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Abstract 

Trompert, R., Local uniform grid refinement and systems of coupled partial differential equations, Applied 
Numerical Mathematics 12 (1993) 331-355. 

In this paper we consider an adaptive grid method based on local uniform grid refinement applied to systems 
of coupled time-dependent PDEs. Local uniform grid refinement means that the PDEs are solved on a series 
of nested, uniform, increasingly finer subgrids which cover only a part of the domain. These subgrids are 
created up to a level of refinement where sufficient spatial accuracy is obtained and their location and shape is 
adjusted after each time step in order to follow the moving steep fronts. When a system of coupled PDEs is 
solved, the behavior of the local and global error associated with each separate PDE can be very different 
from one PDE to another. A refinement strategy based on a global error analysis has been developed which 
takes these differences into account. This refinement strategy aims at the domination of the global space error 
by the space discretization error at the finest subgrid. 

Keywords. Partial differential equations; numerical mathematics; time-dependent problems; adaptive grid 
methods; error analysis. 

1. Introduction 

The local uniform grid refinement method is an adaptive grid method used to solve 
time-dependent partial differential equations (PDEs) with locally steep solutions. For such 
problems, a uniform space grid can be computationally very inefficient, since, to obtain an 
accurate approximation, such a grid would easily have to contain an excessive number of nodes, 
particularly in two and three space dimensions. 

The main feature of local uniform grid refinement is that the PDEs are solved on a series of 
nested, uniform, cartesian, increasingly finer subgrids covering only that part of the domain 
where the spatial error is high. The PDEs are solved on each separate subgrid in a consecutive 
manner, from coarse to fine. The location and size of the subgrids are automatically adjusted at 
discrete times in order to follow the movement of the steep fronts. The generation of subgrids 
is continued until sufficient spatial accuracy is reached. 

So far, local uniform grid refinement methods were proposed in a number of different 
varieties and applied to different kinds of PDEs. Here, we will not attempt to give a complete 
overview of the field. We will only briefly sketch some varieties of the local uniform grid 
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refinement method and provide some references for interested readers. The methods con
tained in [1-4] are applied to hyperbolic PDEs and use explicit time stepping techniques. The 
method proposed by Berger and Oliger in [3] employs subgrids which are rectangles which may 
be skewed with respect to the coordinate axes in order to align with the steep region of the 
solution. Subgrids having the same cell sizes can partially overlap each other in this method. In 
[1], Arney and Flaherty developed a method very similar to the one in [3] except that the 
subgrids here are created by cellular refinement, meaning that the fine grid cells are properly 
nested within coarser grid cells. Hence, these subgrids have a piecewise polygonal shape. 

Local uniform grid refinement is combined with grid movement in [2,4]. In [4], a method 
proposed by Gropp uses subgrids which are rectangles having sides parallel to the coordinate 
axes and which are able to move as a whole with the moving steep fronts. In this method the 
subgrids are also allowed to overlap each other. In [2], Arney and Flaherty added grid 
movement to their method described in [1]. The grid nodes of the coarsest grid are able to 
move and the fine grid movement is induced by the movement of the coarsest grid. Local 
uniform grid refinement methods are also used to solve parabolic and elliptic PDEs in [5,6] and 
involve the implicit solution of systems in equations. The subgrids in [6] are piecewise polygonal 
and those in [5] are rectangles. In both [5,6] domain decomposition is applied to improve the 
performance on parallel computers. 

Our previous work on this type of adaptive grid method is contained in [7-11). The subgrids 
in our method have a piecewise polygonal shape and do not overlap. Our method is a 
static-regridding method which means that no grid movement is applied during a time step. The 
refinement strategy controlling the generation of subgrids in [9] is based on heuristic criteria 
while in [7,8,10,11] it is underlied by a comprehensive error analysis which has resulted in a 
so-called refinement condition. This condition has been designed so that when this condition is 
satisfied during the grid refinement process and the number of subgrids is fixed in time, then 
the spatial accuracy of the solution obtained with the adaptive grid method should be 
comparable to the spatial accuracy obtained using one uniform grid covering the entire spatial 
domain when the cell sizes of this uniform grid are identical to those of the finest subgrid in use 
·n the adaptive grid method. The refinement strategy is designed to fulfill the refinement 
:ondition. Due to the refinement condition a convergence result as if a single uniform grid was 
used could be proved in certain model situations. The error analysis was carried out for the 
local uniform grid refinement method applied to time-dependent PDEs which after spatial 
discretization yield a system of ordinary differential equations (ODEs). However, when a 
system of coupled PDEs is solved, this need not be the case. It is known that the global and 
local error components associated with each separate PDE belonging to such a system can 
behave differently from one PDE to another. This means that, for example, the global error 
corresponding with one PDE can propagate in a different way to future time levels than the 
one associated with another PDE. With respect to the local error, this difference in behavior 
means that the local errors connected with different PDEs do not always behave in the same 
way when the time step size tends to zero. For this reason the refinement strategy has to be 
adapted to this more general class of PDEs. Moreover, in most of our previous work, the 
refinement strategy is aimed at controlling the spatial accuracy or global space error by, 4t 
some sense, controlling the local space error. This strategy performs satisfactorily but can pe 
very restrictive, especially when the number of sub grids is large or the time step size very smal 
In this paper, the error analysis is redone for systems of coupled PDEs. From this, a mo 
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general and much less restrictive refinement strategy is obtained aiming at controlling the 
spatial accuracy by estimating the global space error itself. 

In Section 2 a brief outline will be given of our version of the local uniform grid refinement 
method. Section 3 deals with the mathematical formulation of the method needed for the error 
analysis. The results of the error analysis are given in Section 4. This section also considers the 
influence of a system of coupled PDEs on the behavior of the global and local error. The 
refinement strategy is discussed in Section 5. Three example problems were used to illustrate 
the performance of the method. The results of these tests are given in Section 6. Although the 
example problems involve two space dimensions, the error analysis, refinement condition, and 
refinement strategy apply to any number of space dimensions. The final Section 7 contains the 
summary and concluding remarks. 

