Note on Hypergraphs and Sphere Orders

Alexander Schrijver

CWI
THE NETHERLANDS
AND DEPARTMENT OF MATHEMATICS
UNIVERSITY OF AMSTERDAM
AMSTERDAM, THE NETHERLANDS

ABSTRACT

We show that each partial order \leq of height 2 can be represented by spheres in Euclidean space, where inclusion represents \leq. If each element has at most k elements under it, we can do this in $2k - 1$-dimensional space. This extends a result (and a method) of Scheinerman for the case $k = 2$. © 1993 John Wiley & Sons, Inc.

A partial order \leq on a set P is called a sphere order (in dimension n) if for each $u \in P$ there exists a ball B_u in \mathbb{R}^n so that for all $u, v \in P$ one has $u < v$ if and only if $B_u \subset B_v$. Sphere orders were introduced by Brightwell and Winkler [1], who posed the intriguing question of whether each partially order is a sphere order. They conjectured that the answer is negative.

In [3], Scheinerman showed that each partial order on the vertices and edges of a graph (ordered by inclusion) is a sphere order in dimension 3. Here we extend Scheinerman’s result (and his construction) to hypergraphs:

Theorem. For any hypergraph $H = (V, E)$, the partial order on $V \cup E$, given by

$$x < y \iff x \in V, y \in E, x \in y,$$

is a sphere order in dimension $2k - 1$, where k is the maximum edge size of H.

Since the reverse order to a sphere order is a sphere order again, in the same dimension, we could equally take for k the maximum degree of H.

Another formulation of the theorem is that each partial order P of height 2 is a sphere order in dimension $2k - 1$, where $k := \max_{u \in P} |\{v \in P | v < u\}|$.

© 1993 John Wiley & Sons, Inc. CCC 0364-9024/93/020173–04
The theorem follows directly from the following lemma (extending the lemma in [3]). Let \(C \) be the following curve in \(\mathbb{R}^{2k} \):

\[
C := \{(1, x, x^2, x^3, \ldots, x^{2k-1})| x \in \mathbb{R}\}. \tag{2}
\]

Lemma. For each subset \(A \) of \(C \) with \(|A| = k \) there exists a ball \(B \) with \(B \cap C = A \).

Proof. Let \(A \) consist of the points

\[
(1, a_i, a_i^2, a_i^3, \ldots, a_i^{2k-1}) \tag{3}
\]
on \(C \), for \(i = 1, \ldots, k \). Let the polynomials \(p(x) \) and \(q(x) \) be given by

\[
p(x) := 1 + x^2 + x^4 + \cdots + x^{4k-2},
\]

\[
q(x) := \prod_{i=1}^{k} (x - a_i)^2. \tag{4}
\]

Since \(q(x) \) has degree \(2k \), there exists a polynomial \(f(x) \) so that the polynomial

\[
r(x) := p(x) - f(x) \cdot q(x) \tag{5}
\]

has degree at most \(2k - 1 \) (as we can reduce \(p(x) \) modulo \(q(x) \) to a polynomial of degree at most \(2k - 1 \)).

Write \(r(x) = r_0 + r_1x + r_2x^2 + \cdots + r_{2k-1}x^{2k-1} \), and let \(g := \frac{1}{2}(r_0, r_1, r_2, \ldots, r_{2k-1}) \). Then the ball \(B(g, ||g||) \) with center \(g \) and radius \(||g|| \) intersects \(C \) exactly in the set \(A \). This can be seen as follows.

Let \(z = (1, x, x^2, \ldots, x^{2k-1}) \) be a point on \(C \). Then

\[
||g - z||^2 = ||g||^2 + ||z||^2 - 2g^T z = ||g||^2 + p(x) - r(x)
\]

\[
= ||g||^2 + f(x) \cdot q(x). \tag{6}
\]

Now the polynomial \(f(x) \) has no real zeros, since the polynomial \(h(x) := f(x) \cdot q(x) \) has at most \(2k \) real zeros (counting multiplicities). This follows from the fact that the \(2k \)th derivative \(h^{(2k)}(x) \) of \(h(x) \) has no real zeros, as it satisfies

\[
h^{(2k)}(x) = (2k)! + \frac{(2k + 2)!}{2!} x^2 + \frac{(2k + 4)!}{4!} x^4
\]

\[
+ \cdots \frac{(4k - 2)!}{(2k - 2)!} x^{2k-2} \tag{7}
\]

(since \(h(x) = p(x) - r(x) = \cdots + x^{2k} + \cdots + x^{4k-4} + x^{4k-2} \)).
As the main coefficient of $f(x)$ is 1, we know that $f(x) > 0$ for all $x \in \mathbb{R}$. So $\|g - z\|^2 = \|g\|^2$ if $z \in A$ and $\|g - z\|^2 > \|g\|^2$ if $z \notin A$.

