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Abstract. We present self-consistent Particle-in-Cell simulations of the resonant inter-
actions between anisotropic energetic electrons and a population of whistler waves, with
parameters relevant to the Earth’s radiation belt. By tracking PIC particles, and com-
paring with test-particles simulations we emphasize the importance of including nonlin-
ear effects and time evolution in the modeling of wave-particle interactions, which are
excluded in the resonant limit of quasi-linear theory routinely used in radiation belt stud-
ies. In particular we show that pitch angle diffusion is enhanced during the linear growth
phase, and it rapidly saturates. We discuss how the saturation is related to the fact that
the domain in which the particles’ pitch angle diffuse is bounded, and to the well-known
problem of 90◦ diffusion barrier.

1. Introduction

Resonant wave-particle interactions represent one of the
most important mechanism that regulate the scattering and
loss of energetic particles in the radiation belts [Thorne,
2010]. Among the different waves that can be generated and
propagate in the Earth’s radiation belt, much attention has
been devoted to whistler waves. They are right-handed po-
larized electromagnetic waves with frequencies ranging be-
tween the ion and electron gyrofrequency. Whistler waves
are associated with so-called chorus modes that usually
present two characteristic frequency bands with a gap in be-
tween. An interpretation of such a gap based on linear the-
ory has recently been presented in [Fu et al., 2014]. Whistler
waves can be generated by a kinetic instability driven by a
temperature anisotropy (with the temperature in the per-
pendicular direction greater than in the parallel direction).
For instance, equatorial whistler-mode chorus can be ex-
cited by cyclotron resonance with anisotropic 10-100 KeV
electrons injected from the plasmasphere [Summers et al.,
2007; Jordanova et al., 2010]. The generation and propa-
gation of whistler-mode chorus in the Earth’s radiation belt
has been intensively studied: simulations of rising tones have
been performed in Katoh and Omura [2007a, b]; Hikishima
et al. [2009] for loss-cone distributions and in Tao [2014] for
bi-Maxwellian; the non-linear wave growth mechanism has
been studied, e.g., in Omura et al. [2008]; Summers et al.
[2012]; Omura et al. [2012].
The current paradigm for modeling wave-particle interac-
tions in the radiation belt is based on kinetic quasi-linear
theory. It means that the particle distribution function fol-
lows a diffusive scattering in the adiabatic invariants space,
assuming a broadband wave spectrum and low amplitude
fluctuations [Kennel and Engelmann, 1966; Jokipii , 1966;
Lyons and Thorne, 1973]. Although quasi-linear theory
was primarily developed to study the saturation of a lin-
ear instability, due to the distribution function diffusion
in phase space, and the formation of a plateau, it is cus-
tomary to employ the so-called ’resonant limit’ in radia-
tion belt simulations, that is the limit in which the linear
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growth rate tends to zero, and the distribution reaches a
marginally stable state [e.g., Summers et al., 1998]. The
underlying assumption of such approach is that diffusion
due to a quasi-stationary wave spectrum (and the associ-
ated longer timescale) is more relevant than the short-lived
diffusion occurring during the linear phase of the instability.
Alternatively, one can justify the use of the resonant limit
by assuming that the diffusing particles are unrelated to the
wave, in the sense that they do not belong to the part of the
distribution function that is responsible for the development
of the kinetic instability. It is important to remind that the
calculation of the diffusion coefficients usually incorporate
the interactions between waves and resonant particles only,
assuming a stationary wave spectrum with a given ampli-
tude [Summers, 2005; Glauert and Horne, 2005; Summers
et al., 2007]. Not only this is not realistic during the lin-
ear growth phase of the instability, but we note that the
dominance of resonant over non resonant interactions in a
turbulent wave field has been recently questioned by Ragot
[2012].
Although the distribution function diffusion proceeds in a
three-dimensional space (for instance, in energy, pitch angle,
and radial directions), the timescale between energy/pitch
angle and radial diffusion is very well separated, and hence
in this paper we focus on two-dimensional diffusion only.