2. Outline of the adaptive grid method 

Although its elaboration readily becomes complicated, the idea behind local uniform grid 
refinement is simple. Starting from a coarse grid, finer and finer uniform subgrids are created 
locally in a nested manner in regions where the solution is steep. Here, a set of interconnected 
grid cells, all having the same size, is called a subgrid. A set of subgrids having the same cell 
size is called a grid level or just grid. Hence, a grid level consists of a single subgrid or several 
disjunct non-overlapping subgrids. A new (initial) boundary value problem is solved at each grid 
level in a consecutive order, from coarse to fine using the same time step size for all grid levels. 
This means that the refinement in time is global, i.e. the step size is adapted in time but is the 
same for all grid levels in use. Note that the PDEs are solved on a grid level as a whole, in spite 
of the fact that the grid level can consist of several disjunct subgrids. The required initial values 
for the finer subgrids are defined by interpolation from the coarser subgrid or taken from a 
finer subgrid from the previous time step when available. Internal boundaries, i.e. subgrid 
boundaries lying in the interior of the domain, are treated as Dirichlet boundaries and values 
are also interpolated from the next coarser grid level. Where the boundary of a fine subgrid 
coincides with the boundary of the doinain, the prescribed boundary conditions are used. 
Except for the necessary initial and boundary conditions, all subgrids are independent of each 
other. Therefore, the subgrids are not patched into the coarser grids but are actually overlaying 
them. The generation of subgrids is continued until the spatial phenomena are described 
accurately enough by the finest grid. The fine grid cells are created by bisecting the sides of the 
cells of the next coarser grid; so the refinement is cellular. The subgrids created this way have a 
piecewise polygonal shape. Furthermore, the unknowns are defined at cell vertices, which 
implies that in the region where the coarse grid is overlapped by the fine grid, the coarse grid 
nodes coincide with the fine grid nodes. 

During each time step the following operations are performed: 

(1) Solve the PDEs on the coarsest grid level. 
(2) If the desired accuracy in space or the maximum number of grid levels is reached then go 

to (8). 
(3) Determine a new finer uniform grid level at a forward time. 
(4) Interpolate internal boundary values at forward time. 



J34 /Lorn/ refinement 

values are time. 
(6) new grid level, using the same step length. 
(7) Goto{ 
(8) Assign fine grid values to the corresponding coarser grid points. 

Thus, for t'ach time step the computation starts at the coarse base grid using the most 
accurate solution available, since coarse grid solution values are always replaced by fine grid 
values at coarse grid nodes coinciding with fine grid nodes and all subgrids are kept in storage 
for step continuation. 

3. Mathematical formulation 

A mathematical formulation will be given which is needed for the error analysis of the local 
uniform grid refinement method. The following system of PDEs is considered, together with 
the initial and boundary conditions, defined on a domain n in !R, !R 2, or !R 3 with boundary an 
and sides parallel to the coordinate axes, 

.wa(x, t, u)u 1 = ~1(x, t, u), 

.Wan(X, t, u)u 1 =.9'i,0 (x, t, u), 

u ( x, t 0 ) = u 0 ( x ) , x E n u an . 

t>t0 , xEJ2, 

t > t0 , X E an, 
(3.la) 

(3.lb) 

(3.lc) 

This system of PDEs is assumed to possess a unique solution u(x, t), which is as often 
differentiable as the numerical analysis requires. The matrices sY'n and .W0n are possibly 
singular matrices; 3'n and .9°;1n are functions containing spatial partial differential operators. 
The matrices .w'fl and .w'aa do not contain space or time derivatives of u(x, t). The space 
discretization of (3.1) (method of Jines) yields 

A(t, U)U=F(t, U), t>t0 , (3.2) 

where U(t) is the numerical approximation of u(x, t) on a space grid. If A(t, U) is singular, 
then (3.2) will be a system of differential-algebraic equations (DAEs); (3.2) will be a system of 
ordinary differential equations (ODEs), otherwise. In case we have, for example, Neumann or 
Dirichlet boundary conditions, A( t, U) will possess rows containing only zeros, which implies 
that 0.2) is a DAE system. 

Local uniform grid refinement methods use local subgrids of changing size in time and thus 
generate solution vectors with a variable dimension. This complicates the analysis. In order to 
circumvent this problem, the fine local subgrids are expanded over the whole of nu an. The 
solution to (3.1) is computed only within the original perimeter of the subgrid and interpolated 
from the next coarser subgrid outside this region. This is only done in the mathematical 
formulation of the method to make the error analysis easier. It does not take place in the 
implementation of the method. 

Let flk, l ~ k ~ l, be uniform space grids covering Du an with l denoting the maximum 
number of grid levels needed to advance the solution from t n _ 1 to t n. The grid refinement is 
cellular so n k is obtained from n k - I by bisecting sides of cells of n k - J • Note that nodes of 
J2 k _ 1 coincide with nodes on J2 k. Let S k be the vector space of all grid functions on Dk and let 
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Uk' E sk be the approximation to u(x, tn) at nk. Suppose that (3.2) is defined on nl., then 
using an s-step backward differentiation formula (BDF) for time stepping results in the 
following system of equations, 

(3.3) 

where T = tn - tn_ 1, vkn-t is the history vector collecting values computed at backward time 
points and es, a1' ... , as are coefficients depending on current and previous time step sizes. 

Our formulation of the grid refinement method uses the following matrix operators: 

• the identity matrix Ik: Sk ~ Sk; 
• a diagonal matrix DJ:: Sk ~ Sk, with diagonal entries equal to unity or zero, D? =Ii; 
• the restriction operator R1k: S1 ~ Sk, Ru= I1; 

• the interpolation operator pk-lk: sk-1 ~ sk. 

The matrix DJ: determines whether the solution at a particular grid node is obtained by 
solving (3.1) or by interpolation from .n k- J • The diagonal entries of DJ: associated with this 
node are equal to unity when (3.1) is solved and equal to zero otherwise. The number of the 
diagonal entries associated with each grid node is equal to the number of PDEs. Note that on 
the coarsest grid, system (3.1) is solved on the whole of .Q 1, meaning that D? =Ii. For example, 
the components of the vector DJ:l>J:, where s; is an arbitrary vector in Sk, are nonzero when 
their corresponding nodes lie inside the region where (3.1) is solved, and, if interpolation takes 
place, then these components are zero. With the vector (lk - DJ:MJ: it is just the other way 
around. The injection of fine grid solution values in the coarser grid solution is denoted by the 
operator R Jk and the interpolation by the operator Pk- tk. Since all nodes of n k are also 
contained in fl1, injection takes place at each node of .nk. 

