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Abstract. In tomography, slight differences between the geometry of the scanner hardware and the
geometric model used in the reconstruction lead to alignment artifacts. To exploit high-resolution
detectors used in many applications of tomography, alignment of the projection data is essential.

Markerless alignment algorithms are the preferred choice over alignment with markers, in case a
fully automatic tomography pipeline is required. Moreover, marker based alignment is often not
feasible or even possible. At the same time, markerless alignment methods often fail in scenarios
where only a small number of projections are available. In this case, the angular separation between
projection images is large and therefore the correlation between them is low. This is a property
that most markerless algorithms rely on. The intermediate reconstruction problem of alignment by
projection matching is highly underdetermined in the limited data case. Therefore, we propose a
projection matching method that incorporates prior knowledge of the ground truth. We focus on re-
constructing binary volumes. A discrete tomography algorithm is employed to generate intermediate
reconstructions. This type of reconstruction algorithm does not rely heavily on correlated projection
images. Our numerical results suggest that alignment using discrete tomography projection match-
ing produces much better results in the limited angle case, when compared to a projection matching
method that employs an algebraic reconstruction method.
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1. Introduction

Tomography deals with the reconstruction of an object based on projections; see Fig. 1. Projection im-
ages are acquired by scanning devices, such as X-ray based medical scanners or transmission electron
microscopes [6, 15]. For high resolution microtomography or nanoscale imaging, the stability of the
scanner hardware is a limiting factor in the reconstruction quality [16]. Motion of the object or lim-
ited accuracy of the mechanics leads to unaligned projection images that produce alignment artifacts in
the reconstruction. Algorithms for aligning the projection images are essential to fully exploit modern
detectors with high pixel density.

In electron tomography, the projection images are created using a beam of electrons. The instability
of the sample holder in the electron microscope and technical limitations can lead to severe distortions
in the geometry. Especially in the position of the object [12].

Another area in which alignment is important is in a synchrotron setup. A synchrotron produces
monochromatic X-rays using a particle accelerator. This results in high resolution projection images
that do not suffer from beam hardening. However, the instruments used in the projection acquisition are
often not completely aligned before starting the experiment, resulting in the need for post-acquisition
alignment. Also, during in-situ experiments it is challenging to keep the scanner setup in perfect align-
ment [25].

Current alignment methods are based on tracking of fixated markers, or are purely data-driven using
a (markerless) projection dataset of the object [7, 9, 11]. The latter markerless methods are often used
in applications at nanoscales, or other domains where using markers is not possible or not feasible.
In many cases, a variant of cross-correlation techniques is employed. The cross-correlation between
consecutive images with low angular separation can be exploited to estimate in-plane transformations of
the projection images. In projection matching methods, an intermediate reconstruction is formed. By
generating forward projections of the reconstructions and comparing them with the observed projections,
it is possible to refine the alignment [22]. However, to obtain a reasonably accurate reconstruction, a
relatively large number of projection images is required.

In recent years, a substantial number of publications have appeared about image reconstruction from
highly limited data, in the fields of discrete tomography (DT) and compressive sensing (CS) [1, 3, 8, 23].
In discrete tomography, the unknown object is known to consist of just a few materials. Therefore, the
number of grey values corresponding to these materials is small and possibly known in advance. This
information can be used as prior knowledge in the reconstruction algorithm, to limit the solution space
and yield more accurate reconstructions. In compressive sensing, sparseness of the total variation of the
object (i.e. the `1 norm of the gradient image) can be exploited to reconstruct the object from a few
projection images.

In this paper, we focus on DT, but the same concepts can be applied to CS techniques as well. To
apply discrete tomography effectively, an aligned dataset is needed, as well as a good estimation of the
grey levels. Methods have been proposed in the literature for grey level estimation [2], but for alignment,
using markers is the only option. All of the markerless methods require a substantial number of projection
images to perform well:

• for methods that exploit similarity between projections, the angular gap cannot be too large;

• for projection matching, to generate a decent reconstruction, enough projections should be avail-
able.
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Figure 1: Acquisition of projection images from several angles. This figure shows the object with un-
known interior and three of its projection images.

In this paper, we propose the Discrete Tomography Projection Matching (DTPM) method. DTPM
incorporates a discrete tomography reconstruction algorithm in the projection matching alignment. We
demonstrate with simulation experiments, that using this prior knowledge in the alignment phase, a
substantially better alignment can be obtained. In comparison to standard projection matching methods,
the DTPM alignment results in more accurate reconstructions.

The structure of this paper is as follows: in Section 2 the acquisition geometry for parallel beam to-
mography is described in detail. Here we introduce the geometrical parameters that are estimated by our
alignment algorithm. We also give a formal, mathematical introduction to tomographic reconstruction.
We show how the geometric parameters are included in the reconstruction and we define alignment by
projection matching. A short description of discrete tomography is presented as well. In Section 3 we
introduce our proposed DTPM alignment method. We show how discrete tomography is incorporated in
the projection matching method. In Section 4 we describe a series of simulation experiments that were
performed, also on noisy data, and the results are discussed. In Section 5 we discuss considerations that
should be taken into account when applying our algorithm on data from real experiments. Finally, we
conclude this paper in Section 6.