When eelectron pitch angle undergoes a stochastic quasi-
linear diffusion, its mean squared displacement 〈∆α2〉 is ex-
pected to grow linearly in time. Indeed, for normal diffu-
sion, the quasi-linear diffusion coefficient D and 〈∆α2〉 are
related by the celebrated Einstein relation 〈∆α2〉 = 2Dt. In
this regime, Tao et al. [2011] have shown that test-particles
simulations are an excellent tool to test the validity of quasi-
linear diffusion, by simply assessing the Einstein relation,
with the pitch angle statistics gathered from the simulation
particles.
Diffusion in pitch angle presents a crucial difference with
standard diffusion in physical space, which is commonly
represented and understood in statistical terms with the
concept of random walk. The difference is that the pitch
angle coordinate is defined on a bounded domain, that is
α ∈ [0◦, 180◦]. It is well known that diffusion on bounded
domains produce a mean squared displacement that satu-
rates in time (in the case of homogeneous diffusion coeffi-
cient, to a value that is proportional to the domain length),
[e.g., Metzler and Klafter , 2000; Bickel , 2007]. Interestingly,
such important feature of pitch angle scattering has not been
emphasized and analyzed in the radiation belt literature. Of
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course, once the distribution in pitch angle becomes close to
a saturated state, the Einstein relation becomes meaning-
less, because although individual particles continue diffus-
ing, the diffusion coefficient cannot be correctly evaluated
by means of the mean squared displacement (which becomes
constant in time). An important consideration, in a space
weather perspective, is whether such (local) saturation of
the pitch angle distribution can occur in a time scale which
is much shorter than the bounce period, over which the dif-
fusion equation is usually averaged (in order to reduce the
dimensionality of the problem, and simplify the calculation
of the diffusion coefficients).
Another important aspect of quasi-linear diffusion that ap-
parently has been overlooked in radiation belt studies is the
so-called ’90◦ problem’, that, on the other hand, has been
the focus of several works in cosmic-ray acceleration con-
text (see, e.g. Shalchi and Schlickeiser [2005]; Tautz et al.
[2008]; Qin and Shalchi [2009]). In such context, it has been
shown that quasi-linear theory underestimates the diffusion
through 90◦ angle, which represents an effective diffusion
barrier in pitch angle space (we do not mean, by barrier, to-
tal reflection, but a very small diffusion). Diffusion through
90◦ is instead sizable for some particles (depending on their
energy), and this can be incorporated in a diffusion model
when considering second-order and nonlinear effects.
The main goal of this paper is to characterize the pitch angle
and energy scattering of a tenuous population of energetic
electrons both during the linear growth and the nonlinear
saturation phases of a whistler instability, including nonlin-
ear and time-dependent effects. This is achieved by per-
forming Particle-in-Cell (PIC) simulations, that is by gen-
erating the instability in a completely self-consistent way,
without the need of further assumptions (contrary to quasi-
linear theory). The PIC simulations results will be com-
pared with test-particless simulation. Such comparison will
emphasize the inadequacy of employing the resonant limit of
quasi-linear theory for the case studied. Indeed, by tracking
resonant particles (not test-particless), we show that pitch
angle scattering is tremendously enhanced during the linear
growth phase of the instability. The decrease of anisotropy
due to the development of the whistler instability results in
a rapid precipitation in the loss-cone, in a measure much
larger than predicted by quasi-linear diffusion due to a non-
growing wave activity.
The importance of a correct assessment of the particle dif-
fusion stems from the fact that particle lifetime is approxi-
mately estimated, in the weak diffusion limit, as the inverse
of the diffusion coefficients evaluated at the equatorial loss-
cone angle [Shprits et al., 2007; Albert and Shprits, 2009;
Mourenas and Ripoll , 2012], by assuming that the scatter-
ing remains diffusive through multiple bounce periods [Sum-
mers et al., 2007]. As a reference number, we note that the
bounce period at L = 4.5 for a 1 MeV electron traveling
with loss-cone equatorial pitch angle is approximately 0.24
seconds, or 1.4·104Ω−1

e (Ωe being the equatorial electron gy-
rofrequency). An important open question then is whether
pitch angle scattering retains its diffusive character for sev-
eral bounce periods. As we will show, the whistler instabil-
ity (for sufficiently large temperature anisotropy) saturates
within few hundreds electron gyroperiods, and the local dis-
tribution reaches a quasi-stationary equilibrium, by the time
the instability saturates.

2. Methodology

We present one-dimensional Particle-in-Cell simula-
tions performed with the implicit moment-method code
PARSEK2D [Markidis et al., 2009, 2010]. We are con-
cerned here with a typical situation in the radiation belt,

where whistler waves can be excited by a tenuous popula-
tion of hot anisotropic electrons. Since we are concerned
with timescales much shorter than the bounce period, we
are justified in using an homogeneous background magnetic
field (i.e. neglecting its dipolar nature) B0 = 4 · 10−7T , cor-
responding approximately to the Earth’s equatorial value
at L ∼ 4.3. The field is aligned with the box. The elec-
tron population has a density of 15 cm−3, and it is com-
posed for 98.5% by a cold isotropic Maxwellian (1 eV),
and for 1.5% by an anisotropic relativistic bi-Maxwellian
distribution f(v||, v⊥) ∝ exp

[

−α⊥γ − (α|| − α⊥)γ||
]

(with

γ = (1 − v2/c2)−1/2, γ|| = (1 − v2||/c
2)−1/2, c the speed

of light, and parallel and perpendicular refer to the back-
ground magnetic field) [Naito, 2013; Davidson and Yoon,
1989]. We choose α|| = 25, and α⊥ = 4. The hot popula-
tion velocity distribution function has standard deviations
√

〈v2
||
〉 = 0.175, and

√

〈v2⊥〉 = 0.325 (normalized to speed

of light) corresponding to nominal temperatures of 8 KeV
and 30 KeV, respectively. Thus, the initial anisotropy of
the suprathermal component is T⊥/T|| = 3.75. The box
length is L = 400c/Ωe. We use 8,000 grid points and a
timestep ∆tΩe = 0.015. We note that for these simula-
tions the advantages of using an implicit PIC code have not
been fully exploited. Namely, the implicit scheme allows
to relax the stability constraint (Courant-Friedrichs-Lewy
condition) related to the choice of grid size and time step.
Such potentiality will be explored in the future for two- and
three-dimensional simulations, where the first-principle sim-
ulation of a large domain in the radiation belt could become
feasible with the implicit PIC.