One time step of the grid refinement method consists of I consecutive interpolation and 
solution steps on grids .n k. Those are de.fined by 

(Ik -Dk)Ut = (h-Dk)Pk-tkukn-1, (3.4a) 

1 1 
-D'/.A'k(Ut)U{' = -D'/.A'k(Ut)R1kVin-i +D'/.F:(U//), k = 1,. .. ,/. 
{)ST {)ST 

(3.4b) 

Formula (3.4a) represents the interpolation step and (3.4b) the BDF solution step. The subgrids 
in the local uniform grid refinement method are properly nested. This means that the region of 
the domain covered by that part of grid level k where (3.1) is solved is covered completely by 
its counterpart associated with grid level k - 1. Hence, the set of nodes contained by that part 
of grid level k where interpolation takes place will also belong to the set of nodes where 
interpolation takes place at the grid levels k + 1, k + 2, ... , I. In other words, the solution at 
the part of grid level k where interpolation takes place will be repeatedly interpolated until 
grid level I is reached. Finally, we emphasize that this occurs only in the formulation of the 
method to make the analysis easier. In practice, interpolation only takes place where it is really 
needed. 
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4. Error analysis 

In this section the results of the error analysis are presented. First, the truncation errors of 
the interpolation and the space and time discretization will be introduced. Then, using the 
mathematical formulation (3.4), relations are derived for the local and global error. Finally, we 
give an example of the behavior of the local and global error when a coupled system of PD Es is 
solved. 

4.1. Error relations 

For uJ:, the pointwise restriction to {},k of the exact solution u(x, tn) of (3.1), we have the 
following error relations 

(Ik -Df:)uJ: = (Ik - Df:)Pk-lkuJ:_ 1 + (Ik -DZ)'YJ:, (4.la) 

1 1 
-Df:Ak(uk)uJ: = -Df:A'k(uk)R1kv/- 1 +D'kFk(u'k) +DJ:(af:-Ak(uZ)f3Z), 
8sr 85r 

k=l, ... ,l, (4.lb) 

where v/- 1 =a1u[- 1 + · · · +a5 u[-s and af:, /3Z, and yJ: are the truncation errors of the space 
discretization, the time discretization, and the interpolation, respectively. They are defined by 

af: =Ak(uJ:)(ut)Z-FJ:(uJ:), 

1 
/3f:=(ut)~--[uZ-a 1 uJ:- 1 - ··· -a5 uJ:-s], 

85r 

(4.2a) 

(4.2b) 

( 4.2c) 

vhere (u,)f: is the restriction of ui<x, tn) to Dk. Since the restriction operator R1k involves only 
he replacement of coarse grid values by fine grid values at coinciding nodes after a time step 
ias been performed on all grid levels, no additional errors are introduced here. Therefore, we 

nave uz- 1 = R1ku[- 1• The global error at tn at {},k is defined by 

(4.3) 

Subtracting (3.4) from (4.1) we get 

(Ik -Df:)eZ = (Ik - DZ)Pk-lkek-1 + (Ik - DZ)'YZ, (4.4a) 
1 1 
~DZ[KZ + Wt]ef: = -Df:[ L~e'k + wknR,kft- 1] 
UST 8sr 

k = 1, ... , l, (4.4b) 
where 

+n-1 =a en-1 + ... +a en-s 
Ji 11 sl ' (4.5) 
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(4.6a) 

(4.6b) 

(4.6c) 

(4.6d) 

g = { = 8u'k + (1 - e)u;, 11 = eR1kvr- 1 + (1 - 8)R1kVin-i, ( 4.6e) 

which are obtained by applying the mean value theorem for vector functions. Combining (4.4a) 
and (4.4b) yields a recurrence relation for the global error 

en -rn-rn-1 +xn n + ,1,.n k - kJt kek-1 ~k• k = 1, . .. ,l, 
where 

1 
r; = (Zk)- 1-DJ:WknRtk• 

()ST 

x;: = (z;:r\1k-DJ:)Pk-lk• 

</>'k = (Zk)- 1{DJ:aZ -DJ:A'k(uk)f3Z + (Ik -Dl:)'yl:}, 

ZJ: = Ik -DI:+ DJ:(-1-[wkn + Kk' -L'k] -Mr:). 
()ST 

(4.7) 

( 4.8a) 

( 4.8b) 

(4.8c) 

( 4.8d) 

The vector </>Z is the local level error which is the contribution associated with a single time 
step of grid level k to the global error ez, and Zk' is the integrated Jacobian of the system of 
equations. Using the specific form of Z£', we note that Zk' can be written as Ik - D'k + DJ:ZZ. 
When (ZJ:)- 1 is written as (lk-Dk)(Zk)- 1 +D'k(ZJ:)- 1, it can-by pre-multiplying (Z/;)- 1 

with z;:-very easily be shown that 

(ZZ)- 1 =lk -D'k +DZ(Z!:)- 1, k = 1, ... ,l. (4.9) 

Relation (4.7) is similar to the one obtained in [7,8,10,11] and leads to the following expressions 
for the global and local error: 

e'k=GZft- 1+1/Jf:, n=l,2, ... ; k=l, ... ,l, (4.10) 

where GJ: is the amplification matrix and l/Jk' the local error, which is the contribution 
associated with one time step of k grid levels to the global error eJ:. They are given by 

G~ =I'f' G'k =X!:GZ-1 +rr:, (4.lla) 
k = 2, ... ' l, ( ) 

l/Jf=</>'{, l/Jk'=X!:l/!f:-1+</JZ, 4.llb 
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which result in 

(4.12a) 

k=2, ... ,l. 
(4.12b) 

Now the local level error cf>'k, in (4.8c), can be split up in a spatial part cf>'k,s and a temporal part 
cf>'k.i where cf>'k = <P'k,s + <P'k.i· These parts are given by 

cf>'k s = (Zk'f 1[ DJ:a'k + (Ik -D/:)'yk'], (4.13a) 

(4.13b) 

This yields two distinct relations for the local space error t/J'k.s and the local time error t/Jf:.1. 
With (4.9), (4.llb), and (4.13a), the relations for lf!f:.s read 

DZtflk.s =DZ( Zk)- 1 { Dl:a'k + (Ik - DZ)[ Pk-lklf!!:-1,s + Yk']}, 

(Ik -Dk)i/lk,s = (/k -Dk)[ pk-lkl/Jk-1,s + 'Y/:] · 

(4.14a) 

( 4.14b) 

