filter (Boyd 1996): Boyd showed that the Vandeven filter can be
approximated quite accurately by an analytic function which satisfies all
conditions, ie, by the Erfc-Log filter:

Os.�/ D 1
2

erfc

�
2
p
p.j�j � 1

2
/

s
� log.1 � 4.j�j � 1=2/2/

4.j�j � 1=2/2

�
; (3.10)

where erfc.�/ is the complimentary Gauss error function.

3.3 Convergence and error analysis

A higher-order filter modifies the original function in smooth regions away from a
discontinuity and high-order accuracy is desirable away from a discontinuity. Low-
order filtering is however desirable close to a discontinuity, because higher p values
then give rise to a highly oscillatory filtered function f OsN . The following theorem gives
a bound on the error. It can be extended in a straightforward way to a function with
more points of discontinuity 	m.

Theorem 3.4 (Gottlieb and Shu 1997; Hesthaven et al 2007) Let f .y/ be a piece-
wise Cp.Œ0; 2��/ function with one point of discontinuity 	. Let Os.k=N / be a filter of
order p. Now let y be a point in Œ0; 2�� and define

d.y/ WD min
kD�1;0;1

jy � 	 C 2k�j:

Then (if y ¤ 	),

jf OsN .y/ � f .y/j

D

ˇ̌̌
ˇ 12�

p�1X
`D0

s`C1.d.y//.f
.`/.	C/ � f .`/.	�//C

1

2�

Z 2�

0

sp.y � t /f
.p/.t/ dt

ˇ̌̌
ˇ

6 cN 1�pd.y/1�pK.f /C cN 1=2�pkf .p/kL2 ; (3.11)
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where

K.f / D

p�1X
`D0

d.y/`.f .`/.	C/ � f .`/.	�//

Z 1
�1

jG
.p�`/

`
.�/j d�; (3.12a)

G`.�/ D
Os.�/ � 1

�`
; (3.12b)

c is a constant independent of f and N , and

s0.x/ D s.x/; s0` D s`�1; ` > 1;
Z 2�

0

s`.t/ dt D 0; ` > 1: (3.13)

The error bound decreases with d.y/, ie, with the distance to the discontinuity. The
filter order determines the rate at which the error remaining after filtering decays. If
we have f … Cp�1, ie, if f .y/ has a jump discontinuity at one or more points of
order smaller than, or equal to,p�1, the following estimate holds: jf OsN .y/�f .y/j �
O.N 1�p/: If f 2 Cp�1, ie, if f .y/ is smooth in the sense of possessing at least p�1
continuous derivatives, then jf OsN .y/ � f .y/j � O.N .1=2/�p/: 1

In the numerical experiments in Section 4.1 we will observe a somewhat faster
convergence than prescribed by Theorem 3.4. This can be explained by the following
observations. For the first part in (3.11) the authors in Vandeven (1991) prove by
induction that

s`.x/ � O.N 1�p/; x 2 .0; 2�/; 0 6 ` 6 p: (3.14)

Table 1 on the next page shows the order of convergence for s0 and s1 that we observed
by numerical experiments. We tested six different filters: the Fejér filter, the Lanczos
filter, the raised cosine filter, the exponential filter, the Vandeven filter and the Erfc-
Log filter, as described in Section 3.2. We also used different filter orders. Here “exp”
denotes exponential convergence. The algebraic index of convergence given by (3.14)
is thus not strict and can be higher than order p.

For the second part in (3.11) the authors in Vandeven (1991) and Gottlieb and Shu
(1997) use the inequalities

ˇ̌̌
ˇ 12�

Z 2�

0

s`.y � t /f
.`/.t/ dt

ˇ̌̌
ˇ 6 1

2�

sZ 2�

0

s2
`
.y � t / dt

sZ 2�

0

.f .`/.t//2 dt

(3.15)

1 The Euler-accelerated partial sum (Boyd 2011) gives a geometric error, ie, an error of order
O.exp.�
.y/N //. However, we are not able to obtain results for N > 1024 as the computation of
the filter is then limited by our double precision computations. Besides, the computational costs of
this filter are about 100 times as high as the exponential filter, for our numerical examples.
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TABLE 1 Algebraic index of convergence (x 2 .0;2�/).