2. Method and Implementation

In this section we will explain the geometrical parameters that determine the projection geometry. We
focus on the parallel beam geometry, illustrated in Fig. 2, but the method can be extended to other
geometries as well. Furthermore, the mathematical background and algorithm details are given for the
alignment method that estimates these parameters.
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2.1. Geometrical Parameters

A typical setup for projection acquisition in tomography is illustrated in Fig. 2. We assume that the
radiation source emits parallel beams that are perpendicular to the detector plane. The object is positioned
at the origin of the x-y-z coordinate system and the z-axis indicates the rotation axis. The projection
angle θ gives the rotation of the object around the z-axis. Note that rotation of the source and detector
around the object is equivalent to rotation of the object itself (except for the sign). In our alignment
algorithm, we do not align the projection angle θ, because we want to consider the same parameters that
are typically used in image registration techniques.
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Figure 2: Overview of the geometrical parameters describing the geometry of the projection acquisition.
The object in the middle is projected onto the detector on the right. The parallel rays are perpendicular
to the detector.

To model shift and rotation in the projection domain (i.e. in the plane of the detector, both of the
object as well as the detector itself) we define a second coordinate system x′, y′, z′ that initially is aligned
with the x, y, z coordinate system. The origin of the x′, y′, z′ coordinates indicates the center of the
detector. For the projection angle θ = 0, the horizontal axis of the detector is aligned with the x′-
axis and its vertical axis with the z′-axis. An in-plane shift of the detector (or of the object) can then
be modeled by a detector shift of (χ, 0, ζ) in the x′, y′, z′ system. Note that the projection images are
spanned in the x′-z′-plane. Therefore, the shift can be considered as a 2D vector in the x′-z′-plane. Since
we consider a parallel beam geometry, object motion in the y′-direction does not change projections.

To model in-plane rotation of the detector or object, we introduce the parameter φ. The detector is
rotated around the y′-axis over an angle φ. The coordinate system of the detector and that of the object
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are then related by the following coordinate transformations:

x′ = (x+ χ) cosφ+ (z + ζ) sinφ,

y′ = y,

z′ = −(x+ χ) sinφ+ (z + ζ) cosφ,

(1)

So the coordinates are coupled by a translation and rotation operator.
Four parameters are sufficient to define the geometry of the acquisition of one projection image. In a

tomography scanner, projection images are recorded at multiple angles,

θ1, θ2, . . . , θK ∈ V ⊂ [0, 2π). (2)

In general, most datasets contain projection images with corresponding projection angles in the range
V = [0, π). For each projection image we have an in-plane shift,

(χ1, ζ1), (χ2, ζ2), . . . , (χK , ζK), (3)

and an in-plane rotation,
φ1, φ2, . . . , φK . (4)

In markerless alignment methods based on image registration techniques, it is very common to estimate
the parametersχ, ζ andφ, since these parameters act in the plane of the detector. For this reason, we also
consider the parameters χ, ζ and φ in our alignment method and do not estimate the other parameters.
We note that the approach presented here can be extended to include other alignment parameters as well.

In the case of a perfectly aligned scanner setup that matches our theoretic model of the geometry,
we would have χk = ζk = φk ≡ 0 and the projection angles are known exactly. In reality, there is a
shift in the order of 1-10 detector pixels and an in-plane rotation of several degrees. To some extent, the
projection angles are known with limited accuracy.

These perturbations in the geometry are mainly caused by

• Calibration errors - If the rotation axis and the center of the detector are not aligned, a structural
shift or in-plane rotation is introduced. This can be prevented by calibrating the hardware precisely.
Calibrating, however, is a time consuming task and difficult if the pixel size of the detector is very
small.

• Mechanical inaccuracies - The limited accuracy of the mechanics, such as the goniometer (the
motor that selects the projection angle), is another source of misalignment.

• Random motion - Since the object is not completely fixed, some motion may occur when the
goniometer rotates the object to the next projection angle. Also, the object might be moving while
scanning, for example if a microscopy sample drifts within the sample holder.

For common reconstruction algorithms, it is assumed that no perturbations in the geometry are
present and the projection angles θ̃i are known exactly. The geometry that they impose is given by
the set of parameters:

χi = 0

ζi = 0

φi = 0

θi = θ̃i

 i = 1, . . . ,K. (5)
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In reality, small perturbations are common even in the projection angles. Therefore, the geometry of the
reconstruction method needs to be adjusted, to match the true geometry of the projection acquisition. For
this purpose we need to introduce a mathematical framework that allows us to incorporate the geometry
in the reconstruction. In the next section, we introduce this mathematical framework and discuss how
we can incorporate the alignment in the reconstruction method.