Here DJ:i/!!:,s denotes the local space error inside the region of grid level k where (3.1) is solved 
and (Ik - DJ:)i/J!:,s the local space error outside this region. In a similar way, the local time error 
can be written as 

DZlf!!:.1 =Di:(Zk)- 1{-Dk'A'k(uk)f3'k + (Ik-Dk)Pk-lktflf:-1.t}, 

(Ik - DZ)i/l!:,t = (lk - Dk)Pk- lklf!k-1,t' 

(4.15a) 

( 4.15b) 

Since the local error can be split up in a spatial and temporal part, the same can be done with 
the global error. Using (4.7)-(4.9) and (4.13) we get similar relations for the global space error 

D;ek,, ~Dk( z; )- 1 (Dk [ B~T W,"Rlkf,~.-I +a; l + (I, - D;)[ P, _ lk e;_ ,,, + Yk I)' 
(4.16a) 

(Jk -Dk)eZ,s = (Ik - DZ)[ Pk-lkeZ-1,s + Yk']}, ( 4.16b) 

and for the global time error 

D;ek,, ~Dk(Zk)- 1 ( Dk[ 8'.7 W,"Rlkf(,- 1 -Ak(uk)llk l +(I, -Dk)P,_"e;_ 1..). 

(4.17a) 

(lk - DJ:)e/:,1 = (Ik - Dk)Pk-tkek-1,1 · ( 4.l 7b) 

When we consider, for example, the global space error given by (4.16), we observe that the 
global space error in the region of grid level k where interpolation takes place (4.16b) is 
determined by the global space error at grid level k - 1 and the interpolation error. The global 
space error in the region of grid level k where (3.1) is solved (4.16a) is determined by the 
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inverse of the Jacobian z;: operating on a vector which consists of a part due to the spatial 
discretization error and the global space error at previous time points, only nonzero inside this 
region, and a part due to the global space error outside this region. 

4.2. Error behavior 

In this section an example will be given of the behavior of the global and local errors. We 
consider a system of two coupled PD Es which is solved on a single grid. Therefore, we will drop 
the subscripts denoting grid levels, k and /, in the remainder of this section. This system of 
PDEs leads to the following system of differential-algebraic equations after spatial discretiza
tion 

(~ (4.18) 

which is written in the form (3.2). The BDF method (3.3) is applied to solve (4.18) and some 
notation will be introduced that is needed for the examination of the global and local errors. 
Relations for the local and global errors are derived, using (4.7) and (4.8). Due to (4.6c), (4.6d), 
and (4.18), we have 

(4.19) 

The matrix DJ: appearing in the error relation (4.7) will be equal to the identity matrix lk in 
this case which implies that the ( lk - DJ:)-terms vanish from (4.7) and (4.8). The matrix zn is 
now given by 

zn = ( e>-~;, -M;, 
-M21 -M22 

( 4.20) 

Furthermore, the matrix R1k will be equal to the identity matrix. Using the notation above, the 
relation (4.7) for the global error is now given by 

(:n = 

1 
-/-Mn e 11 

ST 

-M21 

-1 

-M!J.2 

J 1 (/ O)(fn-l) (an) (/ O)(~nll 
\ OsT 0 0 f~-l + a~ - 0 0 ~~ . 

(4.21) 

The global error en at the current time tn is given by (e), eq)T and the vector r- l in which 
global errors at backward times are collected, by ur- 1, 12-l)T (cf. (4.5)). The vectors e) and 
eq represent the global error belonging to ur and U{ respectively. Now examining (4.21) leads 
to the conclusion that only g- 1 contributes to en. This means that in this case only e) carries 
over to future time points while eq does not. 
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For the local error lf;n we have, according to (4.21): 

( ~~) = 

1 
-/-Mf1 
()Sr 

-M~'i 

-1 

-Mt2 

-Mu 
( 4.22) 

The behavior of the local error for small r is determined by the operator czn)- 1. The behavior 
of this operator when it operates on a vector will be investigated for this case where it is 
assumed that the cell sizes of the space grid remain constant. This operator can be written as 

1 
-1 

(zn)-1 = 
-J-Mt1 -Mf2 ~ ( Y,J Y{; l (}Sr 

-M;1 -M;z Y2~ Y2~ 

When we assume that the diagonal blocks of zn are nonsingular, we obtain 

Y,j ~ [I+ ( e'.r I- MJ, )-' M!2(M;'2f' M2, r ( e'.r I -MJ, )-', 

Y n _ (Mn )-!Mnyn 
21 - - 22 21 11 ' 

Y2~ ~ -[/ + (M;'.,) _, M;',( 8>-MJ,)- 1M,"2 r(MlS', 

Y{~ = (-
1-J - Mf1)-

1 Mt2Y2~· 
{)Sr 

l'his leads to the following approximations for small r, 

Y1~:::::: 8.1.r/, Y2~:::::: -8sr(M22)- 1M21 , 

Yz"2"" -(M2'2)- 1, Yt2:::::: -8srMf2(M2'2f 1, 

from which we obtain the following approximations for the local error components: 

l/J?:::::: 85r/(a?-f3?)- 8.1rMf2(M22 f 1a2, 

!/12:::::: -8sr(M;2)- 1 M;1( a? - /3?) - (Muf 1 a2. 

(4.23) 

(4.24a) 

( 4.24b) 

( 4.24c) 

( 4.24d) 

(4.25) 

(4.26a) 

( 4.26b) 

We see from (4.26) that the first component of the local error l/J? consists of the truncation 
errors of the space and time discretizations multiplied by an operator which behaves like 0( r) 

for r ~ 0, meaning that this component of the local error will vanish in this case. Further we 
see that, unlike !/J?, the component !/J2 does not disappear completely when r ~ 0. 

From this example we conclude that, when a system of coupled PDEs is solved, the local and 
global error components can exhibit a very different behavior. Therefore, a refinement strategy 
of an adaptive grid method based on error estimation will have to take such differences in 
behavior into account. This means that in case of a system of coupled PDEs, distinction must 
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be . made between errors associated with each separate PDE when we want to develop a 
refmement strategy based on error estimations. This will be discussed in the next section. 