Filter s0.x/ s1.x/

Fejér 1 1
Lanczos 1 2
Raised cosine 2 3

Exponential (p D 2;4;6) exp exp
Vandeven (p D 1;3;5) p p

Vandeven (p D 2;4) p p C 1
Erfc-Log (p D 1;2;3;4;5) p p

and find the upper bound

ˇ̌̌
ˇ 12�

Z 2�

0

s`.y � t /f
.`/.t/ dt

ˇ̌̌
ˇ 6 � O.N 1=2�`/: (3.16)

However, for the filters in Table 1 we observe by our numerical computations that

ˇ̌̌
ˇ 12�

Z 2�

0

s`.y � t /f
.`/.t/ dt

ˇ̌̌
ˇ 6 � O.Nmax.�p;1=2�`//; 1 6 ` 6 10: (3.17)

3.4 Filtering and the COS method

One of the reasons why the COS method is highly efficient is because pricing formula
(2.22) works directly with the coefficients, without a priori recovery of the functions
p.y j x/ or g.y/. Spectral filters work strictly in the Fourier domain and therefore
they can be used directly in the COS pricing formula. Once a suitable filter and order
have been chosen one can multiply the Fourier cosine coefficients by a factor Os.k=N /
and work with the COS method as before. This simply gives us the filter-COS pricing
formula, as follows:

v.t0; x/ � e�r�t
NX0

kD0

Os

�
k

N

�
Re

�
�

�
k�

b � a

�
exp

�
ik�

x � a

b � a

��
Gk; (3.18)

where Os can be any nonadaptive filter. It does not add significant computational costs.
Unfortunately, the same does not hold for the adaptive filters (Boyd 2011; Tadmor and
Tanner 2005; Tanner 2006) because, if we vary coefficients depending on position,
we can no longer use the substitution of (2.20) which leads to the COS method.

Journal of Computational Finance www.risk.net/journal



On the application of spectral filters in a Fourier option pricing technique 89

3.5 Error analysis COS method and filter-COS method

3.5.1 Without filtering

The error of the COS formula without filtering terms is composed of three parts: the
integration range truncation error, the series truncation error and the error related to
approximating Pk by ˚k . A detailed error analysis was given in Fang and Oosterlee
(2008), where it was shown that if p.y j x/ 2 C1, with a properly chosen truncation
range Œa; b�, then the COS method exhibits exponential convergence. Both a density
function and payoff function with a discontinuity in one of their derivatives, results
in an algebraic convergence. If the computational domain Œa; b� is chosen sufficiently
wide, then the so-called series truncation error ECOS

Tr .t0; xIN/, ie,

ECOS
Tr .t0; xIN/ WD e�r�t

b � a

2

1X
kDNC1

˚k.x/Gk

D e�r�t
Z b

a

g.y/.p.y j x/ � pN .y j x// dy; (3.19)

dominates the total error. Here pN .y j x/ denotes the truncated Fourier cosine series
of the density on Œa; b�. The series truncation error depends on the smoothness of
underlying probability density function p.y j x/ and payoff function g.y/. With
(3.19) it follows that if either ˚k or Gk decreases exponentially, then the error has
exponential convergence inN . If, however, both decay algebraically, then we end up
with algebraic convergence. If ˚k.x/ and Gk have algebraic index of decay n'.x/
and ng , respectively, then Proposition 3.2 gives

ECOS
Tr .t0; xIN/ � O.N�n'.x/�ngC1/:

In the numerical examples we will observe convergence rates

ECOS
Tr .t0; xIN/ � O.N�n'.x/�ng /;

which is probably due to the alternating behavior of the series.
Payoff functions, like puts and calls, are in general nonsmooth, which is the rea-

son for slowly decreasing Fourier coefficients. Asset prices modeled by geometric
Brownian motion, jump-diffusion or the Heston model lead to exponential decay of
the coefficients˚k , resulting in an exponentially converging COS formula. However,
the density functions of the variance gamma and CGMY models may be nonsmooth.
Together with a nonsmooth payoff function this will result in rather slow algebraic
error convergence in N . Applying an appropriate spectral filter will improve the
convergence rate.
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3.5.2 With filtering

Applying spectral filter Os in the COS formula leads to the following relation,

Efilter-COS
Tr .t0; xIN/

WD e�r�t
b � a

2

NX0

kD0

.1 � Os.k=N //˚k.x/Gk C e�r�t
b � a

2

1X
kDNC1

˚k.x/Gk

D e�r�t
Z b

a

g.y/.p.y j x/ � p OsN .y j x// dy: (3.20)

The absolute value can be bounded by

jEfilter-COS
Tr .t0; xIN/j

6 e�r�t
Z b

a

jg.y/j jp.y j x/ � p OsN .y j x/j dy D O.N�n
Os
p.x//: (3.21)

Here, nOsp.x/ denotes the algebraic index of convergence of the error p.y j x/ �
p OsN .y j x/ of the filtered partial sum, which is discussed in Section 3.3 (Theorem
3.4). The absolute error depends on the distance to the discontinuity of the density
function and may be larger for strike prices K close to the discontinuity. Only at the
discontinuity the error will not improve, but we integrate over the whole interval Œa; b�.
We observe higher absolute errors in the option value for strikes near the discontinuity
of the density function, but appropriate filters will improve the convergence rate. The
filter-COS formula is beneficial especially when the number of terms N increases.

3.5.3 Option Greeks

Computing the option Greeks was briefly described in Section 2.2.1. The error of the
COS formula for the option Delta, without filtering, is given by

ECOS��
Tr .t0; xIN/ WD e�r�t

b � a

2

1X
kDNC1

@˚k.x/

@x
Gk
1

S
; (3.22a)

@˚k.x/

@x
D

2

b � a
Re

�
�

�
k�

b � a

�
exp

�
ik�

x � a

b � a

�
ik�

b � a

�
: (3.22b)

As the coefficients for the Greeks are multiplied by factors ik�=.b�a/, the algebraic
index of convergence is reduced by 1. So, finding a faster converging method becomes
even more beneficial for the option Greeks. With a filter-COS formula for the option
Greeks we achieve the same convergence rates as for the option prices.
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4 NUMERICAL EXAMPLES

In this section we discuss several numerical experiments supporting the insights from
earlier sections. MATLAB 7.11.0 R2010b is used for the computations, with double
precision. We start in Section 4.1 with three basic test functions f .y/, representing
the option payoff or probability density features. Subsequently, in Section 4.2.1 the
density recovery of theVG process is studied. Convergence of option prices, computed
by the filter-COS method, is discussed in Section 4.2.2 for European-style options
and in Section 4.2.3 for Bermudan-style options. An example from portfolio loss
modeling, resulting in a staircase distribution function, is presented in Section 4.3.

4.1 Convergence test functions

We perform tests with three different functions f .y/ and different filters. The test
functions are shown in Figure 1 on the next page, with Œa; b� D Œ0; 2��. Function A
represents a block function with two jump discontinuities, function B is smooth and
function C has a discontinuity in the first derivative.

