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In this article we discuss a processor sharing queueing model for a stored program 
controlled telephone exchange. The model incorporates the effects of both call 
requests and operator tasks on the load of. the proc~ssor. Newly arriving. ~all 
requests and operator tasks can either be admitted or rejected and for this dec1s1on 
the state of the queue at the moment of arrival is av~ilable ~s !nf~rmation. To 
guarantee a high level of service, we formulate a constramed opt1m1zat10n problem. 
Two types of access control, viz., partitioning policies and sharing policies, are 
considered. The optimization problem is solved for partitioning policies and the 
performance of both types of policies is compared. © 1993 John Wiley & Sons. Inc. 

1. INTRODUCTION 

In this article we discuss a processor sharing (PS) queueing model for a stored 
program controlled (SPC) telephone switch. We consider two different customer 
types who arrive to the queue, representing call requests and operator tasks. 
Newly arriving customers may be admitted to the queue or rejected, depending 
on the state of the queue. The control objective is to maximize the throughput 
of call requests subject to two constraints: an upper bound on the call requests' 
mean sojourn time and a lower bound on the fraction of admitted operator tasks. 

This PS queue is a model for the processor in a stored program controlled 
telephone exchange. Maximization of revenue corresponds to maximization of 
the number of completed call requests. The bound on the mean sojourn time 
of these requests guarantees that the fraction of calls that are Jost due to im­
patience will be small. The bound on the throughput of operator tasks guarantees 
that a minimum fraction of processing power is always available for, e.g., testing 
and administrative procedures. 

In this article we shall restrict our attention to a special class of admission 
policies. viz., partitioning policies. In a partitioning policy the decision whether 
to admit a new request or task depends on two separate thresholds, one for 
each customer class. If the number of call requests in service reaches the cor­
responding threshold, new requests are rejected until the number of requests in 
service decreases by a service completion. An analogous algorithm is employed 
for operator tasks. This type of policy is called a partitioning policy, because its 
effect is basically a partitioning of the processor power over the two customer 
classes. We shall also briefly discuss a second type of admission policies, viz., 
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policies. This type of control was implemented to allow "sharing" of the 
processor capacity. i.e., when the demand for service of call requests is low. 
then operator tasks are allowed h) use part of the call-handling capacity and 
vice versa. The terms partitioning and sharing were used in Kaufman [4] in the 
context of memory allocation policies for computers. 

In this article we shall discuss the constrained control problem. that was 
introduced in the beginning of this section, for both classes of admission policies. 
We prove that the problem can be solved for partitioning policies. Although we 
have not been able to solve the problem for sharing policies, we shall briefly 
discuss the performance of such policies. 

Constrained optimization problems for queues have gained increasing interest 
of researchers during the last five years. In Ross [12] finite-state Markov decision 
processes are considered with a reward and cost structure. The objective is to 
maximize the average return with a constraint on the average costs. In Hordijk 
and Spieksma [3] an optimization problem with a constraint on the average cost 
for a one-dimensional queueing system is discussed. They show that for rather 
general assumptions on the cost and reward structure the optimal control ran­
domizes in exactly one state. In Ma and Makowski [7] a constrained optimal 
flow control problem is solved with Lagrangian methods. Again the optimal 
control is shown to be randomized in exactly one state. A well-known reference 
on constrained optimal flow control is Robertazzi and Lazar [ 11]. They consider 
the problem of maximizing the throughput of a one-dimensional queue under 
a constraint on the average delay. The optimal control is shown to be of a 
window flow type and again it is randomized in exactly one state. In Nain and 
Ross [8] a queueing model is discussed for multiplexing heterogeneous Poisson 
arrival streams onto a single communication channel. The optimization problem 
is to minimize a linear combination of the average delays. while at the same 
time subjecting the average delay for one stream to a hard constraint. The 
optimal multiplexing policy is shown to be a randomized modification of the µ.c 
rule. In Nain and Ross [9] a similar system is considered with renewal arrival 
streams. To minimize a linear combination of the average queue lengths with a 
hard constraint on the average queue length of one arrival stream. the optimal 
multiplexing policy is shown to be a randomized modification of a static-priority 
rule. The performance analysis of partitioning and sharing policies is related to 
the analysis of resource sharing in Kaufman [4]. He derives a product form for 
the equilibrium distribution of a multiserver queueing model with sharing policies 
and presents a one-dimensional recursion for the computation of performance 
measures. In Foschini and Gopinath [2] an optimal control problem for a 
queueing system with two processors and a common waiting room is presented. 
They show that the control that minimizes a weighted sum of the idle times of 
the servers is a combination of a partitioning and a sharing policy. 