Temperature anisotropy instabilities have a ’self-
destructing’ character, in the sense that the generated elec-
tromagnetic fluctuations reduce the anisotropy that drives
the instability, and therefore a marginal stability condition
is usually rapidly reached [Camporeale and Burgess, 2008;
Gary et al., 2014; Hellinger et al., 2014]. Figure 1 shows the
reduction of temperature anisotropy (red line, right axes)
and the increasing magnetic field amplitude (black line,
left axes). The linear instability saturates around the time
TΩe = 900, and although the anisotropy response to the
magnetic field fluctuations is somewhat delayed, the correla-
tion is clear. Indeed, in the early linear phase the instability
grows starting from small values, without affecting the elec-
tron distribution function until δB/B0 ≃ 0.02 is attained.
In Figure 2 we show the spectrogram of the magnetic field
(top panel), and the wavepower as function of frequency
(bottom panel), calculated over the entire simulation time
TΩe = 2100. The red line in the top panel represents the
whistler dispersion relation derived from cold plasma the-
ory, which, despite neglecting the suprathermal component,
is still a good approximation. Note that the wavepower
is peaked around ω/Ωe ∼ 0.2 and it is confined within
ω/Ωe < 0.6. In the bottom panel the black line denotes
results from the PIC simulation (and therefore are relatively
noisy). The red line is a smoothed fit of the PIC result, and
the blue line is the spectrum that will be used for the test-
particless calculations. It is a Gaussian centered in 0.2Ωe

with width equal to 0.25Ωe. Although it overestimates the
wavepower at small frequencies, this is a good approxima-
tion of the PIC results in the range [0.2 − 0.6]Ωe.

We emphasize that the PIC approach is first-principle and
does not rely on any of the assumptions employed for quasi-
linear diffusion codes or test-particless simulations. More-
over, the diagnostics on the particle scattering is readily
available. In the simulations presented in this paper we
have tracked 8 groups composed of 32,000 particles each,
that have been initialized with different pitch angle and en-
ergies. Specifically, the initial pitch angles range from 10◦

to 80◦, in intervals of 10◦. The initial velocity is chosen
such that the particles satisfy (at initial time) the resonant
condition

ω − kv cosα = Ωe

√

1− v2. (1)
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for a chosen value of ω. The wavevector k in Eq. (1) is de-
rived from the cold plasma dispersion relation for whistlers:

(kc/ω)2 = 1−
ω2

p/Ω
2

e

ω(ω − Ωe)
. (2)

For each value of initial pitch angle the tracked particles
are initially resonant with ω/Ωe = 0.3. The initial energy for
each group of particles is summarized in Table 1. Note that
for particles with α < 90◦, the resonant wave is counter-
propagating, that is k < 0. An important point to make
clear is that, although these 8 groups of particles have been
tracked for diagnostic purposes, they are in all respects PIC
particles, i.e. they contribute to the accumulation of charge
and current densities with their proper statistical weight.

2.1. Test-particles simulation

Although the main focus of this paper is to comment re-
sults derived from PIC simulations, it is still interesting to
compare the results against test-particless simulations. The
advantage of test-particless simulations is that one can spec-
ify the electromagnetic field at any spatial location with any
desired accuracy. Of course, this is in contrast to gridded
methods such as PIC where the field must be interpolated
from the grid to the particle locations. On the other hand,
test-particless codes lack the self-consistency and conserva-
tion properties of PIC (for instance, particles can be indef-
initely accelerated). The interest for test-particles methods
in the radiation belt studies stems, on one hand, from their
computational speed, and on the other hand from the re-
lationship that exists with quasi-linear diffusion codes. In-
deed, it is expected that when the assumptions of quasi-
linear theory are satisfied, the Einstein relation between
quasi-linear diffusion coefficients and test-particles mean
squared displacements 〈∆α2〉 = 2Dt holds. Indeed, Tao
et al. [2011] have successfully shown that this is the case
for small-amplitude parallel propagating whistler, and they
have later proved the breakdown of quasi-linear theory for
larger amplitudes [Tao et al., 2012]. See also Liu et al. [2010]
for a discussion on the departure time, that is the time at
which 〈∆α2〉 departs from the Einstein relation.
In this paper we use the same code described in Tao et al.
[2011]. The wave spectrum is approximated with 200 modes
equally spaced between ω/Ωe = 0.009 and ω/Ωe = 0.6, each
of them weighted according to the Gaussian curve shown
in Figure 2 (bottom panel, blue curve). For each run the
statistics is performed on 400 particles, advanced in time
with a timestep ∆tΩe = 0.01.

3. Results

The main diagnostics that we study is the mean squared
displacements in pitch angle and energy. Such quantities are
denoted as 〈∆α2〉, 〈∆E2〉, and 〈∆E∆α〉 (the mixed diffu-
sion term), where ∆α = α− 〈α〉, ∆E = E − 〈E〉, and 〈. . .〉
denotes the average over the whole sample.
Figure 3 shows the development of 〈∆α2〉 in time for the
tracked particles. The different colors are labeled in the
legend and correspond to different initial pitch angles. An
important feature, and one of the main results of the paper,
is that for all angles less than 70◦, the pitch angle mean
squared displacement 〈∆α2〉 shows two distinct phases: a
rapid growth for TΩe . 700, and a much slower growth at
later times. This behavior is nicely correlated with the linear
growth phase shown in Figure 1. Moreover, for the simula-
tion time presented, the dashed line represents an asymp-
totic value for the resonant particles with initial pitch angle
less than 60◦. Such dashed line corresponds to the pitch an-
gle variance of an isotropic velocity distribution, but with all
the particles bounded to the α < 90◦ interval. This is sim-
ply calculated by defining the particle distribution function

f(α) = sinα for α ≤ 90◦, and f(α) = 0 for α > 90◦. The
mean value of such distribution is equal to 1 rad = 57.3◦.
The variance in degrees is then calculated as

