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This paper introduces a metric on the class of binary images, which can 
be used to assess the quality of image processing algorithms. Traditionally 
such assessment is done using the 'statistical' misclassification error rate, or 
Pratt's figure of merit. However, we show that these measures have practical 
weaknesses. Further we show that they have undesirable topological properties 
in the continuous case. The classical Hausdorff metric generates the desired 
topology (the myopic topology on compact subsets) but is highly sensitive to 
noise and thus unsuitable for image processing purposes. 

We introduce a metric l:. which is an LP modification of the Hausdorff metric. 
It generates the myopic topology yet has many features in common with LP 
metrics, including better robustness against noise. The various error measures 
are compared on synthetic image data, including examples of edge detection 
and the Besag ICM algorithm. 

0. INTRODUCTION 

157 

Most image processing tasks require us to find an algorithm which approxi
mates or estimates a 'true' image as closely as possible. Examples are image 
reconstruction (de-blurring, tomographic reconstruction, registration), encod
ing (compression, discretisation, hierarchical representation) and low-level scene 
analysis (classification, segmentation and edge detection). 

To objectively assess the performance of such algorithms, one needs a nu
merical measure 6..(f, g) of the discrepancy between two digital images f, g. In 
theoretical treatments D. is typically a function space metric on the class of all 
possible images, and an optimal filter is one which achieves minimum (expected) 
error. In computer experiments 6.. may be a more general "loss function". 

Grey-scale images are traditionally compared using the root mean squared 
difference of corresponding pixel values, 



158 A.J. Baddeley 

l 1/2 

II! - 9ll2 = [~ L (f(x) - g(x))2 

xEX 

(1) 

where f(x) denotes the brightness value of image fat pixel x, and X is the raster 
of N pixels. This has many theoretical and computational advantages and is the 
basis of the usual optimal linear filtering theory [28, 49, 73]. Alternatives are 
the L 1 metric [22, 34] and Sobolev norms [38]. 

Error metrics are particularly important in the discussion of segmentation and 
classification [2, 8, 9, 32, 37, 48, 59, 60, 61, 65, 67] and edge detection in computer 
vision [1, 14, 25, 27, 29, 30, 45, 46, 64, 66]. Here the pixel values are binary, 
or unordered labels, and images are often compared using the misclassification 
error rate 

1 
E(j,g) = Nnumber{x EX : f(x) =f g(x)}. (2) 

However, it is widely agreed that (1)-(2), and other similar LP metrics, are 
inadequate to express the human observer's sense of reconstruction fidelity or 
quality [13, 26, 44, 48, 61, 58, 59]. They are insensitive to errors which severely 
affect 'shape' but involve relatively few pixels. See §3.2. In recent work on 
Bayesian methods of segmentation and classification [8, 9, 23, 24, 32, 37, 48, 
47] it has been observed [9, discussion, p. 299], [48, pp. 97,110] that E does 
not adequately detect degenerative effects such as over-smoothing in the ICM 
algorithm. See §6.4. 

For binary images, a popular error measure is PRATT's [1, 46] figure of merit. 
We discuss this in §3.3 below. It too shows a number of undesirable features in 
practice. 

A theoretically attractive, but practically unusable, alternative is the Haus
dorff metric (e.g. [35, p. 15], [56, p. 72 ff.]), discussed in §2, §3.4 below. This is 
fundamentally important in mathematical morphology [20, 35, 56] and random 
set theory [31, 39, 63, 70]. The Hausdorff metric generates the myopic topology 
[35, p.12] on the class of compact subsets of X. SERRA [56, p. 72 ff.] argues 
that it is very desirable that image processing operations be continuous with re
spect to the myopic topology. However, the Hausdorff metric itself is extremely 
sensitive to 'noise' and even to changes in a single pixel. It cannot be used in 
practical experiments and its use as the basis of an optimal filtering theory is 
questionable. 

In this paper we study the failings of the abovementioned metrics from a 
practical and theoretical viewpoint, and propose a new metric D. combining 
their desirable features. It is topologically equivalent to the Hausdorff metric, 
satisfying the desiderata of [56, p. 72 ff.]; it is defined as an LP mean of pixel 
contributions so that it has an 'average risk' interpretation and is reasonably 
stable to noise. The underlying theory [3] is also applicable to grey-level images, 
but here we discuss only the binary case; see also [4]. Related work is in [2, 65, 
72]. 
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Section 1 lists notation and assumptions. Section 2 introduces the desired 
topology, the myopic topology, and the associated Hausdorff metric. In section 
3 we study error measures that are in current use, giving some examples of un
desirable properties in practice, and some topological characterisations. Section 
4 puts forward a list of precise conditions for choosing a suitable metric. Section 
5 introduces the new metric b.. and exami11es its topological properties. Finally 
in section 6 we give some practical examples of application to digital inu'tges. 

l. SETUP 

A discrete binary image is a function f : X -+ { 0, 1} where X is the image raster. 
In applications, X is usually a finite subset of a two- or three-dimensional regular 
square or hexagonal lattice [46, 56]. The value 1 will be interpreted as logical 
'true' and displayed as black. A binary image b can of course be identified with 
a subset B <:;;; X, namely the set of black pixels, B = { J: E X : b( :I:) = 1 } . 