2.2. Mathematical Formulation

The object can be related to its projections in a continuous manner by means of the Radon transform [18].
To solve the tomographic reconstruction problem, we define a discrete model of the Radon transform.
The object is defined on a grid of unit cubes called voxels. Each voxel is assumed to have a constant
grey value xj . These are stored as a vector x ∈ RN . The grey value is proportional to the attenuation
coefficient of the corresponding material. The projection domain, consisting of a series of projection
images, is discretized into a series of pixel grids. A detector value pi is modeled as a weighted sum (a
single line projection) of the object grey values

pi :=

N∑
j=1

wijxj . (6)

The weightwij models the attenuation of the source ray i caused by the material within voxel j. Different
weight models exist that approximate the physical interaction of the radiation source with the object. In
Figure 3, as an example the strip model is illustrated.

Figure 3: Discretization of the forward projection in three dimensions. The projection pi is a weighted
sum of the grey values. The weight wij of voxel j is determined by the intersection volume of ray i and
the voxel. This is the so-called strip model. The ray is indicated in yellow.

We can now describe the relation between the measurements p and the unknown object x by a system
of linear equations

Wx = p. (7)

The projection matrix W has dimensions M ×N , the line projections p ∈ RM and the object x ∈ RN
are stored as column vectors. The number of projection images is K and the number of detector pixels
is D, so the number of rows inW is given by M = KD.
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The weights wij are not only determined by the ray width or voxel size, but they also depend on the
geometry. This can be seen in Figure 3. Hence, by writing the geometrical parameters as vectors,

θ = (θ1, . . . , θK)T ,

χ = (χ1, . . . , χK)T ,

ζ = (ζ1, . . . , ζK)T ,

φ = (φ1, . . . , φK)T ,

the dependency of the projection operator on the geometry is posed as a nonlinear equation system

W (θ,χ, ζ,φ)x = p. (8)

In practice, it is not straightforward to use a closed-form expression for the weights wij as function of
the geometrical parameters. They are generated on the fly based on the geometrical parameters by means
of a ray tracing type algorithm. More details of this operation are discussed in Section 3.

If the unknown object can be represented exactly on a voxel grid, the system is consistent if the
geometrical parameters are perfectly aligned and when the projection images do not contain noise. This
enables us to formulate an alignment method as an algorithm for minimizing the inconsistency of Eq.
(8):

minimize
x,θ,χ,ζ,φ

1

2
‖W (θ,χ, ζ,φ)x− p‖2. (9)

The factor 1
2 is introduced to avoid a factor two in the gradient of this cost function and simplify the

notation. There are many approaches to solve this optimization problem. Minimization with respect to
x is a linear optimization problem, which is highly underdetermined. The dependency on the projection
angles θ makes Eq. (9) also a nonlinear problem. In addition to the large scale of the data, it is a very
difficult optimization problem. However, by using the right approach, it is typically possible to solve this
problem accurately. In the next section we will discuss in detail the approach of projection matching.

2.3. Projection Matching

In this section we will explain the projection matching method used for the alignment.
Minimizing the projection distance defined in Eq. (9) can be done in several ways. The most im-

portant goal is to find an accurate reconstruction x. Without an accurate geometrical parameter set, this
is not possible. Moreover, to estimate the geometrical parameters, a reasonable reconstruction should
be available. It seems that this problem can only be solved effectively by considering the full optimiza-
tion problem Eq. (9) and estimate x and the geometrical parameters simultaneously. This approach
has been proposed in [5, 26]. Since the inverse problem in Eq. (8) is heavily underdetermined (e.g.,
N = 512× 512× 512 and M = 10× 512× 512), ill-posed and nonlinear, this is a difficult task.

As an alternative approach, we can alternate between reconstruction and alignment. In this case, we
treat both problems individually. During the reconstruction, we assume that the geometry is known, and
during alignment, the reconstruction is fixed,

Reconstruction : minimize
x

1

2
‖W (θ,χ, ζ,φ)x− p‖2, (10a)

Alignment : minimize
θ,χ,ζ,φ

1

2
‖W (θ,χ, ζ,φ)x− p‖2. (10b)
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Some algebraic reconstruction methods specifically solve Eq. (10a) in a certain norm. An example is
the Simultaneous Iterative Reconstruction Technique (SIRT) [24]. Therefore, Eq. (10a) can be solved
by employing a suitable reconstruction algorithm. In the second step, generated projections from the
reconstruction using the forward model in Eq. (8), are matched to the observed projections. This sub-
problem only has a solution when the difference between the ground truth and reconstruction is in the null
space of the projection operatorW , which is normally not the case. Nevertheless, given a reconstruction
containing some details or crude outlines of the object, it may be possible to improve the alignment
parameters. The resulting family of alignment methods is termed projection matching. Examples of
these methods are discussed in [12, 22]. All of these algorithms use an intermediate reconstruction step
and afterwards apply a form of alignment that is often based on image registration of projection images
and forward projections of the reconstruction. The basic structure of these methods is illustrated in a
flowchart in Fig. 4. In the experiment and results section, we compare our method with a standard
projection matching algorithm that incorporates SIRT as the reconstruction method. We will refer to this
method as PM-SIRT.

