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Abstract-The noncentral x2 -distribution is related with the series 

e-'"~x: P(µ+n,y)=l-e-'"~ x" Q(µ+n,y), 
~n. ~n! 
n=O n=O 

where P(a, z) and Q(a, z) are incomplete gamma functions (central x2-distributions). Another rep­
resentation is in terms of 

which is also known as the generalized Marcum Q-function; lµ(z) is the modified Bessel function. 

Q µ ( x, y) plays a role in communication studies. From the integral representation recurrence relations 
for Qµ(x,y) a.re derived. Next, it is shown that Qµ(x,y) can be expressed in terms of the simpler 
integral 

where 

Two asymptotic expansions of Q µ(x, y) are derived. In one form, the function Fµ(e, ir) is used withµ 

fixed and large e, giving an expansion which holds uniformly with respect to ir E ( 0, oo). In a second 

expansion, both para.meters E and µ may be large. In both asymptotic fonns, an error function (the 

normal distribution function) is used to describe the behavior of QI' ( x, y) as y crosses the value x + µ. 

Series expansions in terms of incomplete gamma functions are discussed in connection with numerical 

evaluation of Qµ(x,y) or 1 - Qµ(x,y). It is also indicated when the asymptotic expansion can be 

used in order to obtain a certain relative accuracy. 

1. INTRODUCTION 

The noncentral x 2-distribution is related with the Bessel function integral 

l oo (z) 1/2(µ-1) 
Qµ(x, y) := - e-z-x Iµ-1(2../XZ) dz, 

y x 
x,y > 0. (1.1) 

In problems on radar communications, this function is known as the generalized Marcum 
Q-function, which for µ = 1 reduces to the ordinary Marcum function. See [1-5]. In this 
field, µ is the number of independent samples of the output of a square-law detector. In our 
analysis, µ is a not necessarily an integer number. We assume that µ > 0. 
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The function Iµ(t) is the modified Bessel function [6, Section 9.6] 

oo (t/2)µ+2n 
Iµ(t) = ~ n!r(µ + n + 1) · 

Substituting this expansion in (1.1) gives 

oo n 
Qµ(z, y) = e-a: L; Q(µ + n, y), 

0 n. 
n= 

where Q(o:, z) is the incomplete gamma function defined by [6, Chapters 6 and 26] 

r(o:,z) 
Q(o:,z) = r(o:) ' 

By using the incomplete gamma function P(cx, z) = 1 - Q(cx, z), we obtain 

111 ( z) 1/2(µ-1) 00 z" 
1- Qµ(x, y) = - e-z-a: Iµ-1(2JXZ') dz = e-a: I:-, P(µ + n, y). 

O x n=O n. 

(1.2) 

(1.3) 

This series defines the noncentra.l x2-distribution (in the notation of [6, 26.4.25]). The parame­
ter µ is related with the degrees of freedom and y with the noncentrality. 

In [7], recurrence relations for Qµ(x, y) with respect toµ are derived. We rederive some of the 
results by using properties of the modified Bessel function. First, we write (1.1) in the form (by 
putting z = r 2/(4x)) 

Next, we observe that (see [6, 9.6.28]) r" Iµ-1(r) = fr[r" Iµ(r)]. Integrating by parts, we obtain 
the inhomogeneous recursion 

( y)µ/2 -a: Qµ+i(x, y) = Qµ(x, y) + z e Iµ (2.JXY). (1.4) 

In Section 5, this relation is discussed in connection with numerical algorithms. We can eliminate 
the Bessel function in (1.4) using (see [6, 9.6.26]) 

2µ 
Iµ-1(z) = Iµ+1(z) + - Iµ(z). (1.5) 

z 

This gives the homogeneous third order recurrence relation: 

x Qµ+2(x, y) = (z - µ)Qµ+1(x, y) + (y + µ)Qµ(x, y) - yQµ-1(z, y). (1.6) 

The purpose of the paper is to derive asymptotic expansions of the function defined in (1.1). 
When z and y are large, and lz - YI is small compared to x and y, the integral (1.1) has a 
peculiar behavior. To see this, consider the well-known estimate 

ez 
lv(z)"" rn-=• 

y211"Z 
as z --+- oo, v fixed. 