Part (a) of Figure 2 on page 93 shows function A (gray line) and its Fourier series
approximation without (dashed gray line) and with (black line) an exponential filter
of order p D 4 (N D 32). The middle plot gives the corresponding error. At the jump
discontinuities the limit converges to the average of the values of the function at either
side of the jump. In part (b) we display the convergence of the error at the point y D � ,
for increasing values of N (log–log plot). The local effect of the Gibbs phenomenon
gives rise to oscillations near the jumps and the partial sum does not converge at the
jump, thereby resulting in a lack of uniform convergence. However, there is also a
global effect: although the error decays away from the jumps, the algebraic pointwise
convergence is only first order, O.1=N /. The filter improves the error significantly,
especially away from the jump discontinuities. The error at point y D � decreases
exponentially in N due to the usage of the filter.

To recover the functions, we test the performance of six filters, ie, the Fejér filter,
the Lanczos filter, the raised cosine filter, the exponential filter, the Vandeven filter and
the Erfc-Log filter (see Section 3.2). We also employ different filter orders. Table 2
on page 94 presents the algebraic index of convergence observed for the three test
functions. Here “exp” denotes exponential convergence. With two numbers, eg, “2,
4”, convergence is order O.N�2/ on Œ0; �� and O.N�4/ on Œ�; 2��. An asterisk (�)
in the table indicates that the order of convergence was not clearly measurable in our
numerical experiments.

Based on the error analysis of Theorem 3.4 and our observations in Section 3.3 we
can explain the numbers in Table 2 on page 94 as follows.

www.risk.net/journal Journal of Computational Finance



92 M. J. Ruijter et al

FIGURE 1 Three test functions f .y/.
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(a)f .y/ D 1y2Œ0.5�;1.5��. (b)f .y/ D 1=.
p

2��/ exp. 1
2 .y��/

2=�2/ (� D �;� D 0.3). (c)f .y/ D max.e��ey ;0/.

For function A we have

jf OsN .y/ � f .y/j

D
X
m

1

2�
s1.dm.y//.f .	

C
m / � f .	

�
m//C

1

2�

Z 2�

0

s1.y � t /f
.1/.t/ dt

D
X
m

1

2�
s1.dm.y//.f .	

C
m / � f .	

�
m//: (4.1)

The observed decay rates of s1 are given in Table 1 on page 88 and they correspond
to the results in the second column in Table 2 on page 94.

Function B is approximately smooth, so that

jf OsN .y/ � f .y/j D
1

2�

Z 2�

0

sq.y � t /f
.q/.t/ dt; 8q > 1: (4.2)
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FIGURE 2 Recovery f .y/ (function A) without and with filter (exponential, order p D 4)
(N D 32).
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Following the arguments in Section 3.3 we expect

1

2�

Z 2�

0

sq.y � t /f
.q/.t/ dt � O.Nmax.�p;1=2�q//: (4.3)

This gives us the convergence order O.N�p/, as observed.
The error of function C corresponds to the error of function B for y 2 Œ0; ��. And

the error corresponds to the error of function A for y 2 Œ�; 2��.
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TABLE 2 Algebraic index of convergence test functions.

Filter Function A Function B Function C

No filter 1 exp 1

Fejér 1 1 1
Lanczos 2 2 2
Raised cosine 3 2 2, 3

Exponential (p D 2) exp 2 2, exp
Exponential (p D 4) exp 4 4, exp
Exponential (p D 6) exp 6 �, exp
Vandeven (p D 1;3;5) p p p

Vandeven (p D 2;4) p C 1 p p, p C 1
Erfc-Log (p D 1;2;3;4;5) p p p

4.2 The variance gamma process

In this section, we discuss various applications of the COS method in the context of
the VG process (Madan et al 1998; Schoutens 2003). We start with the accurate and
efficient recovery of the VG density. Then European and Bermudan option prices are
analyzed.