Images defined on more general X, such as arbitrary finite graphs, have re
cently been studied. We follow Serra [56, 57] in allowing X to be a general 
topological space, including Euclidean space !Rd. 

DEFINITION 1. Let (X,p) be a locally r:ompact, second countable metric space. 
A binary image i.s a noncrnpty com.pad subset B ~ X. The class of all bfriary 
images ·is denoted by K,'. An in1age metric is a metric b.. on the space K'. 

In the continuous case X = IR" the metric p will usually be Euclidean distance 
p(x:,y) = 11:1: - Yll- In the discrete case where X is a finite subset of a regular 
square or hexagonal lattice, p will be a shortest path length metric [11, 12, 50, 51]. 

Note that the formulation is not symmetric in 'black' and 'white', i.e. the set 
complement of an elcrnent of K,' is not in K,'. 

We also need a measure v on X; in the discrete case this will be v(B) = n(B) = 
number of points in B, while in the continuous case X = JRrl typically v will be 
Lebesgue measure. 

DEFINITION 2 (ASSUMPTIONS). Assume that X is equipped with a Radon 
measure v which is Borel regular and satisfies 

inf v(D(x:, r)) > 0 
:rEX 

(3) 

for any fixed r > 0, where 

D(J:, r) = {y EX: p(x', y) ::; r} 

is the closed unit ball of radius r > 0 and centre ;r: E X. 
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2. HAUSDORFF METRIC AND MYOPIC TOPOLOGY 

2.1. Hausdorff metric 

DEFINITION 3. Let ( X, p) be a metric space as in Definition 1. The distance 
function of a nonempty subset A ~ X is 

d(x,A) = dp(x, A)= inf{p(x,a): a EA}, x EX 

i.e. d(x, A) is the shortest distance from pixel x E X to a pixel in A. 

The distance function has a Lipschitz property 

dp(x, A) :::; dp(y, A)+ p(x, y) (4) 

for any x, y EX. In particular, dp(., A) is uniformly continuous. Closed sets are 
characterised by their distance functions: dp (-, A) = dp (., B) iff A = B. 

It is interesting to note that, when X is a two- or three-dimensional rectangular 
or hexagonal grid and p is a shortest path metric, the function d( ·,A) can be 
computed very rapidly by a recursive algorithm [12, 50, 51] based on repeated 
application of ( 4). 

DEFINITION 4. The Hausdorff distance (e.g. (35, p. 15}, f 56, p. 72 ff.}) 
between two nonempty subsets A, B ~ X is 

Hp(A, B) = max {sup d(a, B),sup d(b, A)} 
aEA bEB 

(5) 

i.e. this is the maximum distance from a point in one set to the nearest point in 
the other set. 

Important representations of HP are the following (see [19, 2.10.21]). 

LEMMA 1. For any p and for nonempty compact A, B ~ X, 

Hr(A, B) =sup ldp(x, A) - dp(x, B)I 
xEX 

(6) 

This is trivial using ( 4). It is an immediate consequence that H is a finite-valued 
metric on JC'. P 

LEMMA 2. 
Hp(A,B) = inf{r 2: 0: A~ B(rJ, B ~ A(r)} (7) 

where A(r) = {x EX: dp(x,A):::; r} (8) 

is called the r-envelope of A. 
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In the case X = JRd with p(x,y) = llx - Yll, the envelope is familiar as the 
Minkowski dilation A EB r D of mathematical morphology [56, p. 43] where r D is 
the ball of radius r centred at the origin in JRd. In case X is a discrete rectangular 
or hexagonal grid with a translation-invariant metric (cf. [12, 50, 51]) again 
A(r) =A EB Dr where Dr is the ball of radius r in the given metric. 

Interpretation (7) connects Hausdorff distance with the partial order of set 
inclusion. 