We see that the term exp(-z- x)Iµ_ 1(2fo) of (1.1) is exponentially small, except when x;::: y 

and z "" x. It follows that, when x and y are large (and µ small with respect to x and y), the 
behavior of Qµ(x, y) significantly changes when y crosses the value x. It will appear that whenµ 
is large too, this change in behavior occurs when y crosses the value x + µ. In both cases, the 
asymptotic behavior can be described by using the error function, that is, the normal distribution 
function. 

l 
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2. MORE INTEGRAL REPRESENTATIONS 

First we show that (2.1) essentially reduces to a. sum of two simpler functions. Moreover, we 
obtain symmetrical representations for the cases :i: < y a.nd :i: > y. The auxiliary function is 
defined by 

Fµ(e, tT) :=loo e-(a+i)t Iµ(t) dt, tT > o. (2.1) 

To show that Qµ(z, y) can be expressed in terms of this function, we use (see [6, 29.3.81]) 

µ> 0, (2.2) 

where the path of integration may be any vertical line in the half plane !Rs > 0. The path may 
be deformed into a loop .C starting and terminating at -oo, initially with a.rg t = -11", and finally 
with arg t = +11". The loop integral encircles the origin in the positive sense. In this way an 
absolute (and fast) convergent integral is obtained. Substituting the loop integral into (1.1), we 
obtain 100 1 j ds Q (x,y) = e-:c -. ez(a-l)+.,/•-dz. 

µ 211"i sl.I 
y .c 

Take C such that !Rs < 1 for any s E £. Then, by absolute convergence of the repeated integrals, 
we may interchange the order of integration. Deforming £ back into a vertical with 0 < !Rs < 1 
we arrive a.t 

O<c<l. (2.3) 

When we move the vertical to the right, a.cross the pole a.t s = 1, taking into account the residue, 
we obtain 

- e-""-Y lc+ioo e"'l•+Y• ds 
1-Qµ(x,y)- 2. 1 µ• 

71"2 c-ioo S - S 
c > l. 

In (2.3), we substitutes= t/p with p = ..fYTX. It follows that 

Qµ(z, y) = e-Z"-y-2z>.P"~(z), 

- 1 lc+ioo ez(t+l/t+2>.) dt 
~(z)- -2 . . -t tl'' 11"2 c-100 P 

0 < c < p, 

(2.4) 

(2.5) 

where z = ..;xy. We now assume, for the time being, that p > l. Taking 2.h = -:-(P + 1/ p), and 
assuming (again, for the time being) that p does not depend on :r:, y, z, we obta.J.n 

dc)(z) = - e2>.z.1c+ioo ez(t+l/t) (t -.!:.) dt 
d 2 t1J+l. 

Z 71"2 c-ioo P 

Invoking (2.2), we derive 

dc)(z) = -e2>.z [1µ-1(2z)- .!:,Iµ(2z)]. 
dz P 

To integrate this, we use c)( oo) = 0. This follows from standard techniques from asymptot~cs 
applied on (2.5), for instance the saddle point method, see [8]. Observe that the exponential 
function of the integrand in (2.5) has a saddle point at s = l. We obtain 

y > :r:; (2.6) 
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p has regained its original meaning and the F-function is defined in (2.1). Furthermore 

p=[f (2.7) 

Now let p < 1. Repeating the analysis that leads to (2.6), but now with starting point the 
integral in (2.4), we obtain for this case 

y < x, (2.8) 

where the parameters are as in (2.7). 
In the following sections the large e-behaviour of Qµ(x, y) is discussed. We have, as e --+- oo 

and p fixed, 

{ 
1, 

Qµ(x, y)"' ~' 
0, 

if p < 1; 

if p = 1; 

if p> 1. 

(2.9) 

It will be shown that a smooth transition can be described in terms of the error function (the 
normal distribution function). 

3. ASYMPTOTIC EXPANSION;µ FIXED, e LARGE 

We concentrate on the function Fµ(e, <T) given in (2.1). We point out that this function with 
e and <T as in (2.7) is symmetric in x and y, and occurs in both (2.6) and (2.8). Hence, it is 
sufficient to assume x < y. The case x = y follows from the asymptotic results when we let 
x-+-y. 