5. Refinement strategy 

In [7], PDEs were considered which, upon discretization of the space derivatives, lead to a 
system of explicit ODEs in which the boundary conditions were incorporated. This system of 
ODEs was solved using the implicit Euler method. The idea was to control the spatial accuracy 
of the solution by controlling the local space error. Moreover, in case the number of grid levels 
is constant in time, the local space error at the finest local subgrid should be comparable to the 
local space error on a single uniform grid having the same cell sizes as the finest subgrid. A 
refinement strategy was developed aiming to fulfill the following inequality, which is called the 
refinement condition, 

II ( Zl)- 1(/1 - D/)[ P1-111/JP-i.s + 1/] II""< c II (Z/r 1r D/a/ II oo, c > o, 
where Z/ is defined as 

Z/ = ! 1 - rD/Mt. 

(5.1) 

(5.2) 

The matrices 11 and D/ are defined similarly as in Section 3. The matrix Mt arises after 
discretizing the space derivatives of a time-dependent PDE and is comparable to the matrix 
defined by (4.6c). When ll(Z/)- 1 lloo~1, condition (5.1) results in the following bound for the 
local space error at the finest subgrid: 

(5.3) 

Apart from the constant c, this error bound is similar to the error bound we would get using a 
single uniform grid. This indicates that by satisfying the refinement condition it is possible to 
get more or less the same spatial accuracy as if a single uniform grid was used. Further, it was 
proved that (5.1) holds when the inequality 

c 
m~x ll(Ij-Dp)N}lloo~-1 1 ll(Z/)- 1rD/a/lloo, (5.4) 
2~~/ -

is satisfied while creating finer local uniform subgrids, where 

A.'}= yp + pj-lj( Zt-1 r I rDp_ ,aj_,. (5 .5) 

In [8], a similar refinement condition and error bound were derived based on a general 
Range-Kutta time stepping scheme and, in [11], a refinement condition was derived for elliptic 
PD Es. 

Although the refinement strategy based on fulfilling (5.4) worked satisfactorily in practice, it 
stems from rather conservative estimates of norms and can therefore be restrictive, especially 
when the number of grid levels is large. Further, in order to fulfill (5.4) when r ~ 0, the matrix 
DZ inevitably has to approach the identity matrix Ik. This means that when r is decreased, the 
local subgrids will cover an increasingly larger part of the domain and will in the limit of r = 0 
cover the entire domain. In this respect, (5.4) is also restrictive and one can argue whether it is 
really necessary to let the local subgrids cover a larger part of the domain with decreasing r in 
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order to retain a high spatial accuracy. Finally, from the previous section we have concluded 
that components of the global and local error can exhibit a different behavior. This is due to 
the fact that these different components are associated with different PDEs. The inequalities 
(5.1) and (5.4) and the error bound (5.3) are based on estimates of matrix norms where it is 
assumed that the system of PDEs at hand leads to a system of explicit ODEs after spatial 
discretization. Hence, it is assumed that all local and global error components behave in a 
similar manner. This implies that (5.1) and (5.4) are not sufficiently accurate in case a coupled 
system of general PDEs is solved. This might also be the case with a system of coupled PDEs 
where, upon semi-discretization, one or more PDEs lead to a much stiffer system of ODEs 
than the other ones. For this reason, a new, more general refinement strategy is developed for 
a general system of coupled PDEs. In contrast to most of our previous work, this new strategy 
will be based on controlling the global space error which is less restrictive than (5.1). It should 
satisfy two demands. First, it must make a distinction between vector components associated 
with different PDEs and, second, it must computationally not be too expensive. 

Basically a refinement strategy has to answer two questions. The first one is, when should a 
nei,v finer grid Ieee! be created, and the second one is, which grid cells need to be refined. In order 
to answer these questions we will now introduce some notation. Suppose (3.1) consists of q 
different PDEs in which the boundary conditions are included, i.e. boundary conditions are 
regarded as separate PDEs defined on boundaries only. Note that a single PDE with Neumann 
or Dirichlet boundary conditions can also be regarded this way. 

An arbitrary vectors;: E sk is generically denoted by (8k,1' 8f.z, ... ' s;:)T, where the compo
nent s;:,j is associated with the jth PDE. The matrices Ik, n;:, Pk-lk• and R1k are block 
diagonal and can be written as 

lk = diag(Ik,P lu, ... , Ik,q), 

DJ:= diag( Dk,i, DJ:.2 , ••• , DJ:.q), 

pk-lk = diag(Pk-lk,I• pk-lk,2,. .. , pk-lk,q), 

R1k = diag( R1k,I • R1k.z, ••• , R1k,q). 

(5.6a) 

(5.6b) 

(5.6c) 

(5.6d) 

The matrices Wi', Kf, L'J., Mk', and z; are written as block matrices with blocks Wkn .. , KJ: . ., 
Ln Mn d zn h .. - n . ,I) ,I) k.iJ• k.u• an k.ii' w ere 1,1 - 1,. .. , q. The blocks of Zk are given by 

Zk,;; = lk.i - D;:,; +DZ,; ( (}:r [Wt;;+ Kk,ii - l'k.u] - M;_;;), 

Zti=DL( (}:r[Wtii+KZ.ii-Lk,ij]-Mk'.ii)' i"l=j. 

(5.7) 

This leads to the following relation for the global space error: 

e;:,s,i .t Yk~ii(DJ:.ii[-81 t WtimRtk,mft~s~~ + az.i] 
1=1 sT m=I 

+ ( lkJ - DJ:.1) [ Pk-1k.Jek-1,s.J + Yk,J]), 

i = l, ... ,q, k = l,. .. ,l, (5.8) 
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where Ytu is a block of (Z~)- 1 • We have established that the various components of the global 
and local space errors can behave very differently. Consequently, a criterion like, refine the grid 
when the local space error if!;' or the global space error eZ exceeds some tolerance, is simply too 
crude. Although the operators (Z~)- 1 and W{' determine how the truncation error of the space 
discretization aZ affects the spatial accuracy, one can say that the source of the space error is az. This is certainly true when a single uniform grid is used. Therefore, the following criterion 
can be used. A new grid level k + 1 is created if there exists a component i for which 

11 a 2 ; 11 oo ~ TO L, i = 1,. .. , q, ( 5 . 9) 

holds, where TOL is a user-defined tolerance. It is assumed here that the PDE problem at 
hand is properly scaled. Otherwise the scaling of the various PDEs has to be taken into account 
in criterion (5.9). We have also built in an extra condition in our research code to smoothen its 
behavior. Suppose that the maximum number of grid levels during the previous time step is I 
and that at grid level k < l, II az; II oo < TOL for all i. Although this means that a new finer grid 
level k + 1 is actually not necess'ary, it will still be created when II aZ; II,,,> 0.9 x TOL, to avoid 
fluctuations of the maximum number of grid levels from one time point to the next. 