(

180◦

π

)2 ∫ π

2

0

(α− 1)2f(α)dα ≃ 465 (deg2). (3)

In order to understand the behavior shown in Figure
3, and how the asymptotic value of 465◦ comes about,
we look at the evolution of the distribution in pitch an-
gle at different times. Figures 4, 5, 6, and 7 show the
histograms of the number of particles at different angles
for times TΩe = 500, 1000, 1500, 2000, for initial pitch an-
gles α = 20◦, 60◦, 70◦, 80◦, respectively. We note that
TΩ2 = 2000 is still much less than the electron bounce pe-
riod in the Earth’s dipole field, which is estimated at 14,000
Ω−1

e A common feature of Figures 4 and 5 (i.e. for initial
α = 20◦ and 60◦) is that 90◦ represents a diffusion ’bar-
rier’, in the sense that diffusion through 90◦ is very limited,
although not exactly null. The same feature appears for par-
ticles with initial pitch angle α = 30◦, 40◦, 50◦ (not shown).
This is consistent with standard quasi-linear theory which
predicts a very small diffusion coefficient at 90◦. This is
shown in Figure 8, where the Summers coefficient Dαα at
90◦ (see Eq. (36) in Summers [2005]) is plotted as function
of energy for a wave amplitude δB/B0 = 0.01 (note that the
coefficient scales linearly with the square of the wave ampli-
tude). For the range of energies and the timescale considered
here the pitch angle diffusion coefficient at 90◦ is essentially
null. We note however that, as Summers et al. [2007] clari-
fies, nonlinear effects and phase trapping are not included in
the quasi-linear treatment. The bottom-right panels of Fig-
ures 4 and 5 also show the analytical isotropic distribution
f(α) discussed previously, as a black line, and they support
the argument that since diffusion tends to fill the left half
of the distribution, the variance approaches in the time the
value of 465 (deg2), as shown in Figure 3. Figure 6 has the
same format of Figures 4 and 5, but now for initial α = 70◦.
The behavior is not very dissimilar, but one can notice a
non-negligible fraction of particles diffusing through the 90◦

barrier. Finally, in Figure 7, we show the histograms for
initial pitch angle α = 80◦. The behavior is now qualita-
tively different, and this was already evident from the mean
squared displacement shown in Figure 3. There is no sign
of a diffusion barrier at 90◦, and at the final stage the dis-
tribution is almost symmetrical around 90◦. The obtained
results are reminiscent of the 90◦ scattering problem found
by quasi-linear theory for the pitch angle diffusion of cos-
mic rays [e.g., Goldstein, 1976; Qin and Shalchi , 2014] (and
many others). Quasi-linear theory can be seen as a first
order perturbation theory where the actual particle trajec-
tories are replaced by trajectories in the unperturbed field;
this approach however does not allow to correctly describe
pitch angle diffusion close to 90◦. The development of a
nonlinear theory [Goldstein, 1976] shows that pitch angle
diffusion is indeed very small, but not null, for α = 90◦

and δB/B0 = 0.05–0.1, while for δB/B0 ≃ 0.3 the pitch
angle scattering rate at α = 90◦ is comparable to that at
α = 60◦ (see Figures 1–4 in Goldstein [1976]). Recently, the
scaling of the pitch angle diffusion coefficient with δB/B0