4.2.1 Variance gamma density recovery

In the case of modeling asset prices by a fat-tailed density function, the exponential
VG jump process can be applied. TheVG process is obtained by evaluating a Brownian
motion with drift � and volatility � at a random time given by a gamma process 
.t/
with mean rate one and variance rate � (Madan et al 1998; Schoutens 2003):

LVG.t/ D �
.t/C �W.
.t//: (4.4)

The risk-neutral asset price is then defined as S.t/ D S.t0/e.rCw/�teLVG.t/, w D
1=� log.1 � �� � 1

2
�2�/ (Fang and Oosterlee 2009). The VG process is of bounded

variation, has independent increments and is defined by an infinite arrival of jumps.
The VG density can be characterized by a fat tail: it is suitable to model phenomena
where small and relatively large asset values are more probable than would be the case
for the lognormal distribution. The characteristic function, '.u j x/ D EŒeiuX.T / j

X.t0/ D x� D eiuxCiu.rCw/�t�VG.u/, is given by Schoutens (2003) and Madan et al
(1998), with

�VG.u/ D .1 � iu�� C 1
2
�2�u2/��t=� � O.u�2�t=�/: (4.5)
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FIGURE 3 VG density and error for T D 0.1 (N D 128).
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ŝ

In Madan et al (1998), the following expression for the VG density function was
derived:

pVG.y/ D

Z 1
0

1

�
p
2�z

exp

�
�
.y � �z/2

2�2z

�
z�t=��1 exp.�z=�/

��t=�� .�t=�/
dz

.with � the Gamma function/: (4.6)

It is computationally rather expensive to evaluate (4.6) at each point in the domain of
interest. The smoothness of the density function depends on its parameters, or, to be
more precise, with higher values of �t=� a larger number of derivatives exists.

www.risk.net/journal Journal of Computational Finance



96 M. J. Ruijter et al

TABLE 3 Algebraic index of convergence VG density recovery with three values of T .

Filter T D 0.025 T D 0.1 T D 1

No filter 0.25 1 10

Fejér 1 1 1
Lanczos 2 2 2
Raised cosine 2 2 2

Exponential (p D 2;4) p p p

Exponential (p D 6) � 6 6
Vandeven (p D 1;2;3;4;5) p p p

Erfc-Log (p D 1;2;3;4;5) p p p

The parameters used for our tests here are the same as in Fang and Oosterlee (2008),
ie,

K D 90; S.0/ D 100; r D 0:1;

� D 0:12; � D �0:14; � D 0:2:
(4.7)

Figure 3 on the preceding page shows the VG density for terminal time T D 0:1

(black dashed line). For small values of T the peak in the density gets really sharp
and is difficult to approximate accurately by a Fourier cosine series. For increasing
�-values the peak sharpens, while increasing � -values result in a smaller peak and
wider tails, without altering the smoothness properties of the function around the peak
significantly.

Figure 3 also shows the approximations by Fourier cosine series, ie, (2.11), with
and without exponential filter (order p D 6). The characteristic function exhibits an
algebraic decay with order 2�t=�, giving rise to an algebraic decay of the Fourier
coefficients and therefore slow convergence of the COS method, especially for the
densities with small time interval �t . Filtering works well away from the peak in
the VG density, but right at the peak the approximation becomes somewhat worse.
Note that for larger T -values, like for T D 1, the function is sufficiently smooth and
addition of the filter does not improve its already accurate approximation.

We evaluate the performance of the filters to recover the VG density. The six
different filters are used and we experiment with different filter orders. We find that
lower order filters flatten the sharp peak too much. Table 3 shows the measured
algebraic index of convergence for the density recovery. We observe a significant
improvement for T D 0:025 and T D 0:1, whereas for T D 1 the “no filter case” is
superior.
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TABLE 4 Reference values European options.