Further, it should be pointed out that when the number of grid levels is increasing in time 
additional interpolation errors are introduced, because new initial values have to be interpo
lated over the whole newly created grid. It is possible that these extra interpolation errors 
diminish the spatial accuracy. For example, this can be the case when solving reaction-diffu
sion problems with a small diffusion coefficient. In such case, the interpolation error, which will 
be committed when an extra grid level is introduced, can be very large due to a steep solution 
while the global space error is small. For this reason it may be necessary to use an extra 
criterion to create a new finer grid level based on controlling this potential interpolation error. 
This means that the situation may occur that grid refinement takes place not to reduce the 
global space error but to reduce the potential interpolation error. However, in most cases when 
these potential interpolation errors are large, the global space error will also be large and, 
therefore, a criterion like (5.9) will be sufficient to control the global spatial accuracy. In the 
refinement strategy we have implemented, only (5.9) is used as a refinement criterion. 

Having devised a criterion to generate new finer grid levels, we now have to find a criterion 
to determine which grid cells need to be refined. In order to do this we use (4.9) to rewrite (5.8) 
as 

+ (I k ,J - DZ ,J )[ Pk - 1 k ,J e k - i ,s ,J + Y Z ,J] ) ' 

( lk,; - DZ,; )ek,s,i = ( lk,J - Dk.J )( Pk-1k,Jek-1,s,i + Yk,J]' 

i=l, .. .,q, k=l, ... ,l. 

(5 .lOa) 

(5 .lOb) 

When we for a moment abandon the idea of expanded grids and think in terms of local 
subgrids, then this new criterion will be based on the notion that after the coarser grid values 
have been replaced by the finer grid values at coinciding nodes, the largest absolute nodal value 
of the global space error should be at the finest grid level. If this is not the case, then the 
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maximum norm of the global space error over all grids will not be reduced by creating the finest 
grid level, which means that this finest grid level is of no use. 

When a grid is locally refined, the nodal values at the refined part of the grid are eventually 
replaced by finer grid values. However, the nodal values outside this part of the domain remain 
unchanged. This means that, if the nodal value of the maximum space error should be at the 
finest grid level, we have to make sure that the values of the global space error at nodes outside 
the part of a grid which is going to be refined are smaller than the maximum global space error 
at the finest grid level. This means that. returning to the expanded grids, the global space error 
at the part of a grid level where interpolation takes place is smaller than the maximum global 
space error in the region of the finest grid level where (3.1) is solved. In other words, we have 
to demand that 

II ( Ik.1 - DZ.;)[ Pk-1.k.ieZ-1.s.i + 1Z,;] II,,~ c II D~;e1.s.i II"°' (5.11) 

i = l, ... , q, k = 2, ... , I, 0 < c ~ 1, 

where c is a user-defined constant and l the finest grid level which is going to be used during 
this time step. It a grid level k - 1 (5.9) holds for PDE component i and if at node j the 
associated component of the vector Uk.i - DZ)eZ.s.i satisfies 

(5 .12) 

then the sixteen cells surrounding j will be refined. This implies that the refinement is only 
controlled by the error components connected with the space discretization error components 
for which (5.9) holds. In practice the right-hand side of (5.12) is estimated at grid level k - 1. 
Not all grid level k - l nodes are scanned but only the nodes within the region of k - 1 where 
the PDEs are solved. The reason for this is that outside the region where the PDEs are solved 
only repeated interpolation takes place until grid level I is reached. The interpolation error 
committed by repeated interpolation will be bounded since repeated interpolation implies that 
only more intermediate points will be computed on the same interpolation polynomial. Hence, 
the estimate of the right-hand side of (5.12) at k - 2 can be regarded as a first-order 
approximation to the estimate at k - 1 for the nodes lying outside the region of k - 1 where 
the PDEs are solved. This means that, when in the region of k - 1 where interpolation takes 
place, (5.12) did not hold at a node belonging to k - 2, we can assume that it will neither hold 
at its corresponding node plus its nearest neighbors at k - 1. 

We use (4.16) to compute the global space error which implies that on top of solving (3.4) for 
the solution we solve an extra equation for the global space error. The spatial discretization 
error a; is estimated by computing F;<Ut) in (3.3) with a higher and a lower order 
discretization and subtracting the two. The interpolation error yz is computed by numerically 
estimating the truncation error. For both estimates the numerically computed solution is used. 
To estimate the right-hand side of (5.11) we use the asymptotic behavior of the global space 
error. In case the space discretization is of order p we have 

II Dn II - 2-p(l-k + l) II Dn II J,iel,s,i x- k-1,iek-l,s,i ,,. (5.13) 

If II aZ- i.; II"' is computed and (5.9) holds, then using the asymptotics we can estimate how 
many grid levels are needed to achieve that (5.9) does not hold any longer. The maximum 
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number of grid levels l which are necessary during this time step is then estimated as 

l k . (log(llaZ-i;lloo)-log(TOL)) = + entier ' i 1 q 
p log(2) ' = '· · ·' · (5.14) 

This means that for component i we need l grid levels in order to fulfill II a/; II 00 < TOL. This 
I-value is used in (5.13) to estimate II D'!Jei,s,i II"'. Note that for different PDE components we 
can have different /-values. The estimates above might not always be accurate, especially at 
times when the number of grid levels in use is about to change. This may leads to a refinement 
criterion (5.12) which is too restrictive or not restrictive enough. Only the latter can influence 
the accuracy in a negative manner. However, choosing c in (5.14) sufficiently small can 
overcome this problem. It is also possible to improve the estimates of II D~;ei,s,i II"" and l by 
taking these values at the previous time step into consideration. 

Finally, we conclude this section with the following remarks. The strategy based on (5.13) 
does not guarantee that, in case l is fixed over the entire time interval over which the solution 
is computed, the global space error is comparable to the global space error obtained with a 
single uniform grid having the same cell sizes as the finest grid level in the adaptive grid 
method. If such a guarantee is desired, then extra requirements have to be fulfilled in order to 
get a bound for II e1 s; II"' which is similar to the bound using a single uniform grid. However, 
these requirements 'are difficult to satisfy in practice and they can only be satisfied in an a 
posteriori manner. For this reason we have not incorporated these requirements in the 
refinement strategy. Nevertheless, when the constant c decreases then more grid cells are 
refined and the gap between the spatial error of the adaptive grid and uniform grid computa
tions is likely to become smaller. Further, the strategy described in this section is not the only 
possible strategy. The relations for the local and global space errors, given by (4.14) and (4.16), 
respectively, leave room for other strategies as well. The new strategy based on (5.11) is less 
restrictive than the previous one based on (5.4). When the time step size tends to zero, then, 
according to (5.11), the finer subgrids do not necessarily need to grow. This is in contrast to 
(5.4) where the subgrids eventually will cover the entire domain. Moreover, the (l -1)- 1 term 
is also avoided in (5.11). 