2.2. Myopic topology 
Topologies on spaces of subsets were introduced by Michael [36], Fell [20] and 
Matheron [35]. See also [6, 7, 15, 21, 33, 71]. Related topologies have been 
constructed for uppersemicontinuous functions [52, 68], Radon measures [10, 31], 
and capacities in general [39, 40, 41, 42, 43, 69, 70]. The present section collects 
definitions and important facts from the above and [3]. 

DEFINITION 5. The myopic topology on K,' [36], [35, p. 12] is the weakest 
topology on K,' generated by all classes 

{KE K': Kn F = 0} for all FE :F 

{ K E K' : K n G # 0} for all G E Q 

where :F, Q are the classes of all closed and open subsets of X, respectively. 

The myopic topology is locally compact, second countable and Hausdorff [35, p. 
13] so that Kn ---? K myopically in K' iff 

Kn F = 0 => Kn n F = 0 eventually 

Kn G # 0 => Kn n G # 0 eventually 

for all F E :F, G E Q, where 'eventually' means 'for all but finitely many n'. 
The discussion in [35, pp. ix-x, 12-26] and [56, p. 72 ff.] makes it clear that 

continuity with respect to the myopic topology is a very desirable property for 
image processing algorithms. The connection with the Hausdorff metric is the 
following. 

PROPOSITION l. Let (X, p) be as in Definition 1. For K, Kn EK', the following 
are equivalent: 

(a) Kn~ K myopically; 

(b) d(x, Kn) ---? d(x, K) uniformly in x E X; 

(c) Hp(Kn, K)---? 0. 

The equivalence of (b),(c) is clear from (6) equivalence of (a), (c) is proved by 
MATHERON [35, p. 15]. See also [71, theorem 3.1], [6, 7], [15, p.41], [33, p. 41]. 

The Hausdorff metric thus provides the foundation for mathematical morphol
ogy and random set theory· [35, pp 12-26], [56, pp. 63-92]. 
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3. ERROR MEASURES IN CURRENT USE 

In this section we study the error measures for binary images surveyed by PELI 

& MALAH [45] and VAN VLIET ET AL. [66]. 

3.1. General criteria 
Important general principles for error measurement were enunciated by Canny 
[14] in the context of edge detection. He argued that an edge filter should be 
considered 'good' if it exhibits 

l. good detection: low probability of failing to detect an edge, and low prob
ability of incorrectly labelling a background pixel as an edge; 

2. good localization: points identified as edge pixels should be as close as 
possible to the centre of the true edge; 

3. unicity: there should be only one response to a single edge. 

Canny showed that (in a suitable real-analytic framework) there is an uncertainty 
principle balancing good detection against good localization. 

3.2. Detection performance ('statistical') measures 
Let A be the 'true' binary image and B the putative or 'estimated' image. Pixels 
that belong to B but not A will be called false positives or Type I errors; pixels 
that belong to A but not B will be called false negatives or Type II errors. In 
case X is finite, define the type I error rate [45] by 

n(B \A) 
a(A, B) = n(X \A) 

the type II error rate 

f3( A B) = n(A \ B) 
' n(A) 

and the overall misclassification rate 

(A B) = n(A t:. B) 
e ' n(X) 

(9) 

(10) 

(11) 

where n(S) = number of pixels in S and t:. denotes set symmetric difference. 
Some other quantities derived from a, f3 are discussed in [17, 45]. 

Two attractive features of e are that it is a metric on K.', and that it is linear. 
Under any stochastic model for A and B the mean value of e:(A, B) equals the 
average over all pixels x of the disagreement probability: 

1 
E e:(A,B) = n(X) L JP>{a(x) =f:. b(x)}. 

:z:EX 

(12) 
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where a(x) = 1 if x EA, and 0 otherwise. Thus to-optimality has an 'average risk' 
interpretation: the estimate a of an image a which minimises expected E-error 
is that which maximises the pixel wise likelihood P{a ( x) = a( x)} for every pixel 
x. There is a similar Bayesian statement. 

It is widely acknowledged [9, p.299], [48, pages 97,110], [58, 59] that pixel mis
classification errors are a poor measure of reconstruction fidelity. Discrepancies 
between A and B are measured by the number of disagreements, regardless of the 
pattern. Errors such as the displacement of a boundary, that affect a large num
ber of pixels but do not severely affect 'shape', are given high values by t:; while 
errors such as the deletion of a linear feature, filling-in of small holes or deletion 
of small islands, that involve only a small number of pixels but severely affect 
'shape', have low E values. An example of an effect which is not well detected by 
E, a, {3 is the over-smoothing of segmented images by iterative algorithms such 
as ICM and deterministic and stochastic relaxation [9, discussion], [23, 48, 47]. 
See §6.4 for an example. These comments support Canny's observations. 