The asymptotic feature is that e is large, whereas <T tends to zero when x --+ y. We give an 
asymptotic expansion that holds uniformly with respect to <T E [O, oo). Note that the integral 
defining Fµ(e, <T) becomes undetermined when <T = 0. However, since we use a combination of 
two F-functions in (2.6), and p tends to unity as x--+ y, the function Qµ(x,y) is well defined in 
this limit. 

We substitute the well-known expansion [6, Section 9.7] 

e-t I (t)"' _1_ ~(-l)n An(µ) 
µ '27ri L.J tn ' 

y ~Tf i n=O 
as t--+- oo, (3.1) 

in (2.1), where 

A ( ) _ 2-nr(l/2 + µ + n) 
n µ - ' n!f(l/2 + µ - n) 

n = 0, 1, 2, ... , 

with recursion 

( ) (2n + 1)2 - 4µ 2 A ( ) 
An+l µ = 8(n + 1) n µ ' n ~ 0, Ao(µ)= 1. 

This gives the formal expansion 

(3.2) 

where <Pn is an incomplete gamma function (see (1.2)) 

(3.3) 
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The function <Po is a.n error function: 

~ 2 100 2 </Jo= v 7r/uerfc v;e = ...;;r;erfc c(.,/Y- ../X), erfc z =.Ji z e-t dt. (3.4) 

Further terms ca.n be obtained from the recursion 

n = 1,2,3, ... , (3.5) 

which follows from integrating by parts in (3.3). 
Using (2.6) a.nd (3.2), we obtain 

00 

Qµ(x, Y) ,.._. L: tPn, (3.6) 
n=O 

Information on the asymptotic nature and error bounds of expansion (3.2) can be found in [9], 
in which also numerical aspects of recursion (3.5) are discussed. Expansion (3.2) holds for large 
values of e, uniformly with respect to u E [O,oo). 

The first term approximation of the series in (3.6) reads, since (p - 1)/V'iU = y'p, 

(3.7) 

We remark that the right-hand side reduces to 1/2 when x t y. 

REMARK. When x > y, that is p < 1, the expression (p- l)/../2U should be interpreted as -yp, 
and (2.8) gives 

1 
Qµ(x, y) ,.._. 1 - tf>o = 1 - 2,Pµ-t/ 2 erfc(../i - .JY). 

Again, the right-hand side reduces to 1/2 when x ! y. 

4. ASYMPTOTIC EXPANSION; e LARGE,µ ARBITRARY 

In this case, we consider (2.3). We write 

1 J dt Qµ(x, y) = pµ e-:c-y -2 • e~a(t) --t, 
'Tri p-

c, 

where p and e are as in (2.7), and 

a(t) = ~ (t + ~) - f3 In t, 

The path of integration £, is a vertical ~t = c, with 0 < c < p. However, C may be deformed 
into a different contour, for instance into the path of steepest descent through a saddle point. 
The saddle points are solutions of the equation a'(t) = O. We select the positive saddle point 

It is convenient to write 

Then we have 

to= (3+ ./(32 +1 = e'Y. 

f3 = sinh, 'Y, - 8 p-e. 

to = e'Y, a(to) = cosh / - / sinh /· 

(4.1) 

Observe that when 'Y ,..., 8 the saddle point and the pole are close together. A well-known 
approach in asymptotics to handle this case is based on using an error function [8]. The case 



60 N.M. TEMME 

r = () corresponds with y = x + µ. When e is large and y crosses the value x + µ, the function 
Qµ(x, y) suddenly changes. We have ( cf. (2.9)) 

{ 
1, if x + µ > y; 

Q (x Y) 1 if x + µ = y·, µ , ....., 2• 

0, ifx+µ<y. 

In terms of µ and 'Y, these cases read () < 'Y, 0 = 'Y, () > /, respectively. When to < p, that is, 
when 0 > 'Y or y > x + µ, we can shift C through the saddle point, without passing the pole at 
t = p. We temporarily assume that to < p. 

The path of steepest descent C through t 0 follows from the equation ~ a(t) = 0. Let t = rei~. 
Then we can describe C by 

. h <P r=sm 1-.- + 
smefJ 

1 . h2 efJ2 + sm 1-.-2-, 
sm <P 

We define a mapping t i--> u(t) that maps C to JR. by writing 

1 
2u2 = a(t0 ) - a(t). 

-71" < <P < 71". 