6. Example problems 

Three example problems are used to illustrate the method and to test the refinement 
strategy. For time integration, implicit Euler for the first time step and BDF2 with variable 

Table 1 
Problem I: maxima of the exact global space error restricted to the finest grid 

Number of Global space error 
grid levels 

u u 

1 0.043973 0.044304 

2 0.013465 0.012874 

3 0.003594 0.002991 

4 0.000757 0.000631 
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Table 2 
Problem I: maxima of the numerically estimated global space error restricted to the finest grid 

Number of Global space error 
grid levels 

u u 

1 0.043441 0.044379 
2 0.013277 0.013304 
3 0.003543 0.003135 
4 0.000748 0.000663 

Fig. 1. Problem I: the scaled absolute values of the exact global space error in u and u obtained with two grid levels 
at t = 0.25. 

Fig. 2. Problem I: the scaled absolute values of the exact global space error in u and v obtained with three grid levels 
at t = 0.25. 
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coefficients for the following time steps are used. Standard second-order finite differences are 
used for space discretization and the interpolation is fourth-order Lagrangian. 

6.1. Problem I 

This test example is hypothetical and is given by a coupled parabolic and elliptic equation, 
both linear: 

ut=uxx+uyy-v +g(x, y, t), 

O=L\x+vyy+u+h(x, y, t), 
O<x,y<l, t>O. 

(6.la) 

(6.lb) 

The initial function, the Dirichlet boundary conditions, and the source terms g and h are 
selected so that the exact solution is given by 

u(x, y, t)=v(x, y, t)=exp[-so((x-r(t))2 +(y-s(t))2)], (6.2) 

where r(t) = H2 + sin(irt)] and s(t) = H2 + cos(irt)]. This solution is a cone that is initially 
centered at<!,%) and that rotates around <t.t) in a clockwise direction with a constant speed. 
We have used this problem to subdue the method to a convergence test. The solution was 
computed from t = 0 to t = 0.25. Starting from a coarse 20 x 20 grid, one, two, and three 
additional grid levels were used. The number of grid levels was kept constant throughout the 
entire time interval. The associated TOL-values were 20, 5 and 1. These tolerance values 
appear to be large compared to the tolerance values one is used to. The reason for this is that 
the II al: i II"" values can be large. However the accuracy does not deteriorate severely by this, 
because 'the inverse of the Jacobian operates on the vector aZ (cf. (4.14a) and (4.16a)) which 
reduces the values of the components of this vector considerably. This is due to the large high 
frequency components of the grid function aZ and the fact that the Jacobian stems from an 
elliptic/ parabolic operator of which the inverse strongly damps such components. The constant 

Fig. 3. Problem I: the scaled absolute values of the exact global space error in u and !' obtained with four grid levels 
at t = 0.25. 
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time step size was chosen to be equal to 0.005 and the constant c from (5.17) equal to 0.5. The 
results at the final time, given in Table 1, show that the obtained global space errors decrease 
roughly with a factor of four indicating the normal second-order convergence behavior which 
would also be obtained with a single uniform grid. Since the success of the refinement strategy, 
described in the previous section, depends on the accuracy of the error estimates, we have also 
compared the numerical estimates of the global space error with the exact values. In Table 2 
the numerical estimates of the global space errors are given and it appears that the estimates 
are quite accurate. The scaled absolute values of the exact global space error in u and u at 
t = 0.25 for all computations are shown in Figs. 1-3. The positioning of the finer subgrids in 

I 
I 

Fig. 4. Problem I: the grids of the two-level (top left), three-level (top right), and four-level (bottom) computations at 
t = 0.25. 
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Figs. 1-3 appears to be good. The maximum global space error for both components is located 
at the finest subgrid in use. Moreover, the refinements are fairly efficient, meaning that not 
many grid cells are unnecessarily refined. Figure 4 shows the grids at t = 0.25. 

6.2. Problem II 

The second test problem is a problem with a steady state solution. Again the system of PDEs 
given by (6.1) is solved but this time the sources g and h and the initial function and Dirichlet 
boundary conditions are chosen such that the exact solution is given by 

u(x, y, t)=v(x, y, t)=exp[-so((x-r(t))2 +(y-t)2)], (6.3) 

where r(t) = t - t exp(-lOOOt). This represents a cone which is centered at Ct,t) at t = 0 and 
moves towards the center of the domain <t.t) with a continuously decreasing speed. In the 
steady state situation the cone will have reached the center of the domain. 

Just like in example problem I, (6.1) was solved using one, two, and three extra grid levels 
after starting from a 20 x 20 uniform grid. Variable time step sizes were used. On the 20 X 20 
grid at tn, T is predicted for the next time step so that TUt = 0.1, where U/ is a numerical 
approximation of u 1(x, tn). These computed -r-values were kept in storage and used as time 
step sizes for all computations. The constant c from (5.17) is chosen equal to 0.5 for all 
computations. 