More rigorous statements of this kind can be obtained by considering topo
logical properties of the continuous counterparts of a, {3, E. For arbitrary (X, p) 
with measure v as in Definition 2 define 

&(A, B) 

;§(A, B) 
E(A,B) 

= v(B \A) 
v(A \ B) 

= v(A 6 B). 

One cannot normalise a and E as done in (9), (11) unless v(X) < oo. 

LEMMA 3. For An, A E K', if An -+ A myopically then &(A, An) -+ 0. The 
converse is generally false, and so is the corresponding statement concerning 
&(An, A). The analogous statements for j3 and E are also generally false. 

PROOF. If H(An,A)-+ 0 then by (7) for every r > 0 we have for all sufficiently 
large n that An~ A(r), so that v(An \A)~ v(A(r) \A). Now A(r) l A as r l 0 
so limr!O v(A(r)) = v(A). Thus &(A, An) -+ 0. 

The other statements mentioned are generally false, since e.g. the finite sets 
are dense in K' with the myopic topology and have zero measure under any 
nonatomic v. D 

The following result states that E convergence and myopic convergence are 
equivalent for images without 'small' features. Define the inner envelope of 
Ac X as 

A(-r) = {x EA: d(x,Ac) 2 r} 

for r > 0. Say that A is r-closed if 

and r-open if 
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These are analogues of standard definitions in mathematical morphology [56, 57]. 
If X = ]Rd and p is Euclidean distance, r-closure implies s-closure for every 
O < s :=:; r and similarly for openings. Every compact convex set in ]Rd is 
r-closed for every r > 0. 

LEMMA 4. Let r > 0 be fixed and let Cr, Or be the classes of compact subsets of 
X that are respectively s-closed and s-open for every 0 < s S r. 

(a) on Cr, An--+ A myopically implies i(A, An) --+ 0. 

(b) on Or, i(A, An) --+ 0 implies An --+ A myopically. 

Thus l and H are topologically equivalent on Cr n Or. 

PROOF. (a): Suppose H(An, A) --+ 0 for An, A E Cr. For s < r we have for 
all sufficiently large n by (7) that A~ (An)(s) and An ~ A(s)_ Since the inner 
envelope operation is increasing (A~ B => A(-r) ~ B(-r)) we have 

A(-s) c [(An)(s)r-s) 

since An is s-closed. That is 

A(-s) ~An~ A(s) 

for all sufficiently large n. Thus v(An 6. A) :$ v(A(s) \ A(-sl). Now as s l 0 
we have A(s) l A and A(-s) i int(A), the topological interior. Since v is 
Borel regular the measures of both these sequences converge to v(A). Thus 
i(A, An) --+ O. 

(b): Given 0 < s $ r suppose A, B E Or are such that H(A, B) 2 s. Then 
without loss of generality there is a point x E A with d(x, B) 2 s. Set t = s/3; 
then since A is t-open, x belongs to some ball D(y, t) of radius t in the metric p 
contained entirely within A. But since d(x, B) ;::: s we have D(y, t) n B = 0 so 
that v(A .6 B) ;::: v(D(y, t)). The latter is bounded below in y by assumption 
(Definition 2). Hence 

inf{f(A,B): H(A,B) 2 s, A,B E Or}> 0. 

It follows that l(An, A) --+ 0 implies H(An, A) --+ 0. D 

Part (a) is similar to the proof [35, p. 68) that Lebesgue measure is myopically 
continuous on the compact convex sets of !Rd. 

3.3. Localization performance {'distance') measures 
Measures of localization performance discussed by PELI and MALAH [45] for a 
discrete raster X were the mean error distance 
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1 
e(A, B) = n(B) ~ d(x, A), (13) 

the mean square error distance 

- 1 ~ 2 
e2 (A, B) = n(B) L, d(x, A) 

xEB 

(14) 

and Pratt's [1, 46] "figure of merit" 

FOM (A B) - 1 L 1 
' - max{n(A), n(B)} 1 + K d(x, A)2 

xEB 

(15) 

where K is a scaling constant, usually set to 1/9 when p is normalized so that 
the smallest nonzero distance between pixel neighbours equals l. Here A is the 
true image and B the estimated image; note that FOM (A, B) =f. FOM (B, A). 
One has 0 < FOM (A, B):::; 1 and FOM (A, B) = 1 iff A= B. FOM is the most 
popular of these and is widely used [1, 5, 25, 45, 46] . 

••••• • • • • • • ••••• 
•••••• • • • • • • • • •••••• 

•••••• • ••••• •• •• •• •• 
FIGURE 1. Peli-Malah counterexample. True picture A (top) and two error 
pictures B 1, B 2 (bottom) with the same value of FOM. 