This article is organized as follows. In Section 2 we present a description of 
the queueing model and formulate the control problem. In Section 3 we derive 
monotonicity properties of performance measures that are used in Section 4 to 
establish conditions for the existence of an optimal policy. A design algorithm 
for the optimal policy is discussed in Section 5. We briefly address the perform­
ance of sharing policies in Section 6. The article is concluded with some numerical 
examples in Section 7. 
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2. DESCRIPTION OF THE QUEUEING MODEL 

Consider a PS queue with two independent Poisson arrival processes. Cus­
tomers of class 1 represent the call requests and they arrive with rate A. 1• Operator 

tasks are referred to as class 2 customers and they arrive with rate A.2. The service 
requirements for customers of class i are independent and may have some general 

type distribution function with mean 1/ µ.,;, i = l, 2. We define the workloads 
P; = A;/ /L;, i = 1, 2. 

The queueing process is a continuous-time Markov process on the state space 
../ = N 2, where a state is represented by a population vector m = (m 1, m2) 

corresponding to a population of m; customers of class i, i = 1, 2. Upon arrival 

to the queue customers can either be admitted or rejected according to a sta­

tionary admission policy. A partitioning policy is described by two thresholds, 

M1, M 2 EN U x. A new customer of type i, i = l, 2, is admitted only if the 
number of customers of type i at the moment of arrival is smaller than M;. The 

effect of applying such an admission policy is that the state space is restricted 
to the set {(m 1, m2)j0 ~ m; ~ M;, i = l, 2}. We shall use the notation <M1, M2) 

to denote both this subset of N2 and the partitioning policy itself. 
We let T;(M1' M2) denote the throughput of type i, i = 1, 2, for policy (M 1, 

M2). Similarly we let S;(M;, M 2) denote the mean sojourn time of type i cus­
tomers, as a function of the thresholds. In case either or both of the thresholds 
are infinite, then we need to impose the usual conditions on the workload to 
ensure the ergodicity of the queue: 

• If M, = x, then p1 < I. 
• If M2 = x, then P:! < I. 
• If M, = M1 = x, then p, + P:! < I. 
• If both M, and M1 are finite, then p1 and p1 may takt: any value. 

With these definitions and conditions we are now all set to introduce the 
constrained control problem. 

DEFINITION 2.1 (Problem (P)): Let S and T be fixed constants in R+ 
satisfying S 2: 11 µ, 1 and T ~ A2• 

I. A partition (M,, M2) is called feasible if S,(M,, M 2) s Sand T2(M,. M2 ) ~ T. 

2. A partition (M1, M2) is called optimal if it is feasible and if there exists no other 

feasible policy (M~. M;) with T,(M~. M;l > T,(M,. M2). 

The condition S 2: 1 I µ., 1 is to guarantee that the constrained problems are not 

trivial, since the mean sojourn time of a class 1 customer can never be smaller 
than its mean service time. For the same reason the condition T s: A2 was 
introduced, since the throughput of class 2 customers can never be larger than 

the arrival rate. 
Due to the special type of blocking for newly arriving customers the equilib­

rium joint queue length distribution has a product form. 

LEMMA 2.2: The equilibrium joint queue length distribution p(n 1, n2) of 
having n 1 and n 2 customers of type 1 and 2, when the partitioning policy is 
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otherwise, 

where 

G(M1. M2) == L (ni;.m)p;•p'21 
ln1.n~)E<M1.M~> 

is a normalizing constant. 

PROOF: See, for instance, Cohen [1) or Kelly [5. Corollary 1.10). 

For finite thresholds the performance measure that we consider (throughputs 
and mean sojourn times) can be computed quite effectively by a recursive scheme 
in M 1 and M 2 (cf. Reiser and Kobayashi [10]). For infinite thresholds we can 
also derive expressions of T;(M 1• M2) and S;(M1, M2), that can be computed 
without considerable effort (see de Waal [15, Chap. 5)). 