Aligned parameters

yes

no
Stop

criterion
met?

Parameter
optimization

Recon-
structionInitial

guess
parameters

Figure 4: A flowchart of the projection matching algorithm that estimates the geometrical parameters.

2.4. Discrete Tomography

Many objects that are scanned in tomography consist of just a few materials. Each material has a cor-
responding, uniform grey value in the reconstruction. For example, when scanning bones (ex vivo), the
reconstruction has two grey values, one for the bone and one for the background (assuming that the bone
is approximately homogeneous). In this case, we would like to reconstruct a binary volume. The dis-
crete nature of the grey values can be exploited in the reconstruction. Instead of solving Eq. (9) over a
continuous domain, we can limit the domain of x to the set of grey values that are known in advance.
Let R = {ρ1, . . . , ρl} be the set of grey values in the ground truth image. The reconstruction problem
that is considered in discrete tomography is posed as

minimize
x∈{ρ1,...,ρl}N

‖W (θ,χ, ζ,φ)x− p‖2 (11)

In the experiment section, we consider projection datasets from an object with few grey values in
the reconstruction (in this case two, these objects are called binary volumes). This allows us to use
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reconstruction algorithms for discrete tomography to approximately solve Eq. (11). Possible candidates
for the reconstruction algorithm are described in [3, 4, 23].

3. Projection Matching with Discrete Tomography

To our knowledge, employing a discrete tomography prior in projection matching has never been pro-
posed before. As discussed previously, all common markerless alignment methods are not as accurate
when the number of projection images is small. By applying a discrete tomography reconstruction algo-
rithm we can introduce prior knowledge in a projection matching method, to alleviate this limitation.

Essentially, the reconstruction phase Eq. (10a) in the projection matching algorithm is performed by a
discrete tomography reconstruction algorithm that solves Eq. (11). We employ the binary reconstruction
algorithm proposed by Schüle et al., from now on referred to as DC [23]. This algorithm solves Eq.
(10a) augmented with two priors using D.C. programming:

minimize
x∈[0,1]N

1

2
‖Wx− p‖2 + αxTLx+

1

2
µ〈x, e− x〉, 0 < µ ∈ R. (12)

Here e := (1, . . . , 1). The middle term of Eq. (12) is a smoothness prior. The final term steers the
solution to a binary volume. The parameters α and µ express weights to these terms.

From just a few projection images it is possible to make a perfect reconstruction, under some smooth-
ness conditions on the ground truth [23]. It has not been investigated how well this algorithm performs
in case of misaligned data. However, our numerical results suggest that the reconstructions in the early
stages of the alignment algorithm are good enough for achieving convergence in the parameter estimation
(10b).

The DT prior that is controlled by the parameter µ gradually forces the reconstruction towards a
binary solution. That is, in the implementation µ is gradually increased while the change in the data
fidelity term becomes smaller. The final DT reconstruction is approximately binary, but simply rounding
by thresholding yields a true binary solution. This allows also the use of other DT reconstruction meth-
ods, such as the DART algorithm which also produces a discrete solution [3]. The reason we chose for
the DC algorithm by Schulle et al. is that DART is not as robust in case the projections are very noisy.

The alignment of the projection images in the second sub-problem (10b) is solved by employing
Levenberg-Marquardt. This method is a gradient-based trust region method [19]. The algorithm com-
putes a sequence {yk} of alignment parameters,

yk = (χk, ζk,φk)
T , k = 1, 2, . . .

that yield a decreasing cost function value (10b). The alignment parameters are updated by a descent
direction ηk,

yk+1 = yk + ηk (13)

where the descent direction is found by solving the following equation:(
JTk Jk + λkD

2
)
ηk = −JTk rk. (14)

The residual rk := W (θ,χk, ζk,φk)xk−p has Jacobian Jk := ∇ykrk. The descent direction is found
by minimizing a second order Taylor approximation of the cost function represented by Eq. (14). The
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parameter λk controls the step size of the weighted descent direction, i.e., it limits ‖Dηk‖. The scaling
(diagonal) matrix D is necessary to incorporate the different scales of the geometrical parameters. For
example, shifts are in the order of voxels, while the in-plane rotation is in radians and is therefore about
two orders of magnitude smaller. In our approach we selected the scalings manually. The scales of shifts
(χ, ζ) are unchanged, i.e. dii = 1 for corresponding scales. The rotations (φ) are scaled in units of
radians, i.e. dii ≈ π/180. For further details of the Levenberg-Marquardt method we refer the reader to
[14, 17].