This problem was used to illustrate the differences in behavior of the local and global space 
error belonging to (6.la) and (6.lb) and to compare the maxima of the global space errors in u 
and v of the adaptive grid solution obtained with a different number of grid levels throughout 
the entire time interval. The solution was computed to t = 1.0. The TOL-values were equal to 
20, 5, and 1. The number of grid levels was kept constant throughout the entire time interval. 
The results of Section 4.2 apply to this case, since (6.1) fits in the format (4.18). It is to be 
expected that the local space error in u behaves like O( T) and the local space error in v like 
0(1) when T ~ O. Figure 5 shows the behavior of the maximum local space error in u and in v 

ii 

0.01 

local 
space 

0.001 
error / 

0.0001 

le-05 0.()()() 1 0.001 0.01 0.1 

time stepsize 

Fig. 5. Problem II: the maximum local space error in u (i) and in v (ii). 
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0.01 
------ii 

0.001 
global 
space 

0.0001 
error 
inu 

le-05 

le-06 

le-06 le-05 0.0001 0.001 0.01 0.1 1 

time 

Fig. 6. Problem II: the maximum global space error in u obtained with one, two, three, and four grid levels, indicated 
by i, ii, iii and iv, respectively. 

over the interior of a 20 X 20 grid as a function of the time step sizes. A double logarithmic 
scale was used in this figure and the slope of the local space error in u is almost equal to unity 
for small time step sizes indicating a linear behavior in T. Further, the local space error in v 
appears to be almost constant. This means that the local space errors in u and v behave indeed 
like predicted by (4.26) for small r. Figures 6 and 7 compare the maximum global space errors 
in u and v, respectively, obtained with the adaptive grid method on one, two, three, and four 
grid levels. These figures clearly reveal that the global space error in u, belonging to the PDE 
(6.la) gradually increases in time until a certain maximum is reached while the global space 
error in v, connected with the PDE (6.lb) remains at an almost constant level over the entire 
time interval. The distances between the lines in Figs. 6 and 7 reveal a second-order 
convergence behavior which would also be obtained with a single uniform grid. The scaled 

0.01- ii 

iii 
0.001-

global iv 

space 
error 0.0001-

in v 
le-05 -

le-06-

I I I I I l 
le-06 le-05 0.0001 0.001 0.01 0.1 1 

time 

Fig. 7. Problem II: the maximum global space error in v obtained with one, two, three, and four grid levels, indicated 
by i, ii, iii, and iv, respectively. 
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Fig. 8. Problem II: the scaled absolute values of the exact global space error in u obtained with two (top left), three 
(top right), and four (bottom) grid levels at t = 1.0. 

absolute values of the global error in u at t = 1.0 are shown in Fig. 8. The global space error in 
v is not shown here, because it is very similar to the one in u for this case. Again, the grids are 
reasonably efficient and the maximum global space error is located at the finest subgrid in use. 
The grids at the final time are shown in Fig. 9. 

6.3. Problem III 

The third test problem is a problem with an oscillatory solution. The system of PDEs given 
by (6.1) is solved once more but this time the sources g and h and the initial function and 
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Fig. 9. Problem II: the grids of the two-level (top left), three-level (top right), and four-level computations at t = 0.1. 

Dirichlet boundary conditions are chosen such that the exact solution is given by 

u(x, y, t) = v(x, y, t) = sin(,,.t) exp[-320((x - t)2 + (y - !)2)]. ( 6.4) 

This represents an oscillating cone which is centered at ( t, ! ). At t = 0 the solution is zero 
everywhere. Then a steep pulse emerges at the center of the domain which reaches its 
maximum at t = 0.5. After this it will decay until the solution is equal to zero again at t = 1.0. 

This problem was solved to test the performance of the method when a variable number of 
grid levels is used. The solution was computed four times from t = 0 to t = 1.0 using a 
maximum number of grid levels of two, three, four, and five. The corresponding TOL-values 
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\j 
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time 

Fig. 10. Problem III: the maximum global space error in u as a function of time. The maximum number of grid levels 
is two (i), three (ii), four (iii), and five (iv). 

were 160, 40, 10, and 2.5, respectively, and the constant c was chosen to be 0.5. Variable time 
steps were also used here which were determined in exactly the same manner as in problem II 
and also kept in storage to be used for all computations. The maximum global space error in u 
as a function of time is shown in Fig. 10. Here, the behavior of the global space error in v is 
very similar to the one in u. The kinks in this figure indicate that, at that time, a new finer grid 
level is created or discarded. It appears that the global space error decreases with a certain 
factor when the TOL-value is divided by four. Inspection of the data revealed that this factor is 
larger than four in both the infinity and the Ll norm. These norms of the maximum global 
space error were taken over the values at all time levels. This implies that, when the TOL-value 
is decreased by a factor of four, the spatial accuracy is increased by a factor of at least four for 
this example problem. The grids at t = 0.5 are shown in Fig. 11. 

7. Summary and concluding remarks 

In this paper we have discussed the application of a local uniform grid refinement method to 
systems of coupled PDEs. The main feature of local uniform grid refinement is that the PDEs 
are solved on a series of nested, uniform, cartesian, increasingly finer subgrids covering only a 
part of the domain where the spatial error is high. The PDEs are solved on these subgrids in a 
consecutive manner, from coarse to fine. The location and size of the subgrids are automati
cally adjusted at discrete times in order to follow the movement of the steep fronts. The 
generation of subgrids is continued until sufficient spatial accuracy is reached. 

An error analysis was performed for the local uniform grid refinement method applied to 
systems of coupled PDEs. It was shown that the global and local error components associated 
with each separate PDE can exhibit an entirely different behavior. With respect to the global 
error, this means that the global error components can carry over to future time points in a very 
different way from one PDE to another. The local space error components can show a different 
behavior for small time step sizes. A refinement strategy controlling the generation of finer 
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Fig. 11. Problem III: the grids of the two-level (top left), three-level (top right), four-level (bottom left), and five-level 
(bottom right) computations at t = 0.5. 

subgrids was developed from the results of the error analysis. This strategy takes these 
differences in behavior into account and is based on estimating and controlling the global space 
error. We have applied the method to three example problems, all involving a system 
containing a parabolic and an elliptic equation to test the refinement strategy. The observed 
convergence behavior of the global space error is comparable to uniform grid computations. 
We have also seen the predicted differences in behavior of the components of the global and 
local space error. Further, the global error estimates are fairly accurate and not many grid cells 
appear to be unnecessarily refined. Using both a fixed and a variable number of grid levels in 
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time and a second-order space discretization, we have obseived that when the toierance value 
is decreased with a factor of four, the spatial accuracy also appears to improve with a factor of 
four. 

We consider these results to be very satisfactory. However, we feel that testing on more 
difficult (nonlinear) problems needs to be done in order to fully appreciate this refinement 
strategy. Further, in the example problems where variable time step sizes were used, these step 
sizes were adapted in order to equidistribute a heuristic monitor. It would be desirable to 
implement a time step strategy based on (4.15) or (4.17). However, such a strategy only works 
well when the time error estimates are sufficiently accurate. In [9], we have already reported 
that when using the local uniform grid refinement method these time error estimates do not 
resemble the actual time error at all. Nevertheless, perhaps there is a remedy for this so that a 
time step strategy can be developed which is just as successful as the refinement strategy in 
space. 
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