The three error measures are insensitive to type II errors. For example, if all 
errors are of type II, B ~ A, then e = e2 = 0 while FOM (A, B) = n(B)/n(A) = 
1 - (3(A, B). They are also insensitive to the pattern of type I errors, since they 
are averages of a loss function f ( x, A) over all type I error pixels x. A striking 
example found by PELI and MALAH [45] is shown in Figure l. If the upper 
image is taken as the true image A, then the two lower images B 1, B2 have the 
same FOM values, FOM (A, B 1 ) = FOM (A, B2 ). Indeed they also have the 
same values of a, f3 and E. 

PELI and MALAH [45] and VAN VLIET et al. [66] observed cases where 
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FOM was large, but the visual quality was bad. When FOM was used as 
a criterion for choosing parameter values in edge detection algorithms [66, p. 
186 and section 6] in the case of the classical Laplacian operator the FOM
optimal images often had sections of the true contour missing, or oscillated 
around the true contour. This behaviour can be explained by observing that for 
x ~ AUB we have FOM(A,BU{x}) < FOM(A,B) if and only ifd(x,A) > 

"-- 1/ 2 (FOM(A,B)-1 -1)112
. If FOM(A,B) > 0.9 and""= 1/9 then this 

translates into 

FOM(A,BU{x})<FOM(A,B) iff d(x,A)2:1 

That is, when FOM is large, preference will always he given to type II errors 
over type I errors, however innocuous the latter might be. 

Similar criticisms apply to e and e2 ; these have the additional disadvantage 
that they are highly sensitive to background noise. If the error image B contains 
even one single pixel x far distant from A, its distance value will drastically 
elevate the mean distance. This is connected with the statistical phenomenon 
of non-robustness of the arithmetic mean. 

Note e and e2 have an average risk interpretation analogous to (12), but FOM 
does not. Splitting the sum in (15) one has 

FOM (A, B) = max{ n(~), n(B)} [n(A n B) + L 1 + "'d~x, A)2] 
xEB\A 

or 

FOM (A B) _ 1 ~ d(x,A)2 {0 l n(B)} 
1 - ' - max{n(A),n(B)} ~ I+1<d(x,A)2 + max ' - n(A) · 

xEB\A 

The three error measures seem difficult to interpret because of the normalisation 
by a variable denominator n(B) or max{n(A), n(B)}. For example it is not clear 
how to compare FOM (A, B) for fixed A and different B if n(B) > n(A). 

Peli and Malah concluded that FOM sometimes gives insufficient information 
and that a better measure is needed. 

The author is not aware of any theoretical justification for e, e2 or FOM. For 
general X, define analogues of e, e2 and FOM by replacing n( ·) by v, and sums by 
integrals with respect to v, in (13)-(15). These apply only when v(A), v(B) > 0. 
The (Lebesgue) integrals are always well-defined since the integrand is uniformly 
continuous by (4) and the domain of integration B is compact. 

LEMMA 5. Suppose An -+ A myopically where An, A E IC' satisfy v(A) > 0, 
v(An) > 0. Then e(A, An) -+ 0, and e2 (A, An) -+ 0. The converse statements 
are generally false. The corresponding statements for FOM are also generally 
false. 

LEMMA 6. Let Cr be as in Lemma 4. Then on Cr, An -+A myopically implies 
FOM (A, An) -+ 0, but not conversely. 
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The proofs are similar to those for Lemmas 3 and 4a respectively. 

3.4- Hausdorff metric 
The Hausdorff metric H defined in §2 is never used in practice (to the author's 
knowledge) as an error measure for digital images. It has been used in some 
research on numerical analysis and approximation theory [53, 54, 55, 16]. 

The practical objection to H is its extreme sensitivity to changes in even a 
small number of pixels, because of the supremum in (4). This is expressed by 
the following 'minimax property' 

LEMMA 7. For any sets Ar, ... , An and B1 , •.. , Bm 

This is an application of the definition of H to the relation 

n 

d(t, LJ Ai)= mind(t, Ai). 
i 

i=l 

Hence for example 

H(A,AU{x}) = d(x,A) 

is unbounded. Errors such as the addition of a small amount of background noise 
thus give inappropriately high values of H. The Hausdorff metric is therefore so 
unstable as to be unusable in this context. 