The theorem now follows by first observing that we may assume that each edge of H contains exactly k vertices (by adding dummy vertices). We take $|V|$ arbitrary points on C, to be considered as balls of radius 0, representing the vertices of H. For each edge e of H we take the ball intersecting C exactly in the points representing the vertices in e. Since C is in a $2k - 1$-dimensional subspace of \mathbb{R}, we obtain a sphere order in dimension $2k - 1$.

We remark that our construction is related to the construction of cyclic polytopes (Gale [2]).

Now one may ask:

Is $2k - 1$ best possible in the theorem (for fixed k)? \(8\)

We do not know the answer to this question. However, if the balls associated with the vertices of the hypergraph have radius 0 (as is the case in our construction above) then $2k - 1$ is best possible, as follows from the following proposition.

Proposition. There is no subset V of \mathbb{R}^{2k-2} such that $|V| = 2k + 1$ and such that for each subset X of V with $|X| = k$ there exists a ball B_X satisfying $B_X \cap V = X$.

Proof. Suppose such a set V exists. Then for any two disjoint subsets X, Y of V with $|X| = |Y| = k$ one has that $\text{conv } X \cap \text{conv } Y = \emptyset$, since $\text{conv}(B_X \setminus B_Y) \cap \text{conv}(B_Y \setminus B_X) = \emptyset$.

Let $V = \{v_1, \ldots, v_{2k+1}\}$. Let W be the linear subspace of \mathbb{R}^{2k+1} consisting of all vectors $w = (w_1, \ldots, w_{2k+1})$ satisfying

$$w_1 v_1 + \cdots + w_{2k+1} v_{2k+1} = 0,$$

$$w_1 + \cdots + w_{2k+1} = 0.$$ \(9\)

Note that $\dim W \geq 2$.

For any vector $w = (w_1, \ldots, w_{2k+1})$, let $p_+(w)$ be the number of $i \in \{1, \ldots, 2k + 1\}$ satisfying $w_i > 0$, and let $p_-(w)$ be the number of $i \in \{1, \ldots, 2k + 1\}$ satisfying $w_i < 0$. Now W contains a nonzero vector w satisfying $p_+(w) \leq k$ and $p_-(w) \leq k$. This can be seen as follows.

Let $W_+ := \{v \in W | p_+(v) \geq k + 1\}$ and $W_- := \{v \in W | p_-(v) \geq k + 1\}$. So W_+ and W_- are two disjoint open subsets of $W \setminus \{0\}$. Moreover, $W_+ \neq W_+ \setminus \{0\}$ and $W_- \neq W_- \setminus \{0\}$, since $W_- = -W_+$. Hence by the connectedness of $W \setminus \{0\}$, $W \setminus \{0\} \neq W_+ \cup W_-$, implying that $W \setminus \{0\}$ contains a vector w satisfying $p_+(w) \leq k$ and $p_-(w) \leq k$.
We may assume that \(w = (w_1, \ldots, w_{2k+1}) \) satisfies \(w_1, \ldots, w_k \geq 0, \ w_{k+1}, \ldots, w_{2k} \leq 0, \ w_{2k+1} = 0 \) and \(w_1 + \cdots + w_k = 1 \). Hence \((-w_{k+1}) + \cdots + (-w_{2k}) = 1 \). In particular, both \(\text{conv}\{v_1, \ldots, v_k\} \) and \(\text{conv}\{v_{k+1}, \ldots, v_{2k}\} \) contain the vector \(w_1 v_1 + \cdots + w_k v_k = (-w_{k+1})v_{k+1} + \cdots + (-w_{2k})v_{2k} \). (10)

This contradicts the fact that \(\text{conv}\{v_1, \ldots, v_k\} \cap \text{conv}\{v_{k+1}, \ldots, v_{2k}\} = \emptyset \).

Thus if \(|V| = 2k + 1\) and \(E \) consists of all subsets of \(V \) of size \(k \), then \(2k - 1 \) is best possible in the theorem if each ball associated with a vertex in \(V \) has radius 0.

ACKNOWLEDGMENTS

I am grateful to the referees for helpful comments and suggestions, in particular for suggesting question (8).

References