and with the cosmic ray energy was considered by Qin and
Shalchi [2014] using both a second order theory and test
particle simulations, and they confirmed the smallness of
Dαα for small to moderate levels of δB/B0. Therefore, we
can also interpret our results in terms of the nonlinear the-
ories, considering that from Figure 1 for Ωet > 900 we have
δB/B0 ≃ 0.06–0.07, corresponding to the range where Gold-
stein [1976] found very small scattering.
For completeness, we show in Figures 9 and 10 the energy
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mean squared displacement 〈∆E2〉, and the mixed term
〈∆E∆α〉, respectively. The role of the mixed diffusion coef-
ficient has been recently discussed at length in the literature
(see, e.g., Subbotin et al. [2010]; Zheng et al. [2011]), and Fig-
ure 10 confirms that its magnitude is comparable to 〈∆α2〉
and 〈∆E2〉.
To conclude this section we present in Figure 11 and 13 a
comparison between PIC and test-particles simulations. We
interpret test-particles results as representative of the quasi-
linear paradigm employed in radiation belt simulations. The
aim of such comparison is to show that the fact that the cal-
culation of diffusion coefficients does not take in account the
growth rate of a wave due to an ongoing kinetic instability,
can lead to an erroneous prediction of pitch angle scattering.
In comparing PIC and test-particles simulations, it is impor-
tant to remind that in the latter the field amplitude is con-
stant, and thus one would not expect a good agreement for
long times. Hence the test-particles simulations are run for
300 gyroperiods only (the disagreement with PIC, however,
is evident since initial times). Figure 11 shows as a black line
the pitch angle mean squared displacement 〈∆α2〉 for initial
α = 20◦ (same plot as in Figure 3). We have superposed,
with red lines, the results of test-particles runs, considering
the instantaneous (increasing) value of magnetic field per-
turbation δB/B0, at different times. For clarity, the red lines
(test-particles results) starting points are vertically offset so
that they are made coincide with the PIC result (black line).
The six red lines are for values δB/B0 = 0.01, 0.02, . . . , 0.06.
As expected, larger values of δB/B0 result in a more rapid
growth of the mean squared displacement 〈∆α2〉, for test-
particless. Indeed, if we assume quasi-linear theory to hold,
the diffusion coefficient can be calculated as the time deriva-
tive of 〈∆α2〉, i.e. the slope of the red lines in Figure 11.
As we said, such diffusion coefficient scales quadratically
with δB/B0 (see Eq. 36 in Summers [2005]). A very clear
and striking result from Figure 11 is that the test-particles
prediction underestimates the pitch angle scattering in the
linear growth phase (TΩe . 600), and largely overestimates
the scattering in the saturation regime (TΩe & 700). The
main reason why test-particless are unable to correctly pre-
dict the evolution of 〈∆α2〉 in Figure 11 is because the time
derivative of 〈∆α2〉 (i.e. the effective diffusion coefficient,
in the quasi-linear context) does not monotonically increase
with δB/B0. Figure 12 shows the time derivative of 〈∆α2〉
as function of the instantaneous δB/B0, calculated from PIC
particles. Evidently, there is not a persistent monotonic cor-
relation between the two quantities. It is also possible that
for δB/B0 ≥ 0.05 phase trapping in the whistler waves oc-
curs, as recently considered by Shklyar and Zimbardo [2014].
Under such premises, it is no surprise that test-particless and
the resonant limit of quasi-linear theory are unusable. The
same discrepancy occurs for all particles with initial α . 60◦,
that is particles for which the mean squared displacement in
pitch angle ’saturates’ in time (Figure 3). We have already
commented on the fact that such saturation occurs as the
result that the particles see a strong diffusion barrier at 90◦,
and they effectively reach a stationary (or quasi-stationary)
distribution. Of course the diffusion coefficient is very small
but not exactly null at 90◦, and after a sufficiently long time
they will diffuse to α > 90◦. Such long time evolution is not
of interest for radiation belts, since electron precipitation
into the loss cone will modify f(α) much earlier. In different
contexts, it is important to point out that when electrons
are unable to overcome the 90◦ barrier, their parallel ve-
locity has a constant sign. This fact gives rise to very long
displacements along the magnetic field, which are eventually
reversed when α > 90◦. When considering spatial diffusion,
these long displacements can be at the origin of superdiffu-
sive transport in the parallel direction, as observed in the
solar wind [e.g., Perri and Zimbardo, 2007] and as discussed
by Perrone et al. [2013]; Zimbardo and Perri [2013]. Indeed,

the 90◦ barrier for pitch angle scattering creates a persistent
statistical process for v‖. This also highlights the need to
study pitch angle scattering in the nonlinear, self-consistent
regime.
As expected, a different phenomenology occurs for particles
that do not saturate, i.e. for initial pitch angle α > 60◦. For
instance, the case with initial α = 70◦ is plotted in Figure
13. Here, there seems to be a much better agreement be-
tween PIC and test-particless. However, it is important to
notice that, for times T . 600 (i.e. linear growth phase), the
test-particless still underestimate the pitch angle scattering.
The better agreement from time T & 600 with respect to the
α = 20◦ case (Figure 11) is due to the fact that the magnetic
field perturbation becomes close to saturation and hence the
(instantaneous) diffusion coefficient does not vary. Further-
more, the 70◦ particles are not subject to the 90◦ diffu-
sion barrier, and hence they continue diffusing. Their mean
squared displacement 〈∆α2〉 does not saturate abruptly as
for the α = 20◦ case and hence there is a more prolonged
time for which PIC and test-particless are in an approximate
agreement. In conclusions, the results for resonant particles
(i.e., particles whose initial pitch angle and energy satisfy the
resonance condition with a wave with frequency ω/Ωe = 0.3)
can be summarized as follows. A distinguishing feature that
marks a qualitatively different dynamics is whether the par-
ticles diffuse or not through the 90◦ barrier (within a short
timescale). Particles that do not diffuse through the bar-
rier tend to reach a quasi-stationary isotropic distribution
that fills half domain in pitch angle. The evolution of their
mean squared displacement is strongly correlated with the
linear growth and non-linear saturation of the magnetic field
perturbation. Quasi-linear or test-particles predictions does
not seem to be applicable to such particles, on the basis that
the ongoing wave growth makes the instantaneous diffusion
coefficient (if one still wants to interpret the dynamics as
diffusive) not monotonically correlated with the wave am-
plitude. In other words, the time dependency of the wave
power and the pitch angle scattering nonlinearly regulate
each other. The crucial point is that most of the scattering
occurs during the linear phase, contrary to the assumptions
of the resonant limit of quasi-linear theory previously dis-
cussed.

4. Conclusions

We have presented PIC and test-particles simulations
of resonant wave-particle interactions between lower band
whistler modes and anisotropic electrons, with parameters
that realistically mimic the injection of energetic particles
at equatorial latitude, for L ∼ 4.3. In PIC simulations, the
whistler waves are generated self-consistently, and as a con-
sequence the initial particle anisotropy is reduced towards a
marginal stable configuration. The focus has been on ana-
lyzing the statistics of PIC particles, in particular their mean
squared displacement in energy and pitch angle, both dur-
ing the linear growth phase, and in the nonlinear saturation
regime. This approach differs from the quasi-linear theory
and test-particles simulations, which usually (although not
by construction) assume a constant (non-growing) wave field
amplitude. We have used test-particles simulations to com-
pare and appreciate the deficiencies of the (resonant limit of
the) quasi-linear treatment. The main results of the paper
can be summarized as follows:

• The evolution of the mean squared displacements is
very well correlated with the linear wave growth and its
subsequent saturation. Enhanced diffusion is observed dur-
ing the linear growth phase, in a much larger measure than
after saturation;
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• For most angles, the distribution in pitch angle satu-
rates and very rapidly reaches a quasi-stationary equilib-
rium, in a few hundreds gyroperiods, that is in a fraction of
the bounce period;

• Although the 90◦ barrier is very effective for most en-
ergy/angles, a non-negligible fraction of particles can actu-
ally diffuse trough the barrier; whether particles diffuse or
not through 90◦ determine the dynamics and the saturation
(or lack of it) of the mean squared displacement (within the
simulation time: because the domain is bounded all particle
will eventually saturate in pitch angle);

• The disagreement with quasi-linear theory and test-
particles simulations can be attributed both on neglecting
the rapid growth rate of the linear wave, and on the lack of
90◦ diffusion.