3. MONOTONICITY PROPERTIES 

In this section we shall discuss monotonicity results for these performance 
measures with respect to the thresholds. These results are employed to formulate 
existence conditions for an optimal policy in Section 4 and to design a search 
procedure for the optimal thresholds in Section 5. 

LEMMA 3.1 (monotonicity properties): For all Mt> M 2 EN and i == 1, 2, 

PROOF: See de Waal and van Dijk [16). 

Note that these inequalities are indeed what we would intuitively expect. For 
example, (1) states that increasing the threshold M1 for class 1 while keeping 
M2 constant gives a higher throughput T1, since obviously more class 1 customers 
are going to be admitted to the queue. Conversely the throughput T2 for class 
2 will decrease as less processor capacity will be left to serve class 2 customers. 

In de Waal and van Dijk [16) the monotonicity properties of Lemma 3.1 are 
proven for a service discipline that is more general than standard PS. This 
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gen~ralization includes the model in Cohen [1], and also nonsymmetric modi­
fications_. The monotonicity of throughputs and mean queue lengths is proven 
by treatmg these performance measures as average rewards and showing that 
~onot~nicity exists for finite horizon rewards. The inequality ( 4) for Sc~ is an 
immediate result of (2) and (3) by application of Little's law. The inequality ( 4) 

for S, cannot be derived in this manner and has to be proven explicitly. This is 
the only monotonicity property where the product form equilibrium distribution 
is actually needed. 

The monotonicity results of Lemma 3.1 remain valid when one of the thresh­
olds becomes infinite, though for obvious reasons the strict inequality signs 
< and > have to be replaced by :s and 2::, respectively. 

4. EXISTENCE OF AN OPTIMAL PARTITION 

We shall now use the monotonicity results of the preceding section to give 
conditions for the existence of a solution to problem (P). The first lemma shows 
that the existence of a feasible partition is sufficient for the existence of an 
optimal partition. This result is not trivial. since the existence of a feasible 
partition does not guarantee that there is a partition that attains the maximum 
class 1 throughput. 

LEMMA 4.1: There exists a feasible policy for problem (P), if and only if 
there exists an optimal policy. 

PROOF: Since an optimal partition is by definition feasible, the "'only if' 
statement is immediate. The proof for the "if" part proceeds by contradiction. 
Assume that there is a feasible partition, but no optimal partition. Since T1 is 
bounded by ,.\" this means that there is no feasible partition that attains a 
maximum class 1 throughput and thus there must be infinitely many feasible 
partitions. Consequently there exists a sequence { &~,}~ ~u of feasible partitions 
satisfying 

(a.i) T1( fi,,) is strictly increasing for n EN. 
(a.ii) For any feasible partitionfithere exists an n,·E N such that T1( 11,,) > T1( 6) for 

n > n,,. 

In the remainder of this proof we shall use the notation M;( {/) for i = 1, 2, to 
denote the class i threshold of partition ff. Note that A1;( & ) can be infinite. 

First we shall prove that 

sup 1"1 1(d) (5) 
nEN 

Assume that (5) is not true, so M 1 ( ef,,) takes only a finite number of discrete 
values. Consequently there must exist a subsequence { f,, ~,1 1 }~~o of { -0,,}~~ 0 , with 
M 1 ( ffi'~,1 l) constant and equal to limsup,,~,, M 1 ( -0 ,,) which we shall denote as 
M1• Since T1( {fi,,) and thus also T1( -0'~1 l) is strictly increasing, M"( &~,1 1 ) must 
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take infinitely many different values due to ( l). Therefore, we can construct a 
subsequence { of { {c 1 such that 

(h.1) 1\.11( 

(b.iiJ M,(1f• 
(b.iii1 r,1 

is conshml (by defi11i1ion of ;,1' and thus also of ef './'l. 
1s strictly increasing m n E N. 

is stnclly mcreasing in n E N. 

This is in contradiction with the monotonicity property ( l) of Lemma 3.1, how-
ever. We may thus conclude that sup,.E'.' AJ 1( = :x 

If we have a feasible partition<',, for some n E N with 1"1i( = x, then 
T1( = A1 (no type l customers are rejected), and this contradicts (a.ii). We 
may therefore assume that for all n E N, M 1( i'in) < oc. Since sup,.EN M 1(-G',,) = 
x. there must exist a subsequence {t~11 };,~ 11 of {f with M1 (6~,3 1 ) i 
x as n--> :c. With regard to the sequence {iH~( t' ~,3 ')};,,.n we can distinguish 
between the following two cases: 

(c.i) M~( 

(c.ii) M~( 

takes only finite!} many values for n E N. 
takes infinitely many values for n E N. 