T D 0.025 T D 0.1 T D 1‚ …„ ƒ ‚ …„ ƒ ‚ …„ ƒ
Put Digital Put Digital Put Digital

Option value v.t0; x/ 0.02435 89.1883 0.09819 86.9759 0.53472 74.7855
Delta � �0.50629 12.8417 �1.82737 40.6550 �5.50365 63.1902
Gamma � 11.5565 �313.402 36.5895 �843.107 56.8712 �581.247

4.2.2 European options and Greeks under variance gamma

We investigate here the convergence of the COS and the filter-COS method for pricing
European-style options. The payoff function of a put reads g.S/ D max.K � S; 0/.
For a digital (or binary) call option the payoff is either one or zero, with payoff function
g.S/ D 1S>K . Reference values for the experiments are obtained by selecting an
accurate filter and a very large number of terms in the series expansions (see Table 4).
The convergence of the COS method without filtering is of order 2�t=� C 2 for put
options and 2�t=� C 1 for digital options. The algebraic index of convergence for
the Greek Delta � (2.24a), without filtering, is one order lower and for Gamma �
(2.24b) it is two orders lower, see Table 5 on the next page. The absolute value of the
series terms gives us O.1=k2�t=�C1�2/ convergence for the Gamma � of a digital
option. So, the algebraic index of convergence is even nonpositive for expiration
times T D 0:1 and T D 0:025 and the series does not converge (“Div”), because
of the Cauchy convergence criterion. The intuition behind this is that for very short
expiration times, the � converges to the Dirac delta function.

Table 6 on the next page shows the observed order of convergence of the European
option with different spectral filters. Similar convergence results are obtained for the
Greeks � and � .

We tend to prefer the exponential filter to the Vandeven and Erfc-Log filters. Its
implementation is easiest and fastest, although the other filters are not significantly
more time-consuming. Furthermore, we observe an exponential convergence for step
functions with the exponential filter (see Figure 2 on page 93 and Table 2 on page 94),
which is advantageous for recovery of a distribution function for discrete random
variables. Therefore, we focus on the exponential filter in the remainder of this paper.

For asset price processes with independent increments, like the VG model, we can
employ the filter-COS method to compute option values for multiple strike prices
simultaneously. For example, for K 2 Œ80; 120� we obtain the same convergence
results. However, we observe higher absolute errors in the option values for strike
prices near the peak value in the VG density function. This can be explained by the
smoothing of the peak by a filter.
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TABLE 5 Algebraic index of convergence for European options (no filter).

T D 0.025 T D 0.1 T D 1‚ …„ ƒ ‚ …„ ƒ ‚ …„ ƒ
Put Digital Put Digital Put Digital

Option value v.t0; x/ 2.25 1.25 3 2 12 11
Delta � 1.25 0.25 2 1 11 10
Gamma � 0.25 Div 1 Div 10 9

TABLE 6 Algebraic index of convergence for European options observed by filter-COS
(T D 0.025, T D 0.1 and T D 1).

Filter Put Digital

Fejér 1 1
Lanczos 2 2
Raised cosine 2 2

Exponential (p D 2;4;6) p p

Vandeven (p D 1;2;3;4;5) p p

Erfc-Log (p D 1;2;3;4;5) p p

Figure 4 on the facing page displays the error of the COS formula for the option
value and the Greeks for expiration time T D 0:1 in a log–log plot. Exponential filters
with different orders are used. Note that for some cases the so-called roundoff-plateau,
with minimal attainable accuracy due to machine precision, is reached. The use of
filters improves the error and convergence order significantly, especially regarding
the option Gamma � .

4.2.3 Bermudan option price under VG

A Bermudan-style option can be exercised at a set of M early-exercise dates prior
to the expiration time T , t0 < t1 < � � � < tm < � � � < tM D T , with timestep
�t WD tmC1 � tm. The authors in Fang and Oosterlee (2009) describe a recursive
algorithm, based on the COS method, for pricing Bermudan options backwards in
time via Bellman’s principle of optimality. We also employ the COS method for
Bermudan options here, but replace the coefficients ˚k by the filtered version, ie, by
Os.k=N /˚k , as in (3.18).

In Table 7 on page 100 and in Figure 5 on page 101 the results for the exponential
filter withT D 1 and different numbers of early-exercise dates are presented. The COS
method with filtering becomes more and more beneficial when more early-exercise
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FIGURE 4 Error convergence for European options; put (top) and digital call (bottom) plus
the Greeks, with exponential filters (T D 0.1).
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TABLE 7 Algebraic index of convergence for Bermudan put options with the filter-COS
method (T D 1).