As noted previously, the projection matrix W is generated on-the-fly. Therefore, the matrix is never
fully formed in memory, which enables reconstruction of large datasets. Storing a full matrix is not
feasible for many practical applications. The details of the ray tracing method are as follows: for each
projection angle, the ray paths incident to each detector pixel are traced through the volume and the
weights are measured based on an interpolation method by Joseph [13]. The direction of the rays, and
therefore the voxels that are intersected are determined by the alignment parameters in Eq. (8). Since
we take this approach for computing a projection, and because representing this matrix in closed form is
not practical, we do not use an analytic expression for the Jacobian matrix. Instead, we employ a central
finite difference approximation for gradients:

∇χir ≈
W (θ,χ+ hêi, ζ,φ)x−W (θ,χ− hêi, ζ,φ)x

2h
, i = 1, . . . ,K (15)

where êi is the ith basis vector. The gradients of the other parameters are computed likewise. The co-
efficients ofW are only piecewise continuously differentiable with respect to the alignment parameters.
This is due to discretization of the reconstruction volume. However, the experimental results in Section
4 suggest that the finite difference approach is effective and is not hampered by the fact that W is not
differentiable in every point.

The step size of the finite difference method h is selected automatically, following the same proce-
dure as proposed in [5]. Here we found that the step size is important for the accuracy of the gradient. If it
is too large, the approximation in Eq. (15) is very poor. If the step size is too small, discretization effects
and limited precision distort the measurement of the gradient. These effects are visible at fine scales in
the cost function as erratic oscillations. The method we employed in [5] compares the cost function in
Eq. (10b) to a spline fitted to sample points of the cost function. More sample points are compared to the
spline and the relative fit yields a measure for the smoothness of the cost function. A step size h deter-
mines the distance between sample points. The smallest step size is selected for which the cost function
behaves relatively smooth, to make the gradient more robust against these discretization effects. The
selected step size behaves like a constant and does not change much in our pilot experiments. Therefore,
it is computed once after the initial reconstruction and is fixed during the rest of the computations. This
improves the performance of the method, since computing the step size is not cheap.

Since each parameter affects only detector values at a single projection angle, the Jacobian has the
following sparse structure

J :=


gχ1 gζ1 gφ1

gχ2 gζ2 gφ2
. . . . . . . . .

gχK gζK gφK

 (16)
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with gχ1 the numerical gradient of r with respect to χ1. Due to the independence of the parameters
between different projection images, these finite differences can be computed very efficiently. It costs
only two forward projections for each parameter:

gχ1
...
gχK

 := (W (θ,χ+ he, ζ,φ)x−W (θ,χ− he, ζ,φ)x)/(2h)

with e := (1, . . . , 1)T .
The full algorithm is listed in pseudo code in Algorithm 1. The Jacobian is needed to solve Eq. (14).

We employ the linear least squares solver LSMR to solve this equation [10]. Note that the Jacobian is
generated by computing Eq. (16). In the case we need to multiply the Jacobian with a vector, such as
in LSMR, it can be efficiently computed by inner products. Since the Jacobian is constant in LSMR,
the descent direction is found efficiently, even though we need to solve a system of equation. When the
descent direction ηk is found, the value ρ is computed. The numerator represents the decrease in the cost
function Eq. (10b). The denominator is the decrease in the quadratic model of the cost function based
on a second order Taylor approximation:

1

2
‖r(y + η)‖2 ' L(η) :=

1

2
r(y)Tr(y) + ηTJTr +

1

2
ηTJTJη. (17)

So, if ρ is strictly positive, we have found a descent direction. If, in addition, the fraction ρ is close
to 1 the quadratic model is in good correspondence with the cost function. In that case, the damping
parameter λ is decreased, such that a larger step is taken in the next iteration. Note that this parameter
limits the `2 norm of the descent direction. Therefore, the step size is increased only if the quadratic
model is accurate. Otherwise the step size is decreased.

4. Experiments and Results

In this section we discuss the results of a series of simulation experiments that have been performed to
evaluate the capabilities of the DTPM algorithm, and compare it to projection matching without the use of
prior knowledge. Based on a binary volume, we generated projection data and introduced misalignment
in the geometry. From this data we can compare the accuracy of the standard projection matching
using SIRT (PM-SIRT) as a reconstruction algorithm, with DTPM. Both algorithms are also tested for
robustness against noise in the projection data.

The forward model in Eq. (7) can be used to generate projection data from a given volume x ∈
RN . For creating forward and back projections as well as the SIRT and DC reconstruction algorithms
the ASTRA toolbox was used [20, 21]. MATLAB was used as a scripting language that accesses the
underlying GPU code through the C++ mex interface. The hardware used for the simulations was a
workstation with Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz and a Geforce GTX 570 GPU.