When t follows C we take u E JR., with sign(u) = sign(~t). The pole at t = p is mapped to the 
point iu.o, where uo is defined by 

~u~ = cosh () - cosh / + ( 'Y - 0) sinh 'Y, 

where(} and 'Y are introduced in (4.1). The sign of u0 follows from the definition of the mapping 
t i--> u(t): we have sign(u0 ) =sign(! - 0) = sign(x + µ - y). Integrating with respect to u, and 
splitting off the pole at u = iu0 , we obtain 

1 ( {[) e.-1/2eu~ 1"° 2 

Qµ(x, y) = 2 erfc -uoy 2 + 27ri -oo e-1/ 2€u f(u) du, (4.2) 

where 
dt 1 1 

J(u)=-d -+ . 
u p-t u - mo 

In deriving the term with the error function, we have used [6, 7.1.3 & 7.1.4]. 
expansion of Qµ(x,y) now follows by expanding 

The asymptotic 

00 

f(u) = <L::Cnu" 
n=O 

and by substituting this in the above integral. This gives 

1 ( ({) e- 1 / 2€u~ 00 f(n + 1/2) (2)" 
Qµ(x,y)....., 2 erfc -uoy2 + ~ ~c2n f(l/2) ~ , e ~oo. 

This expansion holds uniformly with respect toµ E [O, oo). The first coefficients are 

1 1 1 
Co= +-, 
~ e8--Y-1 uo 

1 e2-Y + e- 2-r - 8 + e8-"(10e2-Y - 2e-2-r + 28) + e28 - 2-Y(e2-Y + 13e-2-Y + 4) 
C2 = 

48cosh712 1 (e 9--r - I)3 - u~· 

(4.3) 

REMARK. We have temporarily assumed t 0 < p, that is y > x + µ. In (4.2), this condition can 
be dropped. The expansion in ( 4.3) also holds for y :::; x + µ. Note that a single error function 
describes the transition from y > x + µ to y < x + µ, and we do not need different representations 
for Qµ(x,y) as in the previous section; confer (2.6) and (2.8). The method of this section can 
also be used when µ is fixed. However, the method of the previous section gives very simple 
coefficients in expansion (2.6). 
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5. COMPUTATIONAL ASPECTS 

In applications, it is of interest to have available algorithms for Qµ(z,y) when 0 < Qµ(z,y) 5 
1/2 and for 1 - Qµ(z, y) when 1/2 < Qµ(z, y) < 1. The first inequalities occur when {roughly 
speaking) y ~ z+µ, the second ones when y < z+µ (this follows from the asymptotic expansion 
of the previous section). 

Recurrence relation (1.4) is very useful for computing Qµ(z, y). It is numerically stable in 
forward direction, since the right-hand side of (1.4) has positive terms. An algorithm for the 
modified Bessel function is needed. A point of warning: recurrence relation (1.5) should not be 
used in forward direction. In [10], a detailed discussion on this problem is given. Observe that 
the function 1 - Qµ{z, y) satisfies the recursion 

1- Qµ(z, y) = 1- Qµ+1(z, y) + (;)"12 e-:c Iµ (2.jZY), 

which is stable in backward direction. In the homogeneous recurrence relation (1.6) Bessel func­
tions do not occur. It is attractive to use this equation in order to avoid the forward recursion 
of the Bessel functions. However, one needs to investigate the stability of (1.6) in more detail, 
and for several combinations of the parameters, which is not a trivial problem. Observe that any 
constant function (with respect toµ) solves (1.6), and that, hence, 1-Qµ(x, y) satisfies the same 
recurrence. 

For small and moderate values of x, y, µ the expansions in terms of the incomplete gamma 
functions of Section 1 can be used. We recall: 

oo n 

Qµ(x, y) = e-:c I:; Q(µ + n, y), 
n=O n. 

oo n 

1 - Qµ(:c, y) = e-:c I:; P(µ + n, y). 
n=O n. 

(5.1) 

Both series have positive terms. In [5], the first series is rearranged into another series with 
positive terms, but this seems to give a more complicated expansion. Both series require the 
evaluation of one incomplete gamma function. An algorithm for computing these functions for 
large values of the parameters can be found in [11]. 