If (c.i) holds, then we can construct (yet another) subsequence { ef :,4 )};,,0 11 of 
{ ~':/l}~ ~ii. such that M2( «;:1) is constant and equal to limsup,,_. M2( tii"~,3l) which 
we shall denote as M2• For all n E R we then have by the definition of feasibility, 
51(M 1( ~:141 ), A12 ) increasing and bounded from above by S, and T2(M 1( e::,4l), 

M 2) decreasing and bounded from below by T. Furthermore, by definition of 
{ ~:131 }~0 11 , we have M 1( 1f'';,41 ) i :c as n ~ x and thus (x, MJ is a feasible par­
tition. Since T1(x, M2) = A1, this leads to a contradiction with (a.ii). 

Finally in case (c.ii) it is possible to construct a subsequence { 6~51}~=o of 
{ ef,':;' 1 }~~o with M 2( ~nt 1 ) strictly increasing to x for n E N. Since by construction 
M1( 6'~;11 ) and thus also M1( Q\':,5 1) is strictly increasing, we may conclude that (x, 
x) is a feasible partition. Since Ti(:c, x) = Ai, we get again a contradiction with 
(a.ii). As a result we may thus conclude that there exists an optimal parti-
tion. [] 

With this lemma we can now proceed with sufficient conditions for the exist­
ence of feasible partitions. The first sufficient condition for existence concerns 
a queueing model where the parameters Pi and P2 and the bound S are chosen 
such that the constraint of S1 is satisfied by all partitioning policies. 

LEMMA 4.2: If the queue is ergodic for the partitioning policy with thresh-
olds Mi = M, x, i.e., Pi + P2 < l, and if 

s ~ ~~~~~~ 
µi(l - Pi - r>:.) 

then M 1 = l'v12 = x is the optimal partitioning policy. 

(6) 

PROOF: Note that if p1 + fJ?. < 1, then the right-hand side of (6) is the 
expression for Si( :c, x) ( cf. Reiser and Kobayashi [ 10, Eq. (37) ]). If the inequality 
(6) holds, then we know from Lemma 3.1 that S1(M 1, M2) :s S for all M1, 

M2 EN. Furthermore, T1(M,, M2) :s A1 for M 1, M 2 E N and i = 1, 2, and this 
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bound is tight for M 1 = M 2 = x. Therefore (x, oo) is a feasible policy, since 
T2(x, x) ;;::: T. The class 1 throughput T1(:xi, oo) = Al> so (oa, oo) is the optimal 
partition. D 

The following two lemmas give necessary and sufficient conditions for less 
trivial parameter settings. 

LEMMA 4.3: If the lower bound T = A.2, then there exists an optimal par­
tition if and only if S1(1, x) :S S. 

PROOF: Observe that the throughput T2( -6') of class 2 under policy C is 
equal to the arrival rate A.2 times the probability that a class 2 customer is admitted 
under C. Since the blocking probability for class 2 is zero only for partitions with 
threshold M2 = x, a feasible policy must thus use an infinite class 2 threshold. 
If 5 1(1, oo) > S, then by the inequality (4) we have S1(M1, oo) > S for all M1 EN 
and thus no feasible partition exists. If 5 1(1, oo) :s S, then there exists at least 
one feasible partition, viz., (1, oo), and thus there exists an optimal parti-
tion. D 

LEMMA 4.4: If T < A2, then there exists an optimal partition if and only 
if S;;::: 5 1(1, K), where K is defined as 

(7) 

PROOF: Let T < A.2 and let K be defined as in (7). Such a K exists and is 
finite since T2(1, M2) i .A2 as M 2 ~ x. From the monotonicity of T2 we know 
that a partition (M 1, M2) can be feasible only if M2 is at least K. If 5 1(1, K) s S, 
then (1, K) is a feasible partition and thus an optimal policy exists. If S 1 (1, 
K) > S, then by (4) for all M 1 ~ 1 and M2 2: K we have S 1(Mi. M2) > S, and 
consequently there are no feasible policies. D 

We can derive closed-form expressions for 51(1, M 2 ) and T2(1, M2), M2 EN, 
that can be computed recursively in M2• The monotonicity of 5 1 and T2 can be 
employed to search for a K satisfying (7). 