The phantom we consider is depicted in Figure 5. It consists of the union and differences of several
convex shapes. All objects are hollow, except for the cube, and the ellipsoid encloses a solid sphere.
These simple shapes allow reconstructions from just a few projection images. In MATLAB, we generated
the phantom on a 64× 64× 64 voxel grid. The middle slice of the object is shown in Fig. 8a.
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Algorithm 1 DTPM

Input: Projection data p, initial geometry ȳ0 = (χ0, ζ0, φ0)
T

Output: A binary reconstruction ximax and aligned geometry ȳimax

LetDC[y](p) denote the operator that produces a binary DC reconstruction operating on p, for a given
geometry y.
The parameter ε controls the convergence criterion, that monitors the relative change in the parameters.

for i = 0, . . . , imax do

reconstruction phase
xi = DC[ȳi](p)

alignment phase, using Levenberg-Marquardt
λ = 5
ν = 2
y0 = ȳi
for k = 0, . . . , kmax do
rk := W (yk)xi − p
compute Jk(xi)
Solve

(
JTk Jk + λD2

)
ηk = −JTk rk

if ‖ηk‖ ≤ ε(‖yk‖+ ε) then
convergence
k = kmax

else
yk+1 = yk + ηk
ρ = (‖rk‖2 − ‖rk+1‖2)/(L(0)− L(ηk))
if ρ > 0 then

λ← λmax{13 , 1− (2ρ− 1)3}
ν = 2

else
λ← λν
ν ← 2ν
yk+1 = yk

end if
end if

end for
ȳi+1 = ykmax

end for
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(a) Front view (b) Top view

Figure 5: Binary phantom consisting of an ellipsoid, a cone and a cube. A plane is shown for more
perspective and improved visibility. The phantom can be enclosed in a cube consisting of 2× 2× 2 grid
cells (as seen from the top view).

4.1. Experiment I - the Effect of Discrete Tomography

In the first experiment we focus on the effects of DT reconstruction. Therefore we look at a perfectly
aligned dataset and do not consider alignment.

The strength of the DC algorithm is in its ability to accurately reconstruct a dataset from just a few
projections. It is not clear for this phantom, how many projection angles are necessary to create an
accurate reconstruction. Therefore, we compare SIRT and DC reconstructions for a varying number of
projection angles. We generated projection data for 50 angles. A subset of these projection images were
used to create a reconstruction.
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Figure 6: Number of incorrect voxels, in comparison with the ground truth, for a varying number of
projection angles.

Figure 6 shows a plot of the number of incorrect voxels, called the voxel error, as a function of the
number of projection angles. The number of projection angles that were considered are: 3 to 10, 20, 25,
30, 40 and 50. The smoothness parameter α = 0.08 for DC was chosen empirically.

As expected, DC outperforms SIRT substantially in the limited angle case. However, this difference
disappears if many projection images are used. Therefore we focus our simulations on the limited angle
case (less than 10 projection angles).
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4.2. Experiment II - Aligning Projection Data

In the second experiment, perturbations were applied to the projection geometry used to simulate the
projection images. From the parameters in section 2, we have included the in-plane shift (χ, ζ) and
in-plane rotation φ. Because these parameters operate in the plane of the detector, the alignment phase
(10b) can be seen as an image registration problem, in which the observed projection image acts as the
reference image.

An in-plane detector shift of maximum ±10 detector pixels, both in y- and z-directions was simu-
lated. The in-plane rotation is at most ±15 degrees. These perturbations were generated randomly with
uniform distribution. The misaligned projection data was used as input for the alignment software.
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(c) in-plane rotation φ
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Figure 7: Alignment results for varying numbers of projection angles. The error measure is the absolute
error averaged over the number of projection angles: ‖χ − χ∗‖/K where χ∗ is the true shift. Similar
measures are used for the other parameters. (d) A plot of the voxel error reveals that the DTPM alignment
produces perfect reconstructions, if the number of angles is large enough.

In Fig. 7a-7c, the final alignment error for the three parameters is shown for a varying number of
projection angles. The errors are averaged over all projection angles, so they represent the mean error
per projection image. With a maximum misalignment of 10 voxels (in the object position), the initial
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average error should be close to 5. While the initial average error for the in-plane rotation will be
around 7.5 degrees. The performance of PM-SIRT is unsatisfying and improves only moderately when
the number of angles is increased. In case of shifts, the parameters are found with an accuracy of 1-2
detector pixels. Such errors still produce smearing in the reconstruction. The DTPM algorithm using
DC also fails with 3 − 5 projection angles. However, for 8 projection images, the average error in the
shift is in the order of 10−4, so sub-pixel accuracy is achieved. The voxel error in Fig. 7d indicates that
this kind of accuracy in the alignment is sufficient, since the corresponding voxel error is close to zero.
Hence, the DC approach seems suitable in the limited angle case and achieves a higher accuracy overall.