4. DISCUSSION OF PROBLEM 

The objections to existing error measures, discussed above, may be summarised 
as follows. Firstly, in some cases, errors of a particular kind are completely 
undetected; for example, type II errors are not detected by e, e2 . Such error 
measures do not have a satisfactory topological interpretation at all. Secondly, 
in most cases, the relative values given to various possible types of errors are 
not in the desired relation to each other (cf. discussion in §3.2-3.3). In the cases 
considered, this imbalance was extreme, in that the continuous-space versions 
of these error measures are in conflict with the myopic topology. Thirdly, in 
some cases ( e, e2, H) the error measure is not 'robust' in that the alteration of 
a relatively small number of pixel values can have an unbounded effect on the 
measured error. 

We thus arrive at the following list of desiderata for an improved error measure: 

l. The error measure should be a metric .6.. on K'; 

2. .6.. should generate the myopic topology; 

3. There should be an 'average risk' interpretation of .6.. similar to (12); 
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4. The alteration of a fixed number of pixels should have a bounded effect on 
Li, or more generally, 

sup{Li(A,AUB): v(B):=;u}<oo 

for each fixed A E K' and n < oo. 

See [56, p. 72ff] for a discussion of metrics in the context of image processing. 
While a metric is desirable for theoretical purposes, in particular for developing 
an optimal filtering theory (e.g. [28, 49, 73]) it is arguable whether the metric 
property is desirable for practical purposes. The symmetry axiom implies equal 
treatment of type I and type II errors. The triangle inequality effectively means 
we cannot normalise the error Li(A, B) by some measure of the size of A or B 
(as done in the construction of FOM, a, (3 but not E). Yet these objections 
would be unimportant if one could find a metric that behaved well in practical 
experiments. 

It is also important to distinguish topologies and uniformities [18, pp. 200-
204] which are not discussed in [56]. Two metrics may generate the same topol
ogy, yet not generate the same uniformity. The complaints which we have levelled 
at existing error metrics can best be understood as differences in the correspond
ing uniformities in the continuous case. One can change a metric so as to preserve 
the desired topology but change the undesired uniformity. 

A number of authors [62, 65, 72] have proposed modifications of E of the form 

1 
((A, B) =NL z(x; A, B) 

:rEX 

where the contribution z(x; A, B) from pixel x depends on pixel values of A, B 
in a neighbourhood of x. These enjoy an 'average risk' interpretation similar to 
(12) for E, but are also liable to similar criticisms. 

Desideratum 4 above can be achieved by the standard device of concave trans
formation. 

LEMMA 8. Let w be any contin1t0us function on [O, oo] that is concave 

w(s + t):::; w(s) + w(t) 

and strictly increasing at 0, w(t) = 0 iff t = 0. If p is a metric on a space S, 
then T =wop is also a metric, i.e. r(x,y) = w(p(x,y)). The metrics T and p 
generate the same topology and the same uniformity. 

Examples which transform an unbounded metric to a bounded one include 

w(t) 

w(t) 

w(t) 

t 

l+t 
tan- 1 (t) 

min{t, c} 
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for a fixed c > 0. 
The effect of concave transformation on the Hausdorff metric H is particularly 

simple. 

LEMMA 9. Let w be a concave function as above. If HP denotes the Hausdorff 
metric defined by a pixel distance metric p, then Hwop = w o Hp, i.e. 

Hwop(A, B) = w(Hp(A, B)). (20) 

Hence Hwop generates the same topology and uniformity as Hp. 

5. PROPOSED METRIC 
The proposal is simply to replace the supremum in representation (6) of H by 
an LP average. Thus in the discrete case 

[ l 1/p 

.6.P(A, B) = n(~) L ld(x, A) - d(x, BW 
xEX 

(21) 

for 1 :::; p < oo. The result is still a metric, and indeed topologically equivalent 
to H, since distance functions d( x, A) are equicontinuous Lipschitz functions by 
(4). More generally we can introduce a concave transformation as follows. 

DEFINITION 6 (DELTA METRIC). Let x, p, ll be as in Definition 2. Let w 
[O, oo] -> [O, W] be any bounded concave function with w(O) = 0. For 1 :S: p < oo 
define 

.6.~(A, B) = [.l lw(d(x, A)) - w(d(x, B))IP dv(x)r/P (22) 

for A, B ~JC'. 

PROPOSITION 2. Assume either 

• X is compact (so that v(X) < oo); 

• w is eventually constant, w(t) = W fort;::: to where to < oo. 

Then .6.;;, is a finite valued metric on JC' generating the myopic topology. 

PROOF. For any K 1 , K 2 E JC' the set of points x where maxd(x, Ki) :S: to is 
compact. Thus the integrand of (22) is zero outside a compact region, and since 
vis a Radon measure the integral in (22) is finite. It is then clear from standard 
properties of LP(v) that .6.;;, is a metric. 