5. DESIGN OF THE OPTIMAL PARTITION 

Once the existence of a feasible partition has been established, we can use 
the monotonicity properties of Lemma 3.1 to design a procedure to find the 
optimal partition. Assume for instance that we have a partition (M 1, M2) that 
violates the constraint S1(M 1, M 2) :s S. From the monotonicity of S1 we then 
know that a feasible partition (M~, M;J must satisfy M;* ::;; Mi, i = 1, 2. 

Since we have expressions for all the performance measures that are involved 
in the formulation of problem (P), we are all set to discuss the algorithm to find 
the optimal partition. In this procedure we can distinguish the following steps. 

(i) Test if there exists a feasible partition. 
(ii) Determine the set of feasible partitions. 
(iii) Restrict the set of feasible partitions to a finite set that contains the optimal par­

tition. 
(iv) Find the optimal partition over this finite set. 
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It is not necessary in all cases to perform all of these four steps, since for some 
examples we can already conclude in steps (i) or (ii) what the optimal partition 
is (if any). 

For step (i) we use the results that were obtained in Lemmas 4.2-4.4. When 
we have a situation where Lemma 4.2 applies, then obviously we can stop, since 
we have found an optimal partition. If this is not the case, then we can check 
whether we have an example of Lemma 4.3. If this is true, then we know from 
Lemma 4.3 that the optimal partition must be of the form (M1, x) for some 
M 1 E N. The value of S1(M1, :x:) can be computed quite easily (see de Waal [15, 
Chap. 5]). If there exists a feasible partition, then clearly the optimal partition 
is (M~, :x:), with 

Such an M~ exists and is finite, since S1(M1, :x:) i :x: as M1 ~ :x: (otherwise the 
conditions of Lemma 4.2 would have been satisfied). 

If we can exclude the cases where Lemma 4.2 and 4.3 apply, then we are in 
a situation where at least one of the two thresholds of the optimal partition must 
be finite. We can then characterize the set of feasible policies. We do this by 
determining for any fixed value of M2 the maximally feasible class I threshold. 
We define for all M2 E N U {:x:}: 

J( f(M2) = sup{M, ENI Tz(M1. M2) 2: T}, 

cft·~(M2 ) = sup{M1 E NjS,(M1, M2) :s S}, 

j( 1(M2) = min{ .. {( f(M2), ,{(f(M2)}. 

For any fixed M2 a partition (M1, M2) can be feasible only if M 1 :s vf( 1(M2). 
An immediate result from the monotonicity properties is the local optimality of 
the class 1 threshold,(( 1(M2) for fixed M2• since for that threshold the maximal 
class 1 throughput is obtained. 

The set of all feasible partitions can now be characterized as 

and for optimization purposes this set can be restricted to 

that contains the optimal partition. Examination of the structure of this set 
reveals that there are two difficulties in the evaluation of T1 over this set. First 
we see that we have infinitely many values for M2 and second we can encounter 
the situation where~« 1(M2) = :x: for some M 2• With respect to the latter pos­
sibility we can remark that this is in fact no difficulty, since if for some M2 the 
partition (:x:, M2) is feasible, then it is also optimal since T1(x, M2) = A1• 

The remaining problem thus concerns the infinitely many values that M 2 can 
take. We shall show that we can restrict ourselves to a finite set, thus reducing 
the search of the optimal partition to a search over a finite set. For this we need 
the following lemma. 
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LEMMA 5.1: 

(i) A f(m) is nondecreasing in m. 
(ii) j(·~·(m) is nonincreasing in m. 

(iii) A 1(m) is unimodal in m; i.e.,A 1(m - I) 2: A 1(m) implies.At 1(m) 2: 

A 1(m + 1), and A 1(m) s A 1(m + 1) implies A 1(m - 1) s A 1(m). 
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PROOF: Parts (i) and (ii) are immediate from the monotonicity of T2 and 
SI> respectively. Part (iii) follows from the definition of.At 1 and (i) and (ii). 0 