Filter M D 2 M D 4 M D 8

No filter 7 4.5 3.25

Fejér 1 1 1
Lanczos 2 2 2
Raised cosine 2 2 2

Exponential (p D 2;4) p p p

Exponential (p D 6) 6 6 �

Vandeven (p D 1;2;3;4;5) p p p

Erfc-Log (p D 1;2;3;4;5) p p p

dates are used, for example M D 20. Then the algebraic convergence rates are,
however, not clearly measurable. A larger number of exercise dates implies a smaller
timestep �t between the exercise dates, which decreases the convergence rate of the
COS formula without filtering.

4.3 Portfolio loss distribution

In this section we present a final example, which has a financial background in risk
management. The distribution function of interest will be a staircase function, which
is difficult to approximate by Fourier series. The filtering technique will however
improve the results significantly.

For a bank it is important to manage the risk originating from its business activities.
The credit risk underlying a credit portfolio is one of the largest risk portions of a
bank. For quantifying losses in credit portfolios one often looks at the value-at-risk
(VaR). The VaR of a portfolio at confidence level ˛ is given by the smallest value x
for which the probability that loss L exceeds x is at most .1 � ˛/:

VaR˛ D inffx 2 R W P.L > x/ 6 .1 � ˛/g D inffx 2 R W FL.x/ > ˛g; (4.8)

where FL is the cumulative loss distribution function.
The Vasicek model (Vasicek 2002) is often used to find an approximation to the

loss distribution and to compute the VaR. Under this model losses occur when an
obligor defaults in a fixed time horizon. Suppose there arem D 1; : : : ;M issuers and
Xm represents the individual asset return of issuerm. In accordance with the Vasicek
model we then use

Xm D
p
�mY C

p
1 � �mZm; m D 1; : : : ;M; (4.9)
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FIGURE 5 Error convergence for Bermudan options with an increasing number of early-
exercise dates, filter-COS technique with exponential filters (T D 1).
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(a) M D 2, v.t0; x/ D 0.64386. (b) M D 4, v.t0; x/ D 0.71161. (c) M D 8, v.t0; x/ D 0.75220.

where Y is a common economic factor, Zm is the idiosyncratic factor for issuer m
and �m is the correlation between Y and Zm. All random variables are assumed to
follow a standard normal distribution and Y andZm are independent. When the asset
return falls below a default threshold cm, there is a loss �m. We define the default
probability of issuer m by Pm WD P.Xm < cm/. The individual credit loss is defined
by Lm D �m1Xm<cm and the total portfolio loss reads L D

PM
mD1Lm. If there is

only one issuer then the total loss is given by the discrete random variable �11X1<c1 .
The COS method can be used to approximate the cumulative distribution function

of the loss by means of its characteristic function, see (2.15), and thus to calculate
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the VaR. The probability distribution is based on a discrete set of events, resulting
in a stepwise distribution function, which causes the COS method to suffer from the
Gibbs phenomenon: with a loss distribution which is discontinuous, significant errors
appear around the points of discontinuity (Fang 2012).

Following Masdemont and Ortiz-Gracia (2014) we take M D 20 issuers, with
default probability Pm of 1%, asset correlation �m of 50% and exposure �m D 1.
For the COS method we take N D 210, Œa; b� D Œ0;

PM
mD1 �m�. The characteristic

function of L can be written as

'.u/ D EŒeiuL� D E

�
E

�
exp

�
iu

MX
mD1

�m1Xm<cm

� ˇ̌̌
ˇ Y
��
: (4.10)

An analytic expression is available for the inner conditional expectation. In Fang
(2012) an integration rule to approximate the outer expectation is employed, whereas
in Glasserman and Ruiz-Mata (2006) Monte Carlo simulations on Y were used. We
test both approaches, with a grid, y D Œ�5W0:1W5�, for the numerical integration
(denoted by COS C NI) and by 5000 simulated values for Y in the Monte Carlo
experiment (denoted by COS C MC). With these choices, the computation of the
characteristic function, which is the most time-consuming part, is approximately 50
times more expensive for COSCMC.