In conclusion, this paper emphasizes the importance of
a self-consistent treatment of pitch angle and energy dif-
fusion during the growth phase of whistlers. In a realistic
scenario one can envision that the effect of several injection
of anisotropic energetic particles in a short time can result
in an overall enhanced diffusion that can cumulatively af-
fect the dynamics of particle loss, and thus should be taken
in account for realistic estimates. The inclusion of nonlinear
(or higher-order) effect in the calculation of wave-particle in-
teractions is recently becoming a topic of interest, following
the discovery of very large amplitude whistler-mode waves
in Earth’s radiation belts by Cattell et al. [2008] (see also
[Kersten et al., 2011; Mozer et al., 2013]).
The results discussed in this paper might also be relevant to
other context. For instance, the generation of suprathermal
electrons by resonant wave-particle interactions has been
discussed at length for the solar wind [e.g. Pierrard et al.,
1999; Vocks and Mann, 2003; Vocks et al., 2005; Saito and
Gary , 2007]. On the other hand, it is well-known that mag-
netized plasma turbulence exhibits features typical of super
or sub-diffusive processes [Zimbardo and Perri , 2013; Per-
rone et al., 2013]. Also, the role of whistler wave is been
currently investigated in solar wind turbulence [Gary and
Smith, 2009; Camporeale and Burgess, 2011; Lacombe et al.,
2014]. Finally, as already mentioned, wave-particle interac-
tions has been a long-time topic well studied in connection
to cosmic-ray acceleration [Schlickeiser et al., 2010].
Although this paper has focused on one-dimensional simu-
lations, the implicit PIC algorithm will allow in the near
future to tackle fully consistent simulations of wave-particle
interaction on multi-dimensions, possibly including multi-
scale dynamics.
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Hellinger, P., P. M. Trávńıček, V. K. Decyk, and D. Schriver
(2014), Oblique electron fire hose instability: Particle-in-cell
simulations, Journal of Geophysical Research: Space Physics,
119 (1), 59–68.

Hikishima, M., S. Yagitani, Y. Omura, and I. Nagano (2009), Full
particle simulation of whistler-mode rising chorus emissions in
the magnetosphere, Journal of Geophysical Research: Space
Physics (1978–2012), 114 (A1).

Jokipii, J. (1966), Cosmic-ray propagation. i. charged particles in
a random magnetic field, The Astrophysical Journal, 146, 480.

Jordanova, V. K., R. M. Thorne, W. Li, and Y. Miyoshi (2010),
Excitation of whistler mode chorus from global ring current
simulations, Journal of Geophysical Research (Space Physics),
115, A00F10, doi:10.1029/2009JA014810.

Katoh, Y., and Y. Omura (2007a), Computer simulation of chorus
wave generation in the earth’s inner magnetosphere, Geophys-
ical research letters, 34 (3).

Katoh, Y., and Y. Omura (2007b), Relativistic particle acceler-
ation in the process of whistler-mode chorus wave generation,
Geophysical research letters, 34 (13).

Kennel, C., and F. Engelmann (1966), Velocity space diffusion
from weak plasma turbulence in a magnetic field, Physics of
Fluids, 9 (12), 2377.

Kersten, K., C. Cattell, A. Breneman, K. Goetz, P. Kellogg,
J. Wygant, L. Wilson, J. Blake, M. Looper, and I. Roth (2011),
Observation of relativistic electron microbursts in conjunction
with intense radiation belt whistler-mode waves, Geophysical
Research Letters, 38 (8).

Lacombe, C., O. Alexandrova, L. Matteini, O. Santolik,
N. Cornilleau-Wehrlin, A. Mangeney, Y. de Conchy, and
M. Maksimovic (2014), Whistler mode waves and the elec-
tron heat flux in the solar wind: Cluster observations, The
Astrophysical Journal, 796 (1), 5.

Liu, K., D. S. Lemons, D. Winske, and S. P. Gary (2010), Rel-
ativistic electron scattering by electromagnetic ion cyclotron
fluctuations: Test particle simulations, Journal of Geophysical
Research: Space Physics (1978–2012), 115 (A4).

Lyons, L. R., and R. M. Thorne (1973), Equilibrium structure
of radiation belt electrons, Journal of Geophysical Research,
78 (13), 2142–2149.

Markidis, S., E. Camporeale, D. Burgess, G. Lapenta, et al.
(2009), Parsek2d: An implicit parallel particle-in-cell code, in
Numerical Modeling of Space Plasma Flows: ASTRONUM-
2008, vol. 406, p. 237.

Markidis, S., G. Lapenta, et al. (2010), Multi-scale simulations of
plasma with ipic3d, Mathematics and Computers in Simula-
tion, 80 (7), 1509–1519.