Let K.,., K E JC' and suppose Hp(Kn, K) -> 0. Then dp(·, Kn) --+ dp(·, K) 
uniformly. Hence w o dp(·,Kn) -> w o dp(·,Kn) uniformly, which (since the 
integrals are bounded) implies convergence in LP, i.e . .6.l:,(Kn,K)-+ 0. 

Conversely suppose Kn ->Kin .6.~, i.e. da(·, Kn) -+ da(·, K) in LP, where 
er = w o p. Then writing 
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Rn,,= {x EX: ld,,.(x, Kn) - d,,.(x, K)\ > c} 

for f > 0, we have v(Rn,e) -+ 0 as n -+ oo for each fixed f. Now the Lipschitz 
property (4) gives, for any x,y EX, 

\d,,.(x, Kn) - d<T(x, K)I $; \d,,.(y, Kn) - d,,.(y, K)I + 2a(x, y) 

so that 

X E Rn,,=? D,,.(x, c/3) ~ Rn,e/3· 

For fixed f > 0, the v-measure of the right-hand set converges to zero; yet since 
closed balls in a are closed balls in p, (3) implies v(D,,.(x, c/3)) is bounded below 
for all n. Thus Rn,• must be empty for sufficiently large n, i.e. the a distance 
functions converge uniformly on X. Hence the p distance functions converge 
(pointwise, hence uniformly). D 

Implementation is straightforward using the distance transform algorithm of 
ROSENFELD and BORGEFORS [12, 50, 51]. In applications we shall always use 
the cutoff transformation w(t) = min{ t, c} for a fixed c > 0. In this case the 
contributions to the integral in (22) are zero for points x further than c units 
away from A and B. This has the attractive property that the value of .6.P(A, B) 
does not change if we change the grid size (embed X in a larger space). The 
possible values of t..P(A, B) then range from 0 to c. 

Tlw parameters c and p determine the tradeoff between localization error 
and misclassification error. The value of c effectively controls scale: roughly 
sp<·aking, a misclassification error is equivalent to an error in localization by 
distltrWP r·. For small t the pffect is similar to misclassification error; as c -+ 0 on 
a discr<'tP grid ~t..;;,(A, B) ___, f(A, B) 11P. The value of p determines the relative 
importa11c<' of large localization errors. For large p the effect is similar to the 
Hausdorff nwtric; t..~(A, 13) = Hw(A, B). 

Silln' d(;r, A)= 0 for :i: EA, the sum in (21) includes contributions 
L.r• .I d(.r. H)1' and I::,,03 d(J.", A)" which are analogous toe, e2 and FOM. How-
1•v<'1:, t h<' sum iu (21) also i11d udes other terms for x outside A and B. 

Cl1•arly t..~;, has an '<~xpc('ted risk' interpretation analogous to (12): under any 
stochasti<' model for A, B 

lE[(t..1,;,(A, B))l'j = ;· lE\w(d(x, A)) - w(d(x, B))IP dv(x). 
.x 

(23) 

Anotlwr V(•n;io11 is as follows. Let B be a random compact set [35] and A E K' 
fixed. Tlwu by straight.forward calculation 

lE[(t..~;.(A, B))P] = L (JH(X,dr(x, A))dv(:r) (24) 

whPr<' T = wop and 
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depends only on da(·,A) and on the avoidance functional [35] of B, 

TB(K) = J!D{B n K = 0}. 

6. EXAMPLES 

Throughout this section we have compared the figure of merit FOM for /'i, = 1/9 
with the!'::,.. metric with p = 2 and w being the cutoff transformation (19). 

6.1. Peli-Malah example 
This example (Figure 1) yields a FOM value of 0.941 for both pictures B1 , B2. 
The corresponding t::,.2 values, with cutoff c = 5, are 0.323 (left picture) and 
0.512 (right picture). 

6.2. Artificial data 

FIGURE 2. Synthetic true image A 

Figures 2-4 show synthetic images (32 x 32 pixels) deviating in various ways 
from a straight edge. Table 1 reports the computed values of type I error a, 
type II error {3, misclassification error t, Pratt's figure of merit with K = 1/9, 
and the !'::,.. 2 metric with cutoff distance 5. 

The most dramatic disagreement between these measures is for the gaps im
age, which scores a very bad grade in FOM, an indifferent grade in /3, and scores 
better than all other images in !'::,.. 2 . FOM gives roughly comparable, high scores 
to shift, bend and barbs, while t and !'::,.. 2 spread them over a wide range . 

• 
I 
I 
I 
I 
I . 
• . 