Recall from the previous steps of the algorithm that we can exclude the 
possibility of a feasible partition with two infinite thresholds. We may therefore 
conclude by the unimodality of.Ar 1 thatJ/t 1(m) converges to a finite 
value.Ar 1(co) as m--+ co. This limit can be computed from the expressions for 
S,(MI> co) and T2(M1, co). Sinceva'(m) can thus take only finitely many values 
in NU {co}, there must be a finite.Ar 2 such that.Ar 1(M2) = .Ar 1(00) for 
M 2 :::: A 2. From the monotonicity of T1 it is clear that within the set 

the maximum class 1 throughput is obtained for partition (.Ar 1 ( vk'2), Jft2). There­
fore it is sufficient to restrict the search for the optimal partition to the finite 
set 

6. SHARING POLICIES 

In this section we shall briefly discuss sharing policies. Sharing policies are 
characterized by a state space of the form 

where c1 and c2 are the weight factors for class 1 and 2, respectively, and c is 
called the pool size. The terms are derived from the actual implementation of 
these admission policies. It uses a pool that contains c permission units (p.u.'s) 
for some c E N. If a customer of type i, i = 1, 2, arrives at the queue, it can 
be admitted only if there are at least ci p. u. 's left in the pool. If these p. u. 's are 
available, then they are removed from the pool and the customer is admitted; 
otherwise he is rejected. After an admitted customer completes his service, the 
p.u.'s for this customer are put back into the pool. 

PS queues with sharing policies are related to the so-called stochastic knapsack 
problem. This model, presented in Ross and Tsang [13] and Ross and Yao [14], 
is similar to ours, but the PS queue is replaced by a multiserver station. 

We know from Lam [6] and de Waal and van Dijk [17] that for sharing policies 
the equilibrium distribution is also given by a product form. This means that 
the performance measures can be evaluated quite easily. The main part of the 
algorithm is the computation of the normalization constant. Since we have only 
two customer types, this does not present any difficulty on modern workstations. 
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For example. an (unusually large) example with pool size 400 and both weight 
factors equal to I can be evaluated by complete enumeration within 15 seconds 
on a Sun Sparcstation 1. or within >seconds on an SGI Indigo 4000. 

In contrast with the partitioning policies. there does not exist monotonicity 
Llf the performance measures with respect to the weight factors c1• c2• and the 
pool size c. This can be proven explicitly for some simple sharing policies (see 
de Waal [ 15. Chap. 5j). Unfortunately the monotonicity results for stochastic 
knapsack problems do not carry over to this PS queue. mainly because the 
processor sharing mechanism gives a stronger interaction between the two cus­
tomer types than a multiserver discipline does. 

7. NUMERICAL RESULTS 

In this section we shall discuss the performance of partitioning and sharing 
policies from numerical examples. For several parameter settings of a queueing 
model the optimal partitions are computed and the robustness of this class of 
policies is discussed. For the same set of parameters we compute sharing policies 
of which the performance is close to the corresponding optimal partitioning 
policies. The robustness of sharing policies is also included in the exposition. 

The queueing system we consider has class 2 arrival rate A2 = 0.3. and service 
rates µ. 1 = µ,2 = 1.0. The lower bound on the class 2 throughput is set at T = 0.2 
and the upper bound on the mean class 1 sojourn time is S = 20. In Table I 
the values of the optimal partitions' thresholds are presented for different values 
of the class l arrival rate A1• Included in the table are the values of the per­
formance measures for these partitions. The third column in the table refers to 
the so-called normalized arrival rate A 1• Due to the lower bound T = 0. 2 on 
the class 2 throughput. only a fraction 0.8 of the processor's speed is available 
to serve class l customers. Since µ, 1 = 1.0, this means that A1 = 0.8 corresponds 
to a call request load of 100%:. For this reason the normalized arrival rate is 
introduced. and it is defined as A1 = A1/0.8. 

From Lemma 4.2 we know that for A1 s 0.65 (A1 s 0.81) the mean sojourn 
time of class l will always be smaller than 20, and thus partition (x, x) is feasible 
and optimal. For A1 s 0.80 (A1 s 1.00) the optimal class 1 threshold is infinite. 
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Figure 2. Throughput of class 2 for partitioning (a) and sharing (b) policies. 
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We have not included these policies in the results. since they are uninteresting 
when we come to the robustness issue. Because of the infinite theshold. the 
queue will no longer be ergodic when At ;:::: 1.00. 