Metzler, R., and J. Klafter (2000), Boundary value problems for
fractional diffusion equations, Physica A: Statistical Mechan-
ics and its Applications, 278 (1), 107–125.



X - 6 CAMPOREALE ET AL.: WAVE-PARTICLE INTERACTIONS WITH WHISTLER WAVES

Mourenas, D., and J.-F. Ripoll (2012), Analytical estimates of
quasi-linear diffusion coefficients and electron lifetimes in the
inner radiation belt, Journal of Geophysical Research (Space
Physics), 117, A01204, doi:10.1029/2011JA016985.

Mozer, F., S. Bale, J. Bonnell, C. Chaston, I. Roth, and
J. Wygant (2013), Megavolt parallel potentials arising from
double-layer streams in the earths outer radiation belt, Phys-
ical review letters, 111 (23), 235,002.

Naito, O. (2013), A model distribution function for relativistic
bi-maxwellian with drift, Physics of Plasmas (1994-present),
20 (4), 044,501.

Omura, Y., Y. Katoh, and D. Summers (2008), Theory and sim-
ulation of the generation of whistler-mode chorus, Journal of
Geophysical Research: Space Physics (1978–2012), 113 (A4).

Omura, Y., D. Nunn, and D. Summers (2012), Generation pro-
cesses of whistler mode chorus emissions: Current status of
nonlinear wave growth theory, Dynamics of the Earth’s Radi-
ation Belts and Inner Magnetosphere, pp. 243–254.

Perri, S., and G. Zimbardo (2007), Evidence of superdiffusive
transport of electrons accelerated at interplanetary shocks,
The Astrophysical Journal Letters, 671 (2), L177.

Perrone, D., R. Dendy, I. Furno, R. Sanchez, G. Zimbardo,
A. Bovet, A. Fasoli, K. Gustafson, S. Perri, P. Ricci, et al.
(2013), Nonclassical transport and particle-field coupling:
from laboratory plasmas to the solar wind, Space Science Re-
view, doi:10.1007/s11214-013-9966-9.

Pierrard, V., M. Maksimovic, and J. Lemaire (1999), Electron ve-
locity distribution functions from the solar wind to the corona,
Journal of Geophysical Research: Space Physics (1978–2012),
104 (A8), 17,021–17,032.

Qin, G., and A. Shalchi (2009), Pitch-angle diffusion coefficients
of charged particles from computer simulations, The Astro-
physical Journal, 707 (1), 61.

Qin, G., and A. Shalchi (2014), Detailed numerical investigation
of 90 scattering of energetic particles interacting with mag-
netic turbulence, Physics of Plasmas (1994-present), 21 (4),
042,906.

Ragot, B. (2012), Pitch-angle scattering: Resonance versus non-
resonance, a basic test of the quasilinear diffusive result, The
Astrophysical Journal, 744 (1), 75.

Saito, S., and S. P. Gary (2007), Whistler scattering of suprather-
mal electrons in the solar wind: Particle-in-cell simulations,
Journal of Geophysical Research: Space Physics (1978–2012),
112 (A6).

Schlickeiser, R., M. Lazar, and M. Vukcevic (2010), The influence
of dissipation range power spectra and plasma-wave polariza-
tion on cosmic-ray scattering mean free path, The Astrophys-
ical Journal, 719 (2), 1497.

Shalchi, A., and R. Schlickeiser (2005), Evidence for the nonlinear
transport of galactic cosmic rays, The Astrophysical Journal
Letters, 626 (2), L97.

Shklyar, D., and G. Zimbardo (2014), Particle dynamics in the
field of two waves in a magnetoplasma, Plasma Physics and
Controlled Fusion, 56 (9), 095,002.

Shprits, Y. Y., N. P. Meredith, and R. M. Thorne (2007), Pa-
rameterization of radiation belt electron loss timescales due to
interactions with chorus waves, Geophysical research letters,
34 (11).

Subbotin, D., Y. Shprits, and B. Ni (2010), Three-dimensional
verb radiation belt simulations including mixed diffusion,
Journal of Geophysical Research: Space Physics (1978–2012),
115 (A3).

Summers, D. (2005), Quasi-linear diffusion coefficients for field-
aligned electromagnetic waves with applications to the mag-
netosphere, Journal of Geophysical Research (Space Physics),
110 (A9), A08213, doi:10.1029/2005JA011159.

Summers, D., R. M. Thorne, and F. Xiao (1998), Relativistic the-
ory of wave-particle resonant diffusion with application to elec-
tron acceleration in the magnetosphere, Journal of Geophys-
ical Research: Space Physics (1978–2012), 103 (A9), 20,487–
20,500.

Summers, D., B. Ni, and N. P. Meredith (2007), Timescales
for radiation belt electron acceleration and loss due to
resonant wave-particle interactions: 1. Theory, Journal of
Geophysical Research (Space Physics), 112, A04206, doi:
10.1029/2006JA011801.

Summers, D., B. Ni, and N. P. Meredith (2007), Timescales for
radiation belt electron acceleration and loss due to resonant
wave-particle interactions: 2. evaluation for vlf chorus, elf hiss,
and electromagnetic ion cyclotron waves, Journal of Geophys-
ical Research: Space Physics (1978–2012), 112 (A4).

Summers, D., R. Tang, and Y. Omura (2012), Linear and nonlin-
ear growth of magnetospheric whistler mode waves, Dynamics
of the Earth’s Radiation Belts and Inner Magnetosphere, pp.
265–280.