For a qualitative comparison, the middle slices of the phantom and reconstructions are shown in
Fig. 8. The reconstructions are computed from eight projection images. From these results it is clear that
the alignment error for PM-SIRT is not small enough to eliminate all alignment artifacts. In contrast, the
DTPM alignment produces an almost perfect reconstruction. It is not clear, however, if the difference
in reconstruction quality is due to the alignment. It might be the case that DC creates a more accurate

(a) phantom (b) alignment with PM-SIRT

(c) alignment with DTPM (d) DC with PM-SIRT parameters

Figure 8: Comparison of a reconstructed slice (the middle one) resulting from PM-SIRT and DTPM.
Reconstruction is based on 8 projection images. (d) Shows a DC reconstruction using the geometrical
parameters found by PM-SIRT. This shows that the quality is not due to the final reconstruction using
DC, but due to the alignment.
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final reconstruction, while the alignment parameters are comparable. To exclude this possibility we
have also created a DC reconstruction using the alignment parameters found by PM-SIRT, as shown in
Figure 8d. This DC reconstruction still contains artifacts in the surface of the objects. This indicates
that the intermediate DC reconstructions yield a better alignment, and it is not just the final discrete
tomography reconstruction that accounts for the differences in quality.

4.3. Experiment III - Aligning Noisy Projection Data

In this experiment we test the robustness against noise of the DTPM algorithm, to determine if the
discrete tomography prior still works well if the projection data contains noise.

We focus on reconstructing from eight projection images. From the previous experiment we found
that this number of angles should be enough for accurate alignment. We applied Poisson noise to the
projection data. The amount of noise is indicated by the simulated photon count for the projection data.
A lower photon count corresponds to a higher noise level. In this particular case, we vary the noise level
to match a simulated photon count from 103 to 5 · 106. These can be considered moderate to limited
noise levels.
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(d) voxel error

Figure 9: Alignment results for eight projection images perturbed by Poisson noise.
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In Fig. 9, the absolute, averaged alignment errors are shown for the full range of noise levels. These
plots show that alignment is very difficult when the noise levels are high. Clearly, it is not possible to
accurately align a dataset if the noise level crosses a certain threshold. The DTPM alignment seems
decent if the photon count is at least 106 (small amount of noise). In this case, sub-pixel accuracy is
achieved, while in-plane rotation is found with an accuracy of a few degrees. The voxel error in Fig.
9d reveals that the DTPM reconstructions are reasonable for photon counts above 105. A voxel error
of 104 corresponds to approximately 4% incorrect voxels. The PM-SIRT alignment results are much
worse. While the vertical alignment improves with increased photon counts, the horizontal shift and
in-plane rotation do not improve much. Presumably, due to the noise, details are missing in the SIRT
reconstruction, such that the alignment step does not improve the parameters in a direction that will
create a better reconstruction in the next iteration.

To visually assess the quality of the reconstructions, we show the middle slices in Fig. 10a and
Fig. 10.c for PM-SIRT and DTPM respectively, corresponding to a dataset with simulated photon count
of 106. Although the DTPM reconstruction is not as good as in the noiseless case, the contours of the
objects are clearly visible. Moreover, the surfaces of the ellipsoid and cone in the DTPM reconstruction
are fully closed. The cube is showing very minor salt and pepper noise, but its cross-section is clearly
a square. The PM-SIRT reconstruction, in contrast, fails to produce the cone and the surface of the
ellipsoid is far from closed. Again we reconstructed using DC with the alignment parameters from PM-
SIRT. This reconstruction, shown in Fig. 10b, is slightly better, because the cross-section of the cone
is visible. The result again indicates that the alignment parameters found by DTPM are more accurate
and that not the final DC reconstruction causes the qualitative differences. This is confirmed by the final
errors in the alignment parameters shown in Fig. 11. The horizontal and vertical shifts are found with
sub-pixel accuracy by DTPM. The in-plane rotation is accurate up to 1 or 2 degrees. In comparison, the
alignment by PM-SIRT is very poor.

(a) PM-SIRT (b) DC with PM-SIRT parameters (c) DTPM

Figure 10: Alignment result for eight projection images. The Poisson noise has an intensity correspond-
ing to a photon count of 106. The figures show the middle slice of the reconstruction resulting from
the alignment algorithm. In (b) a DC reconstruction is shown, using the aligned parameters found by
PM-SIRT.
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(a) residual vertical shift ζ
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(c) residual in-plane rotation φ

Figure 11: The errors in the alignment parameters after alignment. The dataset used 8 projection images
perturbed by noise, corresponding to a photon count of 106.

4.4. Performance Considerations

In this subsection we compare and discuss the computation times of PM-SIRT and DTPM. As computa-
tion times depend on the implementation and the particular dataset that is considered, we provide a rather
general discussion of the performance. The alignment phase is the same for both methods and therefore
has the same complexity. Differences in computation times for the alignment are caused by differences
in the number of iterations that are required for convergence. However, the largest difference is due to the
reconstruction algorithm that is employed. The method SIRT requires a forward projection and a back
projection in each iteration. This is computed as two matrix vector products, using Eq. (7) (one by W
and one byW T ). The method DC has an inner and outer loop. The outer loop controls the parameter µ,
but does not perform actual computations. The inner loop consists of a forward and back projection and
is therefore comparable to a SIRT iteration. In the experiments, the number of SIRT iterations was kept
constant at 300 iterations. Typically, the number of outer loop iterations of DC is half that number. Each
iteration of the outer loop, the inner loop is run on average 10 times, so in total the DC method performs
about 5 times as many matrix vector products, compared to SIRT.
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Figure 12: Computation times
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For any given dataset it will be difficult to estimate the performance between DC and SIRT, because
we do not know the number of inner or outer loop iterations that will be performed by DC. The number of
iterations of both loops is determined by their convergence criteria. Therefore, we compare performance
results of a single run of the algorithm based on our phantom dataset.