In Figures l(a)-3(a) the performance measures for the six partitions of Table 
1 are depicted when the class 1 arrival rate is varied while the thresholds are 
kept constant. The numbers in the figures correspond to the numbers of the 
partitions in Table 1. From Figure l(a) we can conclude that the largest values 
of T1 can be obtained by using partition No. I-optimal for A1 = l.0-for all 
arrival rates. This observation can be explained immediately from the mono­
tonicity properties of Lemma 3.1. Due to the large thresholds of this partition 
the bounds on T2 andS 1 are violated for large A1• however. Conversely, partition 
No. 6 that is optimal for At = 1.5 satisfies the constraints for all values of 
A1 E [0.0, 4.0] but gives for A1 = 1.0 a class l throughput that is about 7% less 
than the optimal value at that load. If one considers this loss to be too large, 
then clearly partitioning policies are not robust. 

Next we discuss the performance of sharing policies. We have considered the 
PS queueing model for the same parameter settings as the partitioning policies. 
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Figure 3. Mean sojourn time of class l for partitioning (a) and sharing (b) policies. 
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Table l. Optimal partitioning policies. 

No. A1 A1 A1yr• M~l'I T, T~ Si 

lUiO l .UO 32 5 ll.788 (J.::!() l 19. 7 
2 0.85 I .Oh 23 5 0.792 0.202 18.8 
3 0.90 1.13 20 5 0.794 0.203 uu 
4 1.00 1.25 18 5 0.798 0.201 18.2 
5 1.20 1.50 lo 5 0.797 0.203 17.7 
h 1.50 1.88 15 5 ll.796 ll.204 17.5 

From Section 6 we know that sharing policies do not exhibit monotonicity, that 
can be used to search for optimal policies. The performance measures, however, 
can be computed quite efficiently. thus allowing an "'interactive" search for 
satisfying policies. i.e .. policies of which the performance is close to the optimal 
partitioning policies. In the examples we found that the following rules can be 
applied in the search for a satisfying sharing policy if A1 2:: 1.0. First we have to 
search for the right ratio of the weight factors to get the throughputs T1 and T~ 
close to 0.8 and 0.2. respectively. Having found the right ratio, we then have 
to vary the pool size c until 5 1 is close to 20. In most cases we were able to find 
sharing policies of which the performance was close to that of partitioning policies 
(see Table 2). From this table we can conclude that when A1 increases, then the 
ratio of c1 and c~ has to shift to give class 2 a preference over class 1 (compare 
policies No. I and No. 6). 

Analogously to the investigation on partitioning policies we have examined 
the robustness of sharing policies. The results of these computations are shown 
in Figures l(b)-3(b). From these figures we can draw the same conclusions as 
for the partitioning policies. viz., the policy that is optimal for A1 = 1.0 violates 
the constraints when the arrival intensity increases. In this case the sharing policy 
that is optimal for A1 = 1.5 is also not feasible for A1 = 4.0. The loss of class 
I throughput at A1 = 1.00 of sharing policy No. 6 compared to No. I is 9C:i, so 
sharing policies are not robust either. For some sharing policies the class 2 
throughput even decreases to zero when the load becomes high. This is due to 
the triangular form of the state space. When the load of type l is high. the 
equilibrium distribution will have almost all of its mass in a state with a zero 
class 2 length. 

For both classes of admission policies we conjecture that the performance 
under varying loads can be improved by an adaptive control scheme. There are 
two approaches to construct adaptive partitioning or sharing policies. In the first 

Table 2. Satisfying sharing policies. 

No. A1 A1 C1 c~ c Ti T2 s, 
0.80 1.00 1 15 80 0.781 0.200 15.2 

2 0.85 1.06 1 6 50 0.795 0.200 19.8 
3 0.90 1.13 1 3 34 0.793 0.205 19.7 
4 1.00 1.25 4 7 105 0.798 0.201 19.3 
5 1.20 1.50 12 11 263 0.799 0.201 20.0 
6 1.50 J.88 5 3 99 0.797 0.203 19.9 
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approach we determine the optimal or satisfying policies for a number of values 
of A1. In the exchange the value of this parameter is estimated periodically and 
the policy is adjusted according to the latest estimate. This type of control is 
called certainty equivalence adaptive control. 

In the second approach we use one or several system characteristics as indi­
cators for the value of A1• As an example one can think of the queue length, 
since a large number of customers may indicate that the arrival rate is high. In 
this approach the admission policy should be adjusted periodically according to 
the actual queue length. 
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