The loss distribution of this example portfolio is plotted in Figure 6 on the facing
page. An accurate estimation of 1 � FL.L/ results in an accurate VaR. The black
dashed-dotted line is the result of a full Monte Carlo simulation, with 100 000 000
replications for each Xm, and serves as our reference solution here. The light-gray
solid and gray dash-dotted lines are the COS method approximations with numerical
integration and Monte Carlo simulation for Y , respectively. The black solid and black
dashed lines are the filtered-COS results, using an exponential filter with p D 6.
The COS method without filtering shows a highly oscillatory behavior and does not
give accurate results in the tail, where 1 � FL.L/ is very small. The COS method
with filter and with numerical integration,however, gives highly accurate results that
correspond very well to the full Monte Carlo simulation. The difference gets smaller
when the number of Monte Carlo simulations is increased. The results with the filter
and Monte Carlo simulations for Y , COS CMC, are sensitive to outliers of draws
for Y and these results are not very satisfactory. We would also like to mention
that approximations based on Haar wavelets (Masdemont and Ortiz-Gracia 2014;
Ortiz-Gracia and Oosterlee 2013) give accurate portfolio loss VaR estimates as well.

Remark 4.1 The model and computational technique can be extended to higher-
dimensional systematic risk factors Y D ŒY1; : : : ; Yd �. In that case, the computation
of the outer expectation in (4.10) can be performed by adaptive integration, as in
Huang (2009).
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FIGURE 6 Recovery of portfolio loss distribution function using COS method and filtered
version (exponential filter, order p D 6).
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5 CONCLUSIONS

The COS method is an option pricing method based on Fourier cosine expansions
which performs very well in general. When the underlying density function is smooth,
we achieve an exponential convergence in the number of cosine coefficients. When
the underlying density is not smooth, however, the method may suffer from the Gibbs
phenomenon and the convergence is only of algebraic order. A filtering technique to
improve the convergence rate for these cases has been discussed in the present paper.
In practical cases where the COS method degrades due to discontinuities in functions,
the convergence with a filter improves significantly in terms of the number of required
Fourier coefficients as well as in CPU time.

Nonadaptive spectral filtering takes place in the Fourier domain and therefore com-
bines very well with the COS option pricing formula, without adding significant com-
putational costs. The Fourier coefficients are pre-multiplied by a decreasing function
Os.k=N / so that they decay faster and so that the convergence rate away from a dis-
continuity is improved. The technique can be used for one-dimensional problems, but
also in higher dimensions.

In the numerical examples we tested six different filters, ie, the Fejér filter, the
Lanczos filter, the raised cosine filter, the exponential filter, the Vandeven filter and
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the Erfc-Log filter. The exponential filter gave especially highly accurate results for
stepwise functions.

The plain COS method for option pricing under the VG asset price process results
in algebraic convergence. Our filter-COS formula improves the algebraic index of
convergence, in particular for short time horizons. Moreover, for the computation of
the option Greeks, which suffer from an even lower convergence rate without filtering,
spectral filters are highly beneficial.As another example in finance, we discussed port-
folio loss modeling. Discrete random variables then give rise to stepwise cumulative
distribution functions. We derived a COS formula to recover the distribution, which,
of course, also suffered from the Gibbs phenomenon and the resulting oscillations.
The approximation drastically improves by applying spectral filters.

Improved convergence comes without additional computational costs in these appli-
cations and the fact that the filtering is easy to implement, even in multiple dimensions,
makes the filter-COS method a natural solution for some of the problems described.
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