In order to compare computation times, the residual error of both methods are plotted against the
computation time, shown in Fig. 12. The same noisy dataset was used as in experiment III. This result
shows that DTPM is about two times slower compared to PM-SIRT. However, the final residual error
of PM-SIRT is achieved much faster using DTPM. In that sense, DTPM converges faster and is a more
efficient method. Notice that the initial residual error of DTPM is higher than that of PM-SIRT. This
shows that the DC reconstruction method is not as accurate compared to SIRT when the alignment error
is large. Most likely, the discrete tomography prior does not improve the reconstruction if the data
consistency is small, due to misalignment.

5. Discussion

The results from the experiments on simulated projection data show that the DTPM method achieves a
lower error in the reconstruction as well as the alignment parameters, when compared to PM-SIRT. In
the experiments we applied both methods to a dataset using simulated projection data from a phantom
object. In this section we will discuss our expectations and considerations for applying our method to
data from real experiments.

First of all, the results of experiment I show that 8 projections are enough to accurately reconstruct
the binary phantom object. If more than 20 projection are available, the difference between SIRT and
DC reconstructions is only minor. So in order to benefit from using the DTPM alignment method on real
data, the number of projections should be within a certain interval.

When reconstructing from experimental data we cannot determine the voxel error of a reconstruction,
since we do not have a ground truth. Neither can we determine the optimal number of projection angles
using the voxel error. However, it is still possible to estimate a reasonable number of projections. If a
manually aligned dataset could be obtained, we can compare residual errors between SIRT and DC. The
residual error compares simulated projections from the final reconstruction with the measured projection
data. Using this norm, we can create a similar plot as shown in Fig. 6. Although the residual error has no
one-to-one correspondence with the voxel error, it still can give an approximate insight to the real error.

Secondly, the amount of noise should be limited in order to benefit from using the DTPM alignment
method. From Fig. 9 we see that the alignment fails if the signal-to-noise ratio is too low. Acceptable
noise levels can be determined by qualitatively observing the aligned reconstruction. As an alternative,
the total variance of the projection images could be considered as a measure for the amount of noise.

Moreover, it is important to note that alignment errors can be present in the projection data that
cannot be modeled by our set of alignment parameters. Although the alignment parameters we consider
have typically the largest perturbations in an experimental dataset, other errors can be present as well.
For example, we do not consider rotation of the object around the x-axis. A small rotation would result
in vertical “shrinking” of the projection image and certain features would overlap. Such an alignment
error can only be corrected for if the rotation around the x-axis is included in the parameters of DTPM.
However, this parameter is highly correlated with the shift parameters used in DTPM. Likewise, errors
in the rotation angle are difficult to find, due to the high non-linear nature of the parameter. Nevertheless,
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we think that estimating in-plane shifts and rotations will improve the alignment of an experimental
dataset even if other alignment errors exist.

Finally, the choice of the smoothness prior parameter α is important in the DC reconstruction. This
parameter reflects the spatial coherency of solutions. The phantom in Fig. 5 is very smooth indeed.
In reality, this prior might not be as accurate, depending on the nature of the object. Selecting the
parameter α can be achieved in a similar fashion as choosing the number of projections. By minimizing
a measurable error norm, such as the residual error, we can select the value for α that results in the lowest
error.

6. Conclusions

A new method was proposed for alignment of binary tomography datasets from limited data. Prior
knowledge of the binary grey values was included as a regularization method. It was found that the use
of discrete tomography in a projection matching method, results in more accurate intermediate recon-
structions. As a result, the subsequent alignment step by matching projection images is better defined.

For aligning the projection images, a variant of the Levenberg-Marquardt algorithm was used. By
using finite differences for computing derivatives, the method does not require analytic gradients.

From our numerical results for simulated data, we see that the binary tomography algorithm DC
yields much more accurate reconstructions in the case of few projection images (less than 15) [23].
The projection matching method DTPM is able to effectively align datasets from 6 projection images or
more. The alignment combined with SIRT fails to find accurate alignment parameters with few projection
angles. Only for a large number of angles the results are improving.

Qualitatively, the difference between PM-SIRT and DTPM was clear. While DTPM results in almost
perfect reconstructions, for datasets with limited noise, the PM-SIRT reconstructions have many artifacts.
By creating a DC reconstruction combined with geometrical parameters found by PM-SIRT, we showed
that differences in quality in the reconstructions are mainly due to the alignment accuracy.

The results show that employing binary tomography as regularization is an essential step in projection
matching alignment, when only a few projection images are available.
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