Tao, X. (2014), A numerical study of chorus generation and the
related variation of wave intensity using the dawn code, Jour-
nal of Geophysical Research: Space Physics.

Tao, X., J. Bortnik, J. Albert, K. Liu, and R. Thorne (2011),
Comparison of quasilinear diffusion coefficients for parallel
propagating whistler mode waves with test particle simula-
tions, Geophysical Research Letters, 38 (6).

Tao, X., J. Bortnik, J. M. Albert, and R. M. Thorne (2012),
Comparison of bounce-averaged quasi-linear diffusion coeffi-
cients for parallel propagating whistler mode waves with test
particle simulations, Journal of Geophysical Research: Space
Physics (1978–2012), 117 (A10).

Tautz, R., A. Shalchi, and R. Schlickeiser (2008), Solving the 90
scattering problem in isotropic turbulence, The Astrophysical
Journal Letters, 685 (2), L165.

Thorne, R. M. (2010), Radiation belt dynamics: The importance
of wave-particle interactions, Geophysical Research Letters,
37 (22).

Vocks, C., and G. Mann (2003), Generation of suprathermal elec-
trons by resonant wave-particle interaction in the solar corona
and wind, The Astrophysical Journal, 593 (2), 1134.

Vocks, C., C. Salem, R. Lin, and G. Mann (2005), Electron halo
and strahl formation in the solar wind by resonant interaction
with whistler waves, The Astrophysical Journal, 627 (1), 540.

Zheng, Q., M.-C. Fok, J. Albert, R. B. Horne, and N. P. Mered-
ith (2011), Effects of energy and pitch angle mixed diffusion
on radiation belt electrons, Journal of Atmospheric and Solar-
Terrestrial Physics, 73 (7), 785–795.

Zimbardo, G., and S. Perri (2013), From lévy walks to superdif-
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Table 1. Initial energy in KeV for the tracked resonant groups of particles

Initial pitch angle Energy

α = 10◦ 28.5
α = 20◦ 31.0
α = 30◦ 36.0
α = 40◦ 44.9
α = 50◦ 61.1
α = 60◦ 92.8
α = 70◦ 163
α = 80◦ 358
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Figure 1. Magnetic field relative amplitude δB/B0

(black line, left axes in logarithmic scale), and anisotropy
T⊥/T|| (red line, right axes in linear scale) as a function
of time TΩe
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Figure 2. Top: spectrogram of magnetic fluctuations in
logarithmic scale (frequency vs wavevector). The red line
shows the dispersion relation from cold plasma theory.
Bottom: wavepower as function of frequency. Black, red,
and blue line represent the result from PIC simulations,
a smoothed fit, and the Gaussian spectrum used for test-
particles simulations.
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Figure 3. Evolution of the pitch angle mean squared
displacement 〈∆α2〉 in time. Different colors are for dif-
ferent initial pitch angle. The black dashed line denotes
the saturation value 465 deg2 (see text for discussion).
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Figure 4. Histograms of pitch angle distribution for
tracked particles with initial pitch angle α = 20◦, at times
TΩe = 500, 1000, 1500, 2000. The solid line in the right-
bottom panel represents the isotropic distribution f(α) =
sinα, and the vertical dashed line denotes α = 90◦.
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Figure 5. Histograms of pitch angle distribution for
tracked particles with initial pitch angle α = 60◦, at times
TΩe = 500, 1000, 1500, 2000. The solid line in the right-
bottom panel represents the isotropic distribution f(α) =
sinα, and the vertical dashed line denotes α = 90◦.
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Figure 6. Histograms of pitch angle distribution for
tracked particles with initial pitch angle α = 70◦, at times
TΩe = 500, 1000, 1500, 2000. The solid line in the right-
bottom panel represents the isotropic distribution f(α) =
sinα, and the vertical dashed line denotes α = 90◦.
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Figure 7. Histograms of pitch angle distribution for
tracked particles with initial pitch angle α = 80◦, at times
TΩe = 500, 1000, 1500, 2000. The solid line in the right-
bottom panel represents the isotropic distribution f(α) =
sinα, and the vertical dashed line denotes α = 90◦.



CAMPOREALE ET AL.: WAVE-PARTICLE INTERACTIONS WITH WHISTLER WAVES X - 11

0 100 200 300 400 500
10

−20

10
−15

10
−10

10
−5

Energy (KeV)

D
α
α
/Ω

e

Figure 8. Diffusion coefficient Dαα calculated for α = 90◦, for δB/B0 = 0.01, as function of energy (in KeV).
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Figure 9. Evolution of the energy mean squared dis-
placement 〈∆E2〉 in time. Different colors are for differ-
ent initial pitch angle.
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Figure 10. Evolution of the mean squared displacement
〈∆E∆α〉 (i.e. the mixed diffusion term) in time. Differ-
ent colors are for different initial pitch angle.
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Figure 11. Comparison of PIC results with test-
particles simulations. The black line denotes 〈∆α2〉 for
initial pitch angle α = 20◦ (same as in Figure 3). The
red lines denotes the results from test-particless. Differ-
ent red lines are for different simulations initialized with
increasing values of δB/B0. The lines are then super-
posed starting from the time at which the same value of
δB/B0 is reached in the PIC simulation.
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Figure 12. Time derivative of 〈∆α2〉 for the α = 20◦ case, as function of the instantaneous value of δB/B0.
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Figure 13. Same as figure 11, but for initial α = 70◦.