The first series in (5.1) requires the value Q(µ, y), and the remaining terms follow from the 
recursion 

yn+µe-Y 
Q(µ + n + 1, y) = Q(µ + n,y) + r(µ + n + 1), n = 0, 1,2, ... 

The second series requires an initial P-value. The corresponding recursion should be used in 
the backward direction: 

yn+µe-Y 
P(µ + n, y) = P(µ + n + 1,y) + r(µ + n + l), 

since the forward form is not stable. Let n0 be the (smallest) number such that 

no n 

1- Qµ(:c, y) ~ e-"' I:; P(µ + n, y), 
0 n. 

' n= 

(5.2) 

within the required relative accuracy. Then as starting value we need to compute P(µ +no, y), 
and the remaining values follow from the above recursion. To estimate no we may use 

yn+µe-Y 
P(µ + n, y) ,.., r(µ + n + 1)' asµ+ n-+ oo. 

For obtaining relative accuracy, we need an estimate of 1- Qµ(x, y) in the P-series of (5.1). We 
take the value of the integrand of (1.3) at z = y, that is, 

1 - Qµ(:c, y) ,.., p"e-:c-y Iµ(e) 

CNM 2515-E 
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and we replace I,,(e) by the dominant part of the uniform asymptotic expansion [6, 9.7.7]. That 
is, we replace J,,(e) with 

'fl=~+ln ~· 1+ l+z 
e z=-. 
µ 

Combining these estimates, and using the dominant terms in Stirling's approximation of the 
gamma function, we infer that the equation 

e-:czn P(µ + n, y)/n! 
---"'----"-'--- = e 1-Qµ{z,y) 

can be replaced by the equation 

n µ+n 
nln- + (µ+ n)ln-- + µ(lnp+ cothr--r) + lne = 0. 

ez ey 

The left-hand side assumes a minimal value at n = 1/2eexp(-r), with r as in the previous 
section. A Newton process (a safe start is e exp(-r)) gives the desired value of n, which is taken 
as the number n0 in (5.2). 

Table 5.1 shows the number of terms n0 used in the series of (5.1), for several values of z. In 
all casesµ= 8192, y = 1.05µ, as in Table I of [5]. 

Table 5.1. no is the number of terms used in the series of (5.1); µ = 8192, y = 1.05µ; 
the relative accuracy is 10-1°. 

x/µ no Qµ(x,y) 1- Qµ(x,y) 

0.01 150 1.984527803e - 4 9.998015472e -1 

0.03 355 4.000364970e - 2 9.599963503e - 1 

0.05 543 4.985354536e - 1 5.014645464e - 1 

0.07 727 9.556573418e- 1 4.434265825e - 2 

0.09 894 9.996249724e - 1 3.750276164e - 4 

0.11 1054 9.999997188e - 1 2.811864384e - 7 

0.13 1207 1.000000000e + 0 1.999694515e - 11 

For large values of the parameters the computation can be based on the uniform expansion ( 4.3). 
Special care has to be taken when y ,..., z + µ, that is, 0 ,..., r. First it is convenient to have an 
expansion of uo. We have 

uo = (; - 0) 
2(cosh (J - cosh r - (0 - r) sinh r] 

{O-r)2 

where the square root is should be taken positive. The expression inside the square root can 
easily be expanded in powers of 0 - r. 

The coefficient co has the expansion 

1 [. (1 . 2 3) sinhr(2sinh2 r + 27) ] co= 312 smhr-3coshr+ -2 smh r+-4 (- ( 2 +0((3), 
6 cosh "Y 360 

as ( -+ 0, where 

For c2 we have 

(J - "Y 
(=--. 

cosh; 

e-3-r(e6"Y + 6e4"Y + 309e2"Y - 46) e-4"Y{l - 8e2"Y + e4"Y)(l + 16e2"Y + e4'Y) 
C2 = - - ( + 0((2). 

4320 cosh9/ 2 r 4608 cosh912 r 

In our algorithm, we have used these approximations when 18-rl < (1.0)10-4 in c0 and10-rl < 
(0.8)10-3 in c2. We have used ( 4.3) with these two coefficients under the condition vcy + µ > 
1600. Then the relative accuracy is about ten digits, unless Qµ{z,y) or 1 - Qµ(z,y) is quite 
small, say smaller than 10-20 , in which case some digits may be lost. 

l 
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