
A Constrained Optimization Problem for a Processor
Sharing Queue

Peter de Waal
CW/, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

In this article we discuss a processor sharing queueing model for a stored program
controlled telephone exchange. The model incorporates the effects of both call
requests and operator tasks on the load of. the proc~ssor. Newly arriving. ~all
requests and operator tasks can either be admitted or rejected and for this dec1s1on
the state of the queue at the moment of arrival is av~ilable ~s !nf~rmation. To
guarantee a high level of service, we formulate a constramed opt1m1zat10n problem.
Two types of access control, viz., partitioning policies and sharing policies, are
considered. The optimization problem is solved for partitioning policies and the
performance of both types of policies is compared. © 1993 John Wiley & Sons. Inc.

1. INTRODUCTION

In this article we discuss a processor sharing (PS) queueing model for a stored
program controlled (SPC) telephone switch. We consider two different customer
types who arrive to the queue, representing call requests and operator tasks.
Newly arriving customers may be admitted to the queue or rejected, depending
on the state of the queue. The control objective is to maximize the throughput
of call requests subject to two constraints: an upper bound on the call requests'
mean sojourn time and a lower bound on the fraction of admitted operator tasks.

This PS queue is a model for the processor in a stored program controlled
telephone exchange. Maximization of revenue corresponds to maximization of
the number of completed call requests. The bound on the mean sojourn time
of these requests guarantees that the fraction of calls that are Jost due to im
patience will be small. The bound on the throughput of operator tasks guarantees
that a minimum fraction of processing power is always available for, e.g., testing
and administrative procedures.

In this article we shall restrict our attention to a special class of admission
policies. viz., partitioning policies. In a partitioning policy the decision whether
to admit a new request or task depends on two separate thresholds, one for
each customer class. If the number of call requests in service reaches the cor
responding threshold, new requests are rejected until the number of requests in
service decreases by a service completion. An analogous algorithm is employed
for operator tasks. This type of policy is called a partitioning policy, because its
effect is basically a partitioning of the processor power over the two customer
classes. We shall also briefly discuss a second type of admission policies, viz.,

Naval Research Logistics, Vol. 40, pp. 719-731 (1993)
Copyright© 1993 by John Wiley & Sons, Inc. CCC 0894-069X/93/050719-13

720 Vol. 40 (1993)

policies. This type of control was implemented to allow "sharing" of the
processor capacity. i.e., when the demand for service of call requests is low.
then operator tasks are allowed h) use part of the call-handling capacity and
vice versa. The terms partitioning and sharing were used in Kaufman [4] in the
context of memory allocation policies for computers.

In this article we shall discuss the constrained control problem. that was
introduced in the beginning of this section, for both classes of admission policies.
We prove that the problem can be solved for partitioning policies. Although we
have not been able to solve the problem for sharing policies, we shall briefly
discuss the performance of such policies.

Constrained optimization problems for queues have gained increasing interest
of researchers during the last five years. In Ross [12] finite-state Markov decision
processes are considered with a reward and cost structure. The objective is to
maximize the average return with a constraint on the average costs. In Hordijk
and Spieksma [3] an optimization problem with a constraint on the average cost
for a one-dimensional queueing system is discussed. They show that for rather
general assumptions on the cost and reward structure the optimal control ran
domizes in exactly one state. In Ma and Makowski [7] a constrained optimal
flow control problem is solved with Lagrangian methods. Again the optimal
control is shown to be randomized in exactly one state. A well-known reference
on constrained optimal flow control is Robertazzi and Lazar [11]. They consider
the problem of maximizing the throughput of a one-dimensional queue under
a constraint on the average delay. The optimal control is shown to be of a
window flow type and again it is randomized in exactly one state. In Nain and
Ross [8] a queueing model is discussed for multiplexing heterogeneous Poisson
arrival streams onto a single communication channel. The optimization problem
is to minimize a linear combination of the average delays. while at the same
time subjecting the average delay for one stream to a hard constraint. The
optimal multiplexing policy is shown to be a randomized modification of the µ.c
rule. In Nain and Ross [9] a similar system is considered with renewal arrival
streams. To minimize a linear combination of the average queue lengths with a
hard constraint on the average queue length of one arrival stream. the optimal
multiplexing policy is shown to be a randomized modification of a static-priority
rule. The performance analysis of partitioning and sharing policies is related to
the analysis of resource sharing in Kaufman [4]. He derives a product form for
the equilibrium distribution of a multiserver queueing model with sharing policies
and presents a one-dimensional recursion for the computation of performance
measures. In Foschini and Gopinath [2] an optimal control problem for a
queueing system with two processors and a common waiting room is presented.
They show that the control that minimizes a weighted sum of the idle times of
the servers is a combination of a partitioning and a sharing policy.

This article is organized as follows. In Section 2 we present a description of
the queueing model and formulate the control problem. In Section 3 we derive
monotonicity properties of performance measures that are used in Section 4 to
establish conditions for the existence of an optimal policy. A design algorithm
for the optimal policy is discussed in Section 5. We briefly address the perform
ance of sharing policies in Section 6. The article is concluded with some numerical
examples in Section 7.

de Waal: Processor Sharing Queue 721

2. DESCRIPTION OF THE QUEUEING MODEL

Consider a PS queue with two independent Poisson arrival processes. Cus
tomers of class 1 represent the call requests and they arrive with rate A. 1• Operator

tasks are referred to as class 2 customers and they arrive with rate A.2. The service
requirements for customers of class i are independent and may have some general

type distribution function with mean 1/ µ.,;, i = l, 2. We define the workloads
P; = A;/ /L;, i = 1, 2.

The queueing process is a continuous-time Markov process on the state space
../ = N 2, where a state is represented by a population vector m = (m 1, m2)

corresponding to a population of m; customers of class i, i = 1, 2. Upon arrival

to the queue customers can either be admitted or rejected according to a sta

tionary admission policy. A partitioning policy is described by two thresholds,

M1, M 2 EN U x. A new customer of type i, i = l, 2, is admitted only if the
number of customers of type i at the moment of arrival is smaller than M;. The

effect of applying such an admission policy is that the state space is restricted
to the set {(m 1, m2)j0 ~ m; ~ M;, i = l, 2}. We shall use the notation <M1, M2)

to denote both this subset of N2 and the partitioning policy itself.
We let T;(M1' M2) denote the throughput of type i, i = 1, 2, for policy (M 1,

M2). Similarly we let S;(M;, M 2) denote the mean sojourn time of type i cus
tomers, as a function of the thresholds. In case either or both of the thresholds
are infinite, then we need to impose the usual conditions on the workload to
ensure the ergodicity of the queue:

• If M, = x, then p1 < I.
• If M2 = x, then P:! < I.
• If M, = M1 = x, then p, + P:! < I.
• If both M, and M1 are finite, then p1 and p1 may takt: any value.

With these definitions and conditions we are now all set to introduce the
constrained control problem.

DEFINITION 2.1 (Problem (P)): Let S and T be fixed constants in R+
satisfying S 2: 11 µ, 1 and T ~ A2•

I. A partition (M,, M2) is called feasible if S,(M,, M 2) s Sand T2(M,. M2) ~ T.

2. A partition (M1, M2) is called optimal if it is feasible and if there exists no other

feasible policy (M~. M;) with T,(M~. M;l > T,(M,. M2).

The condition S 2: 1 I µ., 1 is to guarantee that the constrained problems are not

trivial, since the mean sojourn time of a class 1 customer can never be smaller
than its mean service time. For the same reason the condition T s: A2 was
introduced, since the throughput of class 2 customers can never be larger than

the arrival rate.
Due to the special type of blocking for newly arriving customers the equilib

rium joint queue length distribution has a product form.

LEMMA 2.2: The equilibrium joint queue length distribution p(n 1, n2) of
having n 1 and n 2 customers of type 1 and 2, when the partitioning policy is

722 Naval Research Logistics, Vol. 40 (1993)

otherwise,

where

G(M1. M2) == L (ni;.m)p;•p'21
ln1.n~)E<M1.M~>

is a normalizing constant.

PROOF: See, for instance, Cohen [1) or Kelly [5. Corollary 1.10).

For finite thresholds the performance measure that we consider (throughputs
and mean sojourn times) can be computed quite effectively by a recursive scheme
in M 1 and M 2 (cf. Reiser and Kobayashi [10]). For infinite thresholds we can
also derive expressions of T;(M 1• M2) and S;(M1, M2), that can be computed
without considerable effort (see de Waal [15, Chap. 5)).

3. MONOTONICITY PROPERTIES

In this section we shall discuss monotonicity results for these performance
measures with respect to the thresholds. These results are employed to formulate
existence conditions for an optimal policy in Section 4 and to design a search
procedure for the optimal thresholds in Section 5.

LEMMA 3.1 (monotonicity properties): For all Mt> M 2 EN and i == 1, 2,

PROOF: See de Waal and van Dijk [16).

Note that these inequalities are indeed what we would intuitively expect. For
example, (1) states that increasing the threshold M1 for class 1 while keeping
M2 constant gives a higher throughput T1, since obviously more class 1 customers
are going to be admitted to the queue. Conversely the throughput T2 for class
2 will decrease as less processor capacity will be left to serve class 2 customers.

In de Waal and van Dijk [16) the monotonicity properties of Lemma 3.1 are
proven for a service discipline that is more general than standard PS. This

de Waal: Processor Sharing Queue 723

gen~ralization includes the model in Cohen [1], and also nonsymmetric modi
fications_. The monotonicity of throughputs and mean queue lengths is proven
by treatmg these performance measures as average rewards and showing that
~onot~nicity exists for finite horizon rewards. The inequality (4) for Sc~ is an
immediate result of (2) and (3) by application of Little's law. The inequality (4)

for S, cannot be derived in this manner and has to be proven explicitly. This is
the only monotonicity property where the product form equilibrium distribution
is actually needed.

The monotonicity results of Lemma 3.1 remain valid when one of the thresh
olds becomes infinite, though for obvious reasons the strict inequality signs
< and > have to be replaced by :s and 2::, respectively.

4. EXISTENCE OF AN OPTIMAL PARTITION

We shall now use the monotonicity results of the preceding section to give
conditions for the existence of a solution to problem (P). The first lemma shows
that the existence of a feasible partition is sufficient for the existence of an
optimal partition. This result is not trivial. since the existence of a feasible
partition does not guarantee that there is a partition that attains the maximum
class 1 throughput.

LEMMA 4.1: There exists a feasible policy for problem (P), if and only if
there exists an optimal policy.

PROOF: Since an optimal partition is by definition feasible, the "'only if'
statement is immediate. The proof for the "if" part proceeds by contradiction.
Assume that there is a feasible partition, but no optimal partition. Since T1 is
bounded by ,.\" this means that there is no feasible partition that attains a
maximum class 1 throughput and thus there must be infinitely many feasible
partitions. Consequently there exists a sequence { &~,}~ ~u of feasible partitions
satisfying

(a.i) T1(fi,,) is strictly increasing for n EN.
(a.ii) For any feasible partitionfithere exists an n,·E N such that T1(11,,) > T1(6) for

n > n,,.

In the remainder of this proof we shall use the notation M;({/) for i = 1, 2, to
denote the class i threshold of partition ff. Note that A1;(&) can be infinite.

First we shall prove that

sup 1"1 1(d) (5)
nEN

Assume that (5) is not true, so M 1 (ef,,) takes only a finite number of discrete
values. Consequently there must exist a subsequence { f,, ~,1 1 }~~o of { -0,,}~~ 0 , with
M 1 (ffi'~,1 l) constant and equal to limsup,,~,, M 1 (-0 ,,) which we shall denote as
M1• Since T1({fi,,) and thus also T1(-0'~1 l) is strictly increasing, M"(&~,1 1) must

Vol. 40 (1993)

take infinitely many different values due to (l). Therefore, we can construct a
subsequence { of { {c 1 such that

(h.1) 1\.11(

(b.iiJ M,(1f•
(b.iii1 r,1

is conshml (by defi11i1ion of ;,1' and thus also of ef './'l.
1s strictly increasing m n E N.

is stnclly mcreasing in n E N.

This is in contradiction with the monotonicity property (l) of Lemma 3.1, how-
ever. We may thus conclude that sup,.E'.' AJ 1(= :x

If we have a feasible partition<',, for some n E N with 1"1i(= x, then
T1(= A1 (no type l customers are rejected), and this contradicts (a.ii). We
may therefore assume that for all n E N, M 1(i'in) < oc. Since sup,.EN M 1(-G',,) =
x. there must exist a subsequence {t~11 };,~ 11 of {f with M1 (6~,3 1) i
x as n--> :c. With regard to the sequence {iH~(t' ~,3 ')};,,.n we can distinguish
between the following two cases:

(c.i) M~(

(c.ii) M~(

takes only finite!} many values for n E N.
takes infinitely many values for n E N.

If (c.i) holds, then we can construct (yet another) subsequence { ef :,4)};,,0 11 of
{ ~':/l}~ ~ii. such that M2(«;:1) is constant and equal to limsup,,_. M2(tii"~,3l) which
we shall denote as M2• For all n E R we then have by the definition of feasibility,
51(M 1(~:141), A12) increasing and bounded from above by S, and T2(M 1(e::,4l),

M 2) decreasing and bounded from below by T. Furthermore, by definition of
{ ~:131 }~0 11 , we have M 1(1f'';,41) i :c as n ~ x and thus (x, MJ is a feasible par
tition. Since T1(x, M2) = A1, this leads to a contradiction with (a.ii).

Finally in case (c.ii) it is possible to construct a subsequence { 6~51}~=o of
{ ef,':;' 1 }~~o with M 2(~nt 1) strictly increasing to x for n E N. Since by construction
M1(6'~;11) and thus also M1(Q\':,5 1) is strictly increasing, we may conclude that (x,
x) is a feasible partition. Since Ti(:c, x) = Ai, we get again a contradiction with
(a.ii). As a result we may thus conclude that there exists an optimal parti-
tion. []

With this lemma we can now proceed with sufficient conditions for the exist
ence of feasible partitions. The first sufficient condition for existence concerns
a queueing model where the parameters Pi and P2 and the bound S are chosen
such that the constraint of S1 is satisfied by all partitioning policies.

LEMMA 4.2: If the queue is ergodic for the partitioning policy with thresh-
olds Mi = M, x, i.e., Pi + P2 < l, and if

s ~ ~~~~~~
µi(l - Pi - r>:.)

then M 1 = l'v12 = x is the optimal partitioning policy.

(6)

PROOF: Note that if p1 + fJ?. < 1, then the right-hand side of (6) is the
expression for Si(:c, x) (cf. Reiser and Kobayashi [10, Eq. (37)]). If the inequality
(6) holds, then we know from Lemma 3.1 that S1(M 1, M2) :s S for all M1,

M2 EN. Furthermore, T1(M,, M2) :s A1 for M 1, M 2 E N and i = 1, 2, and this

de Waal: Processor Sharing Queue 725

bound is tight for M 1 = M 2 = x. Therefore (x, oo) is a feasible policy, since
T2(x, x) ;;::: T. The class 1 throughput T1(:xi, oo) = Al> so (oa, oo) is the optimal
partition. D

The following two lemmas give necessary and sufficient conditions for less
trivial parameter settings.

LEMMA 4.3: If the lower bound T = A.2, then there exists an optimal par
tition if and only if S1(1, x) :S S.

PROOF: Observe that the throughput T2(-6') of class 2 under policy C is
equal to the arrival rate A.2 times the probability that a class 2 customer is admitted
under C. Since the blocking probability for class 2 is zero only for partitions with
threshold M2 = x, a feasible policy must thus use an infinite class 2 threshold.
If 5 1(1, oo) > S, then by the inequality (4) we have S1(M1, oo) > S for all M1 EN
and thus no feasible partition exists. If 5 1(1, oo) :s S, then there exists at least
one feasible partition, viz., (1, oo), and thus there exists an optimal parti-
tion. D

LEMMA 4.4: If T < A2, then there exists an optimal partition if and only
if S;;::: 5 1(1, K), where K is defined as

(7)

PROOF: Let T < A.2 and let K be defined as in (7). Such a K exists and is
finite since T2(1, M2) i .A2 as M 2 ~ x. From the monotonicity of T2 we know
that a partition (M 1, M2) can be feasible only if M2 is at least K. If 5 1(1, K) s S,
then (1, K) is a feasible partition and thus an optimal policy exists. If S 1 (1,
K) > S, then by (4) for all M 1 ~ 1 and M2 2: K we have S 1(Mi. M2) > S, and
consequently there are no feasible policies. D

We can derive closed-form expressions for 51(1, M 2) and T2(1, M2), M2 EN,
that can be computed recursively in M2• The monotonicity of 5 1 and T2 can be
employed to search for a K satisfying (7).

5. DESIGN OF THE OPTIMAL PARTITION

Once the existence of a feasible partition has been established, we can use
the monotonicity properties of Lemma 3.1 to design a procedure to find the
optimal partition. Assume for instance that we have a partition (M 1, M2) that
violates the constraint S1(M 1, M 2) :s S. From the monotonicity of S1 we then
know that a feasible partition (M~, M;J must satisfy M;* ::;; Mi, i = 1, 2.

Since we have expressions for all the performance measures that are involved
in the formulation of problem (P), we are all set to discuss the algorithm to find
the optimal partition. In this procedure we can distinguish the following steps.

(i) Test if there exists a feasible partition.
(ii) Determine the set of feasible partitions.
(iii) Restrict the set of feasible partitions to a finite set that contains the optimal par

tition.
(iv) Find the optimal partition over this finite set.

726 Naval Research Logistics, Vol. 40 (1993)

It is not necessary in all cases to perform all of these four steps, since for some
examples we can already conclude in steps (i) or (ii) what the optimal partition
is (if any).

For step (i) we use the results that were obtained in Lemmas 4.2-4.4. When
we have a situation where Lemma 4.2 applies, then obviously we can stop, since
we have found an optimal partition. If this is not the case, then we can check
whether we have an example of Lemma 4.3. If this is true, then we know from
Lemma 4.3 that the optimal partition must be of the form (M1, x) for some
M 1 E N. The value of S1(M1, :x:) can be computed quite easily (see de Waal [15,
Chap. 5]). If there exists a feasible partition, then clearly the optimal partition
is (M~, :x:), with

Such an M~ exists and is finite, since S1(M1, :x:) i :x: as M1 ~ :x: (otherwise the
conditions of Lemma 4.2 would have been satisfied).

If we can exclude the cases where Lemma 4.2 and 4.3 apply, then we are in
a situation where at least one of the two thresholds of the optimal partition must
be finite. We can then characterize the set of feasible policies. We do this by
determining for any fixed value of M2 the maximally feasible class I threshold.
We define for all M2 E N U {:x:}:

J(f(M2) = sup{M, ENI Tz(M1. M2) 2: T},

cft·~(M2) = sup{M1 E NjS,(M1, M2) :s S},

j(1(M2) = min{ .. {(f(M2), ,{(f(M2)}.

For any fixed M2 a partition (M1, M2) can be feasible only if M 1 :s vf(1(M2).
An immediate result from the monotonicity properties is the local optimality of
the class 1 threshold,((1(M2) for fixed M2• since for that threshold the maximal
class 1 throughput is obtained.

The set of all feasible partitions can now be characterized as

and for optimization purposes this set can be restricted to

that contains the optimal partition. Examination of the structure of this set
reveals that there are two difficulties in the evaluation of T1 over this set. First
we see that we have infinitely many values for M2 and second we can encounter
the situation where~« 1(M2) = :x: for some M 2• With respect to the latter pos
sibility we can remark that this is in fact no difficulty, since if for some M2 the
partition (:x:, M2) is feasible, then it is also optimal since T1(x, M2) = A1•

The remaining problem thus concerns the infinitely many values that M 2 can
take. We shall show that we can restrict ourselves to a finite set, thus reducing
the search of the optimal partition to a search over a finite set. For this we need
the following lemma.

de Waal: Processor Sharing Queue

LEMMA 5.1:

(i) A f(m) is nondecreasing in m.
(ii) j(·~·(m) is nonincreasing in m.

(iii) A 1(m) is unimodal in m; i.e.,A 1(m - I) 2: A 1(m) implies.At 1(m) 2:

A 1(m + 1), and A 1(m) s A 1(m + 1) implies A 1(m - 1) s A 1(m).

727

PROOF: Parts (i) and (ii) are immediate from the monotonicity of T2 and
SI> respectively. Part (iii) follows from the definition of.At 1 and (i) and (ii). 0

Recall from the previous steps of the algorithm that we can exclude the
possibility of a feasible partition with two infinite thresholds. We may therefore
conclude by the unimodality of.Ar 1 thatJ/t 1(m) converges to a finite
value.Ar 1(co) as m--+ co. This limit can be computed from the expressions for
S,(MI> co) and T2(M1, co). Sinceva'(m) can thus take only finitely many values
in NU {co}, there must be a finite.Ar 2 such that.Ar 1(M2) = .Ar 1(00) for
M 2 :::: A 2. From the monotonicity of T1 it is clear that within the set

the maximum class 1 throughput is obtained for partition (.Ar 1 (vk'2), Jft2). There
fore it is sufficient to restrict the search for the optimal partition to the finite
set

6. SHARING POLICIES

In this section we shall briefly discuss sharing policies. Sharing policies are
characterized by a state space of the form

where c1 and c2 are the weight factors for class 1 and 2, respectively, and c is
called the pool size. The terms are derived from the actual implementation of
these admission policies. It uses a pool that contains c permission units (p.u.'s)
for some c E N. If a customer of type i, i = 1, 2, arrives at the queue, it can
be admitted only if there are at least ci p. u. 's left in the pool. If these p. u. 's are
available, then they are removed from the pool and the customer is admitted;
otherwise he is rejected. After an admitted customer completes his service, the
p.u.'s for this customer are put back into the pool.

PS queues with sharing policies are related to the so-called stochastic knapsack
problem. This model, presented in Ross and Tsang [13] and Ross and Yao [14],
is similar to ours, but the PS queue is replaced by a multiserver station.

We know from Lam [6] and de Waal and van Dijk [17] that for sharing policies
the equilibrium distribution is also given by a product form. This means that
the performance measures can be evaluated quite easily. The main part of the
algorithm is the computation of the normalization constant. Since we have only
two customer types, this does not present any difficulty on modern workstations.

728 Nam! Research Vol. 40 (1993)

For example. an (unusually large) example with pool size 400 and both weight
factors equal to I can be evaluated by complete enumeration within 15 seconds
on a Sun Sparcstation 1. or within >seconds on an SGI Indigo 4000.

In contrast with the partitioning policies. there does not exist monotonicity
Llf the performance measures with respect to the weight factors c1• c2• and the
pool size c. This can be proven explicitly for some simple sharing policies (see
de Waal [15. Chap. 5j). Unfortunately the monotonicity results for stochastic
knapsack problems do not carry over to this PS queue. mainly because the
processor sharing mechanism gives a stronger interaction between the two cus
tomer types than a multiserver discipline does.

7. NUMERICAL RESULTS

In this section we shall discuss the performance of partitioning and sharing
policies from numerical examples. For several parameter settings of a queueing
model the optimal partitions are computed and the robustness of this class of
policies is discussed. For the same set of parameters we compute sharing policies
of which the performance is close to the corresponding optimal partitioning
policies. The robustness of sharing policies is also included in the exposition.

The queueing system we consider has class 2 arrival rate A2 = 0.3. and service
rates µ. 1 = µ,2 = 1.0. The lower bound on the class 2 throughput is set at T = 0.2
and the upper bound on the mean class 1 sojourn time is S = 20. In Table I
the values of the optimal partitions' thresholds are presented for different values
of the class l arrival rate A1• Included in the table are the values of the per
formance measures for these partitions. The third column in the table refers to
the so-called normalized arrival rate A 1• Due to the lower bound T = 0. 2 on
the class 2 throughput. only a fraction 0.8 of the processor's speed is available
to serve class l customers. Since µ, 1 = 1.0, this means that A1 = 0.8 corresponds
to a call request load of 100%:. For this reason the normalized arrival rate is
introduced. and it is defined as A1 = A1/0.8.

From Lemma 4.2 we know that for A1 s 0.65 (A1 s 0.81) the mean sojourn
time of class l will always be smaller than 20, and thus partition (x, x) is feasible
and optimal. For A1 s 0.80 (A1 s 1.00) the optimal class 1 threshold is infinite.

0 l l

j
I

"' r·- ~ j
0

'I
'I
' "' 0 ' i I

"' 0

:e:
"S

"' 0. .c: 0
C>
~

I

~ 1. I
~ u__ --,-----..·,-------,---~ J

e
£ .. - 0

i
N
0

0
0

2 3

normahsed class 1 arnval rate normalised class 1 arrival rate

Figure 1. Throughput of class l for partitioning (a) and sharing (b) policies.

~ C\J

I o
"' " e =
"' ~
~ 0

"

0
ci

0

de Waal: Processor Sharing Queue

3 4 2

normalised class 1 arrival rate normatised class 1 arrival rate

Figure 2. Throughput of class 2 for partitioning (a) and sharing (b) policies.

729

We have not included these policies in the results. since they are uninteresting
when we come to the robustness issue. Because of the infinite theshold. the
queue will no longer be ergodic when At ;:::: 1.00.

In Figures l(a)-3(a) the performance measures for the six partitions of Table
1 are depicted when the class 1 arrival rate is varied while the thresholds are
kept constant. The numbers in the figures correspond to the numbers of the
partitions in Table 1. From Figure l(a) we can conclude that the largest values
of T1 can be obtained by using partition No. I-optimal for A1 = l.0-for all
arrival rates. This observation can be explained immediately from the mono
tonicity properties of Lemma 3.1. Due to the large thresholds of this partition
the bounds on T2 andS 1 are violated for large A1• however. Conversely, partition
No. 6 that is optimal for At = 1.5 satisfies the constraints for all values of
A1 E [0.0, 4.0] but gives for A1 = 1.0 a class l throughput that is about 7% less
than the optimal value at that load. If one considers this loss to be too large,
then clearly partitioning policies are not robust.

Next we discuss the performance of sharing policies. We have considered the
PS queueing model for the same parameter settings as the partitioning policies.

0

"'

~

~
:il

c:
5
0

g 0 .,.
c: .,
" E -
~

0

"' u

,,--------·----- --__ y~c. --~- -·~

0
.--.------ ... _ --r------------...,..-

2

normahsed class 1 amval rate normahsed class 1 amval rate

Figure 3. Mean sojourn time of class l for partitioning (a) and sharing (b) policies.

730 Nam/ Research Logi.vtics, Vol. 40 (1993)

Table l. Optimal partitioning policies.

No. A1 A1 A1yr• M~l'I T, T~ Si

lUiO l .UO 32 5 ll.788 (J.::!() l 19. 7
2 0.85 I .Oh 23 5 0.792 0.202 18.8
3 0.90 1.13 20 5 0.794 0.203 uu
4 1.00 1.25 18 5 0.798 0.201 18.2
5 1.20 1.50 lo 5 0.797 0.203 17.7
h 1.50 1.88 15 5 ll.796 ll.204 17.5

From Section 6 we know that sharing policies do not exhibit monotonicity, that
can be used to search for optimal policies. The performance measures, however,
can be computed quite efficiently. thus allowing an "'interactive" search for
satisfying policies. i.e .. policies of which the performance is close to the optimal
partitioning policies. In the examples we found that the following rules can be
applied in the search for a satisfying sharing policy if A1 2:: 1.0. First we have to
search for the right ratio of the weight factors to get the throughputs T1 and T~
close to 0.8 and 0.2. respectively. Having found the right ratio, we then have
to vary the pool size c until 5 1 is close to 20. In most cases we were able to find
sharing policies of which the performance was close to that of partitioning policies
(see Table 2). From this table we can conclude that when A1 increases, then the
ratio of c1 and c~ has to shift to give class 2 a preference over class 1 (compare
policies No. I and No. 6).

Analogously to the investigation on partitioning policies we have examined
the robustness of sharing policies. The results of these computations are shown
in Figures l(b)-3(b). From these figures we can draw the same conclusions as
for the partitioning policies. viz., the policy that is optimal for A1 = 1.0 violates
the constraints when the arrival intensity increases. In this case the sharing policy
that is optimal for A1 = 1.5 is also not feasible for A1 = 4.0. The loss of class
I throughput at A1 = 1.00 of sharing policy No. 6 compared to No. I is 9C:i, so
sharing policies are not robust either. For some sharing policies the class 2
throughput even decreases to zero when the load becomes high. This is due to
the triangular form of the state space. When the load of type l is high. the
equilibrium distribution will have almost all of its mass in a state with a zero
class 2 length.

For both classes of admission policies we conjecture that the performance
under varying loads can be improved by an adaptive control scheme. There are
two approaches to construct adaptive partitioning or sharing policies. In the first

Table 2. Satisfying sharing policies.

No. A1 A1 C1 c~ c Ti T2 s,
0.80 1.00 1 15 80 0.781 0.200 15.2

2 0.85 1.06 1 6 50 0.795 0.200 19.8
3 0.90 1.13 1 3 34 0.793 0.205 19.7
4 1.00 1.25 4 7 105 0.798 0.201 19.3
5 1.20 1.50 12 11 263 0.799 0.201 20.0
6 1.50 J.88 5 3 99 0.797 0.203 19.9

de Waal: Processor Sharing Queue 731

approach we determine the optimal or satisfying policies for a number of values
of A1. In the exchange the value of this parameter is estimated periodically and
the policy is adjusted according to the latest estimate. This type of control is
called certainty equivalence adaptive control.

In the second approach we use one or several system characteristics as indi
cators for the value of A1• As an example one can think of the queue length,
since a large number of customers may indicate that the arrival rate is high. In
this approach the admission policy should be adjusted periodically according to
the actual queue length.

REFERENCES
[l] Cohen, J. W., "The Multiple Phase Service Network with Generalized Processor

Sharing," Acta Informatica. 12. 245-284 (1979).
[2] Foschini, G.J., and Gopinath, B., "Sharing Memory Optimally,"/£££ Transactions

on Communications, COM-31. 352-359 (1983).
[3] Hordijk, A., and Spieksma. F., "Constrained Admission Control to a Queueing

System," Advances in Applied Probability. 21. 409-431 (1989).
[4] Kaufman. J.S., "Blocking in a Shared Resource Environment," IEEE Transactions

on Communications. COM-29. 1474-1481 (1981).
[5] Kelly, F.P., Reversibility and Stochastic Networks, Wiley, New York. 1979.
[6] Lam, S.S., "Queueing Networks with Population Size Constraints." IBM Journal

of Research and Development, 21, 370-378 (1977).
[7] Ma, D.-J ., and Makowski. A.M .. "Optimality Results for a Simple Flow Control

Problem," in Proc. of the 26th Con[. on Decision and Control. IEEE Press. Pis
cataway, NJ, 1987, pp. 1852-1857.

[8] Nain, P., and Ross, K. W., "Optimal Multiplexing of Heterogeneous Traffic with
Hard Constraint," Performance Evaluation Review. 14, 100-108 (1986).

[9] Nain, P .. and Ross, K.W., "Optimal Priority Assignment with Hard Constraint,"
IEEE Transactions on Automatic Control. AC-31. 883-888 (1986).

[10] Reiser, M., and Kobayashi, H., "Queueing Networks with Multiple Closed Chains:
Theory and Computational Algorithms.'' IBM Journal of Research and Develop
ment. 19, 283-294 (1975).

[11] Robertazzi. T.G., and Lazar, A.A., "On the Modeling and Optimal Flow Control
of the Jacksonian Network," Performance Evaluation, 5, 29-43 (1985).

[12] Ross, K. W., "Constrained Markov Decision Processes with Queueing Applica
tions," Ph.D. thesis, Computer, Information and Control Engineering, University
of Michigan, 1985.

[13] Ross. K.W., and Tsang, D.H.K .• "The Stochastic Knapsack Problem,'' IEEE Trans
actions on Communications, 37, 740-747 (1989).

(14] Ross, K.W., and Yao, D.D .. "Monotonicity Properties for the Stochastic Knap
sack," IEEE Transactions on Information Theory. 36, 1173-1179 (1990).

[15] de Waal, P.R., "Overload Control of Telephone Exchanges," Ph.D. thesis, CWI,
Amsterdam, 1990.

(16] de Waal. P.R., and van Dijk. N .M .. "Monotonicity of Performance Measures in a
Processor Sharing Queue." Performance Ernluation, 12(1). 5-16 (1991).

[17] de Waal, P.R .. and van Dijk. N.M .. "Interconnected Networks of Queues with
Randomized Arrival and Departure Blocking.'' Annals of Operations Research. 35.
97-124 (1992).

Manuscript received August 13, 1991
Revised manuscript received January 2, 1993
Accepted February 18. 1993