FIGURE 3. Images gaps and lost 
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-. 
I I -I --I 

FIGURE 4. Images shift, bend and barbs 

Image B Cl /3 E FOM ti. 
gaps 0 0.313 0.0098 0.688 0.149 
lost 0 0.344 0.0108 0.656 0.682 
shift 0.011 0.344 0.0214 0.966 0.319 
bend 0.010 0.313 0.0195 0.969 0.291 
barbs 0.010 0 0.0097 0.952 0.463 

TABLE 1. Error measures for the synthetic images 

6.3. Edge detection 
The next experiment is modelled on the standard edge detector test of HARA LICK 
[29] (see [27, 30, 66]) and compares optimality under FOM and under 6_2. 

Figure 5 shows the test image, a chessboard pattern with additive Gaussian 
noise at signal-to-noise ratio 2.0. Figure 6 shows the true edge image, computed 
before adding the noise, and cropped from 256 x 256 pixels to 200 x 200 to 
standardise the image size for comparisons with filtered images. 

The edge detector consisted of Gaussian smoothing with standard deviation 
a, followed by the classical 4-connected Laplacian, zero-crossing by thresholding 
and distance transform [66], then the Lee-Haralick morphological edge strength 
detector with a pseudocircular mask [66] of size 3 was applied to the smoothed 
data and the result multiplied by the zero-crossing image. The resulting edge 
strength image was thresholded at a fixed value to obtain a binary edge image B. 
For various values of the smoothing parameter a, we then compared FOM (A, B) 
with A2 (A, B). The FOM parameter K was set to the usual 1/9 and the cutoff 
parameter of A2 was c = 5. 

The plot of FOM and 6.2 values (Figure 7) shows that FOM is almost indif
ferent to a wide range of a values near its optimum. This is consistent with our 
theoretical comments about FOM. 

The optimal values of a under the two measures were quite different: FOM 
chooses a = 2.32 and ti.2 chooses a = 2.08. The corresponding images are 
shown in Figure 8. The FOM values were 0.941 and 0.939 respectively; the 
corresponding A2 values were 0.663 and 0.617. 

6.4. ICM algorithm 
Our final experiment studies the behaviour of Besag's ICM (Iterated Conditional 



Binary Images and U' HausdorH Metric 173 

FIGURE 5. Chessboard image with additive Gaussian noise (SNR = 2) 

FIGURE 6. True edges of chessboard 

Modes) algorithm for classification [9]. The 'true' image is the 200 x 125 binary 
image in Figure 9 (originally obtained by thresholding a camera image of a 
newspaper). 

The data image in Figure 10 was generated using independent Gaussian pixel 
values, with mean 100, standard deviation 40 for foreground (text) pixels and 
mean 150, standard deviation 20 for background pixels. Heteroscedastic data 
(i.e. with unequal variances) were used to encourage an imbalance of type II 
over type I errors, the most challenging situation for FOM. 

Figure 11 shows the result of maximum likelihood classification from the data 
of Figure 10 (i.e. applied independently to each pixel). 

We then applied Besag's ICM algorithm [9] (eight-connected neighbourhood, 
2 x 2 coding, constant interaction (3 for all neighbours) for 11 iterations, with 
interaction parameter (3 beginning at 0.4 and increasing in steps of 0.2 until the 
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value 2.0 was reached. 
Figure 12 shows a selection of the ICM results. Features to note are the 

dramatic improvement over maximum likelihood, after one iteration, and the 
slow degeneration of the text shapes beyond iteration 4. 

Figure 13 shows the error measures 1::12 , 1 - FOM and "- for successive ICM 
iterations. The cutoff for 1::12 was c = 4. To remove irrelevant scale effects 
Figure 14 shows the same data normalised to have value 1 at iteration 11. 

The initial improvement from MLE to iteration 1 is registered clearly by all 
three error measures. The degeneration of shape from about iteration 4 onwards 
is almost undetected by FOM and the misclassification error, but quite clearly 
detected by 1::12 • 
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FIGURE 7. FOM and 6.2 errors against smoothing parameter 
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FIGURE 8. Laplace edge detector with FOM-optimal (left) and ~-optimal 
smoothing 
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FIGURE 9. True image of text 

FIGURE 10. Greyscale data image for ICM algorithm 
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FIGURE 11. Pixelwise rnaximum likelihood classification 

FIGURE 12. ICM iterations 1, 4, 7 and 10 
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FIGURE 13. Error measured by b. metric (solid lines), 1 - FOM (dashed lines) 
and misclassification error c (dotted lines) for successive ICM iterations (iteration 
0 is the MLE) 
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FIGURE 14. Error measures normalised by value at iteration